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Department of Medicine, Division of Cardiology, University of California, San Francisco, CA, USA

Abstract

Objective——Pediatric focused assessment with sonography for trauma (FAST) is a sequence of 

ultrasound views rapidly performed by clinicians to diagnose hemorrhage. A technical limitation 

of FAST is the lack of expertise to consistently acquire all required views. We sought to 

develop an accurate deep learning view classifier using a large heterogeneous dataset of clinician-

performed pediatric FAST.

Methods——We developed and conducted a retrospective cohort analysis of a deep learning 

view classifier on real-world FAST studies performed on injured children less than 18 years old in 

two pediatric emergency departments by 30 different clinicians. FAST was randomly distributed 

to training, validation, and test datasets, 70:20:10; each child was represented in only one dataset. 

The primary outcome was view classifier accuracy for video clips and still frames.

Results——There were 699 FAST studies, representing 4925 video clips and 1,062,612 still 

frames, performed by 30 different clinicians. The overall classification accuracy was 97.8% 

(95% confidence interval [CI]: 96.0–99.0) for video clips and 93.4% (95% CI: 93.3–93.6) 

for still frames. Per view still frames were classified with an accuracy: 96.0% (95% CI: 95.9–

96.1) cardiac, 99.8% (95% CI: 99.8–99.8) pleural, 95.2% (95% CI: 95.0–95.3) abdominal upper 

quadrants, and 95.9% (95% CI: 95.8–96.0) suprapubic.

Conclusion——A deep learning classifier can accurately predict pediatric FAST views. 

Accurate view classification is important for quality assurance and feasibility of a multi-stage 

deep learning FAST model to enhance the evaluation of injured children.

Keywords

abdominal injuries/diagnostic imaging; ultrasonography; pediatric trauma; machine learning; deep 
learning

Focused assessment with sonography for trauma (FAST) is a diagnostic point-of-care 

ultrasound study, in which a sequence of ultrasonographic views performed by the bedside 

treating clinician rapidly identifies free fluid, interpreted as hemorrhage in the setting of 

injury. FAST decreases computed tomography usage and improves clinical outcomes in 

adults with blunt injury,1 but has shown inconsistent diagnostic utility in children.2,3 This 

inconsistency of FAST in children arises from varying image acquisition and interpretation 

of all the possible views.4–6 Specifically, non-interpretable FAST views are a major 

source of technical error.7 Technical expertise improves FAST diagnostic consistency and 

accuracy,3 however, there remain barriers in education, training, and skill maintenance that 

have perpetuated a lack of global pediatric FAST expertise.4,8,9 This lack of expertise 

is a primary reason for FAST not being universally implemented in pediatric clinical 

practice.10–12 Therefore, the clinical evaluation of injured children may benefit from novel 

methods of disseminating widespread expertise in pediatric FAST.

Deep learning is promising for clinical image processing including automatic classification 

of diagnostic ultrasound but has not yet been deployed for automation in pediatric 

Kornblith et al. Page 2

J Ultrasound Med. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FAST.13,14 Deep learning anatomic ultrasound view classifiers are often the first step in 

developing successful models for diagnostic ultrasound applications.15,16 View classification 

allows researchers insight into the feasibility of a deep learning approach, which is essential 

in heterogeneous datasets.17 Inconsistency in clinician expertise and user-to-user variability 

of FAST adds to broad and consequential heterogeneity in image quality, and to the 

complexity of developing an automated view classifier.7 Further, deep learning models 

developed with heterogeneous datasets are more likely to generalize and perform within a 

larger range of image qualities.14 Therefore, we sought to develop and validate the accuracy 

of a FAST view classifier on a heterogeneous real-world dataset of pediatric FAST studies.

Materials and Methods

Study Design and Setting

This is a retrospective feasibility study of diagnostic test accuracy. We collected a 

convenience sample of archived pediatric FAST studies performed for a traumatic 

mechanism at the point-of-care by the treating clinicians during routine emergency 

department care at two institutions, UCSF Benioff Children’s Hospital Oakland (BCHO) 

and UCSF Benioff Children’s Hospital San Francisco (BCHSF). BCHO is a regional 

pediatric trauma referral center and emergency department with approximately 45,000 visits 

annually, and BCHSF is a tertiary referral center and pediatric emergency department 

receiving approximately 18,000 visits annually. Each hospital’s point-of-care ultrasound 

quality assurance program archives FAST studies. FAST studies were included if they were 

interpreted by the clinician and archived in the hospital’s quality assurance program. All 

datasets were obtained retrospectively and de-identified, with waived consent in compliance 

with the Institutional Review Board at the University of California San Francisco.

