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ANALYSIS OF CURVED NONPRISMATIC REINFORCED AND
PRESTRESSED CONCRETE BOX GIRDER BRIDGES

Deepak Choudhury

Doctor of Philosophy Civil Engineering

ABSTRACT

A numerical procedure for the analysis of curved nonprismatic reinforced and
prestressed concrete box girder bridges is presented. Both linear elastic analysis and

nonlinear material analysis up to ultimate are considered.

Thin-walled beam theory and the finite element method are combined to develop a
curved nonprismatic thin-walled box beam element. The cross section of the element is a
rectangular single-cell box with side cantilevers. The axis of the element is curved in plan.
The cross sectional dimensions vary along the element axis. Eight displacement degrees of
freedom, including transverse distortion and longitudinal warping of the cross section, are
considered at each of the three element nodes. Small displacements and small strains are

assumed in the element formulation.

Prestressing, consisting of post-tensioned bonded tendons in the longitudinal direction,
is considered. The tendons are idealized as straight prestressing steel segments between the

nodes of the box beam elements. Friction and anchorage slip losses are considered.

For nonlinear material analysis, the uniaxial stress-strain curves of concrete, reinforcing
steel and prestressing steel are modelled. The shear and the transverse flexural responses of
the box beam cross section are modelled using trilinear constitutive relationships based on
cracking, yielding and ultimate stages. Effect of load reversal is considered. A composite
system of concrete and longitudinal reinforcing steel filaments is constructed in order to
account for varied material properties within the element cross section. Tension stiffening

effect between concrete and longitudinal steel is considered.



The nonlinear equilibrium equations are solved using an incremental method combined
with unbalanced load iterations. Load control and displacement control solution strategies
are included in the numerical procedure. A path-independent state determination scheme is
used. The nonlinear analysis procedure is capable of tracing the structural response

throughout the elastic, inelastic and ultimate load ranges.

The theory is incorporated into two computer programs, LAPBOX and NAPBOX.
Various numerical examples of linear elastic analysis and nonlinear material analysis are
presented demonstrating the applicability and the capabilities of the proposed method.

Comparisons with other analytical and experimental results are made.

A. C. Scordelis

Chairman of Committee
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1. INTRODUCTION

1.1 General

Reinforced and prestressed concrete box girder bridges have gained importance as
economic and esthetic solutions for the overcrossings, undercrossings, separation structures
and viaducts found in today’s highway system. These bridges can be simple span or
continuous structures (Fig. 1.1a). Transverse diaphragms are placed at the end and interior
support sections, and sometimes additional diaphragms are used between the supports.
Design and esthetic considerations often call for longitudinal variations in the bridge depth.
In plan, the bridge can have a straight or curved geometry (Fig. 1.1b). Sometimes part of the
bridge may be straight, and part of it may be curved. The width of the bridge can also vary
longitudinally. The typical cross section of such a box girder bridge consists of a top slab and
a bottom slab connected monolithically by vertical webs to form a cellular or box-like
structure. In some cases, sloping or curved exterior webs are also used. Either single-cell or
multi-cell cross sections may be used, depending on the span, the width or the construction
method. This study is, however, limited to single-cell cross sections with vertical webs (Fig.
1.1c). The thickness of the slabs and/or the webs are often varied along the bridge axis in

order to obtain an efficient design.

Prestressing, consisting primarily of post-tensioned tendons in the longitudinal direction,
is used in concrete box girder bridges in order to increase maximum span, control behavior
and limit weight. Transverse post-tensioning is sometimes used in order to provide the load

carrying capabilities of the deck economically, and also to obtain a more durable deck.

The complex spatial nature of a curved box girder bridge with a variable cross section
(nonprismatic) makes .it difficult to accurately predict the structural response to a general
loading case. The presence of prestressing further complicates the analysis. Even with the
assumption of homogeneous linear elastic material, the accurate analysis of such a structure

remains a formidable challenge to the engineer.



Highway bridges are being subjected to increasing vehicular loads and traffic densities.
A better understanding of the overload behavior of these bridges beyond the working stress
range is thus necessary. Also, in order to assess the degree of safety against failure, an
accurate estimate of the ultimate load has to be made. However, when reinforced and
prestressed concrete bridge structures are loaded beyond the working stress range, analytical
models based on the assumption of homogeneous linear elastic material cannot be justified.
The effects of nonhomogeneity of the material, concrete cracking and nonlinearities in the
stress-strain relationships of concrete, reinforcing steel and prestressing steel need to be

considered. And this requires a nonlinear analysis procedure.

1.2 Review of Analytical Methods

A number of different methods are available for the analysis of box girder bridges. The
choice of a particular method is usually dictated by the geometric complexity of the bridge
and the design quantities that are desired. A review of the different analytical methods for
concrete box girder bridges has been presented by Scordelis [1] with reference to a large
number of computer programs developed at the University of California, Berkeley. Other
reviews can be found in [2, 3]. Kristek [2] has discussed the theoretical bases of some of the
methods. Maisel and Roll [3] have presented a comparative study of the various methods
available for the analysis of straight prismatic single-cell box girders. In order to form the
basis for the selection of the analytical method to be used in the present study, a brief review

of the different methods is given below.

1.2.1 Folded Plate Elasticity Method

A multi-cell prismatic box girder bridge can be modelled as a folded plate system made
up of longitudinal plate elements interconnected at joints along their longitudinal edges, and
simply supported at both ends by diaphragms which are only rigid in their own planes. Any
joint loading with arbitrary longitudinal distribution can be resolved into its Fourier series

components, and a direct stiffness analysis can be performed for each harmonic component of
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the loading. The final results can then be obtained by superposing the results for all

harmonics used to represent the loading.

The analysis for each harmonic load is simplified by the fact that for a straight or a
circularly curved bridge, the response quantities (displacements and internal forces) also have
harmonic variations in the longitudinal direction. Since each harmonic is completely defined
by its amplitude, analysis of the three-dimensional bridge structure is reduced to a two-
dimensional problem in the transverse direction. Application of the direct stiffness approach
to such a system results in a banded well-conditioned stiffness matrix. Furthermore, due to
the repetitive nature of the solution technique for multiple harmonics, this method takes full

advantage of the capabilities of a digital computer.

In its basic form, this method is limited to simply supported box girders without interior
diaphragms. Formulas based on the theory of elasticity are used to define the membrane and
plate bending actions of the folded plate system. Within the scope of assumptions of the
theory of elasticity, results obtained with the folded plate elasticity method represent the exact
solution for linear elastic analysis of a box girder bridge, and hence they are often used to
assess the accuracy of other methods. The method was first used at the University of
California, Berkeley, to develop the computer program MULTPL (1965) [1, 4, 5] for straight
single span bridges, simply supported at the two ends. Since then the method has been
extended to continuous span bridges with interior diaphragms by combining the direct
stiffness harmonic analysis with a force method of analysis. The computer programs MUPDI
[1, 4, 6], MUPDI3 [1, 7] and MUPDI4 [8], developed at the University of California,
Berkeley, are part of the continuing effort on the extension of the folded plate elasticity

method.

The shortcomings of the folded plate elasticity method are its limitation to prismatic
structures with either straight or circularly curved plan geometries, and the large
computational effort required when concentrated loads dictate the use of a large number of

harmonics in the Fourier series representation. Furthermore, this method cannot be extended



to nonlinear analysis since the principle of superposition is used to obtain the final results

from the harmonic components.

1.2.2 Finite Strip Method

The finite strip method is basically a transition between the folded plate elasticity
method and the finite element method. The straight or circularly curved bridge is discretized
only in the transverse direction into longitudinal finite strips. A direct stiffness harmonic
analysis is performed as in the folded plate elasticity method. However, the properties of the
finite strips corresponding to each harmonic are evaluated based on assumed displacement
distributions across the strip width, rather than on the theory of elasticity. Thus the solution

converges to the exact theory of elasticity solution only with mesh refinement.

The finite strip method is particularly suited to the analysis of orthotropic and circularly
curved plate elements for which direct application of the theory of elasticity becomes too
involved. The method was introduced in 1968 by Cheung [9]. It has been used to develop
the computer programs MULSTR [10, 11}, CURSTR [12, 13}, CURDI [1, 14], CURDIP [1,

15] and CURDIA [8] at the University of California, Berkeley.

Though the finite strip method has broader applicability as compared to the folded plate
elasticity method, it is still limited to prismatic structures with either straight or circularly
curved plan geometries. And the principle of superposition inherent in the direct stiffness

harmonic analysis precludes the extension of this method to nonlinear analysis.

1.2.3 Grillage Analogy

Two- and three-dimensional grillage analogies, consisting primarily of flexural members,
have been used in the past to approximate the behavior of cellular structures. Hambly has

summarized various grillage models in [16].

A three-dimensional grillage, consisting of longitudinal beam elements, transverse
diaphragm elements, transverse bending frames, and specially developed torsional shear

panels, was used by Seible [17, 18, 19] for nonlinear analysis of multi-cell reinforced concrete



box girders of arbitrary plan geometry and constant depth. Nonlinearities considered were
material nonlinearities inherent in reinforced concrete members under short term loading,
such as cracking of concrete, yielding of reinforcement, and formation of plastic hinges due to
flexure and shear. Simple trilinear models, based on numerous experimental investigations,
were used to approximate the member end force-deformation relationships for the various

elements of the grillage. Prestressing was not considered.

1.2.4 Finite Element Method

The finite element method is the most powerful and versatile numerical tool of all the
available methods. A box girder bridge of arbitrary plan geometry and variable cross section
can be modelled as an assembly of finite elements interconnected at nodal points. These
finite elements may be one-dimensional beam-type elements, two-dimensional plate or shell
elements, or even three-dimensional solids. For each finite element, a stiffness matrix, which
approximates the behavior in the continuum, is developed based on assumed displacement or
stress patterns. A direct stiffness approach is then used to obtain the nodal displacements and
thence the internal stresses in the finite elements. Results obtained from a finite element
analysis usually satisfy compatibility, but not necessarily equilibrium. Equilibrium can,

however, be satisfied to the desired degree by adequate mesh refinement.

Many special purpose finite element programs are available for the analysis of box girder
bridges. These programs take advantage of the repetitive and special nature of box girders in
order to minimize the required amount of input preparation, execution time and core storage
in the computer, and the amount of post-processing necessary for meaningful interpretation of
results. Two such special purpose programs developed at the University of California,
Berkeley, for linear elastic analysis of box girder bridges are FINPLA2 [1, 20] and CELLA4 8].
Both programs use specially developed two-dimensional plate elements to model the bridge
superstructure. Jirousek et al. [21] have presented a macro-element having the form of
transversal slices of the bridge. Each macro-element is formed using two types of special

purpose elements: a thick shell element and an assembly element. These macro-elements can



be used to model a curved nonprismatic box girder bridge.

For medium and long span box girders, the transverse behavior of the structure can be
characterized adequately by fewer parameters than the longitudinal bahavior. A discrete
subdivision in the longitudinal direction only, i.e., a subdivision into beam-type elements, is
thus a logical choice for such structures. Beam-type elements, which are usually based on
thin-walled beam theory [22], have been used by several investigators [23, 24, 25] for linear
elastic analysis of box girder bridges. These elements are capable of capturing the dominant
structural actions, but at considerably reduced computational effort. The computer program
SEGAN [26, 27] for curved prestressed segmental bridges, developed at the University of

California, Berkeley, is based on such a model.

Many finite element formulations have been extended to include nonlinear analysis
capabilities. Beam, plate and shell elements have been used at the University of California,
Berkeley, for nolinear geometric, material and time-dependent analysis of prestressed concrete
frames [28, 29], prestressed concrete slabs and panels [30], and reinforced concrete shells with
edge beams [31, 32]. Conceivably, either one-, two- or three-dimensional elements can be
used for nonlinear analysis of box girder bridges. However, the simplicity and reduced
computational effort inherent in a beam-type element make it particularly suitable for
nonlinear analysis, which requires much greater central processor time and storage space in

the computer than linear elastic analysis.

1.3 Objective and Scope

The objective of the present study is to develop an efficient numerical procedure for
linear elastic analysis and nonlinear material analysis of curved nonprismatic reinforced and
prestressed concrete box girder bridges. Prediction of the overall response of the structure,

rather than local behavior, is aimed at.

A finite element formulation based on thin-walled beam theory is used to develop a

curved nonprismatic thin-walled box beam element. The cross section of the element is a



rectangular single-cell box with side cantilevers. The axis of the element is curved in plan,
and the cross sectional dimensions vary along the element axis. Transverse distortion and
longitudinal warping of the cross section are included in the element formulation.
Prestressing, consisting of post-tensioned bonded tendons in the longitudinal direction, is

considered. Friction and anchorage slip losses are accounted for.

Nonlinearities in the uniaxial stress-strain curves of concrete, reinforcing steel and
prestressing steel are considered. The shear and the transverse flexural responses of the box
beam cross section are represented by trilinear constitutive relationships based on cracking,
yielding and ultimate stages. Tension stiffening effect between concrete and longitudinal steel
and the effect of load reversal are considered. The nonlinear analysis procedure is designed to

trace the structural response throughout the elastic, inelastic and ultimate load ranges.

The theory is incorporated into two computer programs, LAPBOX and NAPBOX.
Various numerical examples of linear elastic analysis and nonlinear material analysis up to
ultimate are presented demonstrating the applicability and the capabilities of the proposed

method. Comparisons with other analytical and experimental results are made.



2. CURVED NONPRISMATIC THIN-WALLED BOX BEAM ELEMENT

2.1 General

The basic differential equations governing thin-walled box beams have been derived by
Vlasov [22] and extended by Dabrowski [33] and numerous other authors. Several
investigators have combined thin-walled beam theory and the finite element technique to
develop thin-walled box beam elements. Bazant and El Nimeiri [23] formulated a skew-
ended nonprismatic thin-walled beam element for analyzing box girders curved or straight in
space taking into account longitudinal warping and transverse distortion. Though the element
itself was straight, full continuity in the case of a curved girder was achieved by means of the
skewed ends. Van Zyl [26, 27] adopted this element for analyzing curved segmentally erected
prestressed concrete box girder bridges. Zhang and Lyons [25] developed a curved
nonprismatic thin-walled box beam element for the analysis of single- or multi-cell box girders

curved in space. Transverse distortion and longitudinal warping were taken into account.

In the present study, certain aspects of the formulations used by Bazant and El Nimeiri
[23] and Zhang and Lyons [25] are combined to develop a new curved nonprismatic thin-
walled box beam element based on the displacement formulation of the finite element
method. Small displacements and small strains are assumed in the formulation. The element
is formulated in such a way as to facilitate its extension to nonlinear analysis. In this chapter,
the detailed theoretical derivation of this element to be used for linear elastic and nonlinear

analysis of curved nonprismatic box girder bridges is presented.

2.2 Geometry of the Element

The geometry of the three-node thin-walled box beam element (Fig. 2.1a) is similar to
that considered by Zhang and Lyons [25]. The axis of the element lies in the global X-Y
plane and may be curved. The element has two end nodes i and j and an interior node o
situated on the axis. The cross section of the element perpendicular to its axis is a

rectangular single-cell thin-walled box with side cantilevers (Fig. 2.1b). A local rectangular



10

coordinate system (x, y, z) along the curved axis is used in the element formulation. The
local z axis is the axis of symmetry of the cross section and coincides with the direction of the
global Z axis. The local x axis is tangential to the element axis in the direction of node i
towards node j. The local y axis is defined by a right handed orthogonal system. The y-z
plane then defines the plane of the cross section. In addition, a natural coordinate £ is
defined along the element axis which has its origin at node o and varies between -1 at node i

and +1 at node j (Fig. 2.1a).

The walls of the box cross section will hereafter be referred to by the names indicated in
Fig. 2.1b, in which all dimensions are to the mid-thickness of the walls. The two walls
pargllel to the z axis and located respectively at positive and negative y coordinates are
referred to as “left web” and “right web.” The two walls parallel to the y axis and located
between the webs are referred to as ““top flange”, if located at a greater (in an algebraic sense)
z coordinate, and “bottom flange”, otherwise. The two walls parallel to the y axis on either
side of the top flange and located respectively at positive and negative y coordinates are

referred to as “left cantilever” and “‘right cantilever.”

The dimensions of the box cross section in Fig. 2.1b are defined by its width a, depth b
(= b, + b,), width of cantilever flanges f, thickness of top flange ¢,, thickness of bottom flange
1, thickness of each web ¢, and thickness of each cantilever flange z.. The distances b, and
b, from the y axis to the top flange and bottom flange respectively are measured positive as
shown in Fig. 2.1b. All the dimensions a, b,, b, f, ¢, 1, t, and ¢, can vary along the length

of the element.

The shape functions N, associated with each node, which are used later (Sec. 2.3.2) to

define the longitudinal distribution of displacements, are
M=%w-9 (2.1a)
Ny=(1-8) (2.1b)

M=%@+0 (2.1¢)
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where subscript 1 refers to node i, 2 refers to node o and 3 refers to node j. Now if
(Xx, Y, 0), k = 1, 2, 3, are the global coordinates of the three nodes, the global coordinates
(X, Yo, 0) of any point on the element axis are obtained from an isoparametric mapping as

3

X, = kszxk (2.2a)
=1
3

Yo = kZNk Y, (2.2b)
=1

Similarly, the cross sectional dimensions at any point along the element axis are taken as

3
a = Y Neay (2.3a)
k=1
3
b, = kszb,k (2.3b)
=1
3
b, = kZNkbzk (2.3¢)
=1
3
f = kz Nofi (2.3d)
=1
3
L, = XNt (2.3e)
k=1
3
Iy = kEthbk (2.3)
=1
3
m=PMm (2.3g)
=]
3
t = ksz L, (2.3h)
=1

where ay, by, by, fis Uy th,» tw, and I, are the nodal values of the cross sectional

dimensions.

The unit tangent vector along the element local x direction at any point on the element

axis is given by
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Xo
e = .;; Yo 2.4)
0
where
’ 3 .
Xy = 2 N Xx (2.5a)
k=1
’ 3 .
Yo = DN Y, (2.5b)
k=1
Ao =V (Xo) + (Yo) (2.5¢)

and a prime denotes differentiation with respect to £.

Now, since the local z axis coincides with the global Z axis, i.e.,

0
e. =10 (2.6)
1
the unit vector along the local y direction is simply
_y(')
e =6 xe = —1 X @7
Ao 0

With the local coordinate system (x, y, z) determined as above, the location of any
point within the element is uniquely represented by the coordinates (&, y, z). The

corresponding global coordinates (X, Y, Z) are given by the mapping

Yo
X=Xg- — 2.8a
0 My (2.82)

Xo
Y=Yo+ — 2.8b
0 My (2.8b)

Z =z (2.8¢)
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2.3 Displacement Field

2.3.1 Displacement Variations Within the Cross Section

At any point along the element axis, eight generalized displacement

degrees of freedom are defined in the local coordinate system [23]. These are
Y = <V, V), V3, Vg, Uy, U, Uz, Ug>T (2.9)

where v is the vector of generalized displacements in the local coordinate system; u;, v, V3
are respectively the rigid body translations of the cross section in the x, y, and z directions;
v\, U3, u, are respectively the rigid body rotations of the cross section about the x, y, and z
axes; v, is the transverse distortional mode of the cross section; and u, is the longitudinal

warping mode of the cross section.

The displacement distributions within the cross section can be represented in terms of

the generalized displacements as follows:

4

u, y,z) = ,;luk(s)¢k@, z) (2.10a)
3

V(E, Y, Z) = kE"k(E)ll/k(y, Z) + V4(£)¢/4(£, Yy, Z) (Z-IOb)
=1
3

wi, y,z) = kEVk(S)x;((y, z) + va)xalt, ¥, 2) (2.10c)
=1

where u, v, w are the displacements of a general point within the element in the local x, y, z
directions respectively; and the functions ¢, Yx, xx define the transverse displacement
distributions within the cross section. The dependence of ¥4 and x4 on £ arises from the

assumed nonprismaticity of the element as explained later.
Making use of Eq. (2.9), Eq. (2.10) can be written in matrix notation as
u=Cvy (2.11)

where



15

u=1{v (2.12)

0 0 0 0 ¢ ¢2 ¢3 ¢4
C=|¥1¥2¥39¥% 0 0 00 (2.13)
x1 x2x3xa 0 0 00

The transverse displacement distributions corresponding to the rigid body modes of the

cross section are simply given by:

$r=1; ¢2=-y; ¢3=2 (2.14a)
Vi=-z; Ya=1; ¢Y3=0 (2.14b)
x1=V; x2=0; x3=1 (2.14¢)

The transverse distributions of displacements due to longitudinal warping and transverse
distortion of the cross section are unique to thin-walled box beam elements and deserve some

discussion.

