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ABSTRACT OF THE DISSERTATION

Kaczmarz’s Method for Systems of Linear Equations: Coherence, Corruption, and

Consensus

by

Benjamin Edward Jarman

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2023

Professor Deanna M. Hunter, Chair

In this thesis, we study variants of Kaczmarz’s iterative method for solving systems of linear

equations. We introduce and analyze a variant that incorporates heavy-ball momentum

to accelerate convergence when the data is highly coherent. We provide theoretical and

empirical results for both fixed systems and streamed data. Furthermore, we introduce vari-

ants of the method tailored to a specific sparse corruption model. These variants leverage

information from the residual to avoid corrupted rows and estimate the solution’s direction.

We offer theoretical guarantees and empirical evidence showcasing the convergence of our

methods to the uncorrupted system’s solution. Additionally, we establish an equivalence

between block variants of Kaczmarz’s method and gossip protocols, which are widely

used in distributed computing. We develop new convergence theory on both sides of this

equivalence and extend our results to account for noisy models of network communication.
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CHAPTER 1

Introduction

In our increasingly data-driven world, businesses and individuals alike rely on complex

mathematical models to make critical decisions based on vast amounts of data. For in-

stance, a bank may have a credit model for loan approvals, a hospital may have a model

for treatment plans, or a space agency may have a model for flight paths. The lack of

understanding of the algorithms underpinning such models can have negative impacts

on individual lives and the world at large, particularly when the data used to make these

decisions is imperfect. This thesis aims to deepen the understanding of a family of iterative

methods for solving linear systems of equations, making them more accessible to people

with varying mathematical backgrounds.

Solving a system of linear equations of the form Ax = b is a fundamental component of

many models in data science. As datasets grow larger, traditional methods for solving such

systems may fail due to time or memory constraints. In recent times, iterative methods

have become increasingly popular. These methods often require only a small amount of

data to be loaded into memory at any particular time and require a relatively small number

of computations per iteration. We study variants of one particular iterative method, the

Kaczmarz method.

The Kaczmarz method takes an initial guess at the solution of the system, x0, and

sequentially projects it onto the hyperplanes defined by the rows of the system to produce

a sequence of iterates. These iterates will get successively closer to the solution due to

the geometry of the problem. The rate of convergence depends on the structure of the

matrix A and the order in which rows are chosen for projection. While the convergence

of the Kaczmarz method is well-understood when the system is consistent, in practice,

1



it is often applied in settings where imperfections in data (arising, for example, through

transmission, storage, or collection) lead to inconsistent systems. In Chapters 2 and 3, we

study variants of the Kaczmarz method designed to handle such imperfections and still

return the desired solution.

The Kaczmarz method may also be used as an online method to recover a signal from a

sequence of linear measurements. This scenario arises, for example, in medical scanning

technologies, where a potential roadblock for the Kaczmarz method is the coherence of

successive measurements. In Chapter 4, we show that the addition of a momentum term

can significantly accelerate convergence in the coherent measurement setting.

A common problem in distributed computing is the average consensus problem. Given a

network consisting of nodes and edges, where each node stores a value, the objective is for

each node to learn the average of all of these values through communicating across edges in

the network. This scenario arises in clock synchronization, blockchain technology, GPS-free

localization, and elsewhere. Efficient iterative methods are preferred when networks are

large, as is common in practice. Moreover, communications often come with some level of

noise, which methods should be robust to.

In Chapter 5, we show that a popular class of iterative methods for solving the average

consensus problem, called gossip protocols, may be identified with a certain multi-row

variant of the Kaczmarz method for solving linear systems. We demonstrate that this

equivalence brings forth a new depth of understanding for gossip protocols, including new

convergence guarantees and empirical results on the role played by noise.

We would also like to draw attention to work completed by the author in the course of

their studies that has not been included here, due to the topics of said work being distinct

from the themes of this dissertation. In [38], we study the problem of quantifying the

equity of a geographical distribution of social resource sites (in our study, polling sites). We

employ persistent homology, a tool from topological data analysis, to examine the effective

availability and coverage of polling sites across five cities and one county in the United

States. In [50], we address the problem of performing classification and topic modelling

2



on large-scale datasets of documents, accompanied by pre-assigned document class labels.

We propose a new method, Guided Semi-Supervised Non-negative Matrix Factorization

(GSSNMF), that incorporates these class labels as well as user-designed topic seed words.

GSSNMF produces an assignment of documents into classes, along with a set of topics. We

demonstrate the effectiveness of our method on legal documents provided by the California

Innocence Project.

3



CHAPTER 2

QuantileRK: Solving Large-Scale Linear Systems with

Corrupted, Noisy Data

This chapter is a version of [40] and is joint work with Prof. Deanna Needell. Deanna

Needell proposed and supervised the project. I contributed the convergence analysis,

experiments, and writing. We discuss the use of a quantile-based variant of the Kaczmarz

method for solving linear systems that have been affected by (potentially arbitrarily large)

sparse corruptions, as well as small-scale noise that could affect every equation. These

phenomena are prevalent in real-world linear systems, hence both introducing and under-

standing efficient methods to solve such imperfect systems is of much importance. We give

both theoretical guarantees and experimental results to demonstrate the effectiveness of

the method.

2.1 Introduction

From medical imaging [39], to image reconstruction and signal processing [37, 22], to

modern data science and statistical analysis [49], solving systems of linear equations, has

long been a central problem in applied mathematics. Such systems will often be large,

overdetermined, and consistent: we consider the systemAx = b,whereA ∈ Rm×n, b ∈ Rm,

and m ≥ n, with solution x⋆.

A practical challenge is that measurement data often becomes damaged during col-

lection, transmission, or storage, violating consistency. Two important types of damage

are

4



• corruption; large errors due to faulty software, hardware, or mismeasurement, affect-

ing a small fraction of data, and

• noise; small errors due to imprecision or processing that may affect every measure-

ment.

The Randomized Kaczmarz (RK) method [43, 75] is a popular iterative projective

method for large, overdetermined, consistent systems due to its exponential convergence

and low memory requirements. An initial guess x0 is iteratively projected onto randomly

chosen hyperplanes corresponding to solution spaces to rows of the system. More precisely,

letting a1, · · · , am be the rows ofA, the kth iterate is computed as

xk = xk−1 +
bi − aixk−1

∥ai∥2
a⊤
i ,

where row i has been chosen with probability proportional to its Euclidean norm (denoted

∥·∥).

Strohmer and Vershynin [75] showed that RK converges exponentially in expectation.

This was extended to the noisy case in [63] where a vector of noise r is added to the

measurement data b. In this case, exponential convergence is still achieved up to an error

horizon depending on the size of the noise. Namely, letting ek := xk − x⋆ be the error at

the kth iteration,

E ∥ek∥2 ≤

(
1− σ2

min(A)

∥A∥2F

)
∥e0∥2 +

∥A∥2F
σ2
min(A)

∥r∥2 ,

where σmin(A) is the smallest singular value ofA, and ∥·∥F is the Fröbenius norm.

Variants of RK, including those involving multi-row projections or greedy row selection,

have been shown to exhibit similar robustness to noise [64, 31].

Corrupted data proves more of a challenge for projection-based methods: projecting

onto a row with large corruption can cause the iterate to move far from the solution and

severely disrupt convergence. Recent modifications have been designed to handle this
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issue, see [32, 18, 34]. In this paper we focus on the method introduced in [34] and

analyzed further in [74], where the authors constructed a quantile-based modification of

RK, QuantileRK, in which the quantile of the absolute values of a subresidual is used to

detect and avoid projecting onto corrupted rows.

Here, we extend the theory and show that QuantileRK is robust to both corruptions

and noise in the measurement data. We give a theoretical result showing exponential

convergence down to an error horizon, and provide experiments demonstrating the strength

of the method in identifying and solving the underlying system beneath highly damaged

measurement data.

2.2 Proposed Method

2.2.1 Preliminaries & Notation

Weaim to solve the consistent systemAx = b̃with access only to the observedmeasurement

vector b = b̃+ bC + r, where bC is a sparse vector of corruptions, and r is a vector of noise.

In practice, bC will contain large entries, and r small, but we make no such assumption for

our theory. We define β to be the fraction of data that is corrupted, i.e. β = |{i : bCi > 0}|/m.

We build on the foundations established in [34]. To utilize results from random matrix

theory, we viewA as a random matrix and make the following assumptions, that will for

example hold ifA is Gaussian with normalized rows:

Assumption 1. All rows ai of A are independent, and
√
nai is mean zero isotropic with

uniformly bounded subgaussian norm, ∥
√
nai∥ψ2

≤ K.

Assumption 2. Each entry aij ofA has probability density function ϕij satisfying ϕij(t) ≤

D
√
n for all t ∈ R.

We define the q-quantile of the absolute values of the residual, or sub-residual formed
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by rows in an index set S:

Qq(x) = q − quantile{|bi − ⟨ai,x⟩| : i ∈ [m]}

Qq(x, S) = q − quantile{|bi − ⟨ai,x⟩| : i ∈ S}.

Throughout, C, c, c1, c2, · · · refer to absolute constants whose values may vary line by

line.

2.2.2 QuantileRK

Projecting iterates onto corrupted hyperplanes will often cause abnormally large move-

ments. Our method detects this by taking a quantile of the residual entries of a collection

of rows at each iteration, and deeming a row acceptable for projection if its residual entry

is less than said quantile. Whilst the method may still project onto corrupted rows, the

movement away from the solution caused by these ’bad’ projections will on average be

outweighed by projections onto uncorrupted rows. We present pseudocode for the method

in Algorithm 1, under the assumption thatA has been standardized to have normalized

rows for simplicity.

Algorithm 1 QuantileRK(q)
1: procedure QuantileRK(A,b, q, t, N)
2: x0 = 0
3: for j = 1, . . . , N do
4: sample i1, . . . it ∼ Uniform(1, . . . ,m)
5: sample k ∼ Uniform(1, . . . ,m)
6: compute qk = Qq(xj−1, {il : l ∈ [t]})
7: if |⟨ak,xj−1⟩ − bk| ≤ qk then
8: xj = xj−1 − (⟨xj−1, ak⟩ − bk) ak
9: else
10: xj = xj−1

11: end if
12: end for

return xN
13: end procedure

In [34], the authors proved that for A sufficiently tall and β sufficiently small, Quantil-
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eRK convergences exponentially, with

E(∥ek∥2) ≤
(
1− Cq

n

)k
∥e0∥2 ,

Our main result, Theorem 2.1, builds on this and shows that the addition of noise

does not harm the convergence rate, and exponential convergence is still achieved up to a

horizon proportional to the size of the noise.

Theorem 2.1. Let the linear system be defined by the standardized random matrix A ∈ Rm×n

satisfying Assumptions 1 and 2. Assume that β ≤ min(cq, 1− q), and thatm ≥ Cn. Then with

high probability, the iterates produced by QuantileRK, with q ∈ (0, 1), where in each iteration the

quantile is computed using the full residual, and initialized with arbitrary x0 ∈ Rn, satisfy

E(∥ek∥2) ≤
(
1− Cq

n

)k
∥e0∥2 +

2n

c1
∥r∥2∞ . (2.1)

Remark 2.2. It is natural to ask whether one may consider some of the larger entries in r as

corruptions, by increasing β, leading to a smaller error horizon. This is possible, but there

is a tradeoff: increasing β forces a decrease in q, which slows convergence. The effectiveness

will be application dependent: if the distribution of noise is concentrated, it would take

a significant increase in β to see a decrease in the error horizon, leading to substantially

slower convergence; however, if the noise has large spikes, increasing β may be worthwhile.

2.2.3 Proof of Main Result

We follow the proof of the main QuantileRK convergence result from [34] closely, making

necessary alterations for the presence of noise throughout. We firstly present a modified

version of Remark 3 from said paper:

Lemma 2.3. Let α ∈ (0, 1], let the random matrix A ∈ Rm×n satisfy Assumption 1, and let x⋆ be

the solution to the consistent system Ax = b̃. Then if m ≥ n, there exists a constant CK > 0 so
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that with probability at least 1− 2e−m, for every x ∈ Rn the bound

|⟨ai,x⟩ − bi| ≤
CK
α
√
n
∥x− x⋆∥+ ∥r∥∞

holds for all but at most (α + β)m indices i.

Proof. Applying ([34], Proposition 2) with the unit vector (x− x⋆)/ ∥x− x⋆∥, excluding

the βm corrupted rows, yields

|⟨ai,x⟩ − ⟨ai,x⋆⟩| ≤
CK
α
√
n
∥x− x⋆∥

for at most (α+ β)m indices i. For each i for which the above holds, we have ⟨ai,x⋆⟩ = b̃i =

bi − ri (i.e., bCi = 0). Then the right hand side can be written as

|⟨ai,x⟩ − ⟨ai,x⋆⟩| = |⟨ai,x⟩ − bi + ri|

≥ |⟨ai,x⟩ − bi| − |ri|

≥ |⟨ai,x⟩ − bi| − ∥r∥∞ .

Combining the inequalities yields the result.

Taking α ≤ 1 − q − β immediately gives the following corollary, showing that the

quantiles are well-concentrated:

Corollary 2.4. Under the same assumptions as Lemma 2.3, and taking α ≤ 1− q − β, we have

P
(
Qq(x) ≤

Cα ∥x− x∗∥√
n

+ ∥r∥∞
)
≥ 1− 2e−m.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let EAccept(k) denote the event that we sample a row that with residual

less than the computed quantile at the kth iteration. It is clear that we have P(EAccept(k)) = q.
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Let J be a collection of indices of size 2βm, containing all corrupted indices and at

least βm acceptable indices. Then split all acceptable indices into two subsets: those inside

J , denoted by I1, and those outside of J , denoted by I2. Let EkL denote the event that at

the k-th iteration an index in sampled from L ⊂ [m]. We argue that the possible damage

to convergence caused by projecting onto a corrupted row in I1 is outweighed by the

movement towards the solution caused by projecting onto a row in I2.

Observe firstly that

Ek(∥ek+1∥2) = qEk(∥ek+1∥2 |EAccept(k + 1)) + (1− q) ∥ek∥2 , (2.2)

since we have no update to our iterate if the sampled row was not acceptable.

We now deal with Ek(∥ek+1∥2 |EAccept(k+1)) by splitting into two cases; sampling a row

from I1 or from I2. Note that the probability of sampling an index from I1, conditioned on

EAccept(k + 1), pJ , satisfies pJ ≤ 2βm/qm ≤ 2β/q.

Firstly, if we sample from I2, the iterate xk+1 is obtained by performing an iteration of

standard RK on the noisy systemAI2x = b̃I2 + rI2 . Noting that I2 has size at least (q− β)m,

Proposition 2 from [34] (with α = q − β) yields that σmin(AI2) ≥ Cα,D
√

m/n with high

probability, provided that A is tall enough. Furthermore since A has normalized rows, we

have ∥AI2∥F ≥
√

(q − β)m. Thus

κ(AI2) ≥ Cq,D
√
n.

Then by the analysis of RK with noise in [63], we have that

Ek(∥ek+1∥2 |Ek+1
I2

) ≤
(
1− c1

n

)
∥ek∥2 + ∥rI2∥

2
∞

≤
(
1− c1

n

)
∥ek∥2 + ∥r∥2∞ .

The β = 0 case (i.e., when we have no corruptions) follows immediately from this

and Equation (2.2). In the case where β > 0, i.e., when I1 is not empty, we consider the
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possibility that we sample from I1. Our update will take the form xk+1 = xk − hiai, where

|hi| ≤ Qq(xk), and so we have

Ek(∥ek+1∥2 |Ek+1
I1

) ≤ ∥ek∥2 +Qq(xk)
2 + 2Qq(xk)Ek(|⟨ek, ai⟩|i ∼ Unif(I1)).

To continue estimating, note that we have by ([34], Lemma 4), with probability 1− 2e−cm,

Ek(|⟨ek, ai⟩||i ∼ Unif(I1)) =
1

|I1|
∑
i∈I1

|⟨ek, ai⟩|

≤ C ∥ek∥√
βn

.

Then using this and the result of Corollary 2.4:

Ek(∥ek+1∥2 |Ek+1
I1

) ≤
(
1 +

√
βc2 + c3

n
√
β

)
∥ek∥2 +

(
c4
√
β + c5√
nβ

)
∥r∥∞ ∥ek∥+ ∥r∥

2
∞ .

We can now estimate Ek(∥ek+1∥2 |EAccept(k + 1)) as follows:

Ek(∥ek+1∥2 |EAccept(k + 1)) = pJEk(∥ek+1∥2 |Ek+1
I1

) + (1− pJ)Ek(∥ek+1∥2 |Ek+1
I2

)

≤
(
1− c1

n
+ pJ

(√
β(c1 + c2) + c3

n
√
β

))
∥ek∥2+

pJ

(
c4
√
β + c5√
nβ

)
∥r∥∞ ∥ek∥+ ∥r∥

2
∞ .

To handle the ∥r∥∞ ∥ek∥ term, we split into two cases. The motivation is that when our error

is large relative to the noise, the quantile can detect corruptions well, whereas when the

error is small relative to the noise, our movement will be small. Firstly, if
√
n ∥r∥∞ ≤ ∥ek∥

(i.e. when our error is large), we have

Ek(∥ek+1∥2 |EAccept(k + 1)) ≤
(
1− c1

n
+ pJ

(√
β(c1 + c2 + c4) + c3 + c5

n
√
β

))
∥ek∥2 + ∥r∥2∞

≤
(
1− 0.5c1

n

)
∥ek∥2 + ∥r∥2∞
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for small enough β (we need
√
β ≤ cq). On the other hand, if

√
n ∥r∥∞ ≥ ∥ek∥, we have

Ek(∥ek+1∥2 |EAccept(k + 1)) ≤
(
1−c1

n
+ pJ

√
β(c1 + c2) + c3

n
√
β

)
∥ek∥2 + pJ

(
c4
√
β + c5√
β

)
∥r∥2∞

≤
(
1− 0.5c1

n

)
∥ek∥2 + ∥r∥2∞ ,

again for
√
β ≤ cq sufficiently small.

We may now substitute our expressions into Equation (2.2) to obtain our per-iteration

guarantee:

Ek(∥ek+1∥2) ≤
(
1− 0.5qc1

n

)
∥ek∥2 + q ∥r∥2∞ .

