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ABSTRACT: Multiple mutations often have non-additive (epistatic)
phenotypic effects. Epistasis is of fundamental biological relevance but is not
well understood mechanistically. Adaptive evolution, i.e., the evolution of new
biochemical activities, is rich in epistatic interactions. To better understand the
principles underlying epistasis during genetic adaptation, we studied the
evolution of TEM-1 β-lactamase variants exhibiting cefotaxime resistance. We
report the collection of a library of 487 observed evolutionary trajectories for
TEM-1 and determine the epistasis status based on cefotaxime resistance
phenotype for 206 combinations of 2−3 TEM-1 mutations involving 17
positions under adaptive selective pressure. Gain-of-function (GOF) mutations
are gatekeepers for adaptation. To see if GOF phenotypes can be inferred
based solely on sequence data, we calculated the enrichment of GOF
mutations in the different categories of epistatic pairs. Our results suggest that
this is possible because GOF mutations are particularly enriched in sign and
reciprocal sign epistasis, which leave a major imprint on the sequence space accessible to evolution. We also used FoldX to explore
the relationship between thermodynamic stability and epistasis. We found that mutations in observed evolutionary trajectories tend
to destabilize the folded structure of the protein, albeit their cumulative effects are consistently below the protein’s free energy of
folding. The destabilizing effect is stronger for epistatic pairs, suggesting that modest or local alterations in folding stability can
modulate catalysis. Finally, we report a significant relationship between epistasis and the degree to which two protein positions are
structurally and dynamically coupled, even in the absence of ligand.
KEYWORDS: evolution, fitness landscape, epistasis, contingency, selection, antibiotic resistance

A basic tenet of modern biology is that genotypes
determine phenotypes, which in turn affect fitness. The

non-additive phenotypic impact of mutations is a phenomenon
known as epistasis.1 Epistasis comes in different flavors
depending on whether they result in a further increase in
fitness relative to the additive case (positive epistasis) or in a
decrease (negative epistasis). Sometimes the direction of a
given mutation on fitness can be reversed in the presence of a
second mutation (sign epistasis). On rare occasions, two
mutations that have a negative impact on fitness on their own
can improve fitness when they co-occur (reciprocal sign
epistasis).
Epistatic interactions are key factors shaping evolution

because they directly impact the probability of mutational
pathways. Sign and reciprocal sign epistatic interactions are the
ones with the largest impact on local fitness, as they can render
whole mutational pathways inaccessible.2−4 Understanding
epistasis is therefore relevant for modeling evolutionary

processes, such as random genetic drift, recombination,
divergence,5 and genetic robustness,6 and for understanding
how proteins evolve new biological activities.7,8

Our understanding of how epistatic interactions contribute
to phenotypic outcomes is very limited, especially when it
comes to higher-order interactions.9,10 The main challenges for
the study of epistatic interactions are the astronomical number
of possible combinations in a given protein and the difficulty of
profiling epistasis at scale. Therefore, the data available is
partial, either restricted to a few positions or restricted to
specific types of combinations.4 Despite these limitations,
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some organizing principles are emerging, such as (a) the fitness
landscape outline most frequently has intermediate ruggedness,
(b) mutations with a significant effect tend to show greater
ruggedness (size ef fect), (c) incorporating additional mutations
produces diminishing returns, and (d) low- and high-fitness
effect mutations are qualitatively distinct.4,11,12 Moreover,
protein conformation is known to be a key contributor
because it depends on its folding energy, which is impacted by
mutations.13,14

β-Lactamases are a family of enzymes that hydrolyze lactam
compounds, conferring resistance to a range of β-lactam
antibiotics in clinical use. The wild-type (WT) of one of these
β-lactamases, TEM-1, has poor activity against synthetic
cephalosporins because bulky side groups cause steric
hindrance in its active site.15 Under selective pressure, TEM-
1 evolves mutants with the ability to hydrolyze synthetic
cephalosporins.16 These mutants (which typically involve
between 1 and 4 mutations) are known as extended-spectrum
β-lactamase (ESBL) TEM mutants.
The evolution of ESBL mutants of TEM β-lactamase in the

laboratory represents a tractable experimental system for the
study of adaptation, that is, the evolution of new biochemical
activities, and of epistasis. Cefotaxime is one of the
cephalosporins of choice in these directed evolution experi-
ments. Using cefotaxime resistance as a proxy for genetic
adaptation greatly facilitates the high-throughput phenotypic
characterization of mutants.17,18 The fitness landscape of
TEM-1 β-lactamase evolution under cefotaxime selection is
rugged, with several accessible pathways toward high fit-
ness.8,19,20