Data

FAST studies from March 1, 2018 through January 1, 2020 were retrieved in raw Digital 

Imaging and Communications in Medicine format. The dataset was secured in a high-

performance computing environment in compliance with the local Institutional Review 

Board. All images were deidentified according to the Health Insurance Portability and 

Accountability Act Safe Harbor standards. All FAST studies were acquired with either the 

Sonosite Edge II (Fujifilm, Inc., Bothell, WA) or the Sonosite X-Porte (Fujifilm, Inc.) using 

phase array, linear, and curvilinear transducers with frequencies between 13 and 1 MHz. 

We included FAST studies for children younger than 18 years of age who were evaluated 

for a traumatic mechanism. Additionally, clinical and trauma registry data were linked to 

the respective FAST study. FAST studies were excluded if the FAST study and patient data 

could not be linked.

Pre-processing

A FAST study was defined as one or more video clips from a single patient and performed 

at a single time point. Each video clip represents one of the possible FAST views (Figure 1). 

FAST views include standard abdominal and thoracic sonographic views, including cardiac, 

pleural, abdominal upper quadrant, and suprapubic views and planes.18 The ultrasound 

systems capture still frames at a rate of 30 still frames per second. These FAST still 

Kornblith et al. Page 3

J Ultrasound Med. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



frames were all then resized to squared portable network graphics of 299 × 299 pixels and 

normalized to appear with a standardized intensity.

Ground Truth

All FAST studies were labeled by a pediatric emergency point-of-care ultrasound 

fellowship-trained expert with over 10 years of experience. FAST video clips were 

labeled once as either: cardiac, pleural, abdominal upper quadrant, or suprapubic views. 

The abdominal upper quadrant views also received a secondary label for laterality 

(corresponding to left or right abdominal upper quadrants for secondary sensitivity analysis). 

To ensure intra-rater reliability, 10% of studies were re-labeled. A second FAST expert with 

over 10 years of FAST experience independently labeled the test dataset to ensure interrater 

reliability. Discrepancies were resolved by rereview and then a third expert reviewer was 

used as a tiebreaker.

Data Partitions

FAST studies were randomly partitioned (ratio: 70:20:10) into training, validation, and test 

datasets.13 The training dataset refers to data used to fit the deep learning classifier. The 

validation dataset refers to data used to tune hyperparameters. The test dataset refers to an 

independent hold-out dataset. To maintain sample independence, FAST video clips from a 

single patient could be included in only one dataset.

Model Architecture and Training

The deep learning model, ResNet-152, is a convolutional neural network pre-trained on 

Imagenet. We choose ResNet-152 to reduce the training error and increase our likelihood 

of generalizability to external validation.19 A one-cycle training was implemented with a 

batch size of 40 still frames and a final dropout of P = .5. We utilized a predefined training 

technique including 12 epochs with 8 epochs focused on the top layer of ResNet-152, and 

4 epochs allowing changes to weights across the entire network.20 Spatial transformations 

and image manipulations were incorporated in an additional candidate model to introduce 

artificial noise. The data augmentation techniques included: 1) rotation (0.75 probability of 

rotation 0° –180° right or left), 2) cutout (0.75 probability loss of up to four regions 10–160 

pixels in size), 3) crop and resize (0.75 probability of a 299 × 299 pixel region selected 

from image scaled 0.75× to 2× original), and 4) adjustment of brightness and contrast (0.75 

probability of a .05× to 0.95× brightness and/or 0.1× to 10× contrast change).17

Evaluation

The primary outcome was FAST view classification accuracy by 1) video clip and 2) 

still frame on the test dataset. The secondary outcome evaluated view classification with 

the addition of differentiation of the two abdominal upper quadrant views, left and right, 

by video clips and still frames. Descriptive statistics were reported as frequencies and 

proportions to describe the sample study population and expert classification. In the test 

dataset, the output labels for both single still frames and full video clips were compared 

to the experts’ manual label. For each still frame the classifier assesses a “probability” of 

class membership for each of the four classes. The class with the highest probability score 
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is assigned as the output label for a single still frame, and the video clips are assigned an 

output label using a plurality classification from all the still frames generated from a single 

video clip.16

We calculated a confusion matrix and diagnostic accuracy measures for the predicted 

classes. Model training and statistical analyses were performed using Python version 3.7 