By induction, we obtain our overall guarantee:

E(∥ek∥2) ≤
(
1− 0.5qc1

n

)k
∥e0∥2 +

k−1∑
j=0

(
1− 0.5qc1

n

)j
q ∥r∥2∞

≤
(
1− 0.5qc1

n

)
∥e0∥2 +

2n

c1
∥r∥2∞ .

2.2.4 Experimental Results

Experiments are performed on 2000× 100 standardized Gaussian matrices A. We sample

a Gaussian x∗ ∈ R100×1, compute b = Ax, and then corrupt a fraction β of the rows

of b by adding corruptions of size to be specified. We add noise r ∈ R2000×100 with

Uniform(−0.02, 0.02) entries, and apply QuantileRK to the resulting system. At each

iteration 400 rows are sampled, from which the subresidual is computed.

In Figure 2.1 we take q = 0.7, β = 0.2, and corrupt the already noisy system with

corruptions taken from Uniform(−k, k) for a range of k. We see that when corruptions are

large relative to the noise, they are better detected by the quantile, faster convergence is
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achieved. When corruptions are small, they do not disrupt convergence enough to break

the method, and convergence is achieved down to the error horizon.

Figure 2.1: Convergence of QuantileRK(0.7) applied to normalized 2000× 100 Gaussian
systems with Uniform(−k, k) corruptions, for a range of k, and Uniform(−0.02, 0.02) noise.
The logarithm of the error is plotted for each iteration to show the linearity of the conver-
gence.

Figure 2.2: Norm of the error after 2000 iterations, ∥x2000 − x⋆∥, of QuantileRK(q) applied
to normalized 2000× 100 Gaussian systems, for a range of corruption rates β and quantile
choices q. Corruptions are Uniform(−100, 100) and are added to uniformly random rows.
Uniform(−0.02, 0.02) noise is applied to all rows.

We would like to take q as large as possible so that we may sample rows yielding large

movement, but we must take q < 1− β to avoid corrupted rows. In Figure 2.2 we plot the

normed error after 2000 iterations for a range of q and β, and we see that we can be very

aggressive with our choice of q: we are able to take it very close to 1− β, and should do so
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to accelerate convergence.

In Figure 2.3 we simulate 100 trials, and compare the error (after 5000 and 10000

iterations respectively) to the predicted horizon. Indeed, our results show that the predicted

horizon is closely respected.

Figure 2.3: Comparing the error after 5000 iterations of QuantileRK(0.7), ∥x5000 − x⋆∥, with
the error horizon predicted by Theorem 2.1. One 2000× 100 normalized Gaussian system
is generated for each trial, we take β = 0.2 and add Uniform(−100, 100) corruptions to
rows selected uniformly at random.

2.2.5 Conclusion and Future Work

We have shown, both theoretically and empirically, that QuantileRK is a powerful method

for solving linear systems where measurement data has been damaged by both corruptions

and noise. We believe that this method will prove tractable in practice, as corruption and

noise are ubiquitous in real-world data.

We are interested in pursuing quantile-based modifications to other projection-based

iterative methods, see [28] for a general framework, and also in relaxing the conditions

placed on our system: see [74] for some work in this direction.
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CHAPTER 3

Block Accelerations of QuantileRK

This chapter is a version of [11] and is joint with with Lu Cheng, Liza Rebrova, and Prof.

Deanna Needell. Deanna Needell and Liza Rebrova proposed and co-supervised the

project. Lu Cheng and I contributed the codebase and experiments. Liza Rebrova and

I contributed the convergence analysis. We continue on the topic of solving systems of

linear equations affected by sparse corruptions by analyzing variants of QuantileRK that

make use of multiple equations at each iteration. These variants require very little extra

computation time (and in fact, much of the computation may be performed in parallel),

and lead to significantly faster convergence. We show this both in theory and empirically,

as well as including experiments designed to aid practitioners in parameter selection.

3.1 Introduction

LetA ∈ Rm×n, b ∈ Rm, and suppose we wish to find x ∈ Rn such thatAx = b. Such linear

systems are ubiquitous across applied mathematics and the sciences, arising in contexts

ranging from medical imaging [60, 39] to machine learning [3], sensor networks [72],

and more. A common and widely studied approach is to seek the least squares solution

xLS = argmin ∥Ax− b∥, for which many methods have been devised.

In this paper, we consider the related problem of trying to solve a consistent system

Ax = bt, where A is of full rank, and whose solution is x⋆. Here, however, instead of

observing the true right hand side bt one observes a corrupted version, b = bt + bc, where

bc represents a vector of corruptions. In this setting, xLS may be far from x⋆, rendering

least squares solvers unsuitable. Frequently, such systems are highly overdetermined, with
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m≫ n, for example in settings where one has many more measurements than covariates.

In this case, it is reasonable to hope to recover x⋆ as long as a sufficiently small fraction

of rows are corrupted. Indeed, we assume that corruptions may be of arbitrary size and

location, but affect only some fraction ∥bc∥0 /m := β ∈ [0, 1) of data points. We refer to a

row with a corrupted right hand side entry as a corrupted row.

This model covers a wide variety of scenarios in which data may suffer corruptions

during collection, transmission, storage, or otherwise. As one example, a frequent setting

in which overdetermined linear systems appear is that of computerized tomography: in

this case, each row of the system represents the absorption of a single X-ray beam through

a medium, and solving the system recovers an image of said medium. A small number

of beams malfunctioning may lead to catastrophic errors of arbitrary size in the resulting

data, but as long as the number of such errors is a small one may still hope to recover

the underlying solution to the uncorrupted system. Similar situations may arise in sensor

networks from malfunctioning sensors, or error correcting codes from transmission errors.

Note that typical methods for the least squares problem are unsuitable in this setting, as

with arbitrarily large corruptions the least squares solution xLS may be far from x⋆ (even

if β is small); this is contrary to the widely-studied noisy setting, in which one assumes

that every data point may be damaged by some small amount of noise, but that the least

squares solution is still an accurate estimation of the solution.

This sparse corruptionmodel iswell-studiedwithin the error-correction and compressed

sensing literature: see [8, 20, 23]. However, such methods often require loading the

entire system into memory; a requirement that is frequently impractical or impossible in

settings where the system is large-scale, such as those systems arising in medical imaging

applications [39]. Recent works [32, 34, 74] have introduced novel approaches that in fact

require only loading small portions (even single rows) of the system into memory at any

time, whilst achieving linear convergence even in the presence of large – or adversarially

located – corruptions.

In this work, we introduce a new iterative solver for corrupted linear systems, Quan-

tileABK, building upon the averaged block Kaczmarz method introduced in [61] and the
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quantile-based variant of randomized Kaczmarz, QuantileRK, introduced in [30]. As with

many iterative methods in the Kaczmarz family, QuantileABK relies on residual information

to determine the step size. The residual at the iterate xk is the vector of distances from xk

to the hyperplanes defined by the rows of the matrix A, that is, b −Axk. The standard

randomized Kaczmarz method, on a consistent uncorrupted system, makes steps in the

directions of projections to the individual hyperplanes of length equal to the correspond-

ing residual entry. The underlying idea of the QuantileRK method is that large residual

components suggest (a) potential corruptions and (b) large and potentially unstable next

iteration steps. So, statistics of the absolute values of the residual entries are used to select

trustworthy directions and only use them. We give more detailed backgrounds to each of

the aforementioned priormethods in Section 3.1.3. An important inefficiency of QuantileRK

is that despite the entire residual being computed to detect corruptions, only a single row

is used to compute the next iterate. Our method instead leverages the information gained

from the residual with a more complex projection step to take a highly over-relaxed step

size, leading to a huge acceleration in convergence over the single-row method QuantileRK

[30].

We prove several convergence results for the proposed method. For an example of the

acceleration our method brings, here is a simplified restatement of one of the results that

holds for a particular class of random matrices:

Theorem 3.1 (Informal restatement of Theorem 3.9). Assume thatA ∈ Rm×n satisfies a certain

random matrix model (see Section 3.1.3.4) and has sufficiently large aspect ratio m/n. Suppose

then that the system Ax = b has a fraction β of corrupted rows, with β sufficiently small. Then

with high probability, the iterates produced by applying QuantileABK (see Algorithm 2) to this

system satisfy

∥xk − x⋆∥2 ≤ (1− c)k ∥x0 − x⋆∥2 ,

where c depends only on a user-chosen quantile parameter (in particular, c is independent of m and

n).

This result may be compared to ([34], Theorem 1), to see that our method converges
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faster than QuantileRK in this setting by a factor linear in n, the number of columns of

the system. Moreover, our method has a computational cost of the same order, with the

most significant cost in both methods being the computation of the residual. We note that

this acceleration in convergence occurs also in the uncorrupted case (i.e., when β = 0).

See Section 3.2 for the formal description of the algorithm and further discussion, and

Section 3.1.4 for all theorem statements. Notably, we do not restrict ourselves to the random

matrix setting: as in [74], we show a general guarantee of linear convergence, with a rate

depending on the spectral properties ofA and its row submatrices (Theorem 3.7).

The idea to leverage several equations to speed up Kaczmarz methods is not new, it is in

the core of a sequence of Block Kaczmarz methods, including [21, 64, 66, 61]. However, not

all of them are equally extendable to the corrupted framework. The focus of this work is to

discriminate between block Kaczmarz accelerations in terms of their provable robustness

to adversarial corruptions: see additional discussion in Sections 3.1.3.2 and 3.4.3.

3.1.1 Organization

The remainder of the paper is organized as follows. In Section 3.1.2 we introduce notation

used throughout the paper. In Section 3.1.3 we give a detailed background for previous

methods upon which our method is built, and in Section 3.1.4 we give a summary of our

main results. Section 3.2 contains a description of our proposed method, and Section 3.3

contains our theoretical results. In Section 3.4 we demonstrate our method in a range of

experiments, and finally in Section 3.5 we conclude and offer ideas for future directions.

3.1.2 Notation

For a matrixA ∈ Rm×n, we denote its rows by ai ∈ Rn, i ∈ [m]. For a collection of indices

τ ⊆ [m], we let Aτ denote the matrix obtained from A by restricting to rows indexed by τ .

We denote the operator norm of A by ∥A∥, and the Fröbenius norm by ∥A∥F . For a vector

v we denote its Euclidean norm by ∥v∥. For a matrixAwe denote its largest singular value

by σmax(A), and smallest by σmin(A). When the matrix at hand is clear, we abbreviate these
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to σmax and σmin.

In sections where we view A as an instance of a certain family of random matrices, we

use some definitions from probability. Namely, for a real-valued random variable X , we

denote its subgaussian norm by ∥X∥Ψ2
:= inf{t > 0 : E(exp(X2/t2)) ≤ 2}. For a random

vector v ∈ Rn, its subgaussian norm is defined as ∥v∥Ψ2
:= supx∈Sn−1 ∥⟨v,x⟩∥Ψ2

. A random

variable is said to be subgaussian if it has finite subgaussian norm. Lastly, a random vector

v ∈ Rn is said to be isotropic if E(vv⊤) = I, where I denotes an appropriately-sized identity

matrix.

We will frequently make use of a quantile of the absolute residual. For q ∈ [0, 1] and

x ∈ Rn, we denote the qth quantile of the (corrupted) absolute residual |Ax− b| by

Qq(x) := qth quantile of {|⟨ai,x⟩ − bi| : i ∈ [m]},

recalling that the qth quantile of a multiset S is the ⌈qS⌉th smallest element of S.

Lastly, we use C, c, c1, · · · to denote absolute constants that may vary from line to line.

Subscripts are used to denote dependence on particular quantities, e.g. Cq denotes an

absolute constant depending on q.

3.1.3 Background & Related Work

3.1.3.1 Randomized Kaczmarz

The Kaczmarz method [43] (later rediscovered for use in computerized tomography as

the Algebraic Reconstruction Technique [39]) is a popular iterative method for solving

overdetermined consistent linear systems. An arbitrary initial iterate x0 is projected se-

quentially onto the hyperplanes corresponding to rows of the systemAx = b, so that at

the kth iteration the update has the form

xk = xk−1 −
a⊤
i xk−1 − bi

∥ai∥2
ai,
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where i = k modm. Whilst convergence to x0 is guaranteed via a simple application

of Pythagoras’s theorem, quantitative convergence guarantees proved elusive. In the

landmark paper [75], the authors proved a linear convergence guarantee when rows are

selected at random according to a particular distribution. Namely, in their randomized

Kaczmarz method, at iteration k row i is selected with probability ∥ai∥2 / ∥A∥2F , and the

update takes the same form as above. This row selection scheme gave rise to Theorem 3.2.

Theorem 3.2 (Strohmer & Vershynin, 2009). Suppose that Ax = b is consistent with solution

x∗. Then the iterates produced by applying randomized Kaczmarz to this system satisfy:

E
(
∥xk − x⋆∥2

)
≤

(
1− σ2

min

∥A∥2F

)k

∥x0 − x⋆∥2 .

This result spurred a boom in related research, including Kaczmarz variants with

differing row selection protocols [73, 31, 2], block updatemethods [21, 71, 64], and adaptive

methods [29]. Our method is motivated by block methods in particular, which we proceed

to discuss in more detail.

3.1.3.2 Block Kaczmarz Methods

Variants of the Kaczmarz method that make use of more than a single row at each itera-

tion, often referred to as block methods, have been extensively studied. Two particular

methodologies have proven popular:

• projective block methods, in which at each iteration the iterate is projected onto the

subspace defined by an entire block of rows [64, 71, 21], and

• averaged block methods, in which at each iteration the projections of the previous

iterate onto each individual row in a block are computed and then averaged [61, 59].

Consider first the projective methodology. It has been shown the projective block Kacz-

marz significantly outperforms randomized Kaczmarz [64], particularly in the case when

the system has coherent rows [65]. Each iteration of the projective algorithm computes the
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best possible update given the information from the considered block, however, block pro-

jections are known to be significantly less stable for more sophisticated tasks, for example

linear feasibility problems [5].

The presence of corruptions may also significantly disrupt projective block variants.

Whilst in the single-row setting the quantile statistic is able to control the potential harm

caused by projecting onto a corrupted row, a block containing a corrupted row may yield a

projection that is arbitrarily far from the true solution. To some extent, this issue can be

alleviated by posing an assumption of row incoherence: that every two rows are not nearly

parallel, i.e., their normal vectors have small scalar products. Informally, this results in the

intersection subspaces being “close enough" to individual projection points due to non-

trivial angles between the solution hyperplanes for individual equations. The incoherence

condition is implicitly needed in the existing non-block QuantileRK results [34, 74] to

ensure that the quantile statistic is representative. In this work, it also appears in the form

of a restricted smallest singular value, discussed below.

However, the incoherence assumption does not resolve the second deficiency of projec-

tive block methods applied to corrupted systems. Namely, a residual-based criterion for

deciding if a certain equation is trustworthy or corrupted cannot guarantee to identify all

corrupted equations: for example, a current iterate might satisfy some corrupted equation

exactly. Projecting onto a block containing a corrupted equation keeps the iterate inside its

corrupted (shifted) hyperplane. Finally, when increasing block size, one rapidly increases

the chance of an adversarial setting in which the majority of the blocks contain at least

one corrupted row. A concrete adversarial construction for projective block methods is

discussed in Section 3.4.3.

Given the lack of robustness of projective block methods, we focus in this work on

modifying an averaged block Kaczmarz method introduced by Necoara [61] and also

considered in [59]. For a consistent systemAx = bwith solution x⋆, at the kth iteration a

block of row indices τk is selected from a distribution D on [m]. Then, the projections of

xk−1 onto each row in τ are computed and averaged, possibly in a weighted fashion. A step

of size αk – potentially dependent on the iteration – is then taken in this averaged direction.
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The update is thus given by

xk = xk−1 − αk
∑
i∈τk

wk
i

a⊤
i xk−1 − bi

∥ai∥2
ai, with weights wk

i such that
∑
i∈τk

wk
i = 1.

Themethodmay be found in full as Algorithm 4.1 in [61], andwe refer to it as AveragedRBK.

The convergence of AveragedRBK depends on the spectra of the row submatrices formed

by sampled blocks. Indeed, the key quantity

σ2
D,max := max

τ∼D
σ2
max(Aτ ),

the largest singular value of any row-submatrix with rows sampled from D.

Necoara’s framework allows many freedoms: in row selection strategy, weighting

scheme, and step size. Specializing to the particular case of uniformly weighted rows, a

constant (optimized) step size, and fixed block size (but without restraint on other aspects

of D), the following convergence result holds.

Theorem 3.3 (Necoara, 2019). Suppose that the systemAx = b is consistent with solution x⋆,

and thatA has been normalized such that each row has unit norm. Then the iterates produced by

applying AveragedRBK with block size |τ |, step size |τ |
σ2
D,max

, and row weights 1/|τ |, satisfy

E
(
∥xk − x⋆∥2

)
≤

(
1− |τ |σ

2
min

mσ2
D,max

)k

∥x0 − x⋆∥2 .

We include this particular result as it allows for easier comparison with other methods,

but we refer the reader to [61] for more general results. In particular, we see that under

the setup of Theorem 3.3, AveragedRBK achieves an improvement in convergence rate by

a factor of |τ |/σ2
D,max compared to RK (recall Theorem 3.2). This is greater than one in

most sensible cases, for instance if rank(Aτ ) ≥ 2 for all τ , and will represent a significant

speedup in cases where the sampled blocks are well-conditioned. We refer to Section 4.3 of

[61] for further details. Furthermore, we note that the accelerated convergence rate does

not necessarily come with greater computation time as the individual row projections may
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be performed in parallel: see [59].

3.1.3.3 Kaczmarz Variants for Least Squares

Research on randomized Kaczmarz and its variants originated in the setting of a consistent,

full rank system. Since then, convergence results have been extended to the rank-deficient

(but still consistent) case for randomized Kaczmarz [86] and projective block Kaczmarz

[33]. Generalizing results and methods to the inconsistent setting has also been an area of

interest, for example in [63] the author shows the following result in the setting of a noisy

system.

Theorem 3.4 (Needell, 2010). Suppose thatAx = b is a consistent system with solution x⋆, and

that r is some vector of noise. Then the iterates produced by applying randomized Kaczmarz to the

system Ax = b+ r satisfy

E
(
∥xk − x⋆∥2

)
≤

(
1− σ2

min

∥A∥2F

)k

∥x0 − x⋆∥2 + n

σ2
min

∥r∥2∞ .