To better understand the principles underlying epistasis in
the context of genetic adaptation, we produced a large-scale
empirical cefotaxime resistance landscape of TEM-1 mutants
involving combinations of 2 or 3 mutations under adaptive
selective pressure. We detected epistatic interactions for 95 of
the 206 characterized combinations and found that epistatic
pairs were highly enriched for gain-of-function (GOF)
mutations, particularly negative and reciprocal sign pairs.
Using the software FoldX to estimate the effects of mutations
on TEM-1 folding stability, we found that epistatic pairs tend
to be thermodynamically unstable but that the instability of
adaptive mutation trajectories is limited by the free energy of
folding of the protein. Finally, we present early attempts at
modeling epistasis based on the degree to which two protein
positions are structurally and dynamically coupled.

■ RESULTS AND DISCUSSION
Epistasis is a process of fundamental biological relevance
whose mechanistic basis is largely unknown. In order to
discern patterns that provide mechanistic insights into this
phenomenon, experimental data is limiting. In this work, we
generate a landscape of TEM-1 cefotaxime resistance. We
selected this well-established model of adaptive evolution
because the evolution of new biochemical activities is known to
be enriched for epistatic interactions.21 To inform and
complement these experiments, we used reported data from
natural or experimental evolution, following a long tradition of
merging directed evolution experiments with clinical data to
make inferences about adaptive evolutionary landscapes.18,22,23

Compilation of a Database of Observed Evolutionary
Trajectories. We collected 487 TEM mutants reported from
the clinic and from directed evolution experiments. In addition
to the mutants already reported in ref 18, we added 37

cefotaxime-selected mutants listed in ref 17 and 36 additional
ones corresponding to additional cefotaxime directed evolution
experiments starting with WT, I173V, M182T, A224V, M182
A224V, E104K M183T, and G238S TEM sequences (M.
Salverda, personal communication). We called this database
CCED, for Combined Clinical and Experimental Database.
Of the 487 sequences included in this database, 284

displayed the extended spectrum phenotype (2be), 52 were
resistant to β-lactamase inhibitors, and 11 displayed both
inhibitor resistance and the extended spectrum phenotype
(2ber). Additionally, 60 β-lactamases had unassigned pheno-
types. 117 broad spectrum mutants were also included because
they are enriched for compensatory mutations that overlap
with those seen during adaptation and in some cases set the
stage for adaptation.24,25 The mutations, with the correspond-
ing sources, are listed in the supporting files SI01.xlsx (clinical)
and SI02.xlsx (experimental). The mutation frequency, by
position, in our database is shown in Figure S1.
For the rest of this work, CCED is assumed to represent the

evolution of TEM under positive (largely ESBL and β-
lactamase inhibitor-resistance) selection. This library was used
to inform our approach for exploring the empirical landscape
of cefotaxime resistance, to place the results in the context of
observed evolutionary trajectories, and to model the
thermodynamic constraints of genetic adaptation.
Partial Cefotaxime Resistance Landscape of TEM-1 β-

Lactamase. To be able to model epistasis in the context of
genetic adaptation, we set out to produce a large-scale
empirical cefotaxime resistance landscape of TEM-1 mutants.
The comprehensive generation of an empirical fitness land-
scape is not feasible because of the astronomically large
number of possible combinations. To guide our exploration of
sequence space, we decided to focus on 17 positions which
appear to be under adaptive selection based on their
representation in CCED (Figure S1) and that are consistent
with omega value calculations by our group.18 These mutations
include a wide range of frequencies in CCED to maximize their
representativity (Figure S1). While our guided approach
admittedly biases our exploration of the resistance landscape,
it also makes it more directly relevant to observed mutational
trajectories and further enriches our analysis for the presence
of epistatic interactions. This enrichment is necessary to ensure
a good representation of different categories of epistatic
interactions, which is essential to enable us to model epistasis.
We established the presence and type of epistasis by

comparing the IC50 values of our test pairs to the expected IC50
assuming a linearly additive effect of their constitutive
mutations. More specifically, for every pair of mutations (M1
and M2), we defined a z-test that compares the experimental
IC50 of the double mutant (M1 + M2) to the one that would
be expected if mutations M1 and M2 had linearly additive
effects (see eq 4, below). Note that, in eq 4, M1 is a single
mutant but M2 can be a single or a complex mutant.
Interactions found to deviate significantly from the expected
additive effect were considered epistatic, and a specific type of
epistasis was assigned (see Methods).
The dose−response curves for each of the single mutants at