A unit generalized displacement u, corresponding to longitudinal warping of the cross
section is shown in Fig. 2.2a. The cross section warps out of its plane but its projection on the
y -z plane remains unchanged. Only u displacements result and these vary linearly along
each side of the box cross section. From Fig. 2.2a it is evident that the distribution of the u

displacements within the cross section is given by

¢4 = yz (2.15)

A unit generalized displacement v, corresponding to transverse distortion of the cross
section is shown in Fig. 2.2b. The cross section distorts in its own plane, resulting in v and w
displacements. The component of the displacement tangential to the walls of the box is taken
as constant along each side of the box. The displacement component normal to the walls of
the box is derived by analyzing the cross section as a continuous frame subjected to the

imposed displacements at its corners shown in Fig. 2.2b, as suggested by Bazant and El
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Nimeiri [23]. The slope deflection method is used thus neglecting shear deformations. The
distributions within the cross section of the v and w displacements in the local y and z

directions due to a unit transverse distortion v, are then given by:

V4 = b, , for top flange and cantilevers (2.16a)
Y4 = — b, , for bottom flange (2.16b)
(Z + b2)2
Va=—by—6(z + b))+ ——1)7‘—[0:(171 -2z)+ 6y + b, - 2)
+ b + 2(b, - 2)], for webs (2.16¢)
1 2 3
X4 = 5(3 -0,)y - ;5(1 - 8,)y°, for top flange (2.17a)
X4 = %(3 - 0p)y - 'az—z(l - 6,)y3, for bottom flange (2.17b)
X4 = —% , for left web (2.17¢)
X4 = - % , for right web (2.17d)
xs =0,y + %(l - 6,), for left cantilever (2.17¢)
Xe =0,y - %(1 — 8,) , for right cantilever Q.17

where 6, and 6, are as shown in Fig. 2.2b and are obtained as

218a? + 6t3t3ab

6, =1-
! 2t313ab + 31212b% + t8a? + 2}t ab

(2.18a)

| 2t8a? + 61t 3ab
2t313ab + 312302 + 18a® + 2t}t8ab

6y = (2.18b)

It is seen from above that ¥, and x4 depend on the natural coordinate ¢ since the cross

sectional dimensions vary along the length of the element according to Eq. (2.3).
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Bazant and El Nimeiri [23] observed that the two deformation modes u,4 and v4 of the
cross section are sufficient to characterize the global behavior of long single-cell box girders
under study herein. A greater number of deformation modes, however, would be required for
the analysis of short or multi-cell box girders. Even in the case of long single-cell box girders,
more accurate solutions can be sought by increasing the number of terms in Eq. (2.10), as was
done by Mikkola and Paavola in [24]. It is however believed that the inclusion of the two
deformation modes of the cross section, u4 and v4, provides sufficient accuracy for most

practical purposes.

2.3.2 Displacement Variations Along the Length of the Element

" Let v2 be the vector of generalized displacements in the global coordinate system at any

point along the element axis. Then

Xg =< V], Vz, V3, Va4, U], Uz, U3, u4>T (2.19)
where U,, V,, V3 are respectively the rigid body translations of the cross section in the global
X, Y, Z directions; and V,, Uz, U, are respectively the rigid body rotations of the cross
section about a system of global X, Y, Z axes passing through the origin of the local

coordinate system. The transverse distortion v4 and the longitudinal warping u,4 of the cross

section remain in the local coordinate system.

Then with the local coordinate system defined by Egs. (2.4) through (2.7), the
transformation between the generalized local displacements, v, and the generalized global

displacements, v#, is obtained as

vy =Ty (2.20)



19

Xo 000 0 0 Yy O]
0 Xo 00 -Yo0 0 0
0 0 X 0 000
(o 0o0x 0 000
IT=5%10 v,00 x, 000 (2.21)
0 0 00 0 2% O O
Yo 0 00 0 0 Xy O
|0 000 0 0 0

Next we define r as the vector of nodal values of the generalized displacements in the
global coordinate system. In other words, r represents the twenty-four generalized global
displacement degrees of freedom of the element. Then,

r
r=gnr (2.22)
I3
where ry, r,, r3 are the nodal values of the generalized global displacements at nodes i, o, J,

respectively.

Then making use of the shape functions in Eq. (2.1), the global displacements vé at any

point along the element axis are obtained in terms of the nodal values r by interpolation as

follows.
v¥=Nr (2.23)
N =[N, N2, N3] (2.24a)
Ne=Nd, k=123 (2.24b)

where ] is the 8x8 identity matrix.

Let U, V and W be the displacements of a general point within the element in global

X, Y and Z directions respectively. Then if U is the vector of these global displacements,



U
U=1Vi=8u
w
Xo =Yy O
0=lecenel=o|Yo X 0
1o 0 x

where 0 is the matrix of direction cosines of the local x, y, z axes.

Finally, combining Egs. (2.11), (2.20), (2.23) and (2.25),

v

L[}
hN
I~

4-_-

1®
(o

IN

Carrying out the matrix multiplications in Eq. (2.28),

A4 =1[4,,4, 43]

.

vaYo Xoy
0 00 - 1 -
Ao Ao
vaXo Yoy
A4 =N | -z 10 ¥ o _2¥
=k g Ao Ao

.
2% 51 x 0 0
Ao

where all quantities are as defined previously.

z

0

20

(2.25)

(2.26)

(2.27)

(2.28)

(2.29a)

k=123 (2.29b)

The matrix 4, given by Eq. (2.29) above, which relates the global displacements, U, to

the generalized global displacement degrees of freedom of the element, r, through Eq. (2.27),

completely defines the displacement field within the element.

2.4 Definition of Strains and Stresses

In the present formulation, three generalized strain components ¢,, vy, and v4 are of

interest. The generalized stresses corresponding to these strains are o,, 7o, and w4. ¢, and o,

are the usual normal strain and normal stress in the direction of the local x axis. v, and 7,

are the usual shear strain and shear stress acting in the plane of the cross section along the
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walls of the box. The positive direction of the local s coordinate along the walls of the cross
section is shown in Fig. 2.3. Also shown in Fig. 2.3 are the positive components of

€xs> Yxs» Ox> Txs- Then,

€ = g—z (2.30)
Vs = [%;‘—) + %]cma + [-g% + %]sin a (2.31)
where
a = « , for top flange and cantilevers (2.32a)
a = 0, for bottom flange (2.32b)
a = 7/2, for left web (2.32¢)
= — /2, for right web (2.32d)

The generalized strain component v, is the transverse distortion of the cross section
itself as defined previously in Fig. 2.2b. The generalized strain v4 and the associated
generalized stress w, represent the strain energy contribution due to the transverse bending of
the walls of the box cross section. It should be noted here that v4 represents the generalized
strain of an entire cross section of the element, unlike ¢, and xs which represent strains at a
point in the element. The generalized stress w, associated with v4 is defined in a virtual work
sense as the internal work per unit length of the element done by the flexural stresses, arising
from transverse bending of the walls of the cross section, due to a unit virtual generalized

strain v,.

For linear elastic isotropic material, the generalized stress-strain relationships are given

by
o, = E¢, (2.33)
Tes = Gy (2.34)

wy = Dv, (2.35)



FIG. 2.3 POSITIVE STRAIN AND STRESS COMPONENTS
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where E is the modulus of elasticity, G = is the shear modulus, » is the Poisson’s

N
2(1 +»)
ratio, and D is a generalized rigidity.

In order to determine the generalized rigidity D, the transverse bending moments per
unit length at the top and bottom corners of the box beam cross section, m, and m,

respectively (Fig. 2.2b), due to a unit transverse distortion v, need to be found. Using the

Er3

flexural rigidity 'I—Z(T-Tz)

of plates [34] to represent the bending stiffness of the walls of the

cross section, m, and m, are obtained from the slope deflection method as

Et}

m, = m(l - 0,) (2.36)
b3

b= S0 - e %) (2.37)

Then applying the principle of virtual displacements,
wy = 4(m, + my)v, (2.38)
Hence,

D=—2E (31 -6)+ 10 -0 2.39)
(1 -v)a

2.5 Generalized Internal Forces

It is of interest to identify the generalized internal forces at a cross section

corresponding to the generalized displacements v in the local coordinate system. Let

§ = <Ql9 QZ, Q3, Q4, Pla PZ’ P39 P4>T (2-40)

be the vector of generalized internal forces in the local coordinate system at a cross section

along the axis of the element. Then, from the principle of virtual displacements,

O = f Wxcosa + ysina)r,, dd , k=1,2,34 (2.41a)
A

P, =[¢ka,, d4 , k=1,2,34 (2.41b)
A
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where Q, is the torque; Q, and Q; are the shear forces in the y and z directions respectively;
P, is the normal force; P, and P; are the bending moments about the z and y axes
respectively; Q4 is the distortional moment with dimension force xlength; and P, is the

warping bimoment with dimension force xlength?.

2.6 Strain-Displacement Relationships

The strain-displacement relationship corresponding to the generalized strain v, is easily

obtained from Eqgs. (2.19),(2.23) and (2.24) to be

va=B.r (2.42)
wh_ere
B, = <B,,B,,, B,,> (2.43a)
B, = N<0,0,0,1,0,0,0,0>, k=1,2,3 (2.43b)

In order to establish the strain-displacement relationships corresponding to ¢, and 7,
the derivatives of the local displacements u with respect to the local x, y, z axes, occurring in
Eqgs. (2.30) and (2.31), must be determined. The process is the same as the one used in the

formulation of thick shell elements [35].

First, the derivatives of the global displacements U with respect to the global X, Y, Z

axes are obtained through the transformation

(U 8V oW | U oV oW |
X 9X X 0t o9t ot
U v oW | _,.|8U v W
ay ar ar |2 gy dy dy (2.44)
U v aw U v W
| 0Z 9Z 8Z | | 6z 3z 98z |

where the Jacobian matrix J is defined as
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X oY oz
0t 9t ot
X oY oz
dy dy oy
X 9Y oz
| 0z 9z 9z |

I~
I

(2.45)

The Jacobian matrix J is calculated from the coordinate mapping in Eq. (2.8) and is
then inverted to give
Xo/Xo - Yo - (Xo/X)y O

Yo/ho Xo-(Yo/A)y O (2.46)
0 0 A

a_ 1
I A

where the determinant of J, A, is given by

A =X - ¥(XoYo - YoX0)/AG (2.47)

It may be noted here that the second term in Eq. (2.47) above arises due to the curved nature

of the element. For a straight element, A = A.

The derivatives of the global displacements U with respect to the &, y, z axes occurring

in Eq. (2.44) are found from Egs. (2.27) and (2.29).

Next, the global derivatives of displacements U are transformed to the local derivatives

of displacements u by a standard operation.

(ou v ow]  [aU oV oW ]

dx o6x ox X 84X oX

du dv ow r|loU aV oW

L CLACLAY LA LA e 4
dy dy ay 8 Y 9Y 4aY S (2.48)
u v ow U oV W

| 0z 9z oz | | 0Z 9Z oZ |

where 8 is as defined in Eq. (2.26).

The derivatives in Eqgs. (2.30) and (2.31) can then be calculated to give the following

strain-displacement relationships.
€ = E:L (2.49)

24 = <§,¢19 gsp £¢3> (2.503)
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- NyYoz /X
NiYo/Xo
0
ar_ 1 Niewa(YoXo = XoY0)/NS ko123 2.50)
Sa TN NeXo/No T '
- Ny
NiXoz /N
L Nyyz
Yo = Bor @s1)
B, = <§w gw §13> (2.52a)
- Ny Ygsin a + Ny Xo(ysin a — zcos a)/Ag
NiXgcos a/Xg
Nisin «
or _ 1 Ni(xasin a + yqc0s ,a),+ Ni(xssin @ + Y4005 @) ko123 (2.52b)
=Yoo - Ny Yqycos a/)g ’ > :
- Ni\gcos a
Ni Xgsin a + NyYo(ysin a — zcos a)/Ag
Ni(Aozcos a + Aysin a)

2.7 Element Stiffness Matrix

Using the principle of virtual displacements, the equations of equilibrium for the

element in the global coordinate system are obtained as

R=Kr (2.53)

where R is the vector of generalized equivalent nodal forces corresponding to the generalized

nodal displacements 7, and X is the element stiffness matrix of order 24x24 expressed as

BTD B\, dt (2.54)

%-—

1 1
5=L£g[£g,xm dg+_jujg,fcg.,xd,4 dt + 1

In Eq. (2.54) above, A d4 dt = A dy dz d¢ is the differential volume of the element, and

Ao d¢ is the differential arc length along the axis of the element.

The integrations in Eq. (2.54) with respect to ¢ are done numerically using two-point

Gauss quadrature (Fig. 2.1a). This is found to eliminate the “spurious shear stiffness” usually
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associated with beam and shell element formulations including shear deformations. Spurious
shear effects relative to the torsional, distortional and warping degrees of freedom are also

eliminated by this reduced order of integration.

The integrations over the area of the cross section in Eq. (2.54) are done separately for
each web, flange and cantilever. Two different numerical approaches are used for linear

elastic and nonlinear analysis.

In a linear elastic analysis, E and G are constants. Furthermore, consistent with thin-
walled beam theory, it is assumed that A, B, and B, are constant over the thickness of the
walls of the cross section. Thus four Gauss points at the mid-thickness of the walls are used
along the s direction (Fig. 2.3) of each web, flange and cantilever. This achieves exact
integration over the area of the webs where the integrands involve polynomials in z of highest
order 6. For the flanges and the cantilevers, however, the integrands involve rational
functions in y and hence four-point Gauss quadrature is only an approximation. In the
special case of a straight element, the integrands for the flanges and the cantilevers involve
polynomials in y of highest order 2 and four-point Gauss quadrature does achieve exact
integration. For practical instances of curved bridges, four-point Gauss quadrature is found

to be adequate for the flanges and the cantilevers.

The integration scheme over the area of the box cross section used for nonlinear analysis

is discussed later in Chapters 5 and 6.

2.8 Equivalent Nodal Forces

The vector of equivalent nodal forces, R, appearing in Eq. (2.53), consists of nodal
values of forces in the X, Y, Z directions, moments about the X, Y, Z axes, distortional
moment and warping bimoment. R in general can represent load effects due to concentrated
forces, distributed forces, body forces, initial strains and prestressing. The calculation of
equivalent nodal forces due to prestressing is discussed in Chapter 3. The effects of initial

strains, due possibly to temperature changes, creep and shrinkage of concrete and relaxation
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of prestressing steel, are not considered in the present study. Calculation of equivalent nodal

forces due to concentrated forces, distributed element forces and dead load is discussed here.

2.8.1 Concentrated Forces

If F=<Fy, Fy, Fz >T is a concentrated force vector acting on the element at location

(¢, y, z), its contribution to the nodal force vector is calculated as

_]3=

FN

TF (2.55)

where 4 is as defined in Eq. (2.29).

2.8.2 Distributed Element Forces

In this study consideration of distributed element forces is limited to those acting in the
Z direction on the flanges or the side cantilevers. If p is the uniform force per unit area of
projection on the X -Y plane, acting in the Z direction over the length of the element, on
either the top flange, the cantilever flanges or the bottom flange, the equivalent nodal force

vector is calculated as

S =

B_ =
1

y2
[47<0,0,p>T\dy dt (2.56)
Vi

where y, and y,, generally dependent on £, define the limits in the y direction between which
the pressure p acts. In Eq. (2.56), the integration with respeét to y is carried out explicitly
while two-point Gauss quadrature (Fig.2.1a) is used in the ¢ direction. Further discussion on

distributed element forces can be found in Sec. 7.2.1.

2.8.3 Dead Load

Dead load effects are represented by means of equivalent nodal forces calculated as
follows

2-|

-1

[ATwhd4 dt 2.57)
A
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where w = <wy, wy, wz >7 is the body force vector due to dead load, and |w | = w is the
unit weight of the element. The above formulation recognizes that in the general case, the
vertical axis may be arbitrarily oriented with respect to the global X, Y, Z axes. In Eq.
(2.57), two-point Gauss quadrature (Fig. 2.1a) is used for the integration with respect to ¢,

and the area integral is evaluated explicitly.

2.9 Assembly of Equilibrium Equations for Structure

A typical rectangular single-cell box girder bridge is shown in Fig. 2.4. The bridge is
supported at S1, S2 and S3, and has interior diaphragms at D1 and D2. A set of global
rectangular X, Y, Z axes is defined for the structure. The cross section of the bridge (Fig.
2.4b) perpendicular to the reference axis has a local z axis of symmetry, and the direction of
this z axis always coincides with the direction of the global Z axis, which is usually the
vertical axis. The global X-Y plane, which is usually the horizontal plane, is perpendicular
to the Z axis. The reference axis of the bridge (Fig. 2.4a,c) is defined as the locus of the
points of intersection of the global X -Y plane and the local z axis of symmetry of the cross
section. This reference axis thus lies in the X -Y plane and is, in general, arbitrarily curved.
The cross sectional dimensions of the bridge (Fig. 2.4b) can vary arbitrarily along the

reference axis.

For the purpose of analysis, the bridge is discretized in the longitudinal direction into a
finite number of box beam elements. An odd number of element nodes NN are located along
the reference axis at locations S1, D1, S2, D2, S3 and between them. The ith box beam

element is then automatically defined as spanning nodes 2i - 1, 2i, 2i + 1.

If the global X, Y coordinates and the cross sectional dimensions are specified at the
nodes, the geometry of each box beam element can be determined from Egs. (2.2) and (2.3).
In general, at a node common to two elements, the directions of the element x axis
determined from Eq. (2.4) for the two adjacent elements will not be the same. In other
words, full compatibility between adjacent elements at a node will not be obtained unless the

reference axis of the bridge has a linear or quadratic variation in the X-Y plane. However,
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in the common case of a circularly curved bridge with practical element subdivisions, the
discrepancies between the element x axes at common nodes are found to be negligible and

hence inconsequential.

For each element, the stiffness matrix is calculated from Eq. (2.54) and then assembled
in a standard manner to give the stiffness matrix of the entire structure in the global
(X, Y, Z) coordinate system. The diaphragm and support stiffnesses are then added to the
appropriate terms of the structure stiffness matrix corresponding to the nodes at which they
are located, as discussed later in Sec. 2.10. The resulting structure stiffness matrix is banded

with a half band width of 24 and a square dimension of 8xNN.

The nodal force vector for the entire structure is similarly assembled in the global
coordinate system by summing the contributions from each element. For a linear elastic
analysis, the equilibrium equations of the structure can then be directly solved for the
generalized nodal displacements. The solution of the equilibrium equations for nonlinear

analysis is more involved and is discussed later in Chapter 6.

2.10 Boundary Conditions

Boundary conditions are specified at the supported nodes of the structure by means of
support springs. Eight springs are provided corresponding to the eight generalized degrees of
freedom at a supported node. The translational and rotational spring stiffnesses are specified
relative to a coordinate system (4, B, Z) which is obtained by rotating the global coordinate
system (X, Y, Z) by an arbitrary angle § about the Z axis (Fig. 2.5). The warping and
distortional spring stiffnesses are always specified relative to the local coordinate system at the
node. Thus by appropriately specifying the angle 6 and the support spring stiffnesses, any
kind of boundary conditions can be simulated at the supported nodes. Interior unsupported
diaphragms, such as D1 and D2 in Fig. 2.4, can be represented as supported nodes with non-

zero spring stiffnesses for the distortional and/or warping degrees of freedom only.

The support spring stiffness matrix k; in the (4, B, Z) coordinate system can be written
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as
k, = diag [k, k, k3, kg, ks, ke, ks, kg (2.58)

where ks, k;, k3 are respectively the translational spring stiffnesses in the A, B, Z directions;
ki, k7, k¢ are respectively the rotational spring stiffnesses about the A, B, Z axes; k4 is the

transverse distortional spring stiffness; and kg is the longitudinal warping spring stiffness.

The support spring stiffness matrix X, in the global (X, Y, Z) coordinate system is then

obtained from the transformation

K =TTkT (2.59)

in which the transformation matrix T is given by

[¢c 000 0 05 0]
0 c00-s000
00100000
00010000
T=10500c000 (2.60)
00000100
—s00000cO0
(00000001,

where ¢ = cos § and s = sin 6.

After the equilibrium equations of the structure are solved, the support reactions
R; = <R, Ry, R3, Ry, Rs, R¢, Ry, Rg>T in the (4, B, Z) coordinate system are calculated

from

R =-kTr 2.61)

where r is the vector of generalized displacements at the supported node in the global

coordinate system.

In the general case when 6 is not equal to zero, the transformation in Eq. (2.59) can
result in large off-diagonal terms in K; corresponding to the translational and rotational
degrees of freedom in the X, Y directions. This can cause the structure stiffness matrix to be

ill-conditioned. Whether the equilibrium equations will be solved correctly will depend upon
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the precision used as well as the magnitude of the large off-diagonal terms relative to the other
terms of the stucture stiffness matrix. Thus care must be exercised in choosing the
magnitudes of the translational and rotational spring stiffnesses in the 4, B directions when

these directions do not coincide with the X, Y directions.

2.11 Recovery of Strains and Stresses

An integral part of any finite element analysis is the recovery of strains and stresses.
After the nodal displacements are obtained from the solution of the equilibrium equations,
the strain-displacement relationships in Eq. (2.42), (2.49) and (2.51) can be used to find the
strains at any point in the element. The corresponding stresses are then determined from the

constitutive relationships.