This result shows that randomized Kaczmarz is guaranteed to converge at the same

rate as for a consistent system, but only up to some error horizon. Similar results, of

convergence to a horizon, have been shown for projective block Kaczmarz [64], averaged

block Kaczmarz [59], and other variants [31].

Other works have developed methods that converge all the way to the least squares

solution [9, 86]. For example, in randomized extended Kaczmarz [86], randomized Kacz-

marz is applied simultaneously to the systems A⊤z = 0 and Ax = b− z, with the z and x

iterates converging to bIm(A)⊥ and xLS respectively. Recent works have expanded this idea

to both projective and averaged block variants [66, 16]. However, as noted previously, such

methods are unsuitable in the sparse corruption model as xLS may be a poor approximation

of the true solution x∗. We discuss previous works in this direction next.
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3.1.3.4 Quantile Randomized Kaczmarz

The first study of Kaczmarz methods for the sparse corruption model may be found in [32],

in which the authors make use of the notion that corrupted rows are likely to have larger

residual entries, as their corresponding hyperplane is displaced far from both the current

iterate and true solution. Through applying several rounds of Kaczmarz-type iterations,

such corrupted rows may be detected with high probability. However, the method requires

severe restrictions on the number of corrupted rows. In particular, the method does not

support the sparse corruption model we consider here, in which the number of corruptions

scales linearly with the number of rows.

In [34], the authors expand on this residual-based heuristic and introduce a quantile-

based modification of randomized Kaczmarz, QuantileRK, which also attempts to detect

and avoid projecting onto corrupted rows. A sample of rows is taken and a quantile of the

resultant (absolute) subresidual is computed, and then one further row is sampled. If this

sampled row has absolute residual entry below the quantile, it is deemed acceptable for

projection, otherwise the iterate remains unchanged. The algorithm is given in full in [34]

as Method 1.

Whilst extensive experiments in [34] indicate the effectiveness of QuantileRK for a

variety of systems, corruption models, and very high corruption rates (values of β up to

0.5), the authors require significant restrictions on the matrixA for their theoretical results.

In particular, they assume a random matrix heuristic, captured in the following definition.

Definition. (Subgaussian-type systems) LetA ∈ Rm×n be a random matrix. We say that

A is of subgaussian-type if all of the following hold:

(1) ∥ai∥ = 1 for all i ∈ [m].

(2)
√
nai is mean-zero and isotropic for all i ∈ [m].

(3) For someK > 0, ∥
√
nai∥Ψ2

≤ K for all i ∈ [m].

(4) For some D > 0, every entry aij of A has density function uniformly bounded by

D
√
n.
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Here, K and D are absolute constants independent form the size of the matrix.

These conditions are satisfied, for example, by a matrix whose rows are sampled uni-

formly from the unit sphere in Rn. With these constraints, in [34] the authors prove the

following high-probability linear convergence guarantee, without placing any restriction

on the size or placement of corruptions but with an additional requirement that A be

sufficiently tall.

Theorem 3.5 (Haddock et al., 2022). Assume thatA is of subgaussian-type, and that the system

Ax = b has a fraction β of corrupted rows. Then with high probability, the iterates produced by

QuantileRK with t = m (i.e., the full residual is computed at each iteration) applied to this system

satisfy

E
(
∥xk − x⋆∥2

)
≤
(
1− Cq

n

)
∥x0 − x⋆∥2 ,

for some constant Cq, so long as β ≤ min(c1q
2, 1− q) and m ≥ Cn.

In [74], Steinerberger sought to generalize the theory behind QuantileRK beyond the

random matrix setting. Indeed, he distilled the critical controls that the random matrix

heuristic provides to conditions on the quantity

σ2
q−β,min := inf

τ⊂[m],|τ |=(q−β)m
σ2
min(Aτ ). (3.1)

Whilst assuming that A is of subgaussian-type allows for estimations of σ2
q−β,min (see [34],

Proposition 1), one may also give a much more general convergence result in terms of this

quantity, albeit with stricter relative conditions on q and β.

Theorem 3.6 (Steinerberger, 2022). Suppose that Ax = b has a fraction β of corrupted rows.

Then for β < q < 1− β, if

q

q − β

(
2
√
β√

1− q − β
+

β

1− q − β

)
<

σ2
q−β,min

σ2
max

,
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then the iterates of QuantileRK(q) with t = m applied to this system satisfy

E
(
∥xk − x⋆∥2

)
≤ (1− cA,β,q)

k ∥x0 − x⋆∥2 ,

where

cA,β,q = (q − β)
σ2
q−β,min

q2m
− σ2

max

qm

(
2
√
β√

1− q − β
+

β

1− q − β

)
> 0.

Informally, the convergence rate is good if the uniform restricted smallest singular

value σ2
q−β,min is well-separated from zero, which itself may be viewed as a version of the

incoherence assumption mentioned above in Section 3.1.3.2. Indeed, a row subsystem Aτ

with nearly parallel rows is nearly degenerate and σmin(Aτ ) is very small. On the other

hand, independent subgaussian rows are nearly mutually orthogonal with high probability

(see, e.g., [79]) and have σmin(Aτ ) = O(τ/n) when τ ≫ n. Further discussion in [74] aids

in understanding the relative condition on q, β, and σ2
q−β,min of Theorem 3.6, as well as

drawing connections to the random matrix case studied in [34].

3.1.4 Summary of Main Results

We introduce a new method, quantile averaged block Kaczmarz (QuantileABK), that ap-

plies the quantile-based techniques of QuantileRK to the averaged block Kaczmarz method.

Namely, at each iteration a sample of rows is taken, the quantile of the corresponding

subresidual is computed, and then an iteration of averaged block Kaczmarz is performed

using every row with residual entry below the quantile. We defer a full explanation of the

method to Section 3.2, including discussions on appropriate weights and step sizes.

Theorem 3.7 shows that our method is guaranteed to converge at least linearly as long as

q, β and σ2
q−β,min satisfy a similar constraint to that in Theorem 3.6, without any assumption

of randomness onA (but still upholding the assumptions of full rank and unit norm rows).

The proof of Theorem 3.7 can be found in Section 3.3.2.

Theorem 3.7. LetA ∈ Rm×n be of full rank with unit-norm rows. Suppose that the systemAx = b
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has a fraction β of corrupted entries, and that β < q < 1− β. If

√
β√

1− q − β
<

σ2
q−β,min

σ2
max

,

then the iterates of QuantileABK(q), using a theoretically optimal step size, applied to this system

satisfy

∥xk − x⋆∥2 ≤
(
1− c21

4c2

)k
∥x0 − x⋆∥2 ,

where

c1 =
2σ2

q−β,min

qm
− 2

√
βσ2

max

qm
√
1− q − β

, c2 =
σ2
maxσ

2
q−β,min

q2m2
−
2
√
βσ2

maxσ
2
q−β,min

q2m2
√
1− q − β

+
βσ4

max

q2m(1− q − β)
.

The constants c1, c2 are difficult to interpret, so we include a different viewpoint in

Corollary 3.8 (also proved in Section 3.3.2) to give a better idea of scaling.

Corollary 3.8. If in Theorem 3.7 we choose q such that for some ϵ ∈ [0, 1)

√
β√

1− q − β
= ϵ

σ2
q−β,min

σ2
max

,

then the optimal step size may be expressed as

αopt =
qm(1− ϵ)

σ2
max − ϵ(2− ϵ)σ2

q−β,min

, (3.2)

and we have the following convergence guarantee:

∥xk − x⋆∥2 ≤

(
1−

(1− ϵ)2σ2
q−β,min

σ2
max − ϵ(2− ϵ)σ2

q−β,min

)k

∥x0 − x⋆∥2 .

In general, the quantity σ2
q−β,min is hard to estimate - both theoretically and empirically,

particularly for very tallA. By specializing to the case ofA being of subgaussian-type (recall

Section 3.1.3.4) we utilize results from [34] to estimate σ2
q−β,min and obtain Theorem 3.9,
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a formal statement of the earlier Theorem 3.1. The proof of Theorem 3.9 can be found in

Section 3.3.3.

Theorem 3.9. Let A be a random matrix satisfying Section 3.1.3.4 with constants K and D.

Suppose then that the system Ax = b has a fraction β of corrupted entries, with β < q < 1− β

and we have

0 ≤ ϵ < 1, where ϵ := β

C3(1− q + β)(q − β)6
, (3.3)

and C3 is an absolute constant depending only on the distribution of the rows of A. Suppose

furthermore thatA has sufficiently large aspect ratio,

m

n
> C4

1

q − β
log

DK

q − β
.

Then the optimal step size for QuantileABK(q) is

αopt = cϵ,q,βn, (3.4)

where cϵ,q,β is a constant depending on ϵ, q, β. Moreover, with probability at least 1− c exp(−cqm)

the iterates of QuantileABK(q), using the step size given in Equation (3.4), satisfy

∥xk − x⋆∥2 ≤ (1− Cq)
k ∥x0 − x⋆∥2 ,

where cq, Cq depend only on q (in particular, they are independent of m and n).

As a concrete example, if β = 0.012 and A is a sufficiently tall normalized Gaussian

matrix, the conditions of Theorem 3.9 allow taking q as large as 0.8486. With β = 0.012,

q = 0.8486, we obtain a convergence rate of Cq = C0.8486 ≥ 0.0287 (note that this is

independent of the size of the system and decreases initial distance to the solution 10 times

in 80 iterations).

Finally, in all the theorems, one does not have to compute the optimal step size precisely

to get convergence rate of the optimal order. In particular, Remark 3.15 shows that with the

step size α̃ = ξαopt with ξ ∈ (0, 2), the convergence rate is (ξ − ξ2/2) times the “optimal"
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convergence rate.

3.2 Proposed Method

Here we provide a formal description of our algorithm. Under the same heuristic as in

[34, 74], we use the q-quantile of the absolute residual |Ax − b| as a threshold to detect

and avoid projecting onto rows that are too far from the current iterate (and thus, are likely

to be corrupted). Then, an iteration of averaged block Kaczmarz is performed using the

qm rows with residual entries less than the computed quantile, using a fixed step size α.

Algorithm 2 Quantile Averaged Block Kaczmarz
1: procedure QuantileABK(A,b, N , q, α, x0)

2: for k = 1, 2, . . . , N − 1 do

3: Compute Qq(xk−1) = qth quantile of {|aTi xk−1 − bi| :

i ∈ [m]}

4: Set τ = {i ∈ [m] : |aTi xk−1 − bi| < Qq(xk−1)}

5: Update xk = xk−1 − α
|τ |
∑

i∈τ (a
T
i xk−1 − bi)ai

6: end for

7: return xN

8: end procedure

Note here that we show the algorithm as running for a prespecified number of iterations

N , but in practice one may use any desired stopping criterion.

We note that the iterates of both QuantileRK and QuantileABK are at leastO(βm)-times

more computationally intensive than the standard RK method. This is because one needs

to compute the residual entries of that many rows to obtain a quantile statistic that is able

to accurately detect corrupted rows.

We note that the performance of the method depends heavily on the parameters q and α.

In Section 3.3, we prove our main convergence result, including a derivation of an optimal

value of α and constraints on q to ensure convergence. We follow this with experiments

29



in Section 3.4 to examine the optimal choice of α in practice, and to show the effects of

varying q.

Remark 3.10. Note that in [61], a weighted average is taken at each iteration, whilst we take

an unweighted average. We reason that in our method, there is no particular reason to

weight some rows more heavily than others: whilst one may be inclined to weight rows, say,

proportionally to their residual entry, this has the knock-on effect of weighting potentially

corrupted rows more heavily. However, we believe that our analysis may be extended to

include additional weight parameters.

Remark 3.11. We choose to use a fixed step size at each iteration, but it is possible to extend

the method to have varying step size. In particular, the theoretically optimal step size

derived in Theorem 3.7 is difficult to estimate a priori, and may be substituted with an

adaptive step size calculated only with information available at runtime as analyzed in [61].

Note that the QuantileSGD method proposed in [34], like QuantileRK, also utilizes the

idea of varying the step size. While QuantileRK uses the quantile of the residual to decide

whether to update the current iterate, QuantileSGD always does the weighted update, with

the step size determined by the quantile size (and thus changing with the iterations).

3.3 Theoretical Results

3.3.1 Preliminaries

We begin our theory by introducing requisite preliminary results from [74, 34], and we

include their proofs for completeness. Firstly, we provide an estimate on the residual

quantiles computed at each iteration. Such an estimate is necessary to bound the impact

that corrupted rows passing under this threshold can have on convergence. This is ([74],

Lemma 1) and is a deterministic version of ([34], Corollary 1).

Lemma 3.12. Consider applying QuantileABK to the system Ax = b. If 0 < q < 1− β, then the
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quantile computed at the k-th iteration satisfies

Qq(xk) ≤
σmax√

m
√
1− q − β

∥xk − x⋆∥ .

Proof. We follow [74]. Let τ1, τ2 ⊂ [m] denote the sets of indices of uncorrupted and

corrupted rows respectively. Note that |τ2| ≤ βm. We then have that

∑
i∈τ1

|⟨ai,xk⟩ − bi|2 = ∥Aτ1xk − bτ1∥
2

= ∥Aτ1xk −Aτ1x
⋆∥2

≤ ∥Aτ1∥
2 ∥xk − x⋆∥2

≤ ∥A∥2 ∥xk − x⋆∥2

= σ2
max ∥xk − x⋆∥2 .

Next, note that by the definition of Qq(xk), at least (1− q)m rows have absolute residual

entry greater than Qq(xk), and at least (1− q − β)m of those are uncorrupted. Therefore,

m(1− q − β)Qq(xk)
2 ≤

∑
i∈τ1

|⟨ai,xk⟩ − bi|2 ≤ σ2
max ∥xk − x⋆∥2 .

Rearranging gives the result.

Next, we provide an estimate on the coherence of any subset of rows of A of fixed size.

This is necessary to control the adversarial case in which corruptions occur on coherent

rows. We replicate ([34], Lemma 4), but without randomness assumptions onA.

Lemma 3.13. Let A ∈ Rm×n and let x ∈ Rn. Then for every set of row indices τ ⊆ [m], we have

∑
i∈τ

|⟨x, ai⟩| ≤ σmax

√
|τ | ∥x∥ .
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Proof. As in [34], let s ∈ Rm have entries

si =


sign(⟨x, ai⟩), if i ∈ τ

0, otherwise,

for i ∈ [m]. Then we have

∑
i∈τ

|⟨x, ai⟩| =
m∑
i=1

⟨x, siai⟩ = ⟨x,
m∑
i=1

siai⟩ ≤

∥∥∥∥∥
m∑
i=1

siai

∥∥∥∥∥ ∥x∥ = ∥∥A⊤s
∥∥ ∥x∥ ≤ σmax

√
|τ | ∥x∥ ,

as desired.

Lastly, we give a bound on the norm of the sum of a block of rows of A. This will be

used in conjunction with Lemma 3.12 to bound the disruptive effects of corrupted rows that

pass under the quantile threshold. We note that to the best of our knowledge, Lemma 3.14

is a new result.

Lemma 3.14. Let A ∈ Rm×n. Then for every set of row indices τ ⊆ [m], we have

∥∥∥∥∥∑
i∈τ

ai

∥∥∥∥∥
2

≤ σ2
max|τ |.

Proof. We use a similar trick to Lemma 3.13. Namely, let s ∈ Rm have entries

si =


1, if i ∈ τ

0 otherwise,

for i ∈ [m]. Note that ∥s∥2 = |τ |. Then we have that

∥∥∥∥∥∑
i∈τ

ai

∥∥∥∥∥
2

=
∥∥AT s

∥∥2 ≤ ∥∥AT
∥∥2 ∥s∥2 = σ2

max|τ |,

as claimed.
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3.3.2 General Case

Armedwith our lemmas from the previous section, we are now ready to prove Theorem 3.7.

Proof of Theorem 3.7. Denote by τ the set of row indices passing the quantile test at iteration

k + 1, i.e.

τ = {i ∈ [m] : |bi − a⊤
i xk| ≤ Qq(xk)}.

Denote by τ1, τ2 ⊂ τ the subsets of indices corresponding to uncorrupted and corrupted

rows respectively. Note that we have |τ | = qm, |τ1| ≥ (q − β)m, |τ2| ≤ βm. As is typical in

Kaczmarz-esque convergence proofs, we now attempt to bound ∥xk+1 − x⋆∥2 in terms of

∥xk − x⋆∥2. We have:

∥xk+1 − x⋆∥2 =

∥∥∥∥∥xk − α

|τ |
∑
i∈τ

(aTi xk − bi)ai − x⋆

∥∥∥∥∥
2

=

∥∥∥∥∥xk − α

|τ |
∑
i∈τ1

(aTi xk − bi)ai −
α

|τ |
∑
i∈τ2

(aTi xk − bi)ai − x⋆

∥∥∥∥∥
2

=

∥∥∥∥∥(xk − x⋆)− α

|τ |
∑
i∈τ1

aia
T
i (xk − x⋆)− α

|τ |
∑
i∈τ2

(aTi xk − bi)ai

∥∥∥∥∥
2

= ∥X − Y ∥2 = ∥X∥2 − 2 ⟨X, Y ⟩+ ∥Y ∥2 ,

whereX :=
(
I− α

|τ |A
T
τ1
Aτ1

)
ek with ek = xk−x⋆, and Y := α

|τ |
∑
i∈τ2

(aTi xk−bi)ai. We proceed

to analyze these three terms individually.

Term 1: For the first uncorrupted term ∥X∥2, we pursue an analysis similar to that of

[61], and letWτ1 := A⊤
τ1
Aτ1 . We then have:

∥X∥2 =
∥∥∥∥(I− α

|τ |
Wτ1

)
ek

∥∥∥∥2 = e⊤k

(
I− α

|τ |
Wτ1

)2

ek

= e⊤k

(
I− 2

α

|τ |
Wτ1 +

α2

|τ |2
W2

τ1

)
ek. (3.5)
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Then, we estimate under the positive semi-definite (Loewner) ordering:

σ2
q−β,min ≤ σ2

min(Aτ1) ≤Wτ1 ≤ λmax(Wτ1) = σ2
max(Aτ1) ≤ σ2

max,

recalling that σ2
max := σ2

max(A), and the smallest restricted singular values σ2
q−β,min is defined

as per (3.1). Furthermore, to ensure a decrease in norm at each iteration, we require

2α/|τ | − α2σ2
max/|τ |2 ≥ 0. This is a less restrictive bound than the later condition on α for

convergence in Equation (3.9), so we proceed. From Equation (3.5) we have

∥X∥2 ≤ e⊤k

(
I− 2

α

|τ |
Wτ1 +

α2

|τ |2
σ2
maxWτ1

)
ek

≤
(
1−

(
2α

|τ |
− α2

|τ |2
σ2
max

)
σ2
min(Aτ1)

)
∥ek∥2

≤
(
1−

(
2α

qm
− α2

q2m2
σ2
max

)
σ2
q−β,min

)
∥ek∥2 .