(Python Software Foundation) software, and R, version 3.6 (R Foundation for Statistical 

Computing). Class-specific accuracies are reported as the total proportion of true positives 

and true negatives for each predicted output class. Overall model accuracies are calculated as 

the total proportion of all correct classifications across all included views. Clopper–Pearson 

confidence intervals were also included for each proportion estimated.

Additionally, we visually represent transformed images as predicted. We selected the 4096-

dimensional vector output from the last fully connected network layer (FC7) before the 

output prediction image. These high-dimension vectors were reduced to 50 dimensions 

with principal components analyses and then two dimensions with T-distributed stochastic 

neighbor embedding to visualize dimensionality reduction.21 Similarity among the model’s 

interpretation of the images is represented by the lower Euclidian distance between the 

points when plotted.21,22 We utilized gradient-weighted class activation mapping (Grad-

CAM), as a visual representation of the contribution of regions within a prediction.23 Study 

experts (AK and RC) reviewed Grad-CAM predictions to assess for relevant contributions. 

We report the time required per training epoch and prediction run.

Results

We deidentified 701 FAST studies with recorded video clips. Two studies were excluded 

for missing linked patient-level data. The 699 FAST studies were included in our analysis. 

There were a total of 4925 video clips representing 1,062,612 still frames. The video clips 

were abdominal upper quadrant (45.8%), suprapubic (24.8%), cardiac (18%), and pleural 

(12%). The majority of FAST studies came from children less than 11 years of age, and 

one-third of the total studies came from children less than 6 years of age (Table 1). Sixty 

percent of the cohort were males. The majority of FAST studies were obtained at the level 1 

pediatric trauma center and were performed by 30 attending clinicians. There was no single 

attending clinician that performed more than 11% of FAST studies.

The 699 FAST studies were divided into the training (70%), validation (20%), and test 

(10%) datasets (Table 1). Age, sex, source, and expert labeling were evenly distributed 

between the different datasets. The test dataset was made up of 70 FAST studies, 

representing 459 video clips and 104,220 still frames, which had a slightly higher proportion 

of studies from children 6 to 10 years of age, females, and suprapubic video clips/still 

frames.

FAST View Classifier

The overall classifier accuracy was 97.8% (96.0–99.0%) for video clips, and 93.4% (93.3–

93.6%) for still frames (Table 2). The F-scores were 0.98 and 0.94 for video clips and still 

frames, respectively. The per-view classifier accuracies of video clips were 98.7%, 99.8%, 
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98.3%, and 98.9% for the cardiac, pleural, abdominal upper quadrant, and suprapubic views, 

respectively. The view classifier accuracies of still frames were 96.0%, 99.8%, 95.2%, 

and 95.9% for the cardiac, pleural, abdominal upper quadrant, and suprapubic views, 

respectively. The clustering analyses revealed class groupings by still frames into FAST 

view with minimal overlap (Figure 2). The view classifier was performed with near-identical 

accuracy on the augmented test dataset (Figure 3). On expert review, Grad-CAM suggested 

that the classifier received prediction contributions from relevant view classification sites 

(Figure 4). The standard clock time needed to predict the view in 1000 still frames in this set 

was approximately 40 seconds.

We also evaluated the accuracy of a view classifier with the additional discernment of 

the abdominal right and left upper quadrant views. Forty-nine (24%) video clips of the 

upper abdominal views received a secondary expert label for the right or left upper 

quadrant. A total of 151 (76%) were given a definitive label, of which 69 (46%) were right 

upper quadrant and 82 (54%) were left upper quadrant views. The overall view classifier 

accuracies were 88.5% (85.0–91.5%) for video clips and 83.5% (83.3–83.8%) for still 

frames (Supplemental Table 1). The F-scores were 0.88 and 0.83 for video clips and still 

frames, respectively. In this five-class model, view classification accuracy was lower in the 

abdominal upper quadrant views than the other anatomic views.