The locations at which the strains and the stresses should be recovered in a finite
element have been the subject of some discussion. It has been observed that at certain unique
points within a finite element, the stresses have higher accuracy than at any other points. In
analysis involving numerically integrated elements, experience has shown that the integration
points are the optimal stress sampling points [36, 37]. For the 3-node isoparametric box
beam element developed in the present investigation, these optimal locations are the two
Gauss sections (¢ = = 1/V3) along the element axis (Fig. 2.1a). The nodes, which are the most

practical output locations for stresses, appear to be the worst locations for sampling stresses.

Thus, in the present study, strains and stresses are recovered at the two Gauss sections
of the box beam element. If nodal values are desired, then a simple linear extrapolation from
Gauss sections should be made. Such extrapolations have been discussed by Hinton and

Campbell [37] and Hinton et al. [38].

The locations at which strains and stresses are recovered in a linear elastic analysis, of
course, have no influence on the solution for the nodal displacements. The use of the optimal
sampling points simply enables one to obtain strains and stresses which have the same degree

of accuracy as the nodal displacements. However, the locations of strain and stress sampling
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points have wider implications in nonlinear analysis. In a nonlinear analysis the solution
does depend on the recovered internal strains and stresses which are used in the state
determination phase (Chapter 6). From the above discussion it is apparent that the two

Gauss sections should also be used to monitor the element states in a nonlinear analysis.
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3. PRESTRESSING

3.1 General

Prestressing is used in concrete box girder bridges in order to increase maximum span,
control behavior and limit weight. Post-tensioned tendons are generally used, both in the
longitudinal direction where their use can result in more slender girders and longer maximum
spans, and in some cases in the transverse direction where their use can reduce the number of
webs required and increase the width of the cantilever top slabs, resulting in a more efficient

cross section.

In the present study, only post-tensioned tendons in the longitudinal direction are
considered. For linear elastic analysis of the structure under prestressing, the effect of
prestress is represented by a set of equivalent nodal loads, and these are treated as a separate
load case on the structure. The prestressing load case can be combined with other load cases
for determination of total stresses and displacements. For the analysis at transfer of prestress
in a nonlinear analysis, the prestressing is similarly represented by a set of equivalent nodal
loads, and the structure is analyzed as an ordinary reinforced concrete one. The contribution
of the prestressing steel to the overall structural stiffness is neglected since, at this stage, the
steel is unbonded. For the subsequent application of external loads, the prestressing steel is
assumed to be bonded to the concrete (i.e., grouted) and the prestressing steel stiffnesses are

included in the overall structural stiffness.

This chapter describes aspects of the prestressing analysis which are common to linear
elastic analysis and nonlinear analysis. These include discretization of the tendon, definition
of tendon profile, determination of tendon forces, and calculation of the equivalent nodal
force vector due to prestress. The basic approach for prestressing analysis presented in this
chapter is similar to the one used by Scordelis et al. in [8]. Certain other aspects of
prestressing analysis that are relevant only to nonlinear analysis are presented later in

Chapters 5 and 6.
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3.2 Tendon Discretization

For prestressing analysis only, the definition of the term "top flange” introduced in Sec.
2.2 is broadened to include the cantilever flanges in addition to the portion of the top flange
located between the webs. Each prestressing steel tendon is then defined to have a given
longitudinal profile at the mid-thickness of either the left web, the right web, the top flange or
the bottom flange, initial tensioning force, and a constant cross sectional area along its length.
Stressing may be done from one or both ends. Discretization of flange and web tendons is
shown in Fig. 3.1. In order to describe a wide range of general tendon profiles, the actual
curved tendon is approximated by subdivision into piece-wise linear segments intersecting at
tendon points. The tendon points are located at the nodes of the box beam elements the
tex;don spans (Fig. 3.1). Thus the two ends of the tendon must be located at element nodes.
The discretized geometry is then completely defined by the set of global X, Y, Z coordinates

of the tendon points, all of which must lie within the walls of the box beam elements.

The tendon is discretized into (n - 1) straight segments defined by n tendon points
(Fig. 3.1). Each of these straight tendon segments spans between two consecutive nodes of a
curved box beam element with certain eccentricities with respect to the element axis at the
nodes. Thus compatibility between the tendon segments and the box beam elements is
enforced only at the nodes. Each prestressing tendon segment is assumed to have a constant
prestress force. If these segment forces are known, whose determination is discussed later
(Sec. 3.4), the effect of prestress is completely represented by a set of forces acting at the box

beam element nodes.

3.3 Definition Of Tendon Profile

In order to determine the global X, Y, Z coordinates of the tendon points, the
longitudinal profile of the tendon within the wall (top flange, bottom flange, left web or right
web) in which it is located must be defined. If the tendon is located in the left web (v = a/2)
or the right web (y = — a/2), the local y coordinates of the tendon points are already known

from the geometry of the bridge, and hence the global X and Y coordinates can be



TENDON TENDON
SEGMENT ‘ POINT

ELEMENT NODE REFERENCE AXIS
Y
zZ X
(a) PLAN OF TENDON IN TOP OR BOTTOM FLANGE
7 ; TENDON TENDON REFERENCE  ELEMENT
I z SEGMENT POINT AXIS NODE

- — T— ! T
i~ N \.\l\:\}\
(b) ELEVATION OF TENDON IN LEFT OR RIGHT WEB

FIG.3.1 TENDON DISCRETIZATION

[ TENDON POINTS / TENDON SEGMENTS

37

PORTION 1 T PORTION 2 t PORTION 3 ‘t‘ PORTION 4
e e >
TOTAL STRUCTURE LENGTH o
e

FIG.3.2 DEFINITION OF TENDON PROFILE (From Ref. [8])




38

determined from Eq. (2.8). Then the tendon profile need to be specified only in terms of the
global Z (or local z) coordinates of the tendon points (Fig. 3.1b). If the tendon is located in
the top flange (Z = b,) or the bottom flange (Z = - b,), the Z coordinates of the tendon
points are already known from the geometry of the bridge. Then the tendon profile need to
be specified only in terms of the local y coordinates of the tendon points (Fig. 3.1a), which
can be used in Eq. (2.8) to calculate the global X and Y coordinates. In either case, it is seen
from Eq. (2.8) that the direction cosines X/Ag and Y,/) of the element x axis must be
known at the tendon point nodes. It was mentioned in Sec. 2.9, however, that in general at a
node common to two box beam elements, the directions of the element x axis determined for
the two adjacent elements will not be the same. The average direction is thus used in

caiculating the global X, Y coordinates of the tendon points from Eq. (2.8).

To specify tendon profiles, the length of the bridge spanned by the tendon is first
divided into portions which usually correspond to the actual physical spans of the bridge
between supports (Fig. 3.2). The ends of each portion correspond to tendon points and thus
are required to be located at element nodes. Then the tendon profile in each portion is
defined either directly or parametrically. In the direct deﬁnitidn, the ordinates of the tendon
profile at the tendon points are specified directly. In the parametric definition, the tendon
profile is generated as a series of parabolic and/or linear segments based on a few simple
specified parameters. In either case, the actual tendon profile is discretized as a series of

straight segments.

It would seem from Fig. 3.2 that portion 1 requires a considerably finer subdivision into
segments than portion 2 to define the tendon geometry accurately. Care should however be
taken in discretizing straight tendons into long segments, particularly in curved bridges where
radial forces are distributed along the length of the tendon even when the tendon appears
straight when viewed from some directions. In such cases, short segments should be used.
The choice of the box beam element subdivision can thus be dictated by the tendon

discretization.
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3.3.1 Direct Definition Of Tendon Profile

The conceptually simplest approach for definition of tendon profiles is to directly specify
the required y coordinates (for flanges) or z coordinates (for webs) of the n tendon points
used for the discretization. However, in the general case of a curved nonprismatic bridge,
this approach requires tremendous computational effort. For most typical tendon profiles,

this task can be avoided by generating the tendon profile parametrically.

In some cases where nontypical tendon profiles are used, it may be necessary to directly
specify the tendon geometry. With careful selection of tendon portions, and with use of
parametric generation in portions where it is possible, direct specification of tendon geometry

can be minimized.

3.3.2 Parametric Definition Of Tendon Profile

Prestressing tendon profiles in most concrete box girder bridges consist of combinations
of parabolas "draped” between the supports. In special cases, other geometries may be used,
which can generally be specified as combinations of several parabolic and/or straight
segments. In the present study, generation of this type of tendon profile based on a minimum

number of tendon geometry parameters is considered.

Let L be the length of one span or portion of the tendon. For a tendon located in one
of the webs, this span length is measured along the line of intersection of the curved webs and
the X-Y plane. For a tendon located in one of the flanges, the length L is measured along the
curved centerline (mid-width line) of the flange. It should be noted that for webs, the span
length is always measured along a line curved in the X-Y plane. But for flanges in a bridge
with variable depth, the span length is measured along a line curved in space. The tendon

profile within a span is then specified by means of the following parameters (Fig. 3.3):

YZLT - Local y (for flanges) or z (for webs) coordinate of tendon profile at left end of

span.

YZLP- Local y (for flanges) or z (for webs) coordinate of tendon profile at point of
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zero tendon slope (low point).

YZRT - Local y (for flanges) or z (for webs) coordinate of tendon profile at right end

of span.
RLLI - Fraction of span length from left end of span to left tendon inflection point.
RLLP - Fraction of span length from left end of span to point of zero tendon slope.
RLRI - Fraction of span length from right tendon inflection point to right end of span.

These parameters provide enough information to generate a profile made up of four
parabolic segments with zero slope at locations LT, LP and RT, and tangent intersections at
LI, LP and RI. The zero slopes at ends LT and RT guarantee tangent intersections with

neighboring spans. For curved spans, this profile is developed onto the actual span geometry.

Many other tendon profiles can be generated by proper specification of the above
parameters. Some typical tendon profiles commonly found in prestressed concrete box girder
bridges that can be generated with the above parameters are shown in Fig. 3.4. In special
cases, it is possible to use more than one portion to represent one physical span of the bridge.

This technique allows generation of very complex tendon geometries.

3.4 Calculation Of Tendon Segment Forces

In the analysis for prestress, the variation of the stress in the prestressing steel along the
tendon profile is an important consideration since the behavior of prestressed concrete box
girders is largely dependent on the effective amount of prestress acting on them. The force
distribution along the length of the tendon and the resulting equivalent nodal forces on the
structure are influenced by short and long term prestress losses. Short term losses take place
at the time of stressing and are due to two major causes : friction between the tendon and the
duct during the jacking (stressing) operation, and slippage of the anchorage during transfer of

the prestressing force from the jack to the anchorage assembly. Long term losses take place
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during the life of the structure and are due to creep and shrinkage of the concrete and
relaxation of the prestressing steel. In the present study, long term losses are simply specified

as a fraction of the initial prestress.

3.4.1 Friction Losses

Due to friction between the tendon and the duct during jacking, the tendon force at the
jacking end is greater than the tendon force at some distance away from the jacking end (Fig.
3.5a). This friction loss can be considered in two parts : the length or wobble effect and the
curvature effect. The length effect is the amount of friction loss that would occur in a straight
tendon due to duct imperfections and construction practice, and is dependent on the
coefficient of friction, the length of the tendon, and the workmanship and method used in
aligning the duct. The curvature effect results from the intended curvature of the tendons,
and is dependent on the coefficient of friction and the total angle change between the jacking

end and the point under consideration.
The tendon force P, at a distance s from the jacking end is commonly expressed as
P, = Pye a+ k) 3.1)

where P, = tendon force at jacking end; u = curvature friction coefficient; @ = cumulative
angle (in radians) by which the tangent to the tendon profile has changed between the jacking
end and location s; K = wobble friction coefficient; s = distance along tendon from jacking
end to point considered. The derivation of Eq. (3.1) can be found in most text books on
prestressed concrete. The values of u and K have been established by experiments and are

summarized in [39, 40].

In the tendon discretization used in this study (Fig. 3.1), the angle changes are
concentrated at the (n — 2) interior tendon points, and the length is defined by the lengths of
the (n - 1) tendon segments. Thus the curvature losses are lumped at the tendon points and
the wobble losses are distributed over each tendon segment (Fig. 3.5b). The friction loss

expression in Eq. (3.1) must be reformulated in accordance with this approximation. The first
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step is to derive expressions for the length of each tendon segment and the angle change in

space at each interior tendon point.

Define vectors V;_; and V; from tendon point i to i —1 and from i to i +1

respectively.
Xi.1-4X; Xia - X
Vii=1Ya-Yt; Vi=1Yi,-Y; 3.2)
Zi, -2 Zin -2

where (X;, Y;, Z;) are the global coordinates of tendon point i.

The angle 6, in space between tendon segments i and i — 1 at tendon point i can be

found from

cos 6, = ViV (3.3)
[Vial |Vl

where the dot denotes scalar product of two vectors and | V; | denotes the length of vector V;

and hence of segment i.

The force at each end of each tendon segment can be expressed in terms of these lengths
and angle changes (Fig. 3.6). The force at one end of a segment in terms of the force at the

other end is expressed as
P2=P18-K‘Z| 3.4)

while the force at one side of a tendon point in terms of the force at the other side is

expressed as
Py = Pye ¥ 3.5)
where the locations of P, P, and P; relative to the jacking end are shown in Fig. 3.6.

These expressions are evaluated for each tendon segment and each interior tendon point

to arrive at the discretized tendon force profile during jacking shown in Fig. 3.5b.
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3.4.2 Anchorage Slip Losses

Anchorage slip losses take place when the jacking force is transferred from the jack to
the permanent tendon anchorage assembly. The anchorage assembly typically displaces up to
3/8 inch during this operation, resulting in a change in stress over a length of the tendon near

the anchorage (Fig. 3.7).

The change in stress and the length over which it is effective can be derived from
fundamental principles. If A, is the anchorage slip and L, is the length along the tendon

affected by the anchorage slip,

L,
A, = ‘[ Ae ds (3.6)

where Ae is the decrease in the tendon strain due to anchorage slip. This results in the

"mirror image” type tendon force change over the length L, shown in Fig. 3.7.

A graphical interpretation of the fundamental principles may be taken in order to arrive
at the computational approach used in this study. The area of region ABC of the tendon
force diagram in Fig. 3.7 must equal the anchorage slip A, multiplied by the axial rigidity

E, 4, of the tendon.
Area (ABC) = E A, A, (3.7

The tendon segments are scanned starting at the jacking end in order to locate point C
in Fig. 3.7 that satisfies the above equality. After this point is located, all tendon forces

between the jacking end and the point C are modified to reflect the "mirrored” profile.

3.4.3 Influence Of Stressing Procedure

In a real bridge structure, two different jacking procedures may be used for stressing the
tendons : jacking from one of the two ends, or jacking from both ends. When the tendon is
stressed from both ends, the controlling anchorage must be determined for each tendon
segment (Fig. 3.8). The procedure used is as follows. First, the segment forces are

determined under jacking at tendon end A as discussed in Secs. 3.4.1 and 3.4.2. Next, the
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same procedure is initiated for jacking from tendon end B, but as each segment force is
computed it is compared with the force already existing due to Jjacking from tendon end A4.
When it is found that the force already existing in the segment (from end A jacking) is higher
than the force computed for end B jacking, the end B jacking procedure is terminated. This

method closely approximates the physical situation in the actual tendon.

3.4.4 Final Tendon Forces

After the force is computed at each end of each tendon segment, an average force is
computed in each tendon segment which is then used for computing the equivalent nodal
loads. One of two methods can be used for computing this average force. Method A4 is
applicable to tendons with smooth profiles, while method B is applicable to harped tendons
with concentrated angle changes. The differences in computed forces from the two methods

are generally small and have the greatest influence near the anchorages.

Consider a tendon with a smooth arbitrarily curved profile (Fig. 3.9). The actual tendon
force profile is a smooth curve (Fig. 3.9b). The computed tendon force profile (Fig. 3.9¢) has
curvature friction losses lumped at the tendon points and wobble friction losses distributed
over the tendon segments. The best estimate of the actual tendon force profile from this
computed force profile is found by connecting the plotted average forces at the tendon points
with straight lines (Fig. 3.9c). The constant force in each tendon segment can then be found
by averaging the segment end force values from this smoothed profile (Fig. 3.9d). This
approach is used in averaging method 4 and is recommended for smoothly curved tendon

profiles.

Consider a harped tendon with concentrated angle changes in its profile (Fig. 3.10). The
actual tendon force profile is the same as the computed force profile, it is piece-wise linear
with steps at the harp points (Fig. 3.10b). The constant force in each tendon segment can be
found by averaging the segment end force values from this unsmoothed force profile (Fig.
3.10c). This approach is used in averaging method B and is recommended for harped tendon

profiles.
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3.5 Equivalent Nodal Force Vector

Once the forces in all the tendon segments are known, the resultant forces acting on the
structure at each tendon point can be found. Consider tendon point i where tendon segments

i — 1 and i are connected (Fig. 3.11). The tendon force vectors P;_; and P; at tendon point i

are given by
Vi1
Piy=P_— 3.8a
P STV (3.82)
P, =P, L4 3.8b
4, =4 |I/1 (- )

where P;_; and P; are the magnitudes of the tendon forces in segments i — 1 and i
reépectively, and V;_, and V; are as defined in Eq. (3.2).

Then the resultant force vector F; acting on the structure at tendon point i is obtained

from simple vector addition as
Fi=P_+P (3.9)

Omitting the subscript, the force vector F of Eq. (3.9) is referred to the fixed global

coordinate system (X, Y, Z) with components
F =1Fy (3.10)

With the y and z eccentricities of the tendon points with respect to the box beam
element axis known, the eight generalized nodal force components at the tendon point nodes
corresponding to the force vector F can be calculated using Eq. (2.55). These generalized
nodal force components are assembled for the entire structure to give the equivalent

prestressing nodal force vector for the structure.
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4. LINEAR ELASTIC ANALYSIS - NUMERICAL EXAMPLES

The theory presented in Chapters 2 and 3 has been incorporated into a computer
program LAPBOX for linear elastic analysis of curved nonprismatic reinforced and
prestressed concrete box girders. The details of the computer program LAPBOX are given in

Chapter 7. Input guidelines and sample input data are given in Appendices A and B.

In order to demonstrate the applicability of the proposed method and the capabilities of
the computer program LAPBOX, five numerical examples of linear elastic analysis are
presented in this chapter. The relative accuracy of the proposed method is examined by
comparison with other analytical and/or experimental results. The last example illustrates
how some of the capabilities of the program LAPBOX can be used to analyze practical box

girder bridges of complex geometries.

4.1 Example 4.1 - Straight Simply Supported Box Girder

For the first example, a straight simply supported box girder is analyzed. The purpose
of this example is to demonstrate the capability of the thin-walled box beam element to
capture the torsional and distortional effects inherent in single-cell box girders. The results
from LAPBOX are compared with a folded plate harmonic analysis based on the theory of

elasticity (Sec. 1.2.1).

4.1.1 Structure Details and Analytical Modelling

The structure geometry and loading are shown in Fig. 4.1. The structure is simply
supported and torsionally restrained at the two ends. Diaphragms, rigid in their planes but
perfectly flexible perpendicular to their planes, are assumed at the supported ends. Thus the
two end cross sections are fixed against transverse distortion but are free to warp
longitudinally. Modulus of elasticity E = 432,000 kip/ft’> and Poisson’s ratio » = 0 are

assumed.

The loading consists of a vertical force couple at midspan (Fig. 4.1a). In terms of the
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equivalent loads for the box beam element, this loading translates into a torque and a
transverse distortional moment of 3 kip-ft each. While the torsional component can only be
equilibrated at the end supports, the effects of the self-equilibrating distortional component
should damp out away from midspan. To investigte this effect, two box cross sections of
different wall thicknesses, ¢ = 0.1 ft and 0.5 ft, are considered (Fig. 4.1b). The dead load of

the structure is not included in the analyses.

Making use of the symmetry of the structure and the loading about midspan, only half
the span is analyzed with LAPBOX using 10 box beam elements of equal length. The
harmonic folded plate analysis results used for comparison were obtained by Seible [17] using
a computer program MULTPL [1, 4, 5]. A total of 100 odd harmonics were employed and a

longitudinal uniform distribution of the concentrated forces over 1 ft was assumed.

4.1.2 Presentation and Discussion of Results

Due to the nature of the loading considered, all displacement and stress results are anti-
symmetric about the X -Z plane. The longitudinal distribution of the vertical displacements
along one of the webs is shown in Fig. 4.2a. The vertical web displacements for LAPBOX
were obtained by summing the contributions from the twist and the transverse distortion of
the cross sections. In Fig. 4.2b, the longitudinal bending moments along one girder are
shown. Each girder is assumed to be comprised of one web and half the width of the top and
bottom flanges. The girder bending moments for LAPBOX were obtained from the warping
bimoment output. It may be noted that the warping stresses are associated only with the
distortional component of the loading since theoretically there is no torsional warping for a
square cross section. Close agreement exists between the harmonic folded plate solution and
the thin-walled box beam model. The effect of the wall thickness can be seen in Fig. 4.2b
where the longitudinal girder moments damp out more quickly for the box with the thicker

walls.