Term 2: For the scalar product between uncorrupted and accepted but corrupted parts

⟨X, Y ⟩, we make use of Lemma 3.13. We have

⟨X, Y ⟩ ≤ 2α

|τ |
∑
i∈τ2

∣∣∣∣〈(I− α

|τ |
Wτ1

)
ek, (a

⊤
i xk − bi)ai

〉∣∣∣∣
≤ 2αQq(xk)

|τ |
√
|τ2|σmax

∥∥∥∥(I− α

|τ |
Wτ1

)
ek

∥∥∥∥
≤

2αQq(xk)
√
|τ2|

|τ |
σmax

(
1− α

|τ |
σ2
q−β,min

)
∥ek∥

≤ 2α
√
βσ2

max
qm
√
1− q − β

(
1− α

qm
σ2
q−β,min

)
∥ek∥2 .

Here we use that |τ | = qm, |τ2| ≤ βm, and estimate Qq(xk) using Lemma 3.12.

Term 3: Lastly, we estimate the maximal total impact of the residual constrained cor-
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rupted equations, making use of both Lemma 3.12 and Lemma 3.14:

∥Y ∥2 =

∥∥∥∥∥ α

|τ |
∑
i∈τ2

(a⊤
i xk − bi)ai

∥∥∥∥∥
2

=
α2

|τ |2

∥∥∥∥∥∑
i∈τ2

(a⊤
i xk − bi)ai

∥∥∥∥∥
2

≤ α2Qq(xk)
2

|τ |2

∥∥∥∥∥∑
i∈τ2

ai

∥∥∥∥∥
2

≤ α2Qq(xk)
2

|τ |2
σ2
max|τ2|

≤ α2βσ4
max

q2m2(1− q − β)
∥ek∥2 .

Bringing all three estimates together yields

∥ek+1∥2 ≤
[
1−

(
2α

qm
− α2

q2m2
σ2
max

)
σ2
q−β,min +

2α
√
βσ2

max
qm
√
1− q − β

(
1− α

qm
σ2
q−β,min

)
+

α2βσ4
max

q2m2(1− q − β)

]
∥ek∥2 =

(
1− c1α + c2α

2

)
∥ek∥2 , (3.6)

where

c1 =
2σ2

q−β,min

qm
− 2

√
βσ2

max
qm
√
1− q − β

, (3.7)

c2 =
σ2
maxσ

2
q−β,min

q2m2
−

2
√
βσ2

maxσ
2
q−β,min

q2m2
√
1− q − β

+
βσ4

max
q2m2(1− q − β)

. (3.8)

In order to achieve convergence we must have c1 > 0. This is equivalent to

√
β√

1− q − β
<

σ2
q−β,min

σ2
max

,

which is reminiscent of the relative conditions imposed on q and β in Theorem 3.6, though

slightly relaxed. With this restriction, we then have convergence for all α such that

1− c1α + c2α
2 < 1, (3.9)
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equivalently, α ∈ (0, c1/c2), with an optimal choice of α := c1/2c2. With this optimal choice,

our per-iteration guarantee becomes

∥ek+1∥2 ≤
(
1− c21

4c2

)
∥ek∥2 .

Induction then yields the result.

Remark 3.15 (Non-optimal choices of α). Note that since the convergence rate has quadratic

dependence on α (3.6), taking α = ξαopt with ξ ∈ (0, 2) results in the convergence rate that

is (ξ−ξ2/2) times the “optimal" convergence rate. This implies certain stability in the choice

of α: an approximation within a small constant factor does not change the dependence of

the convergence rate on any characteristics of the matrixA. Further, we focus on estimating

the optimal step size α = αopt.

We proceed now to prove Corollary 3.8, in effect giving a simplification of the conver-

gence rate derived in Theorem 3.7.

Proof of Corollary 3.8. Given that for some ϵ ∈ (0, 1),

√
β√

1− q − β
= ϵ

σ2
q−β,min

σ2
max

,

we may simplify the expression for the rate via its components c1 and c2 given by (3.7) and

(3.8). Specifically, it simplifies to

c1 =
2(1− ϵ)σ2

q−β,min

qm

and

c2 =
σ2
maxσ

2
q−β,min

q2m2
−

2
√
βσ2

maxσ
2
q−β,min

q2m2
√
1− q − β

+
βσ4

max
q2m2(1− q − β)

=
σ2
maxσ

2
q−β,min

q2m2
−

2ϵσ4
q−β,min

q2m2
+

ϵ2σ4
q−β,min

q2m2

=
σ2
q−β,min

q2m2

(
σ2
max − ϵ(2− ϵ)σ2

q−β,min

)
.
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We can thus express the theoretical optimal step size as

α =
c1
2c2

=
qm(1− ϵ)

σ2
max − ϵ(2− ϵ)σ2

q−β,min

,

and our guaranteed convergence rate as

1− c21
4c2

= 1−
(1− ϵ)2σ2

q−β,min

σ2
max − ϵ(2− ϵ)σ2

q−β,min

.

Remark 3.16. Our convergence rate in the general case is difficult to compare with the rate

for QuantileRK given in Theorem 3.6, as both expressions are complex and quite different.

However, comparing leading terms one may show that our rate is O(σ2
q−β,min/σ

2
max), and

the rate found in Theorem 3.6 is O(σ2
q−β,min/m), showing our method yields a speedup by

a factor ofm/σ2
max ≥ 1 (recall that the normalization of the rows ensures thatm = ∥A∥2F ≥

σ2
max). In the next section, we are able to make this more precise for the particular case that

A satisfies the random matrix heuristic given in Section 3.1.3.4.

3.3.3 Subgaussian Case

In this section we take the point of view of [34], namely that A belongs to the class of

randommatrices described by Section 3.1.3.4. Within this setting, wewill show that σ2
q−β,min

and σ2
max are both on the order of m/n, giving rise to Theorem 3.9: i.e., the theoretical

convergence rate in this case is not dependent onm or n.

As mentioned in [34] and discussed in greater detail in [74], a standard example of

a matrix satisfying Section 3.1.3.4 is one whose rows have been sampled independently

from the uniform distribution on the sphere. Alternatively, one may sample rows from the

standardmultivariateGaussian distribution, and then normalize. The benefit of introducing

this randommatrix model is that the spectra of such matrices are well studied. In particular,

it allows for a high probability uniform lower bound on the smallest singular values of

uniform-sized submatrices ofA: we state ([34], Proposition 1) below.
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Proposition 3.17 ([34], Proposition 1). Let δ ∈ (0, 1] and let A ∈ Rm×n satisfy Section 3.1.3.4

with constants D andK. Then there exist absolute constants C1, C2 > 0 such that ifA has large

enough aspect ratio, namely,
m

n
> C1

1

δ
log

DK

δ
,

then the following high probability uniform lower bound holds for the smallest singular values of all

its row submatrices that have at least δm rows.

P
(

inf
τ⊆[m],|τ |≥δm

σmin(Aτ ) ≥
δ3/2

24D

√
m

n

)
≥ 1− 3 exp(C2δm).

Equipped with this result, taking δ = q − β gives the following bound on our key

quantity of interest σ2
q−β,min(A).

Corollary 3.18. Suppose that A satisfies Assumptions 1 and 2, and let C1, C2 be the absolute

constants arising from Proposition 3.17 upon taking δ = q − β. If

m

n
> C1

1

q − β
log

DK

q − β
,

then with probability at least 1− 3 exp(−C2(q − β)m),

σ2
q−β,min ≥

(q − β)3

(24D)2
m

n
.

Furthermore, we have the following standard bound on σ2
max(A) (see, e.g. [79], Theorem

4.6.1.):

Theorem 3.19. LetA ∈ Rm×n be a random matrix satisfying Section 3.1.3.4 with constantsK,D.

Then

σ2
max ≤ (1 + CK2)

m

n

with probability at least 1− 2 exp(−cm), for some absolute constants C, c > 0.

Equipped with these, we may conclude Theorem 3.9 directly from Corollary 3.8:
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Proof of Theorem 3.9. The restriction on β given in Equation (3.3), and the optimal step size

α given in Equation (3.4), follow immediately from plugging the estimates on σ2
q−β,min, σ

2
max

(given in Proposition 3.17 and Theorem 3.19 respectively) into the corresponding restriction

and optimal step size formulae found in Corollary 3.8.

For the convergence result, we may similarly apply estimates of σ2
max and σ2

q−β,min to

the convergence guarantee in Corollary 3.8. Using these, with probability at least 1 −

2 exp(−cm)− 3 exp(−C2(q − β)m) ≥ 1− c3 exp(−cqm)we have that

1−
(1− ϵ)2σ2

q−β,min

σ2
max − ϵ(2− ϵ)σ2

q−β,min

≤ 1−
(1− ϵ)2σ2

q−β,min

σ2
max

≤ 1−
(1− ϵ)2 (q−β)

3m
(24D)2n

(1 + CK2)m
n

= 1− (1− ϵ)2(q − β)3

(1 + CK2)(24D)2

= 1− Cq.

Now, cq and Cq are absolute constants depending only on q, so we have that for any k,

∥xk − x⋆∥2 ≤ (1− Cq)
k ∥x0 − x⋆∥2 ,

as claimed.

Remark 3.20. Theorem 3.9 shows that in the subgaussian setting, QuantileABK enjoys a

speedup by a factor of n over QuantileRK (recall Theorem 3.5). This is, heuristically, due

to the fact that averaging the projections onto many rows yields a direction vector that

points more directly towards x⋆ than any single projection. Hence, one may take a much

larger step size, of order n in the subgaussian setting. The convergence rate then enjoys

a corresponding increase of the same order. We note that the optimal step size is likely

closely related to the coherence of the matrix, in that larger step sizes may be used for

matrices with nearly orthogonal rows (such as those of subgaussian-type). This is because
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the coherence, in some sense, determines how much information about the location of

x⋆ can be obtained from a block of rows. We explore and comment on this phenomenon

further in Section 3.4.

3.4 Experimental Results

We divide our experiments into two main sections. We first present results using our

method as presented in Algorithm 2, including determining the optimal step size, ex-

ploring robustness with respect to the quantile parameter, and comparing performance

with QuantileRK. We then perform an analysis of a variation of our method, in which

only a subset of rows are taken at each iteration and used for computing the quantile

and averaged direction vector. This reduces computational cost (at least when it is not

possible to compute the full residual in parallel), but yields potentially slower per-iteration

convergence. We explore this trade-off experimentally, and believe that our theoretical

results may be extended to this method for sufficiently large sample sizes, but leave such

theory to future work. Lastly, we also include a demonstration of how a projective block

method may not converge in the sparse corruption setting.

3.4.1 Results without subsampling

We begin with our method as presented in Algorithm 2. We perform experiments on

systems lying on two geometrical extremes: “Gaussian" systems, where the entries of

each row are sampled i.i.d. N(0, 1) and then each row is normalized; and "coherent"

systems, where the entries of each row are sampled i.i.d. Uniform(0, 1) and then each row is

normalized. These choices are motivated by the fact that the performance of row projection

methods such as ours depends heavily on the geometry of the system, in particular the

coherence (that is, the pairwise inner products of rows). Gaussian systems are typically

highly incoherent, whilst our coherent construction produces highly coherent systems.

We use m = 10000 rows in all experiments. A is constructed to be either "Gaussian" or
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"coherent" as described, and then x⋆ ∈ Rn is constructed at random with N(0, 1) entries.

We then let b = Ax⋆. Corruptions are placed uniformly at random and are taken to be of

size Uniform(−100, 100), which is large relative to the magnitude of the entries of b. Other

parameters will be specified for each experiment.

Prior to giving plots showing convergence directly, we first conduct experiments to find

the optimal choice of α and q, and then use these optimal choices for convergence plots

and comparisons with QuantileRK.

3.4.1.1 Optimal Step Sizes

We begin by determining the optimal choice of step size α for the systemswithA ∈ R10000×n,

where n ∈ {10, 50, 100, 200, 500}. We take β = 0.2 and q = 0.7 and plot the relative error

after 10 iterations, ∥xk − x⋆∥ / ∥x0 − x⋆∥, versus α. Since convergence is approximately

linear, it suffices to run the method for only a few iterations to determine the optimal

parameter. For Gaussian systems the optimal step size appears to scale with the number of

columns n, and we present a scaled x-axis to highlight this. The optimal step size is around

1.6n to 1.8n for each n. For coherent systems, however, the step size does not scale in this

fashion, and the optimal step size is approximately 2 for all n. This corresponds to the

heuristic that more information about the location of x⋆ is obtained when rows are more

incoherent, and thus a larger step size may be taken. Note that a relative error greater than

1 indicates that the method will diverge: for Gaussian systems this happens for step sizes

roughly larger than 3n, and for coherent systems divergence occurs for step sizes roughly

larger than 2.5.

3.4.1.2 Optimal choice of q

The relative conditions imposed on q, β in Theorem 3.7 are strict, in the sense that q must

in general be much smaller than 1 − β. However, we are able to show in practice that

the method is robust even for q very close to 1 − β. This is beneficial as taking q to be

larger allows for uncorrupted rows with larger residual entries to be used in the averaged
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Figure 3.1: Relative error after 10 iterations of QuantileABK applied to 10000×n normalized
Gaussian and coherent systems versus step size, for different numbers of columns n. Note
that in (a) the x-axis is scaled by a factor of 1/n.

projection step, leading to larger movement towards x⋆ and consequently accelerated

convergence. In Figure 3.2 we take A ∈ R10000×100, β ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and vary

q ∈ (0, 1). We plot the relative error after 10 iterations of QuantileABK(q) with the optimal

step size found experimentally as in the previous subsection.

Our results indicate that in both extremes of system geometry, the method is highly

robust to q and q may be taken very close to 1 − β before convergence begins to slow

or fail entirely. In practice, estimating β precisely may be difficult, so one may be more

conservative when choosing q.
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Figure 3.2: Relative error after 10 iterations of QuantileABK applied to 10000×100Gaussian
and coherent systems versus choice of quantile q, for a range of corruption rates β.
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3.4.1.3 Acceleration over QuantileRK

We compare QuantileABK to QuantileRK on 10000× 100 systems. We take β = 0.2, q = 0.7

and perform 100 iterations of both methods. In Figure 3.3 we plot the relative error of

each method versus iteration, and also versus CPU time. It is clear that QuantileABK

outperforms QuantileRK significantly in both the Gaussian and coherent settings, on both

a per-iteration and temporal basis. We note that the plateau appearing in the Gaussian

plots is due to floating point arithmetic limitations.

The plots for the coherent system show an initial sharp drop-off in the relative error be-

fore amore steady linear convergence. This is a reflection of an initial largemovement when

x0 is projected on the first selected hyperplane(s), and then subsequent small movements

from further projections as the incident angles between hyperplanes are small. Note that

both methods do converge when applied to the consistent system (but slowly, as suggested

by Theorem 1.8, since coherency results in small values of σ2
q−β,min).
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Figure 3.3: Comparison of QuantileABK to QuantileRK on 10000 × 100 Gaussian and
coherent systems, with quantile q = 0.7, corruption rate β = 0.2.

3.4.2 Results with subsampling

In this section, we perform experiments using a modification of our method, in which

at each iteration only a sampled subset of the residual is computed. At each iteration,

t rows are sampled uniformly, the subresidual for that block of rows is computed, and

its q-quantile is taken. An averaged projection step is then performed using the rows in

this block with residual entries below the quantile, with step size α. We call this method

SampledQABK and give pseudocode in Algorithm 3. This methodology may be of interest

when the full residual cannot be computed in parallel, as in this case subsampling can
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substantially reduce the computational cost (accompanied by a trade-off with the per-

iteration convergence rate, as we will show). We note that our theoretical results require

sampling the full residual, but we believe that this may be relaxed.

Algorithm 3 Sampled Quantile Averaged Block Kaczmarz
1: procedure SampledQABK(A,b, N , q, t, α, x0)
2: for k = 1, 2, . . . , N − 1 do
3: Sample i1, · · · , it ∈ [m] uniformly without replacement
4: Compute Qq(xk−1) = qth quantile of {|aTi xk−1 − bi| : i ∈ {i1, · · · , it}}
5: Set τ = {i ∈ {i1, · · · , it} : |aTi xk−1 − bi| < Qq(xk−1)}
6: Update xk = xk−1 − α

|τ |
∑

i∈τ (a
T
i xk−1 − bi)ai

7: end for
8: return xN
9: end procedure

Our experimental setup is the same as in the previous section: Gaussian and coherent

systems are constructed in the same manner, corruptions are taken Uniform(−100, 100) and

placed uniformly at random, and other parameters will be specified for each experiment.

3.4.2.1 Optimal Step Sizes

We again begin by finding the optimal step size experimentally. We fix 10000 × 100

Gaussian and coherent systems and take β = 0.2, q = 0.7. We then take sample sizes

t ∈ {100, 500, 1000, 5000} and run SampledQABK for 10 iterations for a range of step sizes

α, and present our results in Figure 3.4. As mentioned previously, the method converges

linearly and so it is sufficient to run it for only a few iterations for comparison purposes. We

note that the method was unstable or did not converge for t < 100, which is a consequence

of the method being unable to accurately distinguish corrupted and uncorrupted rows

given such a small sample.
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(a) Gaussian system.
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Figure 3.4: Relative error after 10 iterations of SampledQABK versus step size α on 10000×
100Gaussian and coherent systems, for a range of sample sizes t, quantile parameter q = 0.7,
corruption rate β = 0.2. Note the scaling of the x-axis in (a).

We observe that for the Gaussian system, the optimal step size is again on the order of

n, and that the method becomes more sensitive to the choice of step size as the sample size

t increases (that is, the ’valleys’ at the optima become sharper). This may be explained by

the heuristic that the amount of information that may be obtained from a block of rows

(and in turn, the step size that may be taken) is limited by the rank of the matrix, which

in the Gaussian case is n almost surely. Hence, significant increases in sample size do not

yield corresponding increases in the optimal step size.