Discordant Results

The experts had five (1.1%) discordant classifications between one another with an inter-

rater reliability of Fleiss Kappa of 0.98 (0.97–0.99), suggesting a near-perfect agreement 

between expert labels. Furthermore, eight video clips were discordant between the expert 

reference standard and the classifier prediction classification (Supplemental Figure 1). Four 

of the video clips were concordant between expert reviewers, but discordant between the 

classifier’s prediction classification. These four discordant results were expert:classifier 

interpretation as cardiac:abdominal upper quadrant, abdominal upper quadrant:cardiac, and 

abdominal upper quadrant:suprapubic, respectively. The remaining four discordant video 

clips were discordant between the two experts. Three of these expert discordant video clips 

were concordant between expert 2 and the classifier prediction. The remaining video clip 

was discordant between both experts and the classifier prediction.

Discussion

We found that a deep learning pediatric FAST view classifier can perform accurately in a 

heterogeneous set of real-world bedside clinician-performed studies of injured children. Our 

study’s dataset is unique in that it is a relatively large expert-labeled archive of pediatric 

FAST video clips and still frames from children after a traumatic mechanism. Further, the 

use of heterogeneous images avoids an idealized dataset which improves the generalizability 

of our findings. Greater than 30% of the studies are from children less than 6 years old and 

performed by 30 clinicians with varying levels of FAST training and expertise. Adding to 

the heterogeneity, FAST studies used for this study were conducted in real-time within a fast 

pace and high-stakes emergency environment that is prone to error.24 Although the inclusion 
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of a heterogeneous group of FAST studies and operators adds valuable natural variation to 

the dataset, it increases the complexity of the classification task.

Deep learning classifiers have been successfully trained and tested in diagnostic ultrasound 

applications, but the feasibility of deep learning view classification for real-world pediatric 

FAST was unknown. Previous studies have shown echocardiography view classification and 

lesion detection within the liver and breast13,16,17 to be highly accurate. Importantly, these 

previous ultrasound classifiers have utilized imaging data from operators with advanced 

training and accreditation in image acquisition.15,16,25 Accredited operators are apt to derive 

standard sequences and higher quality image capture.26,27 In contrast to this, FAST is 

performed by the bedside treating clinician instead of a certified ultrasonography technician 

or other experts in image acquisition. Therefore, we conducted a feasibility study to assess 

whether a deep learning strategy could identify pertinent features within a FAST with 

multiple layers of heterogeneity.

Our findings build on previous work, demonstrating that machine learning strategies can 

identify pertinent features from FAST. Specifically, Sjogren et al demonstrated feasibility 

in using basic machine learning techniques, including support-vector machine models, in 

interpreting adult FAST.27,28 The model achieved 100% (95% confidence interval [CI], 69–

100%) sensitivity and 90% (95% CI, 56–100%) specificity for free fluid detection using 

only the abdominal right upper quadrant view from 10 positive and 10 negative adult FAST 

studies. However, this study utilized a labor-intensive annotation method, a basic machine 

learning approach, and was performed on only a small number of FAST studies. In addition, 

these results may not be adaptable to pediatric FAST, where post-traumatic abdominal 

pathology displays wide variability and anatomic views are smaller and may vary across 

age groups.28 In contrast, our study employed a less labor-intensive expert labeling, along 

with an advanced deep learning technique, which can also perform with a high degree of 

accuracy. Our view classification deep learning classifier also suggests that these techniques 

are well-suited for additional development of a multistage model to enhance the acquisition 

and interpretation of pediatric FAST.1,23,29

Feature identification is an essential step toward developing an accurate and consistent 

deep learning multistage model to enhance pediatric FAST.30 The FAST view classifier’s 

high accuracy implies the ability to parse out identifying features within a pediatric FAST 

image. Similarly, our data augmentation simulation and Grad-CAM review suggest that a 

deep learning approach may be using relevant features within the image.31 Notably, the 

classifier is using pertinent features to accurately classify the different abdominal FAST 

views, including the suprapubic view, which is the most sensitive abdominal view for 

intraabdominal free fluid detection in injured children.32

The high accuracy of our pediatric FAST view classifier suggests that a deep learning 

approach can achieve class prediction accuracy as well as an expert. Previous reports 

show that FAST has excellent consistency for view classification between experts, but 

only moderate agreement for less experienced FAST users.33 Furthermore, the FAST 

was accepted by the trauma community in the 1990s,34 however, there remains no clear 

association between the number of FAST studies performed and when FAST expertise is 
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gained.35 In addition, there are barriers to training and implementation, including FAST 

view interpretability. For all of these reasons, it is critical that alternative methods to enhance 