The longitudinal distributions of the web shears and the transverse bending moments

per unit length at the four corners of the box have been plotted in Fig. 4.3. The web shears,
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FIG. 4.1 EXAMPLE 4.1 - STRAIGHT SIMPLY SUPPORTED BOX GIRDER
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which were obtained by superposing the torsional and distortional shear components, are
highest near midspan. Near the supports, the effect of the distortional loading damps out,
and the web shears are primarily due to the torsional loading. Again, if allowance is made for
the fact that in LAPBOX the loads were concentrated at midspan while in MULTPL the
loads were distributed over a small length, the agreement between the two methods of analysis

can be considered very good.

Fig. 4.4 shows the longitudinal distributions of shear flow in the top and the bottom
flanges. While Fig. 4.4a depicts the shear flow for the two wall thicknesses, a separation of
the total shear flow into its torsional and distortional components is shown in Fig. 4.4b for
the .wall thickness of ¢ = 0.1 ft only. The distortional component of the shear damps out
quickly towards the supports, while the torsional component is as expected virtually constant
over the span. The present method (LAPBOX) is again seen to capture the torsional and

distortional behavior of the box accurately.

4.2 Example 4.2 - Curved Simply Supported Box Girder

The next example is a simply supported box girder circularly curved in plan (Fig. 4.5).
The capability of the proposed method to analyze curved box girders is demonstrated through

this example. Comparisons are made with the finite strip method (Sec. 1.2.2).

The overall dimensions of the structure (Fig. 4.5) are the same as those considered in
Example 4.1 (Fig. 4.1). The axis of the girder is however curved now with a radius of
curvature R = 38.2 ft. Only one wall thickness of ¢ = 0.1 ft is considered. The box girder is
again simply supported and restrained against twist and transverse distortion at the two ends.
No warping restraint is provided anywhere. Modulus of elasticity E = 432,000 kip/ft> and

Poisson’s ratio » = 0 are again assumed.

The loading consists of a vertical concentrated load of 1 kip at midspan (Fig. 4.5¢).
Dead load is not included. Two different load cases corresponding to two different transverse

positions of the concentrated load are considered:
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TABLE 4.1 EXAMPLE 4.2 - VERTICAL WEB DISPLACEMENTS

SECTION INNER WEB OUTER WEB
LOAD | [0 TION DISPLACEMENTS DISPLACEMENTS
CASE 5 () LAPBOX | CURDI4 | LAPBOX | CURDI4

(ft) (ft) (ft) (ft)

7.5; 52.5 0.0087 0.0087 0.0089 0.0089

INNER 15; 45 0.0163 0.0163 0.0165 0.0165
WEB

LOADING | 22.5:37.5 0.0217 0.0216 0.0217 0.0217

30 0.0237 0.0237 0.0235 0.0235

7.5 52.5 0.0089 0.0089 0.0092 0.0092

OUTER 15; 45 0.0166 0.0165 0.0170 0.0170
WEB

LOADING | 22.5:37.5 0.0217 0.0217 0.0223 0.0223

30 0.0235 0.0235 0.0243 0.0243

TABLE 4.2 EXAMPLE 4.2 - LONGITUDINAL GIRDER MOMENTS

INNER GIRDER OUTER GIRDER
LOAD L%Egg?& MOMENTS MOMENTS
CASE S LAPBOX | CURDI4 | LAPBOX | CURDI4
(ft) (ft) (ft) (ft)
, 2.51 2.52 2.55 2.55
1.5;52.5 (49.6%) (49.7%) (50.4%) (50.3%)
. 45 5.09 5.0 4.84 4.85
INNER 15; (51.3%) (51.2%) (48.7%) (48.8%)
WEB
LOADING | 5 375 8.05 8.04 6.37 6.40
3 37. (55.8%) (55.7%) (44.2%) (44.3%)
% 11.79 11.66 6.56 6.65
(64.3%) (63.7%) (35.7%) (36.3%)
75 5.8 3.03 3.03 2.44 2.45
33 32. (55.4%) (55.3%) (44.6%) (44.7%)
5. 45 6.10 6.09 4.65 4.67
OUTER ; (56.7%) (56.6%) (43.3%) (43.4%)
WEB
LOADING | 5 375 8.83 8.82 6.76 6.79
: -3; 31. (56.6%) (56.5%) (43.4%) (43.5%)
30 9.92 9.95 9.93 9.85
(50.0%) (50.2%) (50.0%) (49.8%)
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(1) The concentrated load is positioned over the inner web at midspan.
(2) The concentrated load is positioned over the outer web at midspan.

Due to symmetry, only half the structure is analyzed using 16 curved box beam elements
of equal length. For the finite strip analysis, a computer program CURDI4, developed
recently by Scordelis et al. [8], is used. The cross section is modelled with 16 finite strips.

100 odd harmonics are included in the analysis.

Since the single concentrated load constitutes primarily a flexural loading, only the
vertical web displacements and the longitudinal girder moments are compared in Tables 4.1
and 4.2 respectively. The percentage distribution of the total section moment to each girder
is also shown in Table 4.2. Excellent agreement between the box beam element results
(LAPBOX) and the finite strip results (CURDI4) can be noted in Tables 4.1 and 4.2 for both
load cases. The different responses of the girder to the different load cases are captured
accurately by the box beam model. The somewhat larger discrepancies between LAPBOX
and CURDI4 results for the girder moments at midspan are due to the error in the
approximation of the concentrated load by a finite number (100) of harmonic components in

the CURDI4 analysis.

4.3 Example 4.3 - Tapered Box Girder

The accuracy of the proposed method in predicting the response of nonprismatic
structures is examined by analyzing a tapered box girder model studied both analytically and

experimentally by Kristek [41].

The geometry of the PVC-N model is shown in Fig. 4.6a,b. The cross section has
constant width and wall thickness, but its height varies parabolically. The girder is fixed into
the supports. Thus in the LAPBOX analysis, all eight displacement degrees of freedom are
restrained at the supports. Kristek [41] did not report the material properties. Modulus of
elasticity of E = 500,000 psi and Poisson’s ratio of » = 0.33, which are believed to be

representative of PVC-N models, are used.
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The girder is loaded in the direction of the diagonal of the cross sections by a pair of
distributed loads which has a constant vertical component of 0.7 1b/in. (Fig. 4.6a,b). This
loading represents a uniform transverse distortional moment per unit length along the span of

the girder;

Again because of symmetry only half the span is analyzed using 12 nonprismatic box
beam elements. The element subdivision is shown in Fig. 4.6c. A finer mesh is used near the

supports where the rate of variation of the cross sectional depth is higher.

In Table 4.3, the vertical displacements at one of the corners of the box cross section
obtained from LAPBOX are compared with the analytical and experimental values reported
by Kristek [41]. Agreement is generally found to be good, in particular between LAPBOX

and Kristek’s analytical method.

4.4 Example 4.4 - Curved Simply Supported Prestressed Concrete Bridge

This example illustrates the analysis of a curved prestressed concrete box girder bridge
of practical dimensions with LAPBOX. The accuracy of the box beam element in predicting
the response under prestressing and dead load is examined. The results obtained with
LAPBOX are compared with those obtained with the computer program CURDI4 [8], which

is based on finite strip theory.

4.4.1 Structure Details and Analytical Modelling

The geometry of the bridge is shown in Fig. 4.7. It is a typical two-lane bridge with a
total top deck width of 30 ft and a single simple span of 162 ft measured along the centerline
(s direction). The bridge is circularly curved in plan with a radius of R = 162 ft to the
centerline. Simple support conditions are assumed at the ends where rigid diaphragms
prevent the transverse distortion of the cross sections. It is further assumed that the end
diaphragms are perfectly flexible perpendicular to their planes so that they do not restrain

longitudinal warping.



63

TABLE 4.3 EXAMPLE 4.3 - VEleCAL DISPLACEMENTS AT BOX CORNERS

SECTION EXPERIMENTAL ANALYTICAL ANALYTICAL
LOCATION | DISPLACEMENTS | DISPLACEMENTS DISPLACEMENTS
X (in.) FROM Ref. [41] FROM Ref. [41] FROM LAPBOX

(in.) (in.) (in.)
4; 44 0.00075 0.00068 0.00108
8; 40 0.00351 0.00332 0.00313
12; 36 0.00556 0.00541 0.00542
16; 32 0.00741 0.00739 0.00740
20; 28 0.00859 0.00869 0.00871
24 0.00907 0.00916 0.00916

TABLE 44 EXAMPLE 4.4 - VERTICAL CENTERLINE DISPLACEMENTS

SECTION DISPLACEMENTS DUE TO | DISPLACEMENTS DUE TO
LOCATION DEAD LOAD PRESTRESSING
s (f1) LAPBOX CURDI4 LAPBOX CURDI4
(f (fy (ft) (fv)
8.1;153.9 -0.1082 -0.1103 0.0742 0.0734
16.2; 145.8 -0.2134 -0.2169 0.1461 0.1453
24.3; 137.7 -0.3128 -0.3176 0.2138 0.2131
32.4;129.6 -0.4039 -0.4099 0.2758 0.2752
40.5; 121.5 -0.4848 -0.4918 0.3304 0.3299
48.6; 113.4 -0.5535 -0.5613 0.3764 0.3761
56.7; 105.3 -0.6085 <0.6170 0.4130 0.4128
64.8; 97.2 -0.6486 -0.6576 0.4396 0.4393
72.9; 89.1 -0.6731 -0.6823 0.4556 0.4554
- 81 -0.6813 -0.6906 0.4609 0.4608
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The following concrete material properties are assumed : modulus of elasticity E =
518,400 kip/ft%; Poisson’s ratio » = 0.15. A unit weight density of w = 155 pcf is used for the

dead load calculations.

The prestressing in the bridge consists of two tendons in the longitudinal direction, one
in each web. The cross sectional area of each tendon is 4, = 0.157 ft>. Each tendon has a
vertical parabolic profile (Fig. 4.7c) measured along the curved webs. The tendons are
stressed symmetrically from both ends of the bridge with a jacking force of 4266 kip per web.
Wobble friction coefficient of K = 0.0002/ft, curvature friction coefficient of ¢ = 0.25/radian,
and anchorage slip of A, = 0.0156 ft at each jacking end are assumed. The modulus of
elasticity of the prestressing steel is taken as E, = 4,032,000 kip/ft>. Long term losses are not

considered.
The bridge is analyzed for two different load cases :
(1) Dead Load
(2) Prestressing

Due to symmetry of the structure and the loadings, only half the bridge is analyzed
using 20 curved box beam elements of equal length. The origin of local x, y, z axes of the
cross section (Fig. 4.7b) is taken at the centroid which is located at a depth of 1.941 ft from
the mid-thickness of the top flange. The dead load and prestressing are represented by
equivalent loads at the box beam element nodes generated automatically within the program

LAPBOX.

32 finite strips are used in modelling the cross section for the CURDI4 [8] analysis. 100

odd harmonics are employed to represent the variations in the longitudinal direction.

4.4.2 Presentation and Discussion of Results

Some of the results obtained for the two load cases from LAPBOX and CURDI4 are
summarized in Table 4.4 and Figs. 4.8 and 4.9. The vertical centerline displacements at

various locations s along the span are given in Table 4.4. The CURDI4 results in Table 4.4
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TABLE 45 EXAMPLE 4.5 - PRESTRESSING TENDON DATA

~ JACKING | LOCATION OF | LOCATION OF LOCATION(S) OF
TENDON FORCE END A END B ZERO TENDON SLOPE
NO.
(kip) s (ft) z (ft) s (ft) z (ft) s (ft) z (ft)
1,2 300 0 -2.470 120 -4.044 60 -6.357
3,4 700 420 -3.646 560 -2.410 490 -6.278
56 600 180 -2.473 340 -2.463 260 -3.500
7,8 2500 80 -3.343 200 -1.710 120; 160 -0.500
9, 10 3000 320 -1.840 440 -3.283 | 360; 400 -0.500
11,12 1000 40 -2.911 240 -1.710 80; 200 -0.500
13, 14 1250 280 -1.710 480 -4.089 320; 440 -0.500
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were obtained by averaging the centerline displacements of the top and bottom flanges which
were practically the same (Fig. 4.8). The vertical displacements in the direction of the Z axis
(Fig. 4.7) are taken to be positive. Good agreement between the results from the LAPBOX
and CURDI4 analyses can be noted in Table 4.4. In fact, for the prestressing load case, the
agreement is excellent. The smaller displacements predicted by LAPBOX for the dead load
case are primarily due to the fact that the box beam elements cannot capture the transverse

bending of the side cantilevers due to their self-weight. But the differences are small.

The transverse distributions of the vertical displacements at midspan for dead load and
prestressing are shown in Fig. 4.8. As expected, the outer web deflects more than the inner
web. The agreement between LAPBOX and CURDI4 is again found to be good particularly

for the prestressing load case.

In LAPBOX, internal stresses and integrated force resultants are recovered at the two
Gauss sections of each element which are considered to be the optimal locations (Sec. 2.11).
The transverse distributions of the longitudinal normal stresses at the Gauss section nearest to
midspan (s = 80.144 ft) are shown in Fig. 4.9. Tensile stresses are taken to be positive in
Fig. 4.9. The longitudinal normal stresses are approximately constant across the width of the
bridge indicating primarily flexural behavior. For the dead load case, elementary beam theory
gives stresses of -195.5 kip/ft> and 373.5 kip/ft® at the top and bottom flanges respectively.
The LAPBOX results agree quite well with the CURDI4 results obtained at the same cross

section, the largest discrepancies being at the tips of the side cantilevers.

For the dead load analysis, the following support reactions were obtained from

LAPBOX.
Distortional moment (M) = - 351.8 kip-ft
Vertical force (V,) = 707.2 kip
Torque (M,) = 10,881.4 kip-ft

The distortional moment is a generalized force quantity and does not represent a statical force
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resultant. The vertical force and the torque obtained from LAPBOX, on the other hand, are
exactly the same as those obtained by applying statics to the circularly curved bridge which is
statically determinate for symmetric loadings. This indicates that the geometry of a circularly
curved bridge can be modelled very accurately as a series of parabolically curved box beam

elements.

It is of interest to compare the integrated force resultants at Gauss sections obtained
from LAPBOX with the corresponding values required to satisfy equilibrium. Two Gauss
sections, one nearest to the support (s = 0.856 ft) and the other nearest to midspan (s =
80.144 ft) are considered. The following values were obtained from LAPBOX for the dead

load case.

At Gauss section nearest to support:
Bending moment (M,) = 659.7 kip-ft
Vertical shear (V) = 699.7 kip
Torque (M,) = 10,877.0 kip-ft

At Gauss section nearest to midspan:
Bending moment (M, ) = 32,026.8 kip-ft
Vertical shear (V,) = 7.5 kip
Torque (M,) = 171.8 kip-ft

The section forces obtained by considering equilibrium under the applied dead load and
the support reactions are found to be the same as the LAPBOX results above. This justifies

the selection of the Gauss sections for recovery of stresses in the box beam element.

4.5 Example 4.5 - Three-Span Curved Nonprismatic Prestressed Concrete Bridge

This example is used to demonstrate the versatility of the proposed method in analyzing
a complex prestressed concrete box girder bridge of curved plan geometry and variable cross

section. The input data for the computer program LAPBOX used to obtain the results of this
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example are given in Appendix B. A careful study of this example along with the input data

should be very useful to a potential user of LAPBOX.

4.5.1 Structure Details and Analytical Modelling

A hypothetical three-span continuous prestressed concrete box girder bridge (Fig. 4.10)
is analyzed. In plan (Fig. 4.10a), the bridge has a straight span of 140 ft between supports S1
and S2, and two circularly curved spans of 240 ft between supports S2 and S3, and 180 ft
between supports S3 and S4. The radius of the circularly curved spans is R = 500 ft to the
centerline. For convenience, a coordinate s is defined along the centerline with its origin at
S1 and directed towards S4. At each of the four supports of the bridge, vertical movement,

twist and transverse distortion of the cross section are prevented.

The cross section of the bridge is shown in Fig. 4.10b. The width of both the box
section and the cantilever flanges vary linearly along the length of the bridge. The depth of
the box section and the thickness of the bottom flange also vary. The thickness of the webs as
well as the thickness of the top flange and the cantilever flanges are however constant along
the length. The following equations define the variation of the cross sectional dimensions

a, f, b, (all in ft) in terms of the s coordinate.
a=12+5/100, for0<s <560
f=4+95/2800, for0<s <560

b=6+5/70, for0<s <140
=52/3 -s/15, for 140’ <s <200

4, for200 <s <320

-52/3 +s/15, for 320 <s < 380

110/9 - s/90, for 380 < s < 560
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t, =3/5+5/200, for0<s <140
=67/30 - s/150, for 140’ <5 <260
=-37/30 + s/150, for 260 <s < 380
=25/9 - 7s/1800, for 380’ < s < 560

Modulus of elasticity E = 608,256 kip/ft* and Poisson’s ratio » = 0.18 are assumed for

the concrete. The unit weight density of the structure is taken as w = 160 pcf.

The bridge is prestressed with 14 different tendons, 7 in each web (Fig. 4.10c). The
jacking forces and the geometry data of each tendon are given in Table 4.5. Tendon numbers
1 through 6 each has a vertical profile along its span consisting of one parabolic segment.
Each of the other 8 tendons has two parabolic segments connected by a linear segment in the
middle. All the tendons are stressed simultaneously from both ends. Wobble friction
coefficient of K = 0.0002/ft, curvature friction coefficient of p = 0.2/radian, and anchorage
slip of A, = O are assumed. The modulus of elasticity and the cross sectional area of the

tendons are not required for the analysis since the anchorage slip is assumed to be zero.
A total of four different load cases are considered. They may be summarized as follows:

Case 1 - Uniform line load of 1 kip/ft along the centerline of the bridge (Fig. 4.11a).

This loading is used to carry out equilibrium checks on the LAPBOX results.
Case 2 - Dead load of the bridge due to a unit weight density of 160 pcf.
Case 3 - Prestressing.

Case 4 - Uniform live load of 0.15 kip/ft?> over the full width of the top deck and

between s = 180 ft and 340 ft (Fig. 4.11b).

The bridge is analyzed using 56 curved nonprismatic box beam elements, each 10 ft
long. The origin of the local x, y, z axes of the cross section (Fig. 4.10b) is taken at the mid-
thickness of the top flange. The uniform line load of 1 kip/ft for load case 1 is simulated as a
uniform pressure of 10'° kip/ft?> on the top flange uniformly distributed over a width of 10~!0
ft at the centerline. All load cases are represented by equivalent nodal loads generated

automatically within the program LAPBOX.
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An additional analysis is performed for load case 4 with the computer program SAP IV
[42] using one-dimensional (straight) beam elements. 56 beam elements, each spanning 10 ft
(measured along the actual axis of the bridge), are used. Each element is prismatic so that the
nonprismatic bridge can only be modelled approximately by using different cross sectional
properties for each element. The distributed live load is represented by statically equivalent

concentrated loads at the nodes.

4.5.2 Presentation and Discussion Of Results

From the large amount of output obtained from the analyses, a few selected results are

tabulated and plotted for the four load cases.

Table 4.6 gives a summary of the support reactions obtained from LAPBOX for all load
cases. In the last two columns of Table 4.6, the total sum of all the vertical reactions is
compared with the applied load calculated by hand from the actual loading and geometry of
the structure. The agreement is perfect which is indicative of the high accuracy with which the
box beam elements can be used to model the geometry and loading of a curved nonprismatic
bridge. The support reactions obtained from the SAP IV analysis for load case 4 are also
shown in Table 4.6. The agreement between the LAPBOX and the SAP IV results are good,

particularly for the vertical reactions.