For the coherent system, however, we see that the behavior is almost exactly the same

across sample sizes. Again, the optimal choice of α is roughly constant, and there is little

further information to leverage from taking larger sample sizes.

3.4.2.2 Effect of Sample Size on Convergence

We proceed to compare the convergence of SampledQABK with a variety of sample sizes.

In Figure 3.5 we include plots of the relative error versus iteration and versus CPU time, for

both Gaussian and coherent systems. We compare sample sizes t ∈ {100, 500, 1000, 5000},

and use the optimal step sizes found in the previous section (for simplicity, we take α = 1.4

for all sample sizes for the coherent system). We present our results in Figure 3.5.
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For the Gaussian system, we see that taking a larger sample size greatly improves the

per-iteration convergence. However, when computation time is taken into account, there is

a clear trade-off: for example, t = 500 converges much faster in terms of CPU time than

t = 5000.

For the coherent system, we see that on a per-iteration basis there is essentially no

difference between different sample sizes. The first iteration provides an initial jump,

and then convergence proceeds much more slowly than the Gaussian case. Indeed, there

is no trade-off between per-iteration convergence and computational cost in this case:

subsampling greatly improves convergence over CPU time. We see that taking t = 100

is significantly faster than any other sample size. In this case, t should be taken as small

as possible while still achieving convergence, and as noted previously we observed that

convergence fails for t < 100.
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Figure 3.5: Convergence of SampledQABK for a range of sample sizes t.

3.4.3 Projective vs Averaged

In this section, we give an experiment to support earlier discussion in Section 3.1.3.2 regard-

ing averaged versus projective block variants. We argued that in projective block methods,

where iterates are projected onto the intersection of the hyperplanes corresponding to an

entire block of rows, the presence of even a single corrupted row in each block can prevent

convergence. To illustrate this we first give a natural quantile-based block Kaczmarz variant,

QuantilePBK, in Algorithm 4. Similar to QuantileABK, at each iteration, a quantile of the

residual is taken, and then the previous iterate is projected onto the intersection of the

hyperplanes of every row with residual entry beneath the quantile.
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Algorithm 4 Quantile Projective Block Kaczmarz
1: procedure QuantilePBK(A,b, N , q, x0)

2: for k = 1, 2, . . . , N − 1 do

3: Compute Qq(xk−1) = qth quantile of {|aTi xk−1 − bi| : i ∈ [m]}

4: Set τ = {i ∈ [m] : |aTi xk−1 − bi| < Qq(xk−1)}

5: Update xk = xk−1 +A†
τ (bτ −Aτxk−1)

6: end for

7: return xN

8: end procedure

We construct an example to demonstrate how QuantilePBK may fail as follows. We

construct a matrix A ∈ R1250×100, where 1000 rows are sampled by taking i.i.d. N(0, 1)

entries and then normalizing, and where 250 rows are identical copies of one further

Gaussian row. A solution vector x⋆ is then constructed with i.i.d N(0, 1) entries. Then,

the 250 identical rows have their entries in b corrupted in order to all equal 500, given

250 identical full rows in the system. Denoting one such row by a⊤x = 500, the initial

iterate x0 is then taken to be x0 = (500− a⊤1)a⊤, i.e., the projection of the vector of all ones

1 onto the hyperplane {a⊤x = 500}. Under these choices, the iterates will always lie in

this (corrupted) hyperplane, hence these rows will always have residual entry zero. This

ensures they always pass the quantile test, and ensures that QuantilePBK cannot converge.

We note that even taking projections on smaller sub-blocks of the accepted index set τ

won’t improve robustness, as long as each block contains one of the corrupted rows. So, in

the worst case, even 250 blocks of 5 equations each can be such that the iterates never leave

the corrupted hyperplane.

We perform QuantilePBK and QuantileABK on this system with q = 0.7, initial iterate

as described above, and for QuantileABK a step size of α = 10. In Figure 3.6, we plot the

relative error versus iteration, and indeed observe as expected that QuantilePBK fails to

converge, whilst QuantileABK continues to enjoy linear convergence even in this adversarial

setting.
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Figure 3.6: Relative Error versus iteration, QuantilePBK versus QuantileABK.

3.5 Conclusion

In this work, we propose a novel method, QuantileABK, for solving large-scale systems of

equations that suffer from arbitrarily large, but sparse, corruptions in the measurement

vector. This sparse corruption model arises in a wide range of applications, including

sensor networks, computerized tomography, and many problems in distributed computing,

and finding methods that are able to detect and avoid these corruptions has been a popular

recent problem.

Our method combines an averaged blocking technique, that has experienced recent

popularity in related literature, with the use of a quantile of the residual at each iteration.

This provides a large acceleration over the preeminent existing method for this setting,

QuantileRK, by leveraging far more information from the computed residual at each

iteration.

We prove that our method enjoys linear convergence under certain conditions on the

quantile parameter q, and the fraction of corruption rates β, for all matrices such that the

uniform smallest singular value over all row-submatrices with at least (q − β)m rows is

positive, i.e. σ2
q−β,min > 0. Notably, our results place no restriction on the size or (potentially

adversarial) placement of corruptions. We show theoretically and experimentally that our

method converges faster than QuantileRK. In particular by specializing to the case of a

50



matrix of subgaussian-type, we are able to quantify this speed-up more precisely, and show

that our method converges faster than QuantileRK by a factor of n (the number of columns

of the system). Whilst this speed up is per-iteration, both methods require computing the

full residual at each iteration, so the per-iteration computational cost is of the same order.

Experimentally, we show that our method significantly outperforms QuantileRK, by

iteration and by CPU time. We provide experiments on both geometric extremes (that

is, matrices with nearly parallel rows and matrices with nearly orthogonal rows), and

demonstrate the scaling behavior of the optimal step size in these cases, as well as direct

performance comparisons to QuantileRK, in which the increase in convergence rate is clear.

We also introduce a variant of our method that uses only a subsample of rows at each

iteration, and provide step size and convergence results for a range of sample sizes.

As future work, we propose that there is still further information to be gained from

the residual. In particular, we believe that historical residual information may be used to

estimate the likelihood of a row being corrupted. That is, if one row’s residual entries are

continually greater than the quantile threshold, then that row is more likely to be corrupted

than others. This could potentially then be used to reduce the number of corrupted rows

that are deemed acceptable for projection at each iteration.
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CHAPTER 4

Randomized Block Gossip Algorithms for Average

Consensus

This chapter is a version of [33] and is joint work with Chen Yap and Jamie Haddock. Chen

Yap contributed the codebase, and Chen Yap and I contributed the experiments. Jamie

Haddock and I contributed the theory andwrote the paper together. We discuss the average

consensus problem, a well-studied model problem in distributed computing, and offer a

new perspective: we show that certain popular protocols for the problem, namely gossip

protocols, are equivalent to applying a block variant of the Kaczmarz method to a certain

system of linear equations. This equivalence brings forth a new theoretical foundation

for the convergence of gossip protocols, enabling practitioners to make better-informed

choices about their particular implementation. We also generalize much of the theory

behind block Kaczmarz methods and broaden the class of systems of linear equations for

which convergence guarantees for such methods exist.

4.1 Introduction

Consider a network in which every node has an value that is initially unknown to the other

nodes, and the goal is for all nodes to learn the average of these values. This problem is

a classical and fundamental problem in distributed computing and multi-agent systems

known as average consensus [44]; it has additional real-world applications in clock synchro-

nization [24], PageRank, localization without GPS [85], opinion formation, distributed

data fusion in sensor networks [82], blockchain technology, and load balancing [12]. See

Figure 4.1 for a visualization of an average consensus problem.
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Figure 4.1: Average consensus problemwith initial (unknown) values listed. The consensus
value for this problem is c̄ = 20.

First approaches for this problemmay be to allow all nodes to pass their initial unknown

value to a single hub node, by which we mean a node that is edge connected to each other

node, which would then perform the averaging and pass this value back to the others, or for

every node to share its stored knowledge of all other nodes’ inital unknown values with its

neighbours until all nodes have learned all stored values (a process known as flooding [83]).

However, such methods are problematic. The first requires communication that may be

infeasible as it may not respect the topology of the underlying network; in particular,

there may be no hub node (see Figure 4.1). The second may require many instances of

communication between nodes and thus struggle to scale to modern large-scale networks.

An attractive class of methods that go some way towards rectifying these issues are gossip

protocols, where at each time-step some subset of nodes are ‘activated’ to share their stored

information with each other across network edges (note that the hub and flooding methods

may still be considered special cases of this, but these protocols typically involve activating

proper node subsets to avoid the aforementioned large-scale communication issues). As is

common in large-scale settings, such protocols are randomized in the sense that activated

nodes are often chosen at random, with distribution depending on the particular gossip

protocol. Over many iterations, the values held at each node converge to the average

over the whole network (with mild assumptions including connectivity of the underlying

network) and the problem is solved in a distributed manner. Such methods have been a

topic of popular study this side of the millenium, with the seminal 2006 paper of Boyd et

al. [4] sparking a flurry of research on the topic [1, 15, 14, 36, 52, 62, 69, 87].

53



In [55], Loizou and Richtárik united the study of randomized gossip protocols with

randomized numerical linear algebra. They showed that a wide class of gossip protocols

can be interpreted, under certain assumptions, as randomized iterative linear system solvers

applied to a linear system derived from the network at hand. This remarkable connection

prompted a variety of convergence results, new accelerated and weighted gossip variants,

and dual edge-based gossip protocols, opening up the possibility for further links to be

developed. In this paper, we hone in on the class of block gossip algorithms discussed in

their work: we show that several popular gossip protocols are members of this class, give

strong convergence results for said methods, and generalize the theory on both the linear

algebra and gossip protocol sides of the problem.

4.1.1 Contributions

Our main contributions in this work are threefold:

• We generalize previous results on randomized block iterative methods for solving

linear systems (see [61, 64, 66]) to include the case where the system is less than

full rank (which is vital for the average consensus case, as we will see), to include a

wider class of block sampling protocols, and to sharpen the resulting convergence

rate guarantee.

• We derive new convergence rates for popular gossip protocols such as path [7], clique

[53], and edge-independent set [4] gossiping, by showing they can be interpreted as

block gossip methods. We furthermore generalize to include the case where multiple

node sets can be activated simultaneously, and analyze the dependence of a protocol’s

performance on the spanning trees of the activated subgraphs.

• We give new analyses of gossip for inconsistent consensus models. We link edge

communication errors in a network to inconsistent, or noisy, linear systems, and

connect the performance of iterative solvers on said systems to the performance of

gossip protocols on said networks.
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Furthermore, we provide a wide range of experiments to demonstrate the comparative

performance of the discussed algorithms, both previously existing and new, on a variety of

network structures.

We remark that we do not go into detail regarding the specific communication pro-

tocols that networks may have. For example, certain methods (e.g., path gossiping [7])

require multiple instances of information sharing at each iteration, which may not be im-

plementable in all networks, and others (e.g., edge independent set gossiping [4]) require

communication across each edge only once at each time step. We point the reader to [4, 68]

for more details on network communication protocols and their use in gossip algorithms.

4.1.2 Organization

The rest of the paper is organized as follows. In Section 4.1.3, we introduce notation that

will be used throughout the work. In Section 4.1.4, we describe in detail the methods

considered in this paper and present our main theoretical results. In Section 4.1.5, we

provide detailed background on the average consensus problem, and recent work on block

iterative methods for solving linear systems. In Section 4.2, we prove our generalization

of the block iterative method theory, and go into detail on the connection between this

and block gossip algorithms for average consensus. In Section 4.3, we connect particularly

popular block gossip algorithms with our theory and produce explicit convergence rates

for them. In Section 4.4, we explore the case of average consensus models with edge

miscommunication and provide convergence results for the gossip method on this type of

faulty model. Lastly, in Section 4.5, we provide numerous experiments and compare our

theoretical results with the empirical behavior of the considered gossip methods.

4.1.3 Notation and Definitions

Throughout, we let [m] denote the set of integers from one to m; [m] := {1, 2, · · · ,m}. We

additionally let 0 denote the vector of all zeros and let 1 denote the vector of all ones (the

dimensions of these vectors will be given or obvious from context).
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In what follows, we let Aτ denote the subset of matrix A with rows indexed by the set

τ . We let λmin(A), λmin+(A), and λmax(A) denote the minimum, minimum non-zero, and

maximum eigenvalues of the matrix A, respectively. Additionally, we denote by A† the

Moore-Penrose pseudoinverse of the matrixA.

LetG = (V , E)denote an undirected networkwhereV denotes then nodes of the network

and E denotes the m edges. Let Q ∈ Rm×n denote the incidence matrix of the network.

Each row ofQ corresponds to an edge of the network and each column corresponds to a

node. If row l ofQ, denoted qTl , corresponds to the edge eij ∈ E connecting node i and j,

then all but the ith and jth entries of ql are zero with these entries containing a one and

negative one (the order of the positive and negative entries does not matter). Note that

Q⊤Q = L ∈ Rn×n is the Laplacianmatrix of the graph G. The second smallest eigenvalue

of L is called the algebraic connectivity of the graph G; we denote this value λ2(G) := λ2(L).

Finally, we note that if a graph G is connected, then the algebraic connectivity λ2(G) is

positive, and thus λ2(G) = λmin+(L).

We recall the notion of several special subgraph structures. We remind the reader of

the definition of an independent edge set, that is a subset of edges of the graph in which

no two edges are incident to the same node. Additionally, we remind the reader that a

clique subgraph, or complete subgraph, is a subset of edges of the graph which together form

a subgraph in which every pair of nodes is connected by an edge; that is, the edge-induced

subgraph is a clique. Finally, we remind the reader of the definition of a path subgraph, a

subset of edges which together form a path graph; that is, the edge-induced subgraph is a

path.

We additionally recall the notion of a row paving of a matrix A, which controls the con-

ditioning of a set of submatrices that partition the matrixA. We include here the definition

provided by Needell and Tropp in [64], and note that earlier work on the construction of

pavings for block projection methods is due to Popa [71]. In the wider operator theory

context, pavings have long been a topic of interest; see [80] for a review.

Definition. A (d, α, β) row paving of a matrixA is a partition T = {τ1, τ2, · · · , τd} of the row
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indices that satisfies

α ≤ λmin(AτA
⊤
τ ) and λmax(AτA

⊤
τ ) ≤ β for each τ ∈ T.

We will additionally be interested in subsets of the row indices that do not necessarily

partition the rows. We define a row covering to be the natural relaxation of a row paving in

which the requirement that the subsets partition the row indices be relaxed and where the

parameter α provides a lower-bound for the minimum non-zero eigenvalue rather than the

minimum eigenvalue. Each of these are important generalizations for our application of

interest, gossip algorithms for average consensus.

Definition. A (d, α, β, r, R) row covering of a matrixA is a collection of subsets

T = {τ1, τ2, · · · , τd} of the row indices, τi ⊂ [m] for all i = 1, · · · , d, that covers the row

indices, for each i ∈ [m] we have i ∈ τl for some l = 1, · · · , d, and that satisfies

α ≤ λmin+(AτA
⊤
τ ) and λmax(AτA

⊤
τ ) ≤ β for each τ ∈ T,

where r and R are the minimum and maximum, respectively, number of blocks in which a

single row appears, i.e., r = mini∈[m] |{τl ∈ T : i ∈ τl}| and R = maxi∈[m] |{τl ∈ T : i ∈ τl}|.

First, note that the minimum and maximum number of repeated occurrences of a row

in the blocks, r and R, satisfy

1 ≤ r ≤ R ≤ d.

Further, note that a (d, α, β) row paving is by definition a (d, α, β, 1, 1) row covering. Next,

we remind the readers that every sufficiently tall row-normalized matrixA admits a row

pavingwithα > 0 and β < 2 [64]; the authors illustrate that additionalmild assumptions on

the matrix allows one to produce such a row paving via random partitioning. Additionally,

we note that if the matrix in question is an incidence matrix Q, where rows correspond

to edges in a graph G = (V , E), then the row covering T = {τ1, · · · , τd} corresponds to a

collection of sets of edges such that every edge appears in at least one set; that is τi ⊂ E for
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all i ∈ [d] and for all e ∈ E , we have e ∈ τl for some l ∈ [d].

4.1.4 Main Results

The average consensus problem is defined over an undirected network G = (V , E). We

let c = (c(1), c(2), ..., c(n))T denote the vector of inital unknown values (i.e., c(i) is the initial

unknown value of the ith node) initally held by the nodes of the network. The average

consensus problem is then to ensure, after some communication protocol is applied, that

each node stores the averaged value c̄ := mean(c); that is the final vector of updated node

values is c∗ = c̄1where 1 ∈ Rn is the vector of all ones. One can see that c∗ is the orthogonal

projection of c onto the kernel ofQ, {x | Qx = 0}. Here 0 ∈ R|E| denotes the all zeros vector.

The average consensus problem may be formulated in this way using either the incidence

matrix or the Laplacian matrix, L = D−AwhereD is the diagonal matrix of node degrees

and A is the adjacency matrix, or more generally as an average consensus system as defined

in [56]. In this work, we will focus upon the block gossip methods for this problem: at each

iteration, a group (block) of edges is activated, and the nodes belonging to each connected

component of the subgraph induced by this block average their values. Pseudocode for

this method is provided in Algorithm 5. See Figure 4.2 for a visualization of one step of

Algorithm 5 on the average consensus problem of Figure 4.1 with independent edge set,

path, and clique block sampling.
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Figure 4.2: The average consensus problem of Figure 4.1 after an iteration of the block
gossip method (Algorithm 5) with various types of block structures. The edges defining
the sampled block are represented by bold lines.

Algorithm 5 Block Gossip Method
1: procedure BG(G, c0 = c, T = {τ1, · · · , τd})

2: k = 0

3: repeat

4: k ← k + 1

5: Choose edge subset τ uniformly at random from elements of T .

6: Form Gτ = (Vτ , Eτ ), the edge-induced subgraph of G defined by edges in τ .

7: Nodes outside of Vτ do not update values, (ck)VC
τ
← (ck−1)VC

τ
.

8: for all connected components G ′ = (V ′, E ′) of Gτ do

9: Nodes in V ′ solve average consensus on G ′, (ck)V ′ ←
[

1
|V ′|
∑

i∈V ′(ck)i

]
1|V ′|.

10: end for

11: until stopping criterion reached

12: return ck

13: end procedure

Wenext present ourmain resultwhich illustrates that the block gossipmethod converges

at least linearly in expectation to consensus if the underlying graph is connected. Moreover,

we specialize this result to three special cases: the case when the blocks of edges sampled
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in each iteration are independent edge sets, when they are clique subgraphs, and when

they are path subgraphs, and give refined convergence rates for these cases.