FAST use are identified.7 Our classifier performed with similar accuracy to that of study 

experts, suggesting deep learning may offer a possible solution for poor view interpretability 

and view variability between clinicians with inconsistent expertise in FAST.

One of this study’s goals was to develop automated processes and methods to reduce 

the need for human input. Human input in dataset curation is laborious, subject to 

error, resource-intensive, and is a rate-limiting step in high-quality, in-depth learning 

model development.13 Our automated image preprocessing pipeline and view classifier 

can accurately expedite the development of larger and more robust datasets for future 

multistage FAST models.30 Our imaging preprocessing pipeline masked extraneous data 

outside the ultrasound viewing area to avoid training from non-clinically relevant features. 

Additionally, our preprocessing pipeline included data augmentation techniques to simulate 

image variation outside the standard differences in image quality to avoid overfitting the 

model. Similar to our image preprocessing, we developed a system optimized for discordant 

image evaluation in which experts could quickly review images (Supplemental Figure 1). 

This discordant image review process allows for a rapid review and understanding of model 

inaccuracy.

There are limitations to our study. First, the primary outcome was to develop an accurate 

view classifier for pediatric FAST, but not interpret the diagnostic interpretation. The 

recognition of relevant features within a heterogeneous dataset of pediatric FAST still 

frames certifies our pre-processing and gives insight into how a deep learning strategy 

may distinguish relevant imaging features and computational process speeds. Second, the 

accuracy decreased once the view classifier was tasked to discriminate between right and 

left abdominal upper quadrant views. The upper abdominal views are similar in sonographic 

appearance, which may account for the small decline in accuracy. However, it may also 

parallel the difficulty in the expert’s interpretation. Similar to previous studies of FAST view 

classification, the abdominal upper quadrant views are classified together because of the 

similarity of features and location of free fluid collection.33 Third, our classifier was trained 

using a single expert. However, previous studies and our study show a strong agreement 

between experts for FAST view classification.33 Fourth, we report a single deep learning 

model, ResNet-152. Using this methodology, we could take advantage of efficient transfer 

learning, which could be scaled to future image segmentation, voxel interpretation, and may 

integrate into future ensemble learning strategies.

We demonstrate that our deep learning FAST view classifier has accurate view classification 

in heterogeneous real-world pediatric FAST video clips and still frames. Our deep learning 

classifier may discern relevant features within pediatric FAST images. Accurate view 

classification is important for quality assurance and in understanding the feasibility of 

developing a consistent and accurate multi-stage deep learning model for enhancing 

pediatric FAST.
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Figure 1. 
A focused assessment with sonography for trauma (FAST) study is made up of a sequence 

of (A) FAST views. Each FAST view is archived as a (B) FAST video clip(s). Each FAST 

video clip is made up of multiple (c) FAST still frame.
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Figure 2. 
T-distributed stochastic neighbor embedding (t-SNE) plot. Clustering analysis of pediatric 

focused assessment with sonography for trauma views: cardiac views (red), pleural (peach), 

abdominal upper quadrant (light blue), and suprapubic views (dark blue).
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Figure 3. 
Pediatric focused assessment with sonography for trauma view classification accuracy 

(95% confidence interval) by the deep learning model for still frames after augmentation 

techniques.
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Figure 4. 
Gradient class activation mapping. A, Pleural thoracic view with the highest contribution 

from the costal-pleural interface. B, Cardiac view with the highest contribution from the 

left atrium. C, Abdominal upper quadrant view with the highest contribution from the 

spleen–renal–diaphragm interface. D, Suprapubic view with the highest contribution from 

the posterior bladder wall.
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