To perform equilibrium checks, load case 1 of 1 kip/ft uniform line load along the
centerline is considered. The vertical shear V,, bending moment M, and torque M, at the
Gauss section AA (s = 262.113 ft) near midspan, and the two Gauss sections BB (s =
377.887 ft) and CC (s = 382.113 ft) near support S3 (Fig. 4.10a), obtained by statics from the
support reactions (Table 4.6) and the applied external load (Fig. 4.11a), and then with
LAPBOX from the integration of the internal stresses at these same sections, are shown in
Table 4.7. Excellent agreement can be noted. In fact, the small discrepancies are possibly
due to round-off errors which would imply that the internal force resultants obtained with

LAPBOX satisfy statics exactly.
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LOAD
CASE

FORCE
QUANTITY

SUPPORT
S1

SUPPORT
S2

SUPPORT
S3

SUPPORT
s4

TOTAL
VERTICAL
REACTION

(kip)

TOTAL
APPLIED
LOAD
(kip)

LINE
LOAD

Distortional
Moment
My, (kip-fi)

Vertical
Force
V. (kip)

Torque
M A (k‘p : ﬂ)

0.0

329

-0.5

132.8

223.8

-151.9

343.8

246.5

-443.6

-17.3

56.8

119.2

560.0

560.0

DEAD
LOAD

Distortional
Moment
M, (kip-ft)

Vertical
Force

V. (kip)

Torque
M, (kip-fi)

-0.2

237.8

782.4

1491.9

-867.9

2233.6

1853.2

-2026.8

-125.1

493.8

1545.0

4076.7

4076.7

PRE-
STRESS

Distortional
Moment
M, (kip-ft)

Vertical
Force
V. (kip)

Torque
Mr (klp i ﬁ)

260.1

26.4

-1103.6

5723

34.2

-1954.8

14.6

-29.8

-267.3

0.0

0.0

LIVE
LOAD
(LAPBOX)

Distortional
Moment
Md (klpfl)

Vertical
Force
V. (kip)

Torque
M, (kip-ft)

430.3

404.0

<3229

1035.3

385.2

-2359.2

8.0

-90.5

-860.3

582.5

582.5

LIVE
LOAD
(SAP 1V)

Vertical
Force
M. (kip)

Torque
M, (kip-ft)

403.4

-344.2

385.2

-2384.0

-90.4

-848.0

582.5

582.5




TABLE 4.7 EXAMPLE 4.5 - COMPARISON OF EXTERNAL AND INTERNAL

SECTION FORCES (LOAD CASE 1 : 1 kip/ft LINE LOAD)

SECTION FORCE EXTERNAL INTERNAL
QUANTITY STATICS LAPBOX
Shear, V, (kip) 5.4 5.4
AA Moment, M, (kip-ft) 1621.0 1621.0
s =262.113 ft » My (Kap : '
Torque, M, (kip-ft) 19.8 19.8
Shear, V, (kip) 121.2 121.2
BB .
s = 377.887 ft Moment, M, (kip-ft) 5717.8 5717.8
Torque, M, (kip-ft) 196.6 196.5
Shear, V, (kip) 121.1 121.1
CC e,
s = 382.113 fi Moment, M, (kip-ft) 5718.0 5718.2
Torque, M, (kip-ft) 197.6 197.0

78
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The longitudinal variations of the vertical centerline displacements (positive upwards)
for load cases 2 (dead load), 3 (prestressing) and 4 (live load) are shown in Fig. 4.12. The
plotted values for load case 4 represent both the LAPBOX and the SAP IV analyses, which
predicted practically the same vertical displacements. The transverse distributions of vertical
displacements at the middle of the interior span (s = 260 ft) are shown in Fig. 4.13 for the
same three load cases. The vertical displacements are larger at the outer web than at the
inner web with almost a linear variation across the bridge width indicating a twist of the cross

section with little transverse distortion.

Longitudinal variations of bending moment M, for dead load, prestressing and live load
are shown in Figs. 4.14, 4.15 and 4.16 respectively. It may be noted that the total moments
(primary + sécondary) are shown for the prestressing load case (Fig. 4.15). The locations of
the discontinuities in the prestressing moment diagram correspond to the jacking ends of the
tendons. The live load moments (Fig. 4.16) obtained from the LAPBOX and the SAP IV

analyses are found to agree closely.

Finally, the longitudinal variations of the vertical shear force ¥ for dead load and live
load are shown in Fig. 4.17. The shears plotted in Fig. 4.17 were obtained from the
integrated force resultants at the Gauss sections output by LAPBOX. The values at the
supports were obtained by extrapolating from the Gauss sections. The live load shears
obtained with SAP IV were practically the same as those obtained with LAPBOX, and hence

they are not shown separately.

The close agreement between the LAPBOX and the SAP IV results for the live load case
indicates that the longitudinal flexural behavior of the bridge was not affected significantly by
transverse distortion and longitudinal warping of the cross sections. However, ordinary beam
theory (SAP 1V) cannot predict the transverse distribution of stresses and the transverse
flexural moments (not reported) which can be obtained from thin-walled beam theory

(LAPBOX).



80

(]]°]

SINIWIDVILSIA ANITIHALNTD TVOLLYIA 40 SNOLLNEINLSIA TYNIANLIONOT - §'v ATdNVXA

m)s
oS %) 4 (%]

00|

avol 3AIT v o A
ONISSIHISTHd o ~er
avol avaa o |

ary ‘O

S'o-

¥y o-

€°0-

c'o

€0

r¥o

S'0

(1) INIW3IDV1dSId



81

p——=k
-0.429 -0.421 0417 0413 0409  -0.405 -0.397
: 4

!
!
d
0421 0417 0413 0409  -0.405

(a) DEAD LOAD

fe——=r
0.440 0.433 0428 0424 0420 0415 0.408
0.433 0428 0.424 0420 0415
(b) PRESTRESSING
fe—Rr
-0.421 0415  -0411 0408  -0.405  -0.401 -0.395
: 4 : -4 3

-0.415 -0.411 -0.408 -0.405 -0.401

(c) LIVE LOAD

FIG. 4.13 EXAMPLE 4.5 - TRANSVERSE DISTRIBUTIONS OF VERTICAL
DISPLACEMENTS (ft) @ s = 260 ft
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4.6 Concluding Remarks

The five numerical examples discussed in this chapter have demonstrated the
capabilities of the proposed method for linear elastic analysis of curved nonprismatic
reinforced and prestressed concrete box girders. Comparisons of results obtained from the
proposed method with results from other analytical and experimental models showed that the
proposed method is capable of capturing the dominant actions in single-cell box girders quite

accurately.

The simplicity, accuracy and reduced computional effort inherent in the proposed
curved nonprismatic thin-walled box beam element make it extremely well suitable for an

extension to capture nonlinear effects.



87

5. NONLINEAR CONSTITUTIVE MODELS

5.1 General

The nonlinearity in the response of reinforced and prestressed concrete box girder
bridges is primarily due to material nonlinearities. Geometric nonlinearities are negligible for
most practical bridges and hence are not considered in the present study. Material
nonlinearities arise due to the nonlinear nature of the short-time constitutive relationships for
concrete, reinforcing steel and prestressing steel, and also due to time-dependent and
environmental effects of aging, creep and shrinkage of concrete, relaxation of prestressing
steel, and temperature changes. The time-dependent and environmental effects influence
deflections and stresses at service loads but usually have little influence on the response of the
bridge to overloads or ultimate loads. Since the present study is concerned with the ultimate
load analysis of reinforced and prestressed concrete box girders, only the nonlinearities in the

short-time constitutive relationships are considered.

Both concrete and steel exhibit various nonlinear material properties. The stress-strain
relationship of concrete is not only nonlinear, but it differs in compression and tension.
Tensile cracking is one of the most important factors which contribute to the nonlinear
behavior of reinforced concrete structures. Reinforcing steel generally exhibits symmetrical
nonlinear stress-strain relationships in tension and compression. Prestressing steel is used
exclusively in tension, and its stress-strain relationship is also nonlinear, and the shape of its

stress-strain curve is different from that of reinforcing steel.

Another nonlinear factor to be noted is the unloading and reloading characteristics of
concrete and steel. Although the effects of dynamic loadings such as seismic load or wind
load are not considered in this study, the effects of live load history are considered in a
quasi-static manner. Thus a simple mathematical model for unloading and reloading is

developed to study the effects of load reversal.

As was done for linear elastic analysis, a reinforced or prestressed concrete box girder
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bridge is discretized in a nonlinear analysis into a finite number of curved nonprismatic box
beam elements. This was described previously in Sec. 2.9. But the box beam elements can
no longer be assumed to be composed of homogeneous material. They must be considered as
reinforced concrete elements composed of concrete, and reinforcing steel in the longitudinal
and transverse directions. Moreover, the prestressing tendons must be considered an integral
part of the structure. As described previously in Chapter 3, the prestressing tendons are
discretized into straight prestressing steel segments between tendon points located at the
nodes of the reinforced concrete box beam elements. It is thus necessary to model the
nonlinear constitutive relationships for the reinforced concrete box beam element and the

prestressing steel segment.

5.2 Reinforced Concrete Box Beam Element

A reinforced concrete box beam element is composed of concrete with longitudinal and
transverse reinforcing steel. A typical cross section is shown in Fig. 5.1. Perfect bond is
assumed to exist between the concrete and the reinforcing steel so that the displacement field
within the element can be considered continuous. The transverse reinforcing steel is assumed

to be perpendicular to the element axis.

The constitutive relationships for a reinforced concrete box beam element between the
generalized strains e, v, V4 and stresses oy, 7, Wy, introduced in Sec 2.4, will in reality be
coupled in addition to being nonlinear. The various mechanisms contributing to the response
of reinforced concrete structures, however, make it difficult to accurately model this coupling.
The global behavior of most reinforced and prestressed concrete box girder bridges under
practical loading conditions is usually dominated by the longitudinal flexural response.
Though the coupling terms in the constitutive relationships affect local behavior, their
influence on the overall response of the structure is believed to be much less significant. Thus
in this study, it is assumed that the constitutive relationships are uncoupled, and the o, —¢,,

Txs—7¥xs and w4—v,4 relationships are modelled independently.
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FIG.5.1 TYPICAL REINFORCED CONCRETE BOX BEAM CROSS SECTION

CONCRETE FILAMENT

LI'IITE=:\‘ = ————

\

STEEL FILAMENT

- o— {o— -of - Jo —

@

7

CONCRETE LAYER \E—‘J'r_' - i—'

F=l =

FIG.5.2 BOX CROSS SECTION IDEALIZED AS CONCRETE AND LONGITUDINAL
REINFORCING STEEL FILAMENTS



90

5.2.1 o, —¢, Relationship

The response of the reinforced concrete box beam element under longitudinal normal
strains and stresses plays a dominant part in the overall behavior of the structure. It is thus

necessary to model this response accurately.

A composite filament system consisting of concrete and longitudinal reinforcing steel
filaments is constructed in order to account for varied material properties within the cross
section of the box beam element (Fig. 5.2). Each wall of the box cross section is subdivided
into discrete concrete layers, and each layer is further subdivided into discrete concrete
filaments. The number of concrete layers and the number of concrete filaments per layer can
vary from wall to wall. The longitudinal reinforcing steel filaments are located at the mid-
thickness of the cross section walls. The number of steel filaments can vary from wall to wall,

and within a wall the spacing between filaments can vary.

Though in the linear elastic analyses sufficient accuracy was obtained by monitoring the
longitudinal strains and stresses only at the mid-thickness of the cross section walls, in a
nonlinear analysis more than one concrete layer may be necessary to accurately model the
varied concrete response across the thickness of a wall. For the longitudinal reinforcing steel,

however, one layer at the mid-thickness of each wall provides sufficient accuracy.

Each concrete and steel filament in a cross section is assumed to be in a state of uniaxial
stress. The geometric and material properties of each filament are referred to its mid-point.
Then any integration over the cross section of a box beam element associated with
longitudinal normal strains and stresses, such as the first integral in Eq. (2.54) required to

evaluate the element stiffness matrix, can be performed filament by filament as follows :

n, ng
[¢.d4 = T4, + To.A, (5.1)
A i=1 i=1

where ¢, is a function of material and geometric properties related to axial deformations;
n. and n, are respectively the number of concrete and longitudinal steel filaments; A, and A4,

are respectively the cross sectional areas of concrete and longitudinal steel filaments.
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In the following sections, the necessary constitutive relationships for concrete and
longitudinal reinforcing steel filaments are modelled. Also, the interaction between concrete

and reinforcing steel due to “tension stiffening™ effect is considered.

5.2.1a Concrete

The mathematical model for concrete employed in the present study is the one used by
Kang and Scordelis [28, 29] to study planar reinforced and prestressed concrete frames. The
model, shown in Fig. 5.3, is an extension of the widely used mathematical formula suggested
by Hognestad [43] for concrete in compression. The ascending part of the compressive

stress-strain curve is described by the following equation

. €

o = fiX@2 -5 (5.2)
€

€
in which the strain ¢; corresponding to the maximum compressive stress f, is given by

/e
Eci

€©=2 (5.3)

where E,; is the initial tangent modulus. By differentiating Eq. (5.2), the tangent modulus E,,

is obtained.

= Eq(1 - <) (5:4)
€

The descending part of the compressive stress-strain curve is a straight line given by the

equation
" €, — €
o = f: [l - -p=—= (5.5)
€y — €

where B is the ratio of the stress at the ultimate compressive strain ¢, to the maximum
compressive stress f,. Hognestad [43] suggested values of 8 = 0.85 and ¢,, = 0.0038. In the
present study, values of B ande, are specified directly thus allowing for flexibilty in
modelling different concrete properties. By differentiating Eq. (5.5), the tangent modulus for

the descending branch is obtained as
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A

€y — €

E, = (5.6)

Maximum compressive stress f, is given by a fraction of the compressive strength f,

determined from tests on standard cylinders.

fi=rf 5.7
Hognestad suggested a value of r. = 0.85 for prismatic members based on numerous tests of

concentrically loaded columns, but many investigators also use 7. = 1.

In tension, the slope of the stress-strain curve (Fig. 5.3) is assumed to be constant and
the same as the initial tangent modulus E,;. Then the tensile stress-strain relationship can be
expressed as

o. = Eje. <f, (5.8a)
E.=E; (5.8b)

where f; is the tensile strength of the concrete assumed to have the value of the modulus of

rupture in this study.

Ideally, the values of the initial tangent modulus E; and the tensile strength f, should
be determined from tests. However, in the absence of test data, empirical formulae such as

Egs. (5.9) and (5.10) below, recommended by ACI Committee 209 [44], can be used.
E; = 33(w3f)" psi (5.9)

Ji = rwf)" psi (5.10)

where f, is the compressive strength in psi, w is the unit weight of concrete in pcf, and

parameter r, has a value between 0.6 and 1.0.

The load reversal model utilized in this study is also shown in Fig. 5.3. The following

assumptions are made in this model.

1. The slope of the load reversal path in the stress-strain curve is the same as the initial

tangent modulus E,;.
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2. Tensile failure or cracking of concrete occurs when the tensile stress exceeds the

tensile strength f,.

3. Compressive failure or crushing of concrete occurs when the compressive strain

exceeds the ultimate compressive strain e, .

4. Once concrete is cracked, it cannot take any tensile stress again. But it can take

compressive stress after closing of the crack.
5. Once concrete is crushed, it cannot take any compressive or tensile stress again.

In the present study 11 different concrete material states (Fig. 5.3) are defined for the
purpose of tracing primary loading, unloading and reloading paths in the stress-strain curve
and for evaluating the stress o, and the tangent modulus E,.. In the following description of
the 11 different concrete material states, concrete is defined as yielded when the compressive

strain exceeds ¢, the strain corresponding to the maximum compressive stress /.
(1) In primary tension (path OA or AO)
(2) In compression, not yielded (path OC)
(3) In compression, yielded (path CE)
(4) Crack open
(5) Crushed
(6) In load reversal path from state 2 (path BG or GB)
(7) In load reversal path from state 3 (path DI or ID)
(8) In compression, not yielded and previously cracked (path OC or BC)
(9) In compression, yielded and previously cracked (path CE or DE)
(10) In load reversal path from state 2 or 8 and previously cracked (path BF or FB)
(11) In load reversal path from state 3 or 9 and previously cracked (path DH or HD)

The constitutive model for concrete used in the present study can now be summarized

in the following equations.
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For state 1,
o =Eqe 5 Ep =E; (5.11)
For states 2 and 8,

. €

€ €
w;hﬁrjy;m=am-é) (5.12)

For states 3 and 9,

A T S AL (513
For states 6, 7, 10 and 11,

oc = E.i(e. — &) 3 Ec = E; (5.14)
For states 4 and 5,

o.=0; E, =0 (5.15)

In Eq. (5.14) above, ¢, is the residual strain due to unloading, as shown by points F and

H in Fig. 5.3.

5.2.1b Reinforcing Steel

To model the constitutive relationship of the reinforcing steel, the same simple bilinear
model used by Kang [28] and Chan [31] is employed in this study. As shown in Fig. 5.4, four
parameters are needed to define the stress-strain curve: the initial modulus up to yielding E;;

the second modulus after yielding E,; the yield stress f,; and the ultimate strain ¢, .

The slope of the load reversal path in Fig. 5.4 is assumed to be the same as the initial
modulus E;,. Failure is assumed to occur when the steel strain exceeds the ultimate strain
€y

The model can be used to simulate strain hardening with Bauschinger effect or elastic- |

perfectly plastic behavior.
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Four different material states are defined in Fig. 5.4. These are described below along

with the corresponding equations for the stress o and the tangent modulus E;.

(1) In primary tension or compression (path AE or EA)

o5 = Esl‘.\' 5 Els = Lg) (5.16)

(2) Yielded (path HC or DG)
E
o5 = Eges £ f,(1 - ) ; Ey = Ep (5.17)
sl

(-1) In load reversal path from state 2 (path BD, DB, FH or HF)

o; = Eqi(e; — €5) 5 E = Eg (5.18)
where ¢, is the residual strain due to unloading, as shown in Fig. 5.4.

(0) Failed
o,=0; Ex=0 (5.19)
5.2.1c Tension Stiffening

The low tensile strength of concrete, which is usually only about one-tenth of its
compressive strength, is one of its most important properties. Cracking occurs when the
tensile strength of concrete is exceeded, and this is a major factor affecting the behavior of
reinforced concrete members. Thus an important consideration in the analysis of reinforced

concrete members is the influence of concrete cracking on member stiffness.

The phenomenon of concrete cracking is complicated by the presence of reinforcing
steel. The basic mechanism is illustrated in Fig. 5.5 for a reinforced concrete element under
uniaxial tension. When the concrete reaches its tensile strength at randomly distributed weak
sections, primary cracks will form. At these cracks, the stress in the concrete drops to zero
while the steel carries the entire load. Between the cracks, however, concrete still carries
some tensile stress due to the bond between concrete and reinforcing steel. This is often
referred to as the “tension stiffening” effect. As the load is increased secondary cracks will

form with the result that the portion of the load carried by the concrete, and thus the average
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stress in the concrete, will decrease. Finally, the bond between the concrete and the steel will

completely deteriorate and the steel will carry all the load.

Two basically different approaches have been used by previous investigators to model
the tension stiffening effect. One approach is to relate average tensile stress to average strain
by means of an unloading stress-strain relationship for cracked concrete in tension. Scanlon
[45] used a stepped piecewise linear unloading relationship. A similar approach was used by
Lin and Scordelis [46], however with a smooth unloading curve. The steel and concrete
stresses obtained from this approach are estimates of the average stresses (Fig. 5.5). At the
actual crack, the steel stress is therefore always underestimated, while the concrete stress is

overestimated since it should be zero.

The second approach is to ignore the concrete after cracking and to use an increased
stiffness for the reinforcing steel. This approach was used by Gilbert and Warner [47] and
Poston et al. [48], among others. The steel stress obtained from this approach should be a
reasonably good estimate of the maximum steel stress at a crack, while the concrete stress,

which is zero, is exact at a crack.

Gilbert and Warner [47] investigated both approaches and concluded that modelling the
tension stiffening effect by modifying the stress-strain relationship for the reinforcing steel is
not only simpler to incorporate, but also computationally more efficient. Furthermore, results
obtained from this approach were at least as good as those obtained from the use of an

unloading curve for concrete.

In this study, a modification of the steel-referred method used by Poston et al. [48] is
adopted. The model is illustrated in Fig. 5.6 for a reinforced concrete element subjected to
monotonically increasing axial tension. In Fig. 5.6, ¢, = f,/E;; is the yield strain of
reinforcing steel, and ¢, = f,/E,; is the cracking strain of concrete. The parameter a which

defines the tension stiffening effect is given by the following two equations taken from [48].

, p=0.5% (5.20)
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a

), p=0.5% (5.21)

where p is the reinforcement ratio and k is a tension stiffening coefficient with dimension
force /length®. Poston et al. used a value of k' = 57 psi. For the present application, the
reinforcement ratio p is based on the longitudinal steel area and is calculated separately for

each wall of the box cross section.

Certain modifications of the model in Fig. 5.6 are necessary to account for the
possibility of load reversal. Consider a reinforced concrete element (Fig. 5.7a) subjected to
the quasi-static load history in Fig. 5.7b. The element is initially loaded in compression
giving rise to compressive stresses in concrete and reinforcing steel corresponding to point A
iﬁ Fig. 5.7c, d. For generality, the reinforcing steel is assumed to have yielded in
compression. Upon unloading, the compressive stresses in concrete and steel decrease
elastically until at point B, when the compressive strain in the element equals the residual
concrete strain ¢, the concrete stress reaches zero. Upon further unloading, the concrete
stress becomes tensile while the steel stress remains compressive. Then at point C concrete
cracks. After cracking, the concrete stress drops to zero, while the steel stress reflects the

tension stiffening effect.

It is apparent from Fig. 5.7d that in order to incorporate load reversal in the tension
stiffening model of Fig. 5.6, the origin of the reinforcing steel stress-strain curve has to be
shifted from point D to point B. Such a modified stress-strain curve for the reinforcing steel
is shown in Fig. 5.8. If the concrete crack is closing, the secant stiffness corresponding to the
largest value of (e — ¢,.) attained during the load history is used. This is illustrated
graphically in Fig. 5.8. Crack opening occurs along path ABC, while crack closing occurs

along path BO.