Corollary 4.1. Suppose graph G = (V , E) is connected,Q ∈ R|E|×|V| is the incidence matrix for

G, and T = {τ1, · · · , τd} is a (d, α, β, r, R) row covering for Q with M = maxi∈[d] |τi|. Then the

block gossip method with blocks determined by T converges at least linearly in expectation with the

guarantee

E ∥ck − c∗∥2 ≤
(
1− rλ2(G)

βd

)k
∥c− c∗∥2 ,

where λ2(G) is the algebraic connectivity of graph G.

(1) If T consists of independent edge sets, the rate constant can be bounded by

(
1− rλ2(G)

2d

)
.

(2) If T consists of path subgraphs, the rate constant can be bounded by

(
1− rλ2(G)

(2− 2 cos Mπ
M+1

)d

)
≤
(
1− rλ2(G)

4d

)
.

(3) If T consists of clique subgraphs, the rate constant can be bounded by

(
1− rλ2(G)

(2− 2 cos Mπ
M+1

)d

)
≤
(
1− rλ2(G)

4d

)
.

(4) If T consists of arbitrary connected subgraphs, the rate constant can be bounded by

(
1− rλ2(G)

Md

)
.

Remark 4.2. In the gossip algorithm literature, convergence results are often presented in

terms of the ϵ-averaging time of the algorithm, defined in [4] as

Tave(ϵ) := sup
c

inf
k=0,1,2,···

{
P
[
∥ck − c∗∥
∥c∥

≥ ϵ

]
≤ ϵ

}
.
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Our work goes beyond this by providing explicit convergence rates, but a bound on Tave(ϵ)

can be easily derived: by noting that ∥c− c∗∥ ≤ ∥c∥ and applying Markov’s inequality, one

may apply Corollary 4.1 to obtain

Tave(ϵ) ≤
3 log ϵ

log
(
1− rλ2(G)

βd

) .
However, it is challenging to directly compare this result to others in the literature as

these are often only presented as asymptotic bounds without specific dependence on block

parameters like r, d, and β. On the other hand, the presence of r, d, and β make clear the

dependence of this bound on the block selection strategy.

Corollary 4.1 follows from a new bound on the convergence rate of the block Kaczmarz

method on a potentially rank-deficient least-squares problem. The block Kaczmarz method

samples blocks of rows of the matrixA in each iteration and performs an update which

projects the previous iterate onto the solution space of the subset of sampled equations;

note that the standard single-row Kaczmarz updates are a special case of block Kaczmarz

with block size one. The details of this method are provided in Algorithm 6. The block

gossip method with blocks T produces the same iterates as the block Kaczmarz method

performed with A = Q,b = 0, and x0 = cwith blocks T .

Algorithm 6 Block Kaczmarz Method
1: procedure BK(A,b,x0, T = {τ1, · · · , τd})
2: k = 0
3: repeat
4: k ← k + 1
5: Choose row block τ uniformly at random from T .
6: xk ← xk−1 +A†

τ (bτ −Aτxk−1)
7: until stopping criterion reached
8: return xk
9: end procedure

Our main result regarding the block Kaczmarz method generalizes the main result

of [64] in several ways:

• Generalizes to the case when the least-squares problem is rank-deficient.
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• Relaxes the requirement that the row blocks be sampled from a matrix paving.

• Demonstrates that the convergence horizon depends upon the minimum nonzero

singular value of the blocksAτ rather the absolute minimum singular value (often

0).

These generalizations are important in our main application to the average consensus prob-

lem and block gossip methods, but are likely of independent interest in other applications.

Theorem 4.3. Consider the least-squares problem

min ∥Ax− b∥2

where A ∈ Rm×n is not necessarily full-rank and b ∈ Rm. Let e = Axe − b for some xe and let

T = {τ1, · · · , τd} be a (d, α, β, r, R) covering (not necessarily a paving) of the rows ofA. Let xj

denote the jth iterate produced by Block RK on the system defined byA and b with initial iterate x0,

and let x∗ :=
(
I−A†A

)
x0 +A†(b+ e) =

(
I−A†A

)
x0 +A†Axe. Then we have

E
(
∥xj − x∗∥2

)
≤ ρ(A, T )j ∥x0 − x∗∥2 + βR

αrσ2
min+(A)

∥e∥2 , (4.1)

where ρ(A, T ) = 1− rσ2
min+(A)

βd
and σmin+(A) is the smallest nonzero singular value ofA.

Remark 4.4. The convergence horizon term, βR
αrσ2

min+(A)
∥e∥2, is minimized in the case that

e = e∗ where e∗ is the minimum norm residual, i.e.,

e∗ = argmin ∥e∥2 s.t. e = Ax− b for some x ∈ Rn.

In this case, the iterates converge to x∗ :=
(
I−A†A

)
x0 +A†(b+ e∗).

Remark 4.5. In other Kaczmarz literature, including Needell’s original result for Random-

ized Kaczmarz applied to inconsistent linear systems [63, Theorem 2.1], the problem is

formulated by adding some vector of measurement noise r to a consistent system Ax = b,

leading to a convergence horizon term proportional to ∥r∥. We instead work with Ax = b
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being inconsistent and give a horizon proportional to a residual, but we note that the two

formulations are equivalent.

Remark 4.6. We include a generalization of Theorem 4.3 to the case when the right hand

side, b, is varying in each iteration according to mean-zero randomly distributed additive

noise in Proposition 4.12.

4.1.5 Related Work

In this subsection we offer some related reading in the fields of average consensus, gossip

protocols, and block iterative methods, and draw connections between them and our work.

Average consensus and gossip protocols. As mentioned, average consensus has been a

fundamental topic in distributed computing since the inception of the field. We refer the

reader to the classical work of DeGroot [13] for an inception of the consensus problem, and

to the work of Tsitsiklis, Bertsekas, and Athans [78] for a first look into stochastic protocols

for distributed computing. As networks have grown larger in size and have appeared

in more applications, the need for more efficient average consensus solvers motivated

the development of gossip algorithms: protocols that, in general, select some subset of

nodes and allow them to ‘gossip’, i.e., share and average their stored values. Boyd et al.’s

2006 paper [4] provided a fundamental exposition of said protocols, particularly on the

connection between their convergence rate and the underlying network topology, and has

motivated research in the topic ever since [15].

There have been a variety of works analyzing different node-selection protocols for

gossiping. In [7], at each epoch a path of nodes in the network is formed and the values

along said path are averaged. In [53], the network is decomposed beforehand into cliques

(connected subgraphs), and at each epoch one such clique is activated. Lastly in [4], at

each epoch a selection of pairs are chosen and each pair computes its own average (we call

this edge independent set gossiping throughout). These analyses are, however, somewhat

disjoint, so we believe the unified convergence analysis presented in this paper (which

covers all of the aforementioned methods) to be novel.
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Block randomized Kaczmarz. The Kaczmarz method [43] is an iterative linear sys-

tem solver whose popularity boomed after its randomized variant was proven to have

exponential convergence by Strohmer and Vershynin [75]. After this work proved conver-

gence for full-rank, consistent systems, further work was done to generalize to the case of

inconsistent [63] and rank-deficient [86] systems.

A well-studied family of variants are block Kaczmarz methods, in which iterates are

projected onto subspaces corresponding to blocks of rows rather than single equations.

Early references include [19, 21, 71], but we focus on the block randomized Kaczmarz

method introduced by Needell and Tropp [64]. The authors proved that under certain

restrictions on the choice of blocks, the method achieves exponential convergence, and

converges up to a threshold if the system is inconsistent. In our work we significantly relax

these conditions and achieve a similar convergence guarantee.

The connection between gossip algorithms and Kaczmarz methods for linear systems

was analyzed in depth by Loizou and Richtárik in their 2019 paper [55]; others considering

this connection include [30, 87]. This connection was exploited in [55] to build a framework

giving new convergence guarantees for gossip protocols, accelerations via momentum,

and other interesting discussions such as dual gossip algorithms. In our work we hone in

on their general exposition of block gossip algorithms, and give more explicit links and

convergence guarantees for previously mentioned existing gossip protocols.

4.2 Convergence of Block Randomized Kaczmarz

In this section, we prove our main result, Theorem 4.3, which illustrates that the block

randomized Kaczmarz method converges at least linearly in expectation on least-squares

problems even in the case that the matrix A is rank-deficint and the blocks are not sam-

pled from a matrix paving. We will then illustrate how this result specializes to prove

Corollary 4.1.
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Proof of Theorem 4.3. First, note that by definition, e = Axe − b and so

Ax∗ − b = (Ax0 −AA†Ax0) +AA†b+AA†e− b

= AA†b+AA†(Axe − b)− b (4.2)

= Axe − b = e,

where the second and third equation used the fact thatAA†A = A.

Recall that our updates take the form xj+1 = xj +A†
τ (bτ −Aτxj), where τ is chosen

uniformly at random from our set of blocks. We then have

∥xj+1 − x∗∥2 =
∥∥xj +A†

τ (bτ −Aτxj)− x∗∥∥2
=
∥∥(I−A†

τAτ )xj +A†
τ (Aτx

∗ − eτ )− x∗∥∥2 (4.3)

=
∥∥(I−A†

τAτ )(xj − x∗)−A†
τeτ
∥∥2

=
∥∥(I−A†

τAτ )(xj − x∗)
∥∥2 + ∥∥A†

τeτ
∥∥2 ,

where we used thatA†
τ (bτ + eτ ) = A†

τAτx
∗ and that Im(A†

τ ) and Im(I−A†
τAτ ) are orthog-

onal. Then since I−A†
τAτ is an orthogonal projector, we have

∥∥(I−A†
τAτ )(xj − x∗)

∥∥2 = ∥xj − x∗∥2 −
∥∥A†

τAτ (xj − x∗)
∥∥2 . (4.4)

Note that
∥∥A†

τeτ
∥∥2 ≤ σ2

max(A
†
τ ) ∥eτ∥

2 = 1
σ2
min+(Aτ )

∥eτ∥2 ≤ 1
α
∥eτ∥2. Using this fact and

taking expectations, we obtain

Ej
(
∥xj+1 − x∗∥2

)
(4.5)

≤ ∥xj − x∗∥2 − Ej
(∥∥A†

τA(xj − x∗)
∥∥2)+ 1

α
Ej
(
∥eτ∥2

)
≤ ∥xj − x∗∥2 − 1

β
Ej
(
∥Aτ (xj − x∗)∥2

)
+

1

α
Ej
(
∥eτ∥2

)
(4.6)

≤ ∥xj − x∗∥2 − r

βd
∥A(xj − x∗)∥2 + R

αd
∥e∥2 ,
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where the last inequality follows from the fact that

Ej(∥vτ∥2) =
1

d

d∑
l=1

∥vτl∥
2 =

1

d

d∑
l=1

m∑
i=1

1(i ∈ τl)v
2
i

=
1

d

m∑
i=1

[
d∑
l=1

1(i ∈ τl)

]
v2i

so we have r
d
∥v∥2 ≤ Ej(∥vτ∥2) ≤ R

d
∥v∥2.

We now claim that for all j, xj − x∗ ∈ Im(AT ), i.e., the row space of A. We do so by

induction; firstly for j = 0we have

x0 − x∗ = x0 − (I−A†A)x0 −A†(b+ e) = A†(Ax0 − (b+ e)),

and since Im(A†) = Im(AT ), we are done.

Now assume xl − x∗ ∈ Im(AT ). Then we have, for some τ ,

xl+1 − x∗ = xl +A†
τ (bτ −Aτxl)− x∗.

By assumption xl − x∗ ∈ Im(AT ), and furthermore sinceAτ is a row submatrix ofA, we

have

Im(A†
τ ) = Im(AT

τ ) ⊆ Im(AT ).

Thus xl+1 − x∗ ∈ Im(AT ), and we are done by induction.

Now, returning to (4.5), since xj − x∗ ∈ Im(AT ) = Ker(A)⊥, we have

∥A(xj − x∗)∥2 ≥ σ2
min+(A) ∥xj − x∗∥ .

This yields

Ej
(
∥xj+1 − x∗∥2

)
≤ ρ(A, T ) ∥xj − x∗∥2 + R

αd
∥e∥2 ,
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where ρ(A, T ) = 1− rσ2
min+(A)

βd
and by induction we obtain

E
(
∥xj+1 − x∗∥2

)
(4.7)

≤ ρ(A, T )j+1 ∥x0 − x∗∥2 +

[
j∑
i=0

ρ(A, T )i

]
R

αd
∥e∥2

≤ ρ(A, T )j+1 ∥x0 − x∗∥2 +

[
∞∑
i=0

ρ(A, T )i

]
R

αd
∥e∥2 (4.8)

= ρ(A, T )j+1 ∥x0 − x∗∥2 + βR

αrσ2
min+(A)

∥e∥2 .

Remark 4.7. We note that in most applications, including our application of average consen-

sus, σmin+(A) is fixed, and so it is natural to seek to maximize r
βd
. For the average consensus

problem, this equates to careful selection of the block set T .

We next include a proof of Corollary 4.1 which follows from Theorem 4.3 due to the

fact that block gossip on the network G with initial unknown node values c coincides with

block randomized Kaczmarz on the AC problem.

Proof of Corollary 4.1. Consider running block RK with A = Q,b = 0, and x0 = c with

samples τ ∈ T determined by the run of block gossip on G with c0 = c. Note that ker(Q)

is nonempty since rank(Q) ≤ n− 1, so e = 0. It follows from [55, Theorem 5] that block

gossip iterate ck and block RK iterate xk coincide for all k.

If we takex0 = c, then by Theorem4.3we know that blockRKwill converge to (I−Q†Q)c

(since b = e = 0 in this application). This is exactly the orthogonal projection of c onto

ker(Q) = span{1}, where 1 is the length-|E| vector of all ones. Then, since
{

1√
|E|
1

}
is an
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orthonormal basis for ker(Q), we can compute this projection as

(I−Q†Q)c =

〈
c,

1√
|E|

1

〉
1√
|E|

1 (4.9)

=
1

|E|

 |E|∑
i=1

ci

1 (4.10)

= c∗. (4.11)

Finally, note that σ2
min+(Q) = λmin+(L) = λ2(G)where L is the Laplacian matrix of G. The

specific results enumerated in Corollary 4.1 follow from the singular value upper bounds

presented in Section 4.3.

4.3 Block Gossip Sampling

In this section, we consider particular cases when the blocks used in the block gossip

method correspond to special subgraph structures, namely independent edge sets, clique

subgraphs, path subgraphs, and arbitrary connected subgraphs.

We begin with a lemma that will be used to strengthen our convergence results for

these cases.

Fact 4.8. Let τ be a subset of edges of G, and let τ ′ ⊆ τ be the edge set of a spanning tree of

Gτ . Then the block gossip updates produced by choosing blocks τ and τ ′ are identical.

This follows immediately from the fact that Gτ and Gτ ′ have the same vertex set, and

block gossip simply averages the stored values of said vertex set at each iteration. The value

of Fact 4.8 comes from the fact that our theoretical convergence rate bound depends (in

part) on the maximum singular values of our blocks: removing rows from a matrix (i.e.,

using a subset of edges in our block) decreases said singular values, tightening the bound.

Throughout this section, we make use of the fact that for any collection of row indices

τ , the spectra of QτQ
⊤
τ and Lτ are the same, up to zeros. In particular, we can identify our

covering constants α and β by analyzing the spectrum of Lτ , which is well understood for
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many of the graph structures we will consider.

4.3.1 Independent edge set blocks

In the case that T = {τ1, τ2, · · · , τd} is a row covering ofQwhere each Gτi is an independent

edge set, we have that

QτiQ
⊤
τi
= 2I

for each i ∈ [d]. Thus, T is a (d, 2, 2, r, R) row covering of Q and we have that

(
1− rλ2(G)

βd

)
=

(
1− rλ2(G)

2d

)
.

Note that each independent each set is its own spanning tree, so there is no improvement

to be made here via Fact 4.8.

4.3.2 Path blocks

In the case that T = {τ1, τ2, · · · , τd} is a row covering of Q where each Gτi is a path, we

make use of the following fact about the eigenvalues of the Laplacian of a path subgraph

(see e.g., [27]).

Fact 4.9. Let Pn be a path subgraph of G of length n. Then the eigenvalues of LPn are

2− 2 cos
πk

n
for k = 0, 1, · · · , n− 1. (4.12)

We then have for each i ∈ [d] that

λmax(QτiQ
⊤
τi
) = λmax(Q

⊤
τi
Qτi) = 2− 2 cos

|τi|π
|τi|+ 1

(4.13)

≤ 2− 2 cos
Mπ

M + 1
, (4.14)
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so T is a (d, α, 2− 2 cos Mπ
M+1

, r, R) row covering. Thus we have that

(
1− rλ2(G)

βd

)
=

(
1− rλ2(G)

(2− 2 cos Mπ
M+1

)d

)
≤
(
1− rλ2(G)

4d

)
.

Again, each path is its own spanning tree, so this rate cannot be improved via Fact 4.8.

4.3.3 Clique blocks

In the case that T = {τ1, τ2, · · · , τd} is a row covering of Q where each Gτi is a complete

subgraph of G, we make use of Fact 4.8; in particular, for each τ ∈ T there exists τ ′ ⊂ τ

such that Gτ ′ is a spanning path of Gτ . See Figures 4.2b and 4.2c for an example of how a

spanning path block update coincides with the update produced by a clique block update.

In this way, we see that the bound on the convergence rate constant for complete

subgraphs must be no larger than that of path subgraphs and we recover the constant

(
1− rλ2(G)

(2− 2 cos Mπ
M+1

)d

)
≤
(
1− rλ2(G)

4d

)
.

4.3.4 Arbitrary connected subgraph blocks

In the case that T = {τ1, τ2, · · · , τd} is a row covering of Q where each Gτi is an arbitrary

connected subgraph of G, we again make use of the fact that we may replace every block

τ ∈ T with a block τ ′ ⊂ τ such that Gτ ′ is a spanning tree of Gτ to form T ′ = {τ ′1, τ ′2, · · · , τ ′d}.

We note that the block gossip method with blocks sampled from T will produce the same

set of iterates as those sampled identically from T ′.