As can be seen from Fig. 5.8, the tension stiffening effect is assumed to be negligible
when (¢; - ¢, ) exceeds ¢,. Furthermore, it is assumed that there is no tension stiffening effect

if the concrete has been previously crushed.
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5.2.2 7, —vxs Relationship

A study of the shear strain-displacement relationship in Egs. (2.51) and (2.52) reveals
that the shear strains are constant along the webs of the box beam cross section, but vary as
rational functions of y along the flanges and the side cantilevers. The variation of the shear
strains along the flanges and the cantilevers arises due to the curved nature of the box beam
element. For curved bridges encountered in practice, the effect of bridge curvature on the
shear strain distributions along the flanges and the cantilevers, predicted by Eq. (2.52), will be
small. Hence in the present study, for the evaluation of element properties related to shear
deformations, the cross section of the reinforced concrete box beam element is subdivided
iqto the left web, the right web, the bottom flange, and the top flange including the side
cantilevers, as shown in Fig. 5.9. Each of these four walls is assumed to be in a state of
constant shear. The geometric and material properties of each wall are referred to its mid-
point. Then any integration over the cross section associated with shear deformations, such
as the second integral in Eq. (2.54) required to evaluate the element stiffness matrix, can be

performed as follows.
[6ydA = 6,4, + 6,45 + by A + 6,4, (5.22)
A

where ¢, is a function of material and geometric properties related to shear deformations; 4
is cross sectional area; and the subscripts ¢, b,/ and r refer to top flange including side

cantilevers, bottom flange, left web and right web respectively.

It is then necessary to model the shear stress-strain relationships for the individual walls
of the box cross section. In a reinforced concrete member subjected to shear, three major
events occur. While the reinforced concrete member initially acts like a homogeneous
material, the first major event occurs when the concrete cracks. The second major event
occurs when the reinforcing steel yields, and the third and final event takes place when the
member actually fails due to crushing of concrete. The above findings naturally apply only to

under-reinforced members where yielding of the reinforcement occurs well before crushing of
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concrete. Only this type of under-reinforced members is considered in this study. These
three major events suggest a trilinear model for the shear response of reinforced concrete

members.

5.2.2a Trilinear Model

A typical trilinear model used to represent the shear stress-strain relationship in the
present study is shown in Fig. 5.10. The initial response is assumed to be linear elastic until
concrete cracks at a shear stress of 7.,. The initial shear stiffness G; for this linear elastic

branch is taken as

Eci

R T )

(5.23)

where E,; is the initial tangent modulus of concrete defined previously in Sec. 5.2.1a, and » is
the Poisson’s ratio of concrete whose value varies between 0.16 and 0.30 for normal weight

concrete.

Numerous experimental and theoretical investigations define the cracking shear in a
reinforced concrete member in different ways. In the present study, the cracking shear stress
7, is taken to be the same as the shear resistance of concrete in a reinforced concrete
member. The shear stresses along the walls of the box beam cross section will in general be
due to the combined effects of bending, torsion, distortion and warping. Thus far, it has not
been possible to account for all the factors affecting the shear resistance of concrete under
such combined effects. It is, however, generally accepted that the major factor affecting the
shear resistance of concrete is its tensile strength. Thus in this study, the shear resistance of
concrete, and hence the cracking shear stress 7, is simply assumed to depend solely on the
concrete properties, and is specified directly for each different concrete in the structure. It is
suggested that 7., be specified as a fraction of the tensile strength of concrete f,. The simple

conservative expression

7o = 2Vf, psi (5.24)
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recommended by the AASHTO [49] and ACI [50] codes for reinforced concrete beams in

flexure can be used as a guideline.

The cracked shear stiffness G,, (Fig. 5.10) used in the present study is based on the 45°
truss analogy. The truss is assumed to consist of rigid chords in the longitudinal direction,
shear reinforcement in the transverse direction, and 45° diagonal concrete struts. Then
applying a unit shear deformation to the truss model, the associated shear stiffness is
determined from the elongation and shortening of the stirrups (transverse reinforcing steel)
and concrete struts respectively. The cracked shear stiffness obtained thus can be expressed

as

Pt

Oor = T3 4np,

E, (5.25)

where p, = A, /st is the transverse reinforcement ratio; n = E; /E_; is the modular ratio; Ej; is
the modulus of elasticity of the transverse steel; 4, is the area of the transverse reinforcement;
s is the spacing of the transverse reinforcement; and ¢ is the thickness of the wall of the box

cross section under consideration. A detailed derivation of Eq. (5.25) can be found in [51].

A comparison of Egs. (5.23) and (5.25) indicates that the cracked shear stiffness is
approximately 10 to 30% of the initial uncracked shear stiffness, depending on the amount of
transverse reinforcement provided. This highlights the importance of considering the effect of

cracking on the shear stiffness of reinforced concrete members.
The ultimate shear stress 7, in Fig. 5.10 is obtained as a sum of the shear resistance of
concrete and the shear resistance of the transverse reinforcement [49, 50].
Ty = T + Ptfyt (5.26)

where 7., is the shear resistance of concrete, assumed to be the same as the cracking shear
stress; p,f), is the shear resistance of the transverse reinforcement determined from the 45°

truss analogy; and f), is the yield stress of the transverse reinforcing steel.

Experiments have indicated that the ultimate shear strain v, in reinforced concrete

members usually lies between 0.01 and 0.02. In the present study, a conservative value of
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vu = 0.01 is used, as shown in Fig. 5.10. Shear failure in the walls of the box cross section is

assumed to occur when the shear strain exceeds v,,.

The trilinear shear stress-strain relationship in Fig. 5.10 is completely defined by the
parameters G;, 7., G, 7, and v, discussed above. The cracking shear strain vy, and the

yield shear strain v, indicated in Fig. 5.10 are given by:

Yo = G (5.27)
i
vy = (’; (5.28)

cr

In the above formulation, evaluation of the cracked shear stiffness G., and the ultimate
shear stress 7, involves the transverse reinforcement area per unit longitudinal length 4, /s,
and the material properties E, f,, of the transverse steel. These are specified separately for
each wall of the box section, as shown in Fig. 5.9. Since the top flange and the side
cantilevers are idealized as one member for the evaluation of shear properties, the possible
variation of 4,/s, Eg, f,, as well as the wall thickness 7, between the top flange and the side
cantilevers must be considered in the evaluation of G, and 7,. This is done by determining
G., and 7, separately for the top flange and the side cantilevers, and then using the area-

weighted mean values.

5.2.2b Superposition Model for Load Reversal

In order to facilitate the mathematical formulation of load reversal in shear, the trilinear
response shown in Fig. 5.10 is modelled as a superposition of two components, each
exhibiting elastic-perfectly plastic behavior (Fig. 5.11a). This approach was used by Chan

[31] to model load reversal for a trilinear torque-twist relationship.

The initial stiffnesses G, and G, for the two components in Fig. 5.11a are found by

solving the simulataneous equations

GiYer + G2Yer = Tcr (5.29a)
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GiYer + GZ'Yy =Ty (5.29b)

The solutions are

Gl = G,' - Gz (530)
Ty — T '

G, = —— 5.31

2 Yy = Yer ( )

The yield stresses for the two components are then
Tyl = GiYer (5.32)

Ty2 = GZ‘Yy (533)

The parameters G, G, 741, 7,2 expressed above completely define the two components
in Fig. 5.11a. The slope of the load reversal path in each component is assumed to be the
same as its initial stiffness. The resulting trilinear response for shear with load reversal,

which is obtained by superposing the two components in Fig. 5.11a, is shown in Fig. 5.11b.

Five different material states are defined in Fig. 5.11b. These are described below along
with the corresponding equations for the stress 7 and the tangent stiffness G,. In the
following equations, v,; and v,, are the residual shear strains due to unloading for the two

components in Fig. 5.11a.

(1) In primary loading or unlbading prior to cracking (path OA or AO)

7=Givy ; G, =G; (5.34)
(2) Cracked but not yielded (path AC, JK or FH)

T=21, + Gy - v2) ; G, =G, (5.35)
(3) Yielded (path CE)

T=%1, ; G, =0 (5.36)
(-1) In load reversal path from state 2 or 3 (path BJ, JB, DF or FD)

=Gy =-v1)+ Gy -2 ; G, =G (5.37)
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(0) Failed
7=0; G, =0 (5.38)

The superposition model discussed here is also used to represent the load reversal

characteristics in the trilinear w4—v, relationship, as discussed next in Sec. 5.2.3.

5.2.3 w4—v,4 Relationship

The nonlinear constitutive relationship for the generalized stress w4 and the generalized
strain v, is obtained from a flexural analysis of the box beam cross section as a transverse
reinforced concrete frame of unit width in the longitudinal direction. The transverse frame
consists of four flexural members (Fig. 5.12a): the top flange, the bottom flange, the left web
and the right web. The left web and the right web are assumed to have identical transverse

reinforcement so that the transverse frame is symmetric about the z axis.

The cross section of each member of the frame is assumed to be reinforced with two
equal layers of transverse reinforcing steel in opposite faces, placed symmetrically about the
mid-depth (Fig. 5.12b). The total area of the transverse reinforcing steel in the cross section
of unit width is designated as a, = 4,/s, and the concrete cover to the centroid of each layer
of reinforcement is designated as d. The overall depth of the cross section, ¢, corresponds to
the thickness of the walls of the box section. If the transverse reinforcement actually consists

of only one layer at the mid-thickness of the flanges or the webs, d becomes equal to ¢ /2.

5.2.3a Moment-Curvature Relationship

The moment-curvature (m —¢) relationship of the cross section in Fig. 5.12b, assumed to
be under-reinforced, is idealized using a trilinear model, as shown in Fig. 5.12c. The flexural

rigidity of the initial linear elastic branch prior to cracking is taken as

(EI), = Ea'lg (539)

where I, = t3/12 is moment of inertia of the gross concrete section about centroidal axis,

neglecting reinforcement.
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Concrete cracking is assumed to occur when the extreme fiber tensile stress exceeds the

tensile strength f, of concrete, and this gives a cracking moment per unit length of

t2
m, = ﬁ— (5.40)
6
The cracked flexural rigidity (ET),, in Fig. 5.12c is taken as
(El)cr = Ecilcr (541)

where I, is moment of inertia of the cracked section transformed to concrete (Fig. 5.13a).
Ignoring the small area of concrete displaced by the compression steel, analysis of the

transformed section in Fig. 5.13a gives

- kd)’

1, = ¥ . ”—;’-[(d — kd)? + (kd - d] (5.42)
kd = - na, + Vna,(na, +t) (5.43)

where n is the modular ratio, kd is the depth of the neutral axis measured from the extreme
compression fiber, and d = ¢ — d is the distance from the extreme compression fiber to the

centroid of tension reinforcement.

The ultimate moment per unit length, m,, in Fig. 5.12c is determined based on the
assumption of an equivalent rectangular concrete stress distribution, as recommended by the
AASHTO [49] and ACI [50] codes. The assumed strain and stress distributions at ultimate
are shown in Fig. 5.13b and c for singly reinforced (d = t/2) and doubly reinforced sections,
respectively. In accordance with the requirement for a practical section, the tension steel is
assumed to yield at ultimate. The compression steel in the doubly reinforced section (Fig.
5.13c) will not yield in compression since the compression and tension steel areas are equal.

It may however be actually in tension.

Applying conditions of equilibrium and compatibility of strains in Fig. 5.13b and c, the

neutral axis depth c is obtained as follows:

For singly reinforced section,
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Swa
c = ——= (5.44a)
0.858,f,
For doubly reinforced section,
a‘Z 2 L4 4 a,
T(Estfc - fyt) + 1.78,fcaq,Ege.d - _Z'(Estfc - fyl)
c = (5.44b)

1.78,f,

In Eq. (5.44) above, ¢ is the strain at the extreme concrete compression fiber, 8; = a/c, a is
the depth of the equivalent rectangular concrete stress block, and all other quantities are as

defined previously.

The ultimate moment m,, per unit length is then given by:
For singly reinforced section,
m, = a,f,(d - 0.5a) (5.45a)
For doubly reinforced section,
m, = 0.85f a(d - 0.5a) + 0.5a,Eqe.(1 - d/c)d - d) (5.45b)

From the strain distributions in Fig. 5.13b and c, the ultimate curvature ¢, is found to

be

by = — (5.46)

In the above equations, the values of 8, and ¢, need to be known. The ACI code [50]
recommends that 8; be taken as 0.85 for concrete strengths f, up to and including 4,000 psi,
and be reduced continuously at a rate of 0.05 for each 1,000 psi of strength in excess of 4,000
psi, but B, shall not be taken less than 0.65. For the ultimate moment (m,) calculations, the
value of the strain at the extreme concrete compression fiber is taken as ¢, = 0.003. For the
ultimate curvature (¢,) calculations , however, a value of ¢, = 0.003 is believed to be too

conservative, and hence a value of ¢, = 0.004, suggested by Park and Paulay [51], is used.

Finally, the cracking curvature ¢, and the yield curvature ¢, in Fig. 5.12c are given by:
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o e
b = EI), (5.47)
m,
¢, = EDe (5.48)
5.2.3b Trilinear Model

The wy~v, relationship for the transverse frame in Fig. 5.12a can now be found by
imposing increasing values of the corner displacements in Fig. 2.2b qq;responding to the
generalized strain vy, and then analyzing the frame for the associated generalized stress w,.
The resulting response, based on the moment-curvature characteristics in Fig. 5.12c, is shown
by the dashed lines in Fig. 5.14. The initial response is linear elastic until at A, the moment
per unit length at the top (m,) or the bottom (my) corners of the frame exceeds the critical
m,, at those corners, and cracking occurs. After cracking, the response becomes nonlinear.
The next major event occurs at B, when plastic hinges are formed at either the top or the
bottom corners of the frame due to the moment per unit length reaching the critical m, at
those corners. Then at C, plastic hinges form at the remaining two corners, and this results in
a mechanism. Beyond C, the response is perfectly plastic until failure occurs at D, when the
plastic hinge rotation capacity is exceeded at either the top or the bottom corners of the

frame.

In this study, an idealized trilinear model, shown by the solid lines in Fig. 5.14, is used
to represent the w,-v, relationship. Prior to cracking, the flexural rigidities of the frame
members are given by Eq. (5.39), and hence the initial generalized stiffness D; in Fig. 5.14 is

obtained as

_ 24F,;
T a

D; g (1 - 6,) + Lep(1 - 6p)] (5-49)

where 6, and 6, (Fig. 2.2b) are given by

212,a% + 61, Iab

8 =1-
! Uglpyab + 3lglyb® + 12,a% + 2l Iyab

(5.50)
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212,a% + 6l I, ab

0, =1~
b Iylp,ab + 3lglgb? + 13,0 + 21, I ab

(5.51)

and I, = 13/12, Iy, = 15'/12, I, = 1,}/12 are moments of inertia of gross concrete sections

for top flange, bottom flange and webs respectively.

The moments per unit length at the top and the bottom corners, prior to cracking, are

6E,;1

m, = —2”1(1 - 0,)vs (5.52)
6E,1

my = -—22(1 - 8,)vs (5.53)

The critical cracking moment per unit length at the top corners, m,, , is the minimum of the
values calculated from Eq. (5.40) for the top flange and the webs. Similarly, the critical
cracking moment per unit length at the bottom corners, m,, , is the minimum of the values
calculated from Eq. (5.40) for the bottom flange and the webs. By equating m,, , and m,, 5 to
m, and m, respectively in Egs. (5.52) and (5.53), two values of v, are obtained, and the
minimum of these two values is taken as the generalized cracking strain v, in Fig. 5.14.

With v, thus determined, the generalized cracking stress w4, is given by

Waer = Divye (5.54)

In the ultimate range ED (Fig. 5.14), the moment per unit length, m,,, at the top
corners of the frame will be the minimum of the m, values calculated from Eq. (5.45) for the
top flange and the webs. Similarly, the moment per unit length, m, 4, at the bottom corners
of the frame will be the minimum of the m, values calculated from Eq. (5.45) for the bottom
flange and the webs. Then from the principle of virtual displacements, the generalized

ultimate stress wy, is easily obtained as

Way = 4my,, + myp) (5.55)

The generalized cracked stiffness D, in Fig. 5.14 is estimated based on an effective
flexural rigidity E,;I, for each frame member. The following empirical expression developed

by Branson [52], and subsequently recommended by the AASHTO [49] and ACI [50] codes, is
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used to calculate the effective moment of inertia /,.

3 3
me, me,
1, = [ma ] ]g + [l - [ma ] ]Ic, (5.56)

where for the present application, m, is the maximum moment per unit length at stage

defined by (v4,, ws,) in Fig. 5.14. For the top flange m, = m, ,, for the bottom flange
m, = m, ;, and for the webs m, = max (m, ,, m, ;). The effective moment of inertia is thus

calculated for each frame member, and the generalized cracked stiffness is estimated as

24E,;
Dcr = a =

Uei(1 = 6,) + Iop(1 = 65)] (5.57)

where I, and I, are the effective moments of inertia for the top and the bottom flanges
respectively; 6, and 6, are again calculated from Egs. (5.50) and (5.51) respectively, but with

the gross moments of inertia replaced by the corresponding effective moments of inertia.

If it is assumed that EI,, with I, given by Eq. (5.56), does represent the exact secant
stiffness of the frame members, the value of D, calculated as above will lie between the
secant stiffnesses at points B and C in Fig. 5.14. At point B, when the first two plastic hinges
form at either the top or the bottom corners of the frame, the moment per unit length at the
other two corners is less than the ultimate value (m,, or m, ;) at those locations. The actual
value of m, in Eq. (5.56) will then be smaller than the ultimate values (my,, m, ;) for one or
more of the transverse frame members, thus resulting in a higher secant stiffness than D,,. At
point C, when plastic hinges just form at all four corners, the corner moments are as assumed
in the calculation of D.,. But D, in Eq. (5.57) is obtained from an analysis of a continuous
frame (i.e., no hinges at any corner) although the response between points B and C does
involve hinges at two corners. Thus the secant stiffness at C will be less than D,. In the
special case when the moment-curvature relationships (Fig. 5.12c) for the top and the bottom

flange sections are identical, points B, C and E in Fig. 5.14 will coincide.
The generalized yield strain v, in Fig. 5.14 is given by

w
Vay = D“c (5.58)
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The generalized ultimate strain, v4,, is governed by the rotation capacities of the plastic
hinges at the four corners of the frame. As shown by Park and Paulay [51], the rotation
capacity 6, to one side of the plastic hinge in a reinforced concrete flexural member can be

expressed as

bp = (6u — &)y (5.59)
where ¢, and ¢, are respectively the ultimate and the yield curvatures of the section (Fig.
5.12c), and I, is the equivalent length of the plastic hinge over which the plastic curvature
(¢, — ¢,) is considered to be constant. Various empirical expressions have been proposed for

estimating the plastic hinge length /,. In this study, the following empirical relationship due

to Corley [53] and Mattock [54] is used.

I, = 0.5d + 0.05z (5.60)

where d is the effective depth of section, and z is the distance from the critical section to the
point of contraflexure. In the present application, z = a/2 for the critical sections at the ends
of the top and the bottom flanges, z = m, ,b/(m,, + m, ;) for the critical sections at the top
ends of the webs, and z = m, yb/(m,, + m, ;) for the critical sections at the bottom ends of

the webs.

After the formation of a mechanism due to plastic hinges at all four corners of the
frame, a unit increase in the generalized strain v4 produces two units of plastic hinge rotation
at each corner of the frame (Fig. 2.2b). The generalized ultimate strain at failure can then be

estimated as

Vau = Vay + 0.5, (5.61)

where 6, is the plastic hinge rotation at the frame corners at failure when the plastic hinge

rotation capacity is first reached at either the top or the bottom corners of the frame.

The trilinear constitutive model in Fig. 5.14 is then completely defined. To model the
load reversal characteristics and the associated material states, exactly the same superposition

model used for shear response (Sec. 5.2.2b, Fig. 5.11) is employed.
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5.3 Prestressing Steel Segment

The stress-strain curve of prestressing steel need to be known for the formulation of the
prestressing steel segment properties. The stress-strain curve of prestressing steel differs from
that of reinforcing steel in that it exhibits no definite yield plateau or point. The curve is
initially linear until at a stress of about two-thirds of the tensile strength, yielding develops
gradually. In the inelastic range, the curve continues to rise smoothly up to the tensile
strength. In order to accommodate this behavior, a multilinear model (Fig. 5.15), similar to
the one used by Kang [28], is used to represent the prestressing steel stress-strain curve in this

study.

Since the prestressing steel is used exclusively in tension, only the tensile stress-strain
curve is considered in Fig. 5.15. The strains ¢, ¢;, . . ., ¢, and the corresponding stresses
oy, 03, . .., o, define n linear branches with tangent moduli E, E,, ..., E,. The slope of
the unloading and reloading path is assumed to be the same as the initial modulus E,.
Failure is assumed to occur when the strain exceeds ¢,. For a model with n linear branches,
(n + 2) material states are defined, as shown in Fig. 5.15. The material states 1, 2,...,n
correspond to the n primary branches. The two additional material states -1 and 0

correspond respectively to unloading-reloading and failure.