Now, we use that fact that the eigenvalues of the Laplacian of a tree, LT , are bounded

above by |E(T )| (and that in fact this bound is tight for the star graph), see [27]. Thus, we

have

λmax(Qτ ′i
Q⊤
τ ′i
) = λmax(Q

⊤
τ ′i
Qτ ′i

) ≤ |τi| ≤M.
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We use this bound to recover the constant upper bound

(
1− rλ2(G)

Md

)
.

4.3.5 Multiple subgraph blocks

If the network allows for multiple disjoint components to be activated at a single instance,

we may form blocks consisting of multiple disjoint subgraphs of G. In this case, to compute

β we may use the following Lemma.

Lemma 4.10. Let Gτ be a subgraph of G consisting of disjoint connected subgraphs Gτ1 , · · · ,Gτk .

Then

λmax(QτQ
⊤
τ ) = max

i
λmax(QτiQ

⊤
τi
). (4.15)

Proof. This follows immediately from the fact that since said subgraphs are edge-disjoint,

we have that the Laplacian of their union is the direct sum of their individual Laplacians:

Lτ = Lτ1 ⊕ · · · ⊕ Lτk , (4.16)

and so the spectrum of Lτ is exactly the union of the spectra of Lτ1 , · · · ,Lτk .

Suppose then that we take T = {τ1, τ2, · · · , τd}, where each τi is the union of a collection

of rows corresponding to disjoint connected subgraphs, say τi =
⋃
j τ

j
i . Then by Lemma 4.10

we have

λmax(QτiQ
⊤
τi
) = max

j
λmax(Qτ ji

Q⊤
τ ji
).

Onemay then apply the relevant previous results of Section 4.3 to compute an upper bound

on this quantity, yielding β.
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4.4 Inconsistent Consensus Models

In this section, we consider two models of inconsistent average consensus where communi-

cation across edges is noisy and provide analyses of the natural block gossip method in

these cases.

4.4.1 Constant edge communication error

Consider the average consensus problem in the presence of constant edge communication

error; that is, some blocks of nodes do not update to local consensus during iterations of the

block gossip method, but instead update according to an attempt to satisfy constant edge

miscommunication values. We denote m ∈ R|E| as the edge miscommunication values and

consider the block gossip updates under this edge miscommunication to be

ck = ck−1 +Q†
τ (mτ −Qτck−1). (4.17)

We can apply Theorem 4.3 to prove the following corollary. This result yields a guarantee

of convergence to a convergence horizon that depends upon the edge miscommunication

vector m.

Corollary 4.11. Suppose graph G = (V , E) is connected, Q ∈ R|E|×|V| is the incidence matrix

for G, and T = {τ1, · · · , τd} is a (d, α, β, r, R) row covering forQ. Then the block gossip method

under edge miscommunicationm as defined in (4.17) with blocks determined by T converges at

least linearly in expectation to a horizon determined bym with the guarantee

E ∥ck − c∗∥2 ≤
(
1− rλ2(G)

βd

)k
∥c− c∗∥2 + βR

αrλ2(G)
∥m∥2,

where λ2(G) is the algebraic connectivity of graph G.

Proof. This result follows from Theorem 4.3 where b = m, A = Q, and e = −m. Note that

x∗ = (I−Q†Q)c+Q†(m−m) = (I−Q†Q)c = c∗.

72



4.4.2 Randomly varying edge communication error

We now consider the average consensus problem in the presence of randomly varying

edge communication error. During the block gossip method, blocks do not update to local

consensus but instead update to attempt to satisfy the iteration dependent edge miscom-

munication values. We denote mk ∈ R|E| as the edge miscommunication values during the

kth iteration and consider the block gossip updates under edge miscommunication to be

ck = ck−1 +Q†
τ ((mk)τ −Qτck−1). (4.18)

We prove a generalization of Theorem 4.3 and use it to prove a guarantee of convergence to

a convergence horizon that depends upon the distribution of the edge miscommunication

values.

Proposition 4.12. Let b ∈ r(A) with A not necessarily full rank. Consider running the block

Kaczmarz method with matrix A and vector bk = b+ ek in the kth iteration; that is

xk = xk−1 +A†
τ ((bk)τ −Aτxk−1).

Assume that {ek} is sampled i.i.d. according to distribution D, ek ∼ D, with ED[ek] = 0 and

cov(ek) = ED[eke
⊤
k ] = Σ. Let T = {τ1, τ2, · · · , τd} be a (d, α, β, r, R) row covering of A. Let

x∗ = (I−A†A)x0 +A†b. Then we have

E∥xj+1 − x∗∥2 ≤ ρ(A, T )j+1∥x0 − x∗∥2 + βR

αrσ2
min+(A)

tr(Σ),

where ρ(A, T ) = 1− rσ2
min+(A)

βd
.

Proof. This proof proceeds in a manner highly similar to that of Theorem 4.3. First, note

that in a calculation similar to (4.2), we have thatAx∗ − bk = ek. Then, recalling that the

updates take the form xj+1 = xj +A†
τ ((bk)τ −Aτxj) where τ is chosen uniformly from T ,

we compute

∥xj+1 − x∗∥2 = ∥(I−A†
τAτ )(xj − x∗)∥2 + ∥A†

τ (ej)τ∥2
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in a manner similar to that of (4.3). Using (4.4) and taking expectation with respect to the

sampled block in iteration j, τj , conditioned on all previously sampled blocks, we have

Eτj∥xj+1 − x∗∥2

= ∥xj − x∗∥2 − Ej∥A†
τAτ (xj − x∗)∥2 + 1

α
Ej∥(ej)τ∥2

≤
(
1−

rσ2
min+(A)

βd

)
∥xj − x∗∥2 + R

αd
∥ej∥2.

Now, taking expectation with respect to the sampled error ej ∼ D conditioned upon all

previously sampled errors, we arrive at

Eej

[
Eτj∥xj+1 − x∗∥2

]
≤
(
1−

rσ2
min+(A)

βd

)
∥xj − x∗∥2 + R

αd
Eej∥ej∥2

=

(
1−

rσ2
min+(A)

βd

)
∥xj − x∗∥2 + R

αd
tr(Σ).

Iterating this expectation and proceeding inductively as in (4.7), we arrive at the desired

result.

We may now use this result to prove the following guarantee for convergence of block

gossip methods in the presence of randomly varying edge miscommunication error.

Corollary 4.13. Suppose graph G = (V , E) is connected,Q ∈ R|E|×|V| is the incidence matrix for

G, and T = {τ1, · · · , τd} is a (d, α, β, r, R) row covering forQ. Assume that {mk} is sampled i.i.d.

according to distribution D,mk ∼ D, with ED[mk] = 0 and cov(mk) = ED[mkm
⊤
k ] = Σ. Then

the block gossip method under randomly varying edge miscommunicationmk as defined in (4.18)

with blocks determined by T converges at least linearly in expectation to a horizon determined by

tr(Σ) with the guarantee

E ∥ck − c∗∥2 ≤
(
1− rλ2(G)

βd

)k
∥c− c∗∥2 + βR

αrλ2(G)
tr(Σ),

where λ2(G) is the algebraic connectivity of graph G.
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Proof. This result follows from Proposition 4.12 where b = 0, ek = mk, andA = Q. Note

that x∗ = (I−Q†Q)c = c∗.

Remark 4.14. In the case that the blocks consist of single rows, then updates (4.17) and

(4.18) correspond to nodes updating to satisfy a misspecified (nonhomogenous) equation

in the AC system, which could model link communication failure. However, for larger

blocks, the interpretation of these updates break down and it is less clear that they model a

natural gossip process, as the individual node value updates are produced by the collection

of edge miscommunications. We note, however, that such nonhomogenous systems of

equations arise in practice elsewhere, e.g., in rank aggregration from pairwise comparisons

via Massey’s method [58] or Hodgerank [42].

4.5 Experiments

In this section we present empirical results from applying block gossip with various choices

of block structure to AC problems on multiple graph structures, including Erdös-Rényi

graphs of varying connectivity, square lattice graphs, and the Les Misérables network [46].

All experiments were conducted in Python 3.8 with the NetworkX [35] package used to

generate and work with graph structures. We also present results from applying said

protocols to inconsistent consensus models as detailed in Section 4.4.

4.5.1 Preliminaries

Recall that an Erdös-Rényi graph ER(n,p) on n vertices is formed by randomly including

edges between each pair of nodes independently with probability p. We choose to experi-

ment on such graphs as they are popular models for real-life networks and highlight the

effects of varying connectivity (by varying p) on the convergence of the considered gossip

protocols. We also run experiments on n× n square lattice graphs, another widely-studied

network structure; see e.g., [7]. In each experiment, initial unknown values are drawn

randomly for each node from a Uniform(0, 1) distribution.
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For all graphswe perform experimentswith four block sampling protocols: independent

edge sets (IES), cliques, paths, and randomly selected blocks of fixed size. These protocols

and the graph structures underlying them are detailed in Subsection 4.1.4 and Section 4.3.

To produce an IES cover we use a greedy algorithm that repeatedly finds the largest

independent edge set, then removes it from the graph until there are no remaining edges.

Similarly, a clique edge cover of the graph is generated by a greedy algorithm that repeatedly

finds the largest clique, then removes it from the graph until there are no remaining edges.

For path gossip, paths are formed by selecting a node uniformly at random, adding a

randomly selected neighbour to it, and continuing to sequentially add neighbours until we

have a path of the desired length l. Randomly selected blocks are sampled by selecting

edges uniformly at random to form a block of a specified size. The blocks generated by

these algorithms are then passed into our block gossip algorithm, which randomly samples

a block from the list of blocks at each iteration. We note that these block enumeration

processes are not part of the block gossip method, they are simply a necessary step for our

simulations.

We produce two types of plot: collapse plots, which are a visualization of individual

node values by iteration (as in [6]), and error plots, which show the error at each iteration,

∥ck − c∗∥, and for some examples also display the predicted upper bound on convergence

given by Corollary 4.1.

4.5.2 Erdös-Rényi Graphs

We apply each of our block sampling protocols to Erdös-Rényi graphs ER(n, p)with p =

0.2, 0.4, 0.6, 0.8, 1 and n = 200.

In Figures 4.3 to 4.6 we compare the performance of each protocol (with path length

l = 10 for path gossip) across a range of p. It appears that, in the ER case, connectivity does

not have a substantial effect on the relative performance of our protocols, with IES gossip

consistently being the strongest by some margin. This aligns with the fact that independent

edge sets will have the greatest node overlap, particularly when compared to cliques – in
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Figure 4.3: Errors for all protocols applied to
ER(200, 0.2).

Figure 4.4: Errors for all protocols applied to
ER(200, 0.4).

the sense that a single node is likely to be in many more independent edge sets than cliques

– and so a larger amount of information is transferred per iteration.

In Figures 4.7 to 4.10, we present a closer look at best (IES) andworst (clique) performing

protocols from the previous experiments. The dramatic difference in convergence rate

can be partially explained by the collapse plots: we see that during clique gossip certain

nodes will hold their value for many iterations before updating, leading to dramatically

slower convergence than IES gossip seen in the error plots. This is again connected to the

greater amount of node overlap that persists in IES blocks, compared to cliques. We see

from the error plots that both protocols respect the upper bound on convergence given

by Corollary 4.1, and that said bound predicts that IES gossip should outperform clique

gossip.
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Figure 4.5: Errors for all protocols applied to
ER(200, 0.6).

Figure 4.6: Errors for all protocols applied to
ER(200, 1).
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Figure 4.7: Collapse plot for ER(100, 0.6) un-
der IES gossip.

Figure 4.8: Error plot for ER(100, 0.6) under
IES gossip.
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Figure 4.9: Collapse plot for ER(100, 0.6) un-
der clique gossip.

Figure 4.10: Error plot for ER(100, 0.6) under
clique gossip.
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Figure 4.11: IES gossip errors on ER(200, p)
for various p.

Figure 4.12: Clique gossip errors on ER(200, p)
for various p.

We analyze the effect of increasing p (and thus the connectivity of the graph) in Fig-

ures 4.11 to 4.14. It can be seen that IES gossip is both fast and robust to variations in

connectivity compared to other protocols. This can be attributed heuristically to the fact

that independent edge sets are formed by selecting edges which separate nodes well, rather

than selecting edges which join nodes well (as in forming cliques). The performance of

clique gossip improves significantly with p, corresponding to the fact that ER(n, p) is likely

to have a greater number of larger cliques as p, and thus its average degree, increases. Note

that we exclude clique gossip for p = 1, as the entire graph will be selected as a clique and

consensus will be reached in a single iteration.
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Figure 4.13: Path gossip errors on ER(200, p)
for various p.

Figure 4.14: Random gossip errors on
ER(200, p) for various p.
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Figure 4.15: Comparison of sampling protocols applied to a 10× 10 square lattice.

4.5.3 Square Lattice

In Figure 4.15 we show the error plots from each of our sampling protocols applied to the

10× 10 square lattice. The graph structure restricts the size of cliques to only single edges,

leading to poor performance versus other protocols. Moreover, path gossip struggles as

nodes on opposite sides of the grid are a large graph distance apart. In this scenario, with

our ‘special’ structures being limited, it is sensible to choose blocks at random to attempt

to maximise the dispersement of information, and this strategy indeed yields the best

performance.

4.5.4 Real World Network

We apply each of our block sampling protocols to the Les Misérables network [46]. This

network represents co-occurences of characters in the novel “Les Misérables" by Victor

Hugo. Nodes represent the 77 characters, and an edge between two nodes indicates that

these two characters appear in the same chapter of the novel. There are 254 edges and the

graph is connected. We plot the gossip method errors with independent edge sets, paths,

cliques, and arbitrary sets and the upper bound on convergence given by Corollary 4.1

in Figures 4.16, 4.17, 4.18, and 4.19, respectively. Note that the best performing protocol

(gossip with independent edge sets) also has the lowest bound on convergence; however,
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Figure 4.16: Error plot for Les Misérables
graph under independent edge set gossip.

Figure 4.17: Error plot for Les Misérables
graph under path gossip.

Figure 4.18: Error plot for Les Misérables
graph under clique gossip.

Figure 4.19: Error plot for Les Misérables
graph under block gossip with arbitrary
subsets.

the next best performing protocol on this network (path gossip) has the worst bound on

convergence.

4.5.5 Inconsistent Consensus Models

We experimentedwith the two types of inconsistent average consensus systems described in

Section 4.4, namely systemswith a constant edge communication error (CECE) and systems

with a randomly varying edge communication error (VECE). In CECE, all iterations are

affected by the same edge miscommunication values m ∈ R|E| which is generated (in

advance) with entries sampled independently from N (0, 0.01), the mean-zero Gaussian

distribution with variance 0.01. In VECE, the edge miscommunication for the kth iteration,
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Figure 4.20: Comparison of effect of differ-
ent communication errors on path gossip.

Figure 4.21: Comparison of effect of differ-
ent communication errors on IES gossip.

mk ∈ R|E|, has entries sampled independently from N (0, 0.01).

In Figures 4.20 and 4.21, we display the errors for consistent block gossip updates

(m = 0), CECE updates (4.17) with constant edge communication valuesm sampled as

described above, and VECE updates (4.18) with varying edge communication values mk

sampled as described above, on an ER(n, p) graph with n = 150 and p = 0.6 with path

block sampling and IES block sampling, respectively. Note that IES block sampling gossip

converges far more quickly than path block sampling, and so we are able to see more clearly

the effect of varying error in this plot. Note that VECE has a fairly smooth convergence

horizon, whereas the convergence horizon for CECE varies widely as the updates sample

the (fixed) values of edge miscommunication of differing magnitude.

In Figures 4.22 and 4.23, we display the errors for consistent block gossip updates

(m = 0), CECE updates (4.17) with constant edge communication values m sampled

as described above, and VECE updates (4.18) with varying edge communication values

mk sampled as described above, on an ER(n, p) graph with n = 150 and p = 0.6 with

clique block sampling and random block sampling, respectively. Note that clique block

gossip and random block gossip converge so slowly that it takes far longer to see clearly

the convergence horizon for the CECE and VECE updates.
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Figure 4.22: Comparison of effect of differ-
ent communication errors on clique gossip.

Figure 4.23: Comparison of effect of differ-
ent communication errors on random gos-
sip.

4.6 Conclusions

In this work, we prove a new convergence result for the block gossip method for the average

consensus problem and specialize this theoretical result to path [7], clique [53], and edge-

independent set [4] gossip protocols. We prove this result by exploiting the fact that these

methods are generalized by the block randomized Kaczmarz method for solving linear

systems.

We prove a generalized convergence result for the block randomized Kaczmarz method

which generalizes the main result of [64] to the case of rank-deficient systems and relaxes

requirements on the set of blocks to be sampled. While these generalization are highly

important for the average consensus problem, we expect that they will be of interest in

other applications as well.

We additionally prove convergence results for the block gossip method on inconsistent

consensus models, and perform a broad set of experiments to compare our theoretical

results to the empirical behavior of the block gossip methods on various network structures.

Future directions include further exploration of inconsistent average consensus models,

including random link failure and adversarial nodes, bounded confidence models, which

generalize the average consensusmodel, and blockKaczmarz variants for randomly varying

noise.
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CHAPTER 5

Online Signal Recovery via Heavy Ball Kaczmarz

This chapter is a version of [41] and is joint work with Yotam Yaniv and Prof. Deanna

Needell. I proposed the project and Deanna Needell supervised. Yotam Yaniv and I

contributed the convergence analysis and experiments. We present an application of the

Kaczmarz method to an online signal recovery setting, where instead of sampling rows

from a fixed system of linear equation, one samples linearmeasurements from some general

source distribution. When such settings arise, as in medical imaging, these measurements

are frequently highly coherent (that is, have corresponding hyperplanes with small incident

angles). We introduce a variant of the Kaczmarz method with an additional heavy-ball

momentum term, and show via theoretical results and experiments that it handles this

particular setting well.

5.1 Introduction

5.1.1 The Kaczmarz Method

Recovering a signal x∗ ∈ Rn from a collection of linear measurements is an important

problem in computerized tomography [60], sensor networks [72], compressive sensing

[20, 23], machine learning subroutines [3], and beyond. When the collection of linear

measurements is finite, say of size m, and accessible at any time, the problem is equivalent

to solving a system of linear equations Ax = b with A ∈ Rm×n and b ∈ Rm, which has been

well-studied. A popular method for solving this classical problem is the Kaczmarz method

[43]: beginning with an initial iterate x0, at each iteration a row of the system is sampled

and the previous iterate is projected onto the hyperplane defined by the solution space
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given by that row. More precisely, if the row a⊤i x = bi is sampled at iteration k, the update

has the form

xk = xk−1 −
⟨ai, xk−1⟩ − bi

∥ai∥2
ai.