§.4 Summary

The nonlinear constitutive models, which form the basis of the nonlinear material
analysis in this study, were discussed in detail in this chapter. The uniaxial stress-strain
curves of concrete and reinforcing steel, used to represent the behavior of the reinforced
concrete box beam element under longitudinal normal strains and stresses, were modelled.
The interaction between concrete and reinforcing steel due to the tension stiffening effect was
considered by means of a modified stress-strain curve for the reinforcing steel. Trilinear
constitutive models were developed for the shear response and the transverse flexural
response of the reinforced concrete box beam element. A superposition model based on two

bilinear components was used to represent the load reversal characteristics in these trilinear
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constitutive relationships. Finally, the stress-strain curve of the prestressing steel was

modelled using a multilinear idealization.
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6. NONLINEAR ANALYSIS PROCEDURE

6.1 General

Due to the nonlinearities in the constitutive relationships discussed in the previous

chapter (Chapter 5), the equilibrium equations of the structure of the form
Kr=R (6.1)

will be nonlinear. This chapter deals with the details of the procedure used in this study for

the solution of the nonlinear equilibrium equations above.

6.2 Solution Methods for Nonlinear Equilibrium Equations

Various numerical methods are available for the solution of the nonlinear equilibrium

equations (Eq. (6.1)). These can generally be classified into three categories as follows.

6.2.1 Incremental Load Method

In this method, the vector of total loads R is divided into a number of load increments
AR. Using the tangent stiffness at the beginning of each load increment, the corresponding
displacement increments Ar are found. The vector of total displacements r is then obtained
by summing the displacement increments Ar. The method is shown schematically in Fig.
6.1a. The solution tends to deviate from the true path unléss the load increments AR are

chosen to be sufficiently small.

An improvement in the incremental load method is achieved by checking the
equilibrium after each load increment. The magnitude of discrepancy from the equilibrium
state is represented by the unbalanced loads obtained by subtracting the internal resisting
loads from the external nodal loads. The unbalanced loads for each load increment are then
added to the next load increment. The result is a better approximation of the true load-

displacement path, as shown in Fig. 6.1b.
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6.2.2 Iterative Method

The total loads are applied in one step in the iterative method. A series of iterations are
then performed by applying the unbalanced loads until equilibrium is satisfied to the desired
degree. Depending on the stiffness matrix used for each iteration, three variations of the

iterative method are available.

Tangent Stiffness Method

In this method, often referred to as the Newton-Raphson method, an updated tangent
stiffness matrix is used for each iteration (Fig. 6.1c). This leads to the most rapid
convergence but has the disadvantage that the tangent stiffness matrix has to be formed and

triangularized for each iteration.

Initial Stiffness Method

A modification of the Newton-Raphson method is to perform all iterations with a
constant stiffness matrix which is equal to the initial tangent stiffness matrix (Fig. 6.1d). An
obvious advantage of this method is that the stiffness matrix has to be formed and

triangularized only once. But the convergence is also slower.

Secant Stiffness Method

An attempt is made in this method to find a secant stiffness matrix at each iteration
which satisfies the load-displacement relationship as shown in Fig. 6.1e. The secant stiffness

matrix is then used for the iterative solution.

6.2.3 Combined Method

The incremental load method and the iterative method can be combined in a variety of
ways to try and find a solution scheme best suited to any given problem. Usually the total
loads are divided into load increments, and for each load increment one of the three iterative

methods is used for better accuracy (Fig. 6.1f).
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6.3 Solution Strategies for Present Study

In nonlinear analysis of a reinforced concrete structure, the solution is generally path-
dependent mainly due to progressive cracking in tensile regions. Hence the sequence of
loading must be considered in the analysis. This is done in the present study by means of a
number of “load patterns” applied cumulatively in sequence. Analysis is performed
successively for each load pattern, and the incremental solutions are added to the previous

totals to obtain the updated cumulative solutions.

The dead load and the prestressing loads at transfer are always applied as the first load
pattern. Any other external loads that are present during the transfer of prestress can also be
considered as part of the first load pattern. The structurg is analyzed as an ordinary
reinforced concrete one for the first load pattern. The contribution of the prestressing steel to

the overall structural stiffness is neglected since at this stage the steel is unbonded.

Live load history can then be simulated as the second and subsequent load patterns.
The last load pattern will normally be the one under which failure analysis of the structure is
desired. For the second and subsequent load patterns, the prestressing steel is assumed to be
bonded to the concrete and the prestressing steel stiffnesses are included in the overall

structural stiffness.

For each load pattern, either a “load control” or a “displacement control” strategy is

employed for the solution of the nonlinear equilibrium equations.

6.3.1 Load Control Strategy

Conventionally, the solution of the nonlinear equilibrium equations has been achieved
by controlling the loads R and solving for the corresponding displacements r. The methods
described in Sec. 6.2 are based on this approach. The load control strategy, as used in the
present study, is a combination of the incremental and iterative methods described
previously. The total loads for the load pattern are divided into a number of load steps with

load increments AR,, each of which may be of different magnitudes. Unbalanced load
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iterations are performed for each load step until certain predefined convergence criteria (Sec.

6.7) are satisfied.

For any displaced state of the structure, let r be the vector of nodal displacements, let
R, be the vector of accumulated external nodal loads, let R; be the vector of internal resisting
loads (i.e., the vector of nodal loads in equilibrium with the internal forces of the structure),

and let X, be the tangent stiffness matrix. The vector of unbalanced loads, R,, is given by
R, =R, - R, 6.2)
and provides a measure of the solution error. The accumulated external nodal loads R, fora

load step are obtained by adding the load increments AR, to the previous R,. The iterative

sequence (Fig. 6.2) for the kth iteration in a load step is then as follows:

Ri' =R, - R}! (6.3)
ark = (KH'RK-Y, fork < j (6.4a)
Ark = (K)'REK-V, fork > j (6.4b)
rk =k ark (6.5)
RF = function of r* (6.6)

Eq. (6.6) above represents the ‘“‘state determination” phase in which the internal forces
and the resisting load vector are determined. It is apparent from Eq. (6.4) that a modification
of the tangent stiffness and initial stiffness iterations is used. The tangent stiffness is used for
the first j iterations, and subsequent iterations are performed with a constant stiffness equal
to the tafxgent stiffness at the jth iteration. The value of j is determined such that a certain

predefined criterion related to the convergence of the solution is satisfied (Sec. 6.5).

6.3.2 Displacement Control Strategy

In a nonlinear material analysis, the load-displacement curve of the structure can exhibit
strain-softening, as shown in Fig. 6.3. The tangent stiffness matrix of the structure then

becomes nonpositive definite at some point in the solution path. The conventional methods
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for solving the nonlinear equilibrium equations, as discussed in Sec. 6.2, are not applicable in

such situations without certain modifications.

Various numerical schemes have been proposed in the past to circumvent the difficulties
which arise in treating the nonpositive definiteness of the stiffness matrix, and in passing over
the limit point (point A in Fig. 6.3) when the determinant of the stiffness matrix changes sign.
Based on a comparative study made by Chan [31], the displacement control strategy proposed

by Powell and Simons [55] has been chosen for the present study.

In the displacement control strategy, the analysis for a load pattern consists of a number
of displacement steps. For each displacement step, a displacement increment § is specified at
a particular degree of freedom, say n. The displacement increments 6 can vary from one
displacement step to another, but the controlled degree of freedom » must remain the same.
In addition, an increment of external load vector, AR,, is specified for the load pattern. This
load increment is used to establish only a direction of motion, and hence is of arbitrary
magnitude. The analysis for the displacement step is then performed using an iterative
procedure based on limiting the displacement increment for the nth degree of freedom to é.

The iterations are terminated when predefined convergence criteria (Sec. 6.7) are satisfied.

At each iteration in a displacement step, separate displacement increments are

calculated for R, and AR, as follows.
Ar, = K7'R, 6.7)
ar, = K" AR, (6.8)
The displacement increments for the iteration are then taken as
Ar = Ar, + adr, 6.9)

The value of a must be selected to satisfy the specified limit on the displacement increment

for the nth degree of freedom. In mathematical terms,

bTAr = & , for first iteration (6.10a)
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bTAr = 0 , for subsequent iterations (6.10b)

where the vector b, contains zeros except for unity at location n. Then from Egs. (6.9) and

(6.10),
6 -blar
a = —=—=>, for first iteration (6.11a)
b, Ar,
b Ar
a = - ==—=, for subsequent iterations (6.11b)
by ar,

The external load increments for the iteration corresponding to*the displacement
increments Ar are given by aAR,. If the value of a is negative, external loads will be
removed during the iteration. This will occur for a progressively softening system. On the
other hand, if the value of « is positive, external loads will be added during the iteration.

This will occur for a progressively stiffening system.

It may be noted that the tangent stiffness matrix in Egs. (6.7) and (6.8) need not be

positive definite, provided it is nonsingular.

The iterative sequence (Fig. 6.4) for the kth iteration in a displacement step can be

summarized as follows:

R{' = RET - R (6.12)
Ark = (KH'RK-V | fork < (6.13a)
Ark = (K 'RV, fork > j (6.13b)
ark = (K 'AR, , fork <j (6.14a)
Arf = (K)'AR, , fork > j (6.14b)
8- blark
a= 28 fork =1 (6.152)
bn Ar,
bTark
a=- 22K fork > 1 (6.15b)
by Ar,

Ark = Ark + aArk (6.16)
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RF=RF' + AR, 6.17)
=kl ark (6.18)
RF = function of r* (6.19)

It can be seen from Egs. (6.13) and (6.14) above that, as in the load control strategy, the
tangent stiffness is used for the first j iterations, and a constant stiffness, equal to the tangent

stiffness at the jth iteration, is used for the subsequent iterations.

An important characteristic of the displacement control strategy is that the vector of
accumulated external nodal loads, R,, varies from iteration to iteration and cannot be
predetermined. This is in contrast to the load control strategy where R, is predetermined and
femains constant for all iterations. If the solution is desired for given external loads, the
displacement control strategy cannot be used. This is the case with dead load and
prestressing loads at transfer whose magnitudes are fixed and cannot be arbitrarily scaled.
Since the dead load and the prestressing loads at transfer are applied as the first load pattern,
the load control strategy must be used for this load pattern, unless dead load and prestressing

are not included in the analysis.

6.4 State Determination

After each iteration in a load or displacement step of the analysis, the element states
(strains, stresses and tangent moduli) are determined for each reinforced concrete box beam
element and each prestressing steel segment. These are then used to calculate the internal
resisting load vector R; for the iteration (Sec. 6.5) and the tangent stiffness matrix K, for the

next iteration (Sec. 6.6).

The element state may be determined using either a “path-dependent™ or a “path-
independent” scheme. In the path-dependent scheme, the element state at the end of any
iteration is determined with reference to the element state at the end of the previous iteration.
The final state at the end of all iterations for a load or displacement step thus depends on the

path followed during the iterations. In the path-independent scheme, the element state at the
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end of any iteration is determined with reference to the element state at the beginning of the
iterative sequence. The final state thus depends only on the beginning state and the sum of

the displacement increments for all iterations, and hence is independent of the iteration path.

If all the element strains increase monotonically during the iterations, there will be no
difference between the final states calculated by the two schemes. However, in the analysis of
a reinforced or prestressed concrete structure, the element strains often do not increase
monotonically. This is even more so when a displacement control strategy is used [55].
Using the path-dependent scheme in such instances can lead to serious errors in the solution.

Thus path-independent state determination is used in the present study.

6.4.1 Reinforced Concrete Box Beam Element

At any iteration, let r be the updated nodal displacements for the element determined
from Eq. (6.5) or (6.18). The current strains can then be determined from the strain-

displacement relationships.

& = B.r (6.20)
Yo = Byr (6.21)
ve=B.r (622)

The matrices B,, B, and B, are given respectively by Egs. (2.50), (2.52) and (2.43) derived

previously in Sec. 2.6.

The longitudinal normal strains ¢, are calculated from Eq. (6.20) at the mid-point of
each concrete and longitudinal reinforcing steel filament (Sec. 5.2.1) for the two Gauss
quadrature points along the element axis (Fig. 2.1a). The corresponding concrete filament
stresses o, and tangent moduli E,. are then determined from the nonlinear constitutive
relationship described in Sec. 5.2.1a. The steel filament stresses o, and tangent moduli E,
are determined from the nonlinear constitutive model for reinforcing steel described in Secs.

5.2.1b and 5.2.1c.
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The shear strains are calculated from Eq. (6.21) at the mid-points of the four walls of
the box cross section (Sec. 5.2.2) for the two Gauss quadrature points along the element axis.
The trilinear 7-+ relationship described in Sec. 5.2.2 is then used to determine the

corresponding shear stresses 7,; and tangent shear stiffnesses G,.

The generalized strains v,4 are calculated from Eq. (6.22) at the two Gauss quadrature
points along the element axis. The corresponding generalized stresses w, and tangent
rigidities D, are then determined form the nonlinear constitutive model described in Sec.

5.2.3.

6.4.2 Prestressing Steel Segment

The initial prestressing steel segment forces are computed based on specified jacking
forces at each tendon end, including the effects of friction and anchorage slip losses, as
described previously in Chapter 3. The initial stresses and the corresponding initial strains
and tangent moduli can then be easily obtained. These initial strains, stresses and tangent
moduli represent the prestressing steel segment states at the end of the first load pattern, i.e.,
after the transfer of prestress. During the analysis for the subsequent load patterns, the state
determination is based on a formulation of the prestressing steel segments as truss-type

elements.

Consider the prestressing steel segment between two consecutive nodes i and (i + 1) of
the structure. In the undeformed configuration of the structure, the global coordinates
X2 Y0 2% and (X%,, Y%, Z5%,) of the two segment ends at nmodes i and (i + 1),

respectively, are known from the specified tendon profile (Sec. 3.3). The vector

X% - x°
Vo=1Y% -7 (6.23)
z%, -2

from segment end i to (i + 1) represents the original axis of the segment, and its magnitude

| Vol = L represents the original length of the segment.
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Next, let (X}, YX, ZF) and (XX, Y%, Z% ) be the global coordinates of segment ends
i and (i + 1) at the end of the kth iteration in a load or displacement step. Then the vector

Vi from segment end i/ to (i + 1) at the kth iteration is given by

Xik+l - Xik‘
Vi = 1Yk, - Yf (6.24)
Zik+l - Zik

Using small displacement theory, the current length L, of the prestressing steel segment at the
kth iteration is given by the projection of vector ¥ on the original axis of the segment. That

is,
L = -Lviv (6.25)
Lo_ -
Similarly, the length L, _, at the end of the (k - 1)th iteration is
1
Ly = -V Vi (6.26)
0

Then for any iteration k, the increment in the axial strain of the prestressing steel

segment is defined as

Ly - Ly,
Ay = == (6.27)
Substituting Eqs. (6.25) and (6.26) in Eq. (6.27),
8¢ = 23 VE Wk - Vi) | (6.28)
0
Making use of Eq. (6.24),
| AXi.y - AX;
A¢y = P_{ AY;. - AY; (6.29)
0 AZHI - AZ:

where (AX;, AY;, AZ;) and (AX;,,, AY;,,, AZ;,,) represent the increments in the global

coordinates of segment ends i and (i + 1), respectively, for any iteration.
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Now, if Ar; and Ar;,; are the nodal displacement increments at nodes i and (i + 1), the

corresponding increments in the global coordinates of segment ends i and (i + 1) are given by

AX; AX;
AY; t = é,‘ AZ; 5 AY[+] = éi+l A£j+l (6.30)
AZ; AZ; 4

where 4; and 4;,, are calculated from Eq. (2.29b) with the known eccentricities (y;, z;) and

Vi+1> Zi+1) Of the segment ends with respect to the element nodes i and (i + 1).

Finally, combining Egs. (6.29) and (6.30), the axial strain increment Ae, corresponding

to the nodal displacement increments

ar;
ar = {Azm] (6.31)

for the prestressing steel segment, is obtained as

Ae, = B, Ar (6.32a)
where
B, = 5 VE<- A 4> (6.32b)
0

For the state determination after any iteration, the axial strain increment Ae, is first
calculated from Eq. (6.32). The total strain ¢, is then obtained by adding Ae, to the previous
total. Finally, the stress o, and the tangent modulus E,, are determined from the multilinear

stress-strain relationship for prestressing steel described in Sec. 5.3.

6.5 Calculation of Internal Resisting Load Vector

The internal resisting load vector, R;, is defined as the vector of nodal loads in
equilibrium with the internal stresses of the structure. The internal resisting loads are
calculated for each reinforced concrete box beam element and each prestressing steel segment,
as described subsequently, and then assembled for the structure. In calculating the

unbalanced load vector R, by Eq. (6.3) or (6.12), the support reactions R, (Sec. 2.10) have to



135

be subtracted from the internal resisting loads R;, since the external nodal loads R, do not

include the reactions.

The internal resisting load vector for a reinforced concrete box beam element

corresponding to a given state of stresses o, 7,; and w, is given by

— -

R; =

1 1
[BToxnda di+ [ [ Bl Ndd di+ [ BIwgn ds (6.33)
14 21 4 2

where A d4 d¢ represents the differential volume of the element, Ay d{ represents the
differential arc length along the element axis, and Ay and A are given respectively by Eqgs.

(2.5¢) and (2.47).

The integrations in Eq. (6.33) with respect to the natural coordinate ¢ along the element
axis are done numerically using two-point Gauss quadrature (Fig. 2.1a). The first integral
over the cross sectional area, involving the normal stress o,, is evaluated using the concrete
and steel filament system described in Sec. 5.2.1 (Eq. (5.1), Fig. 5.2). The second integral
over the cross sectional area, involving the shear stress 7,,, is evaluated separately for the four

discrete walls of the cross section, as described in Sec. 5.2.2 (Eq. (5.22), Fig. 5.9).

The internal resisting load vector for a prestressing steel segment corresponding to an

axial stress o), is calculated as
R, = L Blo, dV = o,4,L,B] (6.34)

where A, is the cross sectional area of the prestressing tendon to which the segment belongs,

L, is the original length of the segment, and B, is as given by Eq. (6.32b).

6.6 Calculation of Tangent Stiffness Matrix

The tangent stiffness matrix K, is calculated for each reinforced concrete box beam
element and prestressing steel segment, and assembled for the structure. The support spring
stiffnesses are then added to the appropriate terms of the tangent stiffness matrix of the

structure, as described in Sec. 2.10.
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The tangent stiffness matrix for a reinforced concrete box beam element is given by
1 1 1
K = [ [BTE,BNdA dt+ [ [ BIG,B\dA di + [ BID,B,) dt (6.35)
14 14 21

The integrals are again evaluated using two-point Gauss quadrature along the element axis.
The same discretization of the cross section into concrete and steel filaments and four shear
elements, as used for calculating the internal resisting load vector, is employed in performing

the integrations over the cross sectional area.

The contribution of a prestressing steel- segment to the tangent stiffness matrix is

calculated as

K, = Lg,E,,,gp dV = E,A,LB]B, (6.36)

6.7 Convergence Criteria

Since an iterative technique is used in this study to trace the nonlinear behavior of a
structure (Sec. 6.3), convergence criteria are necessary to terminate the iterative process when
the solution is deemed to be sufficiently close to the equilibrium state. Two measures of
convergence can be used. The first is the amount by which equilibrium is violated, which is
reflected in the magnitudes of the unbalanced loads. The second possibility is to assess the
accuracy of the total displacements. This can be done by monitoring the magnitudes of

additional displacement increments.

In this study, magnitudes of additional displacement increments are measured in terms
of a displacement ratio proposed by Kang [28]. For each load or displacement step, the two
components of the displacement vector r that have the maximum absolute values of
translational displacement increment and rotational displacement increment for the first
iteration are selected. If a displacement control strategy is being used, the controlled degree
of freedom is not considered in this selection. Suppose the ith component has the maximum
displacement ( translational) increment, and the jth component has the maximum rotation

increment. Let r¥~! be the total displacement increment for the load or displacement step of
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the ith component after the (k - 1)th iteration, and let Ar} be the displacement increment of
the ith component for the kth iteration. rf~! and Ar} are similarly defined for the rotation
increments. After the kth iteration, two ratios p,; and p, are calculated for the displacement

and rotation increments, respectively, as follows

ark ark
Pd = r,'k-l ’ pr = r}(_] 6.37)
The displacement ratio p is defined as
p = max (pg, p,) (6.38)

To check the convergence after each iteration, the displacement ratio p is compared with

three specified tolerances as follows.
1. p; (displacement ratio tolerance for intermediate load or displacement steps)

If p < p;, proceed to next load or displacement step.

If p > p,, continue iteration.
2. py (displacement ratio tolerance for final load or displacement step)

If p < pys, proceed to next load pattern.

If p > py, continue iteration.
3. p. (displacement ratio tolerance for changing stiffness)

If p < p., use previously formed tangent stiffness matrix for next iteration.

If p > p., form new tangent stiffness matrix for next iteration.

By specifying appropriate values of p; and ps, intermediate and final results can be
obtained to the desired degree of accuracy. In general, the tolerance p. implies tangent
stiffness iterations followed by constant stiffness iterations. If desired, however, the tangent
stiffness method or the initial stiffness method can be used by specifying p, = 0 or pc = some

high value, respectively.

There is a possibility that equilibrium is violated excessively even though the

displacement convergence criterion is satisfied. To guard against such a case, maximum
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allowable unbalanced loads are specified for each of the eight nodal degrees of freedom. If

the unbalanced loads are not within these allowable limits, iteration is continued.