The original method proposed cycling through rows in order, such that i = k modm. In

[37] it was observed empirically that randomized row selection accelerates convergence,

and in the landmark work [75] it was proven that selecting rows at randomwith probability

proportional to their Euclidean norm yields linear convergence in expectation.

In this work, we consider an online model in which at each discrete time t = 1, 2, . . . a

linear measurement (φt, yt) ∈ Rn × R is received. We assume that each measurement is

noiseless, i.e. ⟨φt, x∗⟩ = yt for all t, and that measurements are streamed through memory

and are not stored. Note that the linear system setting described above is a special case

of this model, but we now allow for measurements to be sampled from a more general

source. The Kaczmarz method is well-suited to this setting as it requires access to only a

single measurement at each iteration. See, for example, [10], where measurement data is

viewed as being sampled i.i.d. from some distribution D on Rn. We assume the noiseless,

i.i.d. setting throughout this paper. A Kaczmarz update in this setting has the following

form, when initialized with some arbitrary x0: at discrete times t = 1, 2, . . . , a measurement

(φt, yt) ∈ Rn × R is received, where φt ∼ D, and a Kaczmarz iteration is computed

xt = xt−1 −
⟨φt, xt−1⟩ − yt

∥φt∥2
φt.

In [10] it was shown that under certain conditions on D, the method enjoys linear conver-

gence in expectation. Further related works have placed online Kaczmarz in the context of

learning theory [51], and have analyzed sparse online variants [48, 57]. Random vector

models have also appeared in analyses of Kaczmarz methods for phase retrieval [77] and

for sparsely corrupted data [34].

88



5.1.2 Heavy Ball Momentum

Heavy ball momentum is a popular addition to gradient descent methods, in which an

additional step is taken in the direction of the previous iteration’s movement. Proposed

initially in [70], it has proven very popular in machine learning [76, 47, 26, 81], with a

guarantee of linear convergence for stochastic gradientmethodswith heavy ball momentum

proven in [54] (improving on earlier sublinear guarantees in [84, 25]). A gradient descent

method itself [67], the Kaczmarz method may be modified with heavy ball momentum to

give updates of the following form:

xt+1 = xt −
⟨φt, xt⟩ − yt

∥φt∥2
φt + β(xt − xt−1),

where β ≥ 0 is a momentum parameter. In [54] it was shown that when applied to a

linear system (i.e., when each φt is sampled from the rows of a matrix A), the Kaczmarz

methodwith heavy ball momentum converges linearly in expectation. Experimental results

indicate accelerated convergence compared to the standard Kaczmarz method on a range

of datasets, while the momentum term does not affect the order of the computational cost.

In this work, we propose an online variant of the Kaczmarz method with heavy ball

momentum. We prove that our method converges linearly in expectation for a wide range

of distributions D, and offer particular examples. This theory is supported by numerical

experiments on both synthetic and real-world data, which in particular demonstrate the

benefits of adding momentum when measurements are highly coherent.

5.2 Proposed Method & Empirical Results

We propose an online variant of the Kaczmarz method, modified to include a heavy ball

momentum term β ∈ (0, 1), which we call OHBK(β) (see Algorithm 7). We note that

our method is a generalization of the momentum Kaczmarz method for systems of linear

equations introduced in [54]. The method requires only a single measurement to be held

in storage at a time, while leveraging information about previous measurements through
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the momentum term.

Algorithm 7 Online Heavy Ball Kaczmarz
1: procedure OHBK(β) (Input: initial iterate x0, measurements {(φt, yt)}∞t=1, momentum

parameter β )
2: Set x1 = x0

3: for t = 1, 2, . . . do
4: Update xt+1 = xt − ⟨φt,xt⟩−yt

∥φt∥2
φt + β(xt − xt−1)

5: end for
6: end procedure

We test our method on synthetic and real-world data. For each data source, we compare

ourmethodOHBK(β) for a variety of β to an online Kaczmarzmethodwithoutmomentum,

which we denote by OK (equivalently, OHBK(0)).

We first experiment on synthetic data. We sample x∗ ∈ R50 with standard Gaussian

entries, and take {φt}∞t=1 to be vectors of length 50 with U [0, 1] entries. We note that this

process produces particularly coherent data, that is, the vectors {φt}∞t=1 have small pairwise

inner products. Each yt is then computed as yt = ⟨φt, x∗⟩ to ensure measurements are

noiseless. In Figure 5.2 we perform a parameter search over 100 trials for β and plot the

median error after 100 iterations versus βwith shading for the 25th through 75th percentiles.

Introducing some amount of momentum provides an acceleration, however, taking β to be

too large places too much weight on previous information and is less effective. In Figure 5.1

we show convergence down to machine epsilon of OHBK(β) versus online randomized

Kaczmarz (i.e. OHBK(0)) for a selection of β (averaging over 10 trials), and the acceleration

provided by momentum is clear.

In Figure 5.3, we investigate the effect of momentum on highly coherent systems further.

We perform 4000 iterations of OHBK(β) on U [ε, 1] signals of length 50, for ε ∈ [0, 1], for a

range of momentum parameters β (again averaged over 10 trials). We see that momentum

provides a significant speedup in convergence even for highly coherent systems (i.e. for

large ϵ). However, as ϵ→ 1, recovering the signal becomes intractable.

We compare the effect of the signal length n on the optimal momentum parameter β in

Figure 5.4. We perform parameter searches for signals of length n ∈ {50, 100, 500, 1000} and
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mark the optimal values of β. The optimal choice of β does not appear to vary significantly

with n.

In Figure 5.5 we use a system generated from the Wisconsin Diagnostic Breast Cancer

(WDBC) dataset, where each measurement is computed from a digitized image of a fine

needle aspirate of a breast mass and describes characteristics of the cell nuclei present [17].

We stream through each measurement of the 699-row, 10-feature dataset once to replicate

the online model, and again see that the addition of momentum provides a noteworthy

acceleration to convergence.
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5.3 Theoretical Results

Throughout our theory, we assume that {φt}∞t=1 is a sequence of independent samples from

some distribution D. We provide a general linear convergence (in expectation) result with

a rate depending on the matrix W := ED

[
φφ⊤

∥φ∥2

]
, in particular on its smallest and largest

singular values σmin(W ) and σmax(W ).

Theorem 5.1 (Convergence in Expectation of OHBRK). Suppose that measurement vectors

{φt}∞t=1 are sampled independently from D, andW = ED

[
φφ⊤

∥φ∥2

]
. Then if β is small enough such
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Figure 5.5: Error versus iteration for OHBK(β) applied to the WDBC dataset.

that

4β + 4β2 − (1 + β)σmin(W ) + βσmax(W ) < 0,

the iterates produced by OHBK(β) satisfy the following guarantee: for some δ > 0, q ∈ (0, 1), we

have

E[∥xt − x∗∥2] ≤ qt(1 + δ) ∥x0 − x∗∥2 .

More interpretable conditions on β may be obtained for particular classes of distribution

D. In particular, if φ/ ∥φ∥ is distributed uniformly on the unit sphere (which is the case if

D itself is the uniform distribution on the unit sphere, or ifD is the standard n-dimensional

Gaussian), thenW = 1
n
I and we require

β + β2 <
1

4n

to guarantee linear convergence in expectation.

5.4 Proof of Main Result

In this section we prove Theorem 5.1 by following the steps of ([54], Theorem 1), making

modifications for the online case and simplifications to some of the constants for our special

case. First we present a lemma from [54] which we will use in our convergence proof.
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Lemma 5.2 ([54], Lemma 9). Let {Ft}t≥0 be a sequence of non-negative real numbers with

F0 = F1 that satisfies the relation Ft+1 ≤ a1Ft+ a2Ft−1 for all t ≥ 1, with a2 > 0 and a1 + a2 < 1.

Then the following inequality hold for all t ≥ 1

Ft+1 ≤ qt(1 + δ)F0,

where q = a1+
√
a21+4a2

2
< 1, δ = q − a1 and q ≤ a1 + a2.

A proof of this lemma can be found in [54].

We begin our convergence analysis by writing the squared L2 error at the (t + 1)th

iteration and substituting the OHBK(β) update into it,

∥xt+1 − x∗∥2 =
∥∥∥∥xt − ⟨φt, xt⟩ − yt

∥φt∥2
φt + β(xt − xt−1)− x∗

∥∥∥∥2 .
Next, we group our equation into three terms:

∥xt+1 − x∗∥2 =
∥∥∥∥xt − x∗ − ⟨φt, xt⟩ − yt

∥φt∥2
φt

∥∥∥∥2 + β2 ∥xt − xt−1∥2 (5.1)

+ 2β⟨xt − x∗ − ⟨φt, xt⟩ − yt

∥φt∥2
φt, xt − xt−1⟩. (5.2)

Webound the first termof Equation (5.2) by following a standardKaczmarz convergence

argument and the fact that yt = ⟨φt, x∗⟩. We have that

∥∥∥∥xt − x∗ − ⟨φt, xt⟩ − yt

∥φt∥2
φt

∥∥∥∥2 = ∥xt − x∗∥2 +
∥∥∥∥⟨φt, xt⟩ − yt

∥φt∥2
φt

∥∥∥∥2−2〈⟨φt, xt⟩ − yt

∥φt∥2
φt, xt − x∗

〉
= ∥xt − x∗∥2 + (⟨φt, xt⟩ − yt)

2

∥φt∥2
−2(⟨φt, xt⟩ − yt)

2

∥φt∥2

= ∥xt − x∗∥2 − (⟨φt, xt⟩ − yt)
2

∥φt∥2
.

We bound the second term of Equation (5.2) by first adding and subtracting x∗

β2 ∥xt − xt−1∥2 = β2 ∥(xt − x∗) + (x∗ − xt−1)∥2 .
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Then by applying the fact that ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2 we have that

β2 ∥(xt − x∗) + (x∗ − xt−1)∥2 ≤ 2β2 ∥xt − x∗∥2 + 2β2 ∥xt−1 − x∗∥ .

Thus we have that

β2 ∥xt − xt−1∥2 ≤ 2β2 ∥xt − x∗∥2 + 2β2 ∥xt−1 − x∗∥ .

Finally we bound the third term of Equation (5.2) as

2β

〈
xt − x∗ − ⟨φt, xt⟩ − yt

∥φt∥2
φt, xt − xt−1

〉
= 2β⟨xt − x∗, xt − xt−1⟩+ 2β

〈
⟨φt, xt⟩ − yt

∥φt∥2
φt, xt−1 − xt

〉
= 2β ∥xt − x∗∥2 + 2β⟨xt − x∗, x∗ − xt−1⟩+ 2β

〈
⟨φt, xt⟩ − yt

∥φt∥2
φt, xt−1 − xt

〉
= β ∥xt − x∗∥2 + β ∥xt − xt−1∥2 − β ∥xt−1 − x∗∥2 + 2β

〈
⟨φt, xt⟩ − yt

∥φt∥2
φt, xt−1 − xt

〉
≤ β ∥xt − x∗∥2 + β ∥xt − xt−1∥2 − β ∥xt−1 − x∗∥2 − β⟨⟨φt, xt⟩ − yt

∥φt∥2
φt, xt − x∗⟩

+ β⟨⟨φt, xt−1⟩ − yt

∥φt∥2
φt, xt−1 − x∗⟩.

Combining the three bounds, we have

∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2−(⟨φt, xt⟩ − yt)
2

∥φt∥2
+2β2 ∥xt − x∗∥2 + 2β2 ∥xt−1 − x∗∥2+β ∥xt − x∗∥2

+ β ∥xt − xt−1∥2 − β ∥xt−1 − x∗∥2 − β

〈
⟨φt, xt⟩ − yt

∥φt∥2
φt, xt − x∗

〉
+ β

〈
⟨φt, xt−1⟩ − yt

∥φt∥2
φt, xt−1 − x∗

〉
.

Simplifying and grouping like terms we have
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∥xt+1 − x∗∥2 ≤ (1 + 2β2 + β) ∥xt − x∗∥2 + (2β2 − β) ∥xt−1 − x∗∥2 − (⟨φt, xt⟩ − yt)
2

∥φt∥2

+ β ∥xt − xt−1∥2 − β⟨⟨φt, xt⟩ − yt

∥φt∥2
φt, xt − x∗⟩+ β⟨⟨φt, xt−1⟩ − yt

∥φt∥2
φt, xt−1 − x∗⟩.

Applying the simplification for the second term of Equation (5.2) and simplifying the

inner products, we have

∥xt+1 − x∗∥2 ≤ (1 + 2β2 + 3β) ∥xt − x∗∥2 + (2β2 + β) ∥xt−1 − x∗∥2 − (β + 1)
⟨φt, xt − x∗⟩2

∥φt∥2

+ β
⟨φt, xt−1 − x∗⟩2

∥φt∥2
.

Taking an expectation over our signal of our simplified equation, we have

E[∥xt+1 − x∗∥2] ≤ (1 + 2β2 + 3β) ∥xt − x∗∥2 + (2β2 + β) ∥xt−1 − x∗∥2

− (β + 1)E[
(⟨φt, xt − x∗⟩)2

∥φt∥2
] + βE[

(⟨φt, xt−1 − x∗⟩)2

∥φt∥2
]

= (1 + 2β2 + 3β) ∥xt − x∗∥2 + (2β2 + β) ∥xt−1 − x∗∥2

− (1 + β)(xt − x∗)TE
[
φtφ

T
t

∥φt∥2

]
(xt − x∗) + β(xt−1 − x∗)TE

[
φtφ

T
t

∥φt∥2

]
(xt−1 − x∗).

LetW := E
[
φtφT

t

∥φt∥2

]
. We can then bound the above in terms of the largest and smallest

singular values ofW :
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E[∥xt+1 − x∗∥2] ≤ (1 + 2β2 + 3β) ∥xt − x∗∥2 + (2β2 + β) ∥xt−1 − x∗∥2

− (1 + β)σmin(W ) ∥xt − x∗∥2 + βσmax(W ) ∥xt−1 − x∗∥2

= (1 + 2β2 + 3β − (1 + β)σmin(W )) ∥xt − x∗∥2

+ (2β2 + β + βσmax(W )) ∥xt−1 − x∗∥2 .

Finally, we apply Lemma 5.2, wherein the two coefficients are given by a1 = 1 + 2β2 +

3β−(1+β)σmin(W ) and a2 = 2β2+β+βσmax(W ). Since we assumed that a1+a2 = 1+4β2+

4β + (1 + β)σmin(W ) + βσmax(W ) < 1 and since β > 0 then a2 = 2β2 + β + βσmax(W ) > 0

thus the assumptions for Lemma 5.2 hold, so we have that

E[∥xt − x∗∥2] ≤ qt(1 + δ) ∥x0 − x∗∥2

where q =
a1+
√
a21+4a1

2
, δ = q − a1 and a1 + a2 ≤ q < 1. Since q ∈ (0, 1) we have shown

that the norm squared error of the iterates produced by OHBK(β) converges linearly in

expectation.

5.5 Conclusion and Future Directions

In this work we discuss using a Kaczmarz method variant with momentum to solve an

online signal recovery problem. We leverage a heavy ball momentum term, a classical

acceleration method, to improve the convergence rate. We prove a theoretical convergence

rate for OHBK(β), and verify this convergence empirically on both synthetic and real-

world data. We demonstrate empirically that for coherent measurements, the addition of

momentum indeed accelerates convergence, and provided some initial exploration into the

dependence of the convergence rate on the signal length n and momentum strength β.

It is notable that in our convergence analysis, we did not recover a theoretically optimal

value for β. Doing so, and comparing this value to empirically best values, would be an
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interesting future direction. Furthermore, we would like to obtain theoretical parameter

relationships: for example, how the optimal momentum strength depends on the signal

length and coherency of the measurements. It may in fact be optimal to adaptively adjust

the momentum parameter across iterations based on the current iterate and properties

of incoming measurements. Additionally, we would like to leverage other accelerated

gradient methods such as ADAM [45]. Finally, we would like to consider solving the online

signal recovery problem in the case where eachmeasurement is no longer exact, but instead

contains some amount of noise [63]. This could be achieved, for example, using relaxation.
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CHAPTER 6

Conclusion

As the volume of data being collected, transmitted, and stored continues to increase, it is

inevitable that some of it will be affected by noise or corruption. Subsequently feeding

this data into downstream tasks can lead to errors propogating and causing potentially

harmful decisions. In this thesis, we studied variants of the Kaczmarz method for solving

systems of linear equations that are designed specifically to detect, avoid, and minimize

the impact of such errors.

We analyzed the convergence of a quantile-based variant of the Kaczmarz method for

corrupted systems of linear equations, QuantileRK, with the addition of a noise term in the

measurement data. Our theoretical analysis showed that the residual quantile is sufficiently

robust to noise to still guarantee convergence to the solution.

Next, we introduced a block variant of QuantileRK that can better exploit the residual

information that is necessarily computed at each iteration of QuantileRK. We showed

through both theoretical and empirical analyses that our method enjoys significantly faster

convergence than QuantileRK, with very little additional computation. Since data in prac-

tice is frequently affected by such corruptions, we discussed implementation considerations

for practitioners, including parameter selection and the ability to parallelize the method.

We showed that a popular class of iterative methods for solving the average consensus

problem on networks is equivalent to applying a block Kaczmarz method to a particular

linear system. In doing so, we generalized existing convergence theory for block Kaczmarz

methods to a wider class of linear systems and a wider variety of block structures. We

were then able to contribute new convergence theory for gossip protocols on networks,

in particular guaranteeing convergence at a certain rate. We additionally discussed the
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possibility of future connections between other models in network theory, and stochastic

iterative methods for solving systems of linear equations.

Finally, we considered a variant of the Kaczmarz method with an additional heavy

ball momentum term. We gave general convergence theory for the method, and showed

empirically that our method offers an improvement over the standard Kaczmarz method

in the particular case of successive measurements being close to parallel.

Solving systems of linear equations is a widespread component of many more complex

models in numerous areas, and improvements in this component lead directly to improve-

ments in downstream tasks. Developing mathematical theory to back up these methods is

key to providing practitioners with trustworthy tools, and expanding the range of settings

in which these tools are applicable is necessary to keep up with the expanding range of

settings that modern practioners are faced with.
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