In addition to the convergence tolerances described above, the number of iterations
performed for each load or displacement step is limited in case the convergence tolerances
have been set too stringently. The maximum number of iterations allowed for intermediate
load or displacement steps is specified as n;, and the maximum number of iterations allowed

for the final load or displacement step is specified as n;.

6.8 Termination of Solution

The solution is of course terminated if all the load and/or displacement steps are
executed successfully. However, the solution is also terminated under the following

circumstances if they occur before the completion of all the load and/or displacement steps.

If a load control strategy is being used, the solution is terminated when a negative pivot
is encountered during the triangularization of the tangent stiffness matrix. The negative pivot
implies that the tangent stiffness matrix is nonpositive definite, and this indicates that the
ultimate load of the structure (point A in Fig. 6.3) has been reached. A nonpositive definite
tangent stiffness matrix occurs either due to the strains exceeding the specified ultimate values
at one or more locations, or due to extensive yielding of concrete and/or steel at strains lower

than the ultimate values.

If a displacement control strategy is being used, and if an ultimate load analysis is
desired, the solution is terminated at the end of the displacement step during which a

negative pivot in the triangularization process is detected.

In addition to the above criteria, the solution is also terminated if a zero pivot is
encountered during the triangularization of the tangent stiffness matrix. Though a zero pivot
does not necessarily mean that the tangent stiffness matrix is singular, the Gaussian
elimination algorithm used in this study fails, since it does not include row and column

interchanges. A zero pivot, however, does imply that the tangent stiffness matrix is

nonpositive definite, thus indicating that the ultimate load of the structure has been reached.
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7. COMPUTER PROGRAMS

7.1 General

Two computer programs, LAPBOX and NAPBOX, have been developed incorporating
the theory presented previously in Chapters 2, 3, 5 and 6. LAPBOX is intended for linear
elastic analysis, whereas NAPBOX is intended for nonlinear material analysis. The linear
elastic examples in Chapter 4 were analyzed with LAPBOX. NAPBOX is used to obtain the

results for the nonlinear analysis examples in Chapter 8.

The computer programs LAPBOX (Linear elastic Analysis of Prestressed concrete BOX
girders) and NAPBOX (Nonlinear Analysis of Prestressed concrete BOX girders) are coded in
FORTRAN IV with double precision, and have been tested on the IBM 3090 computer at the
University of California, Berkeley. Within each program, the blank common is dynamically
dimensioned so that the central memory of the computer can be used efficiently. The
equation solving is done by Gaussian elimination, and the equation solver has been adapted
to solve symmetric banded matrices by triangularization and back substitution in two

separate routines.

7.2 Input Requirements

Data describing the structure to be analyzed are provided in an input file of card images.
The required formats of the input files for LAPBOX and NAPBOX can be found in
Appendices A and C respectively. Sample input files are given in Appendix B for LAPBOX

and in Appendix D for NAPBOX. Consistent units must be used for all input data.

The basic input for both programs consist of: structure geometry and boundary
conditions; material properties; prestressing data; structure loading; and locations for stress
output. NAPBOX additionally requires concrete and longitudinal steel filament data,
transverse steel data and convergence tolerances. The input variables are defined in the input
guides (Appendices A and C). Most of the input requirements are self-explanatory. However,

the following discussions on certain aspects of the input data are necessary.
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7.2.1 Distributed Element Load Data for LAPBOX and NAPBOX

Provisions have been made in the computer programs LAPBOX and NAPBOX for the
application of uniformly distributed element loads such as those shown in Fig. 7.1. The load
consists of a uniform pressure p in the Z direction acting upon a certain area of the top
flange (including the side cantilevers) or the bottom flange. In the longitudinal direction, the
load stretches from element NFE through element NFL. Element NFE is nearer to node 1
while element NLE is nearer to node NN. The transverse distribution of the load is defined
by the coordinate y,, (, for top flange, y,,, for bottom flange) to the centerline of the load

and the transverse width w (w, for top flange, w, for bottom flange).

In the computer programs, the fractions

%
YMF(1) = — " for top flange (7.1a)

+2f
YMF(2) = % , for bottom flange (7.1b)

are specified as input. The transverse widths, w; and w,, can be input either as fractions of

the flange widths (w;/(a + 2f) and w,/a) or as absolute values.

Proper signs must be used for p and y,,. p is taken to be positive wU[the load acts
along the Z axis, and y,, is measured positive along the y axis. The distributed element
loads are automatically converted into equivalent nodal loads within the programs, as

discussed in Sec. 2.8.2.

7.2.2 Section Data for NAPBOX

As discussed earlier (Sec. 5.2.1, Fig. 5.2), the cross section of the box beam element is
subdivided into a number of concrete and longitudinal reinforcing steel filaments for
nonlinear material analysis. The filament system for each different section is described

through the section data for NAPBOX.

Each wall of the cross section is subdivided into NCL concrete layers, and each layer
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into NCFL concrete filaments (Fig. 7.2a). The layers and the filaments in each layer are
numbered as shown in Fig. 7.2a. Then any concrete filament is uniquely identified by its
location (top flange, bottom flange, left web, right web, left cantilever or right cantilever), the
number of the layer to which it belongs, and its filament number within that layer. All the
concrete filaments in a section are assumed to have the same material properties. .The
thicknesses THS of the concrete layers in each wall are specified as fractions of the total wall
thickness. The widths WDH of the filaments are specified as fractions of the total wall width.
Expressing THS and WDH as fractions enables the modelling of a nonprismatic element.
From the above data, the area and the local y, z coordinates at the mid-point of each

concrete filament can be calculated for any location along the axis of a nonprismatic element.

By appropriately specifying the fractions THS and WDH, it is possible to obtain a finer
mesh of concrete filaments at certain locations of the cross section, and a coarser mesh at
other locations. However, to simplify the input, an option is provided in NAPBOX to
generate the concrete filaments automatically. If this option is used, filaments with equal
thicknesses and equal widths are generated for each wall of the section. The generated layers

and filaments are numbered as in Fig. 7.2a.

The longitudinal reinforcing steel filaments (Fig. 7.2b) are located at the mid-thickness
of the cross section walls. The number of filaments NSF is specified for each wall. Different
material properties and area can be specified for each steel filament. The area ALF of each
filament remains constant along the longitudinal direction. The locations of the steel
filaments are defined with the variable YZSF. For the top and bottom flanges, YZSF = y/a;
for the left and right webs, YZSF = (z + by)/b; and for the left and right cantilevers,
YZSF =(|y| - a/2)/f. The local y (for flanges and cantilevers) or z (for webs)
coordinates of a steel filament at any location along the axis of a nonprismatic element can be

determined from YZSF.

An option is provided in NAPBOX to generate the steel filaments automatically. If this

option is used, only the total area ALT of the longitudinal steel need to be input for each
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wall. All the steel filaments in a wall are then assumed to have the same material properties.

The generated steel filaments have equal areas and are equally spaced in each wall.

When the steel filament data are input directly, there is no specific numbering system for
the filaments. The filaments are simply numbered in the order in which their data are input.

If the automatic generation option is used, the steel filaments are numbered as in Fig. 7.2b.

In addition to the concrete and steel filament data discussed above, the transverse steel
data have to be input for each section. The input guidelines in Appendix C for the transverse

steel data are self-explanatory.

7.3 Output Capabilities

Both programs provide a check printout of all the input and generated data describing
the structure, the prestressing and the loads. The additional output capabilities of the two

programs are described separately.

7.3.1 LAPBOX
The following final results are output by LAPBOX for each load case:
1. The eight generalized displacements in the global coordinate system at each node.
2. Support reactions in the local coordinate systems of the support springs.

3. The eight generalized forces in the global coordinate system at the end nodes, i and
j, of each element. The forces at the mid node o are simply equal to the applied external

loads at that node and hence are of no interest.

4. Stresses and force resultants at the two Gauss sections of each element for which
stress output is requested. The normal and shear stresses are output at the four Gauss
quadrature points along each wall of the cross section. The transverse bending moments per
unit length at the top and bottom corners of the box section are also output. The force
resultants are obtained by integrating the normal and shear stresses according to Eq. (2.41).

The force resultants are output in the local coordinate system.
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7.3.2 NAPBOX

The following results are output by NAPBOX for each load or displacement step in a

load pattern:
1. The eight generalized displacements in the global coordinate system at each node.
2. Support reactions in the local coordinate systems of the support springs.
3. The unbalanced loads in the global coordinate system at each node.

4. The internal resisting loads in the global coordinate system at the end nodes, i and j,

of each element.
5. Strains, stresses and material states for each prestressing steel segment.

6. At the two Gauss sections of each element for which stress output is requested, the
following are output: generalized strain v, of the cross section and the corresponding stress w
and material state; shear strain, stress and material state for each wall of the cross section;
normal strain, stress and material state for each concrete and longitudinal reinforcing steel
filament; force resultants in the local coordinate system obtained by integrating the normal
and shear stresses according to Eq. (2.41). The force resultants do not include the effect of

the prestressing steel segment forces.
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8. NONLINEAR ANALYSIS - NUMERICAL EXAMPLES

Three numerical examples of nonlinear material analysis performed with the computer
program NAPBOX (Chapter 7) are presented in this chapter. These examples demonstrate
the range of applicabilty of the proposed method, and its ability to capture the primary
nonlinear behavior of reinforced and prestressed concrete box girders. Due to nonavailability

of experimental data, the degree of accuracy of the analytical results could not be examined.

Though the computer program NAPBOX is designed specifically for box girder bridges,
it can be used to analyze other thin-walled structures with rectangular single-cell box cross
sections. This is demonstrated in the first example by analyzing a reinforced concrete column
with hollow rectangular cross section. The dimensions of the column have been chosen such
that second order effects are negligible. When second order effects are important, however,
NAPBOX cannot be used to analyze columns since it does not consider geometric

nonlinearities.

Two three-span continuous prestressed concrete box girder bridges, one straight and the
other curved in plan, are considered as the second and third examples. Overload behavior

and ultimate strength of these two bridges under increasing vehicular load are investigated.

In all the analyses, the dead load and the prestressing (if any) are applied first. External

loads of increasing magnitude are then applied up to ultimate failure.

8.1 Example 8.1 - Hollow Reinforced Concrete Column

One feature of the proposed box beam element is its ability to handle problems in
biaxial bending. It is the purpose of this example to demonstrate this capability, and to study
the effects of warping stresses and cross sectional distortions on the response of hollow

reinforced concrete columns.

8.1.1 Structure Details and Analytical Modelling

A hollow reinforced concrete column, shown in Fig. 8.1, is considered. The column is
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fixed into a rigid foundation at the base such that all eight degrees of freedom are restrained.
At the top, the column is assumed to be completely free. The cross section (Fig. 8.1b) is a
rectangular thin-walled box, and is constant along the length of the column. In the
longitudinal direction, 2 layers of #10 rebars at a transverse spacing of 12 in. are provided in
each wall of the box cross section. This gives a total longitudinal steel area of 96.52 in.?
uniformly distributed along the walls of the cross section. The transverse reinforcement in
each wall consists of 2 legs of #4 stirrups at a longitudinal spacing of 5 in., which is
equivalent to 0.08 in.%in. of total transverse steel area per unit longitudinal length. Concrete
cover to the center of each transverse steel layer ia taken as 1.25 in. The material properties

assumed in the analysis are summarized in Table 8.1.

The column is loaded at the top by a concentrated vertical load P at one of the corners
of the cross section (Fig. 8.1). In the analysis, the concentrated load is replaced by a set of
equivalent nodal loads determined from Eq. (2.55). The equivalent loads consist of an axial

force, bending moments about the y and z axes, and a warping bimoment.

20 box beam elements of equal length are used to model the column. Each wall of the
cross section is subdivided into 2 equal concrete layers with 20 equal concrete filaments per
layer, which gives a total of 160 concrete filaments. 38 longitudinal steel filaments, each with
an area of 2.54 in.%, are used. The steel filaments are equally spaced along the mid-thickness

of the walls of the box cross section.

8.1.2 Presentation and Discussion of Results

The lateral displacements, §y and 42, at the column top under increasing values of the
load P are shown in Fig. 8.2. The load-displacement curves are practically linear up to
P = 1,100 kips. At the next load step of P = 1,300 kips, initial cracking of concrete filaments
was observed near the top and the base of the column. This initial cracking is reflected in the
response curves of Fig. 8.2 which first become nonlinear at P = 1,300 kips. The primary
source of nonlinearity in the column response is the cracking of concrete filaments. Yielding

of longitudinal steel occurred only at very high load levels. Longitudinal steel first yielded in
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TABLE 8.1 EXAMPLE 8.1 - MATERIAL PROPERTIES
Concrete:

f< = 4,000 psi
E, = 3.605x10° psi

fi: = 500 psi
e = 0.004
B = 0.85
v=0.20
7 = 126.5 psi
B, = 0.85

Longitudinal reinforcing steel:

fy = 60 ksi

" E;; = 29,000 ksi
E,=0
e, = 0.03

Transverse reinforcing steel:

Sy = 60 ksi
E,, = 29,000 ksi

Unit weight of composite structure: w

155 pef

Tension stiffening coefficient: k' = 57 psi
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compression at P = 4,100 kips near the column top. Then at P = 4,500 kips, yielding of
longitudinal steel in tension was detected again near the column top. The ultimate load
predicted by the analysis is P = 4,600 kips. Failure occurred due to crushing of concrete

filaments at the loaded corner of the column top.

The crack patterns in the concrete filaments and the yield patterns in the concrete and
longitudinal steel filaments at two sections, one near the column top and the other near the
column base, are shown in Fig. 8.3 for three load levels. Effect of the warping bimoment
component of the loading is evident in Fig. 8.3. Due to the warping bimoment applied at the
column top, the crack patterns at the section near the top are completely different from those
at the section near the base. Near the top, the warping stresses dominate over the flexural
stresses, and this is reflected in the crack and yield patterns in Fig. 8.3a. The warping stresses
damp out away from the top until, near the base, the flexural stresses dominate over the
warping stresses. Thus the crack patterns at the section near the column base (Fig. 8.3b)

resemble ordinary beam theory predictions.

It is seen from Fig. 8.3 that the failure of the column is governed by the failure of the
section near the top where the warping stresses dominate. Ordinary beam theory, which does

not consider the effect of warping stresses, would predict an ultimate load on the unsafe side.

Also of interest is the transverse flexural response of the column cross section. The
transverse distortions of the cross section at the column top under increasing load levels are
shown in Fig. 8.4. Initial cracking due to transverse flexure occurred at P = 600 kips at the
column top. With increasing load levels, the transverse distortions increased rapidly near the
column top. At P = 2,300 kips, transverse flexural yielding was observed at the column top.
After yielding, the transverse distortions increased even more rapidly. At the ultimate load of

P = 4,600 kips, the transverse flexural yielding spread to about 9.5 ft from the column top.

The results of this example indicate that warping stresses and transverse distortions of
the cross section may be important considerations in the design of hollow reinforced concrete

columns with thin-walled box sections. The computer program NAPBOX can be an useful



152

SECTION NEAR TOP SECTION NEAR BASE

(X =41.556) (X =0.444)
/j +P P
;ﬂ
4 0k 7
P =130
7
7
ix = Y -
P
Y, 3 3
7
é P =2300k
% /
ix 770 7
z 4 = 3
P =4600k
/]
777 7

////A CRACKING OF CONCRETE FILAMENTS

KX YIELDING OF CONCRETE FILAMENTS IN COMPRESSION
®  YIELDING OF LONGITUDINAL STEEL IN TENSION

. YIELDING OF LONGITUDINAL STEEL IN COMPRESSION

FIG. 8.3 EXAMPLE 8.1 - CRACK AND YIELD PATTERNS AT SECTIONS
NEAR TOP AND BASE OF COLUMN



153

dOL NWN'T0D LV NOLLYOLSIA ASYAASNVUL ‘A AVO'T - I'8 'IdINVXA #'8 "OId

(uerper-,_01) NOILYOLSIA FSYTASNVIL

081 or | 02} (7]2]) 08 09 or 02 0

00S

000}

00s |

(4%

00Se

000¢e

eese

000V

Bosy

22RS

(dm) 4 avoT



154

tool in the design of such columns.

8.2 Example 8.2 - Three-Span Straight Prestressed Concrete Bridge

This example demonstrates how the computer program NAPBOX can be used to trace
the response of a continuous prestressed concrete bridge throughout the elastic, inelastic and
ultimate load ranges. The effect of transverse positioning of the live load on the structural
response is also investigated. The accuracy of the NAPBOX results in the case of a purely
longitudinal flexural loading is checked against a previously developed computer program

PCFRAME [28, 29].

8.2.1 Structure Details and Analytical Modelling

The structure considered in this example is a three-span, straight, continuous,
prestressed concrete box girder bridge (Fig. 8.5). Its span arrangement (Fig. 8.5a) is
symmetrical with 160 ft, 200 ft and 160 ft spans. The bridge is assumed to be fully restrained
against vertical translation, twist and transverse distortion of the cross section at the four

supports. No restraint against longitudinal warping of the cross section is provided.

For the sake of simplicity, the cross section (Fig. 8.5b) is assumed to be constant from
end to end of the structure, although design practice often calls for thickening of the bottom
flange and/or the webs in regions near supports. The total top deck width of 34 ft is typical

of a two-lane highway bridge.

The prestressing in the bridge consists of two tendons in the longitudinal direction, one
in each web. The prestress is achieved by post-tensioning from both ends simultaneously.
After post-tensioning, the prestressing steel is grouted and hence bonded to the concrete. The

tendon profile is the same in each web, and is shown in Fig. 8.5c.

The material properties assumed for the design of the bridge, and subsequently for the
nonlinear analysis with NAPBOX, are given in Table 8.2. The coordinates of the multilinear
stress-strain curve for prestressing steel used in the NAPBOX computer analysis are obtained

by approximating a typical curve for !2 in. diameter 7-wire strands with a nominal ultimate
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strength of 270 ksi [39].

Structural design of the box girder is based on State of California standard criteria .
The prestressing steel requirements are calculated by considering HS20 lane loading in each of
the two lanes, impact factors based on span lengths, and an allowable tensile stress of 6\/f_;
psi in concrete after all prestresing losses have occurred. A total of 172 Y in. diameter 7-wire
strands (86 strands per web), which gives a total prestressing steel area of 26.32 in.?, is
provided. The required jacking force is 2660 kips per web. Ultimate strength under factored
loads is checked. In the load factor design, an aditional overload vehicle, designated as P13

truck (Fig. 8.6a, b and c), is considered [56].

Longitudinal mild steel reinforcement corresponding to 0.3% of the concrete area is
provided in each wall of the box cross section. This steel is not required from strength
considerations, but is provided for construction purposes. The transverse reinforcement
consists of 2 legs of #5 stirrups at 4 in. longitudinal spacing in each web (0.155 in.%/in. total
area per unit longitudinal length), and 2 legs of #5 stirrups at 10 in. longitudinal spacing in
each slab (0.062 in.%/in. total area per unit longitudinal length). Concrete cover to the center

of each transverse steel layer is taken as 1.25 in.

The response of the bridge structure is studied under increasing levels of vehicle
overload up to ultimate failure. The overload vehicle considered is the P13 truck (Fig. 8.6),
which is typical of the heaviest vehicles found on California’s highways. A special road use
permit is required before the vehicle is allowed on a highway, and it must travel at reduced
speed. In order to take advantage of the symmetry of the structure, the P13 truck loading in
Fig. 8.6b is approximated with the symmetric loading in Fig. 8.6d. This symmetric truck
loading is positioned in the middle of the center span of the bridge (Fig. 8.7a), and the
structural load vector due to its weight is incremented until ultimate failure occurs. For
convenience in presentation of results, P is used to denote the factor of truck load applied.

Thus P =1 represents overload due to one truck (Fig. 8.7a).
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Two different load cases are considered:

Load Case 1 - Truck load is positioned over centerline of bridge (Fig. 8.7b). This
constitutes a purely longitudinal flexural loading. No transverse distortion, longitudinal
warping and twist of the bridge cross section are induced in a NAPBOX analysis which

represents ordinary beam theory in this particular case.

Load Case 2 - Truck load is positioned over one of the webs (Fig. 8.7c). Due to the
eccentricity of this loading with respect to the centerline of the bridge, torsional, distortional

and warping effects are induced in addition to longitudinal flexural effects.

Taking advantage of the symmetry of the structure and the loadings, only half the length
of the bridge is analyzed. 20 box beam elements of varying lengths are used. The element
subdivision is shown in Fig. 8.8. Two different discretizations of the cross section into
concrete and longitudinal steel filaments, shown in Fig. 8.9, are used corresponding to the two

different load cases.

8.2.2 Presentation and Discussion of Results

8.2.2a Load Case 1

The vertical displacements at the middle of the center span under increasing overload,
obtained from three separate analyses, are shown in Fig. 8.10. Two analyses were performed
with  NAPBOX, one including shear deformations and the other excluding shear
deformations. Shear deformations were excluded by manipulating the values of the Poisson’s
ratio, », and the cracking shear stress, 7,,, of concrete. An additional analysis was performed
with the computer pr