the 17 positions included in our study are shown in Table 1.
For each position, we tested the amino acid substitutions most
frequent in the CCED database (and sometimes other
substitutions also found in CCED, marked with an asterisk
in Table 1). To generate these dose−response curves, we used
a plasmid (pGFPck) bearing both the β-lactamase BlaTEM‑1
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gene and a Cycle 3 GFP gene26 that we used to track growth
by measuring fluorescence. Using fluorescence rather than OD
substantially increased the dynamic range of the assay and
allowed us to normalize our data to plasmid copy number (one
of the main determinants of protein expression in recombinant
vectors), as different mutants consistently produced different
fluorescence levels in the “no-drug” control, indicating vector-
dependent variation.
All of the 17 single TEM mutants were generated,

transformed, and grown in 96-well plates in the presence of
increasing concentrations of cefotaxime (see Methods). We
extracted IC50 values from the fluorescence data (Table S1)
and used a two-parameter sigmoidal model fitted to each
dose−response curve to infer the IC50 for cefotaxime, that is,
the cefotaxime concentration causing a 50% reduction in
fluorescence in a specific mutant (see example in Figure S2).
Table 1 lists the IC50 for cefotaxime (in μg mL−1), the z-
statistic (the statistical difference in log(IC50) to TEM-1, which
was determined using the z-test described in eq 2, below), and
the p-values. Figure S2b shows a summary of all the IC50 values
fitted.
The single point mutations analyzed tended to increase

cefotaxime resistance. Although most mutations had a modest
effect, three mutants stood out for a dramatic increase in IC50
for cefotaxime: G238S, R164H, and E104K. G238S and
R164H are the earliest mutations to be fixed both in the
laboratory17 and in nature.27 Their large phenotypic impact
likely gives them a major competitive advantage when multiple
mutants are present in the population.28,29 These two
mutations are largely mutually exclusive due both to
contingency (mutations in positions 164 and 238 are
phenotypically redundant) and to reciprocal sign epistasis
(the double mutant has a lower level of resistance than either
single mutant).13

We also see that, when two different amino acid
substitutions for a given position are tested (A237S vs

A237T, R164H vs R164S), only the most frequent one in
CCED has a substantial effect on cefotaxime resistance on its
own in our analysis. This implies that less frequent
substitutions may be more dependent on a network of
interactions to produce a large increase in resistance, consistent
with their lower frequency18,27 or the fact that their selection
may have been driven by a different lactam antibiotic (R164S
primarily confers resistance to ceftazidime30) or by a lower
antibiotic concentration.31

Next, we determined the IC50 for a total of 206 TEM
mutants�101 simple ones (i.e., involving 2 mutations) and
105 complex ones (i.e., involving 3 mutations). The results of
the test are shown in Table S2. Using a conservative
significance level to account for multiple testing (p <
0.0005), our method detected 95 epistatic interactions. Of
these 95 detected epistatic interactions, 29 involve simple
pairwise interactions, including 18 previously reported ones; of
these 18 epistatic pairs, only 2 are inconsistent with previous
reports (Table S3). Figure S3 illustrates the location of pairs of
positive epistatic mutations and negative epistatic mutations on
a structural model of TEM-1. Both types of interactions are
found across a broad range of distances, highlighting the
complexity of this phenomenon.
Contribution of Epistatic Interactions to TEM

Evolution Driven by - Selection. To investigate the
contribution of the epistatic interactions identified in our
partial empirical resistance map to the shaping of TEM
evolution under selective pressure, we looked at their
representation in our CCED mutant database. For every β-
lactamase variant in our CCED mutant database, we broke
down all possible pairs of mutations and matched them to the
29 simple pairs identified as epistatic in Table S2. The results
are included in the file SI04.xlsx. Notice that, for a given
mutant, we may identify more than two interactions as
e p i s t a t i c . F o r i n s t a n c e , i n t h e m u t a n t
G238S_E240K_T265M_R275L (entry TEM-68 in file
SI04.xlsx), two pairs (G238S_E240K and G238S_T265M)
would show positive epistasis, whereas a third pair
(G238S_R275L) would show sign epistasis.
A summary of the results is displayed in Figure 1, showing

the representation of each epistatic category relative to the
complexity of the TEM mutant (from n = 2 to n = 9
mutations). We note that, with increasing complexity of the
mutants, the proportion of epistatic pairs decreases and that of
non-significant pairs increases. This trend is expected because
the number of pairs that are the result of our combinatorial
analysis but not directly selected increases with the complexity
of the mutant, and most random pairs are expected to be non-
epistatic. Thus, as the number of possible combinations
increases, the likelihood that one pair of mutations therein is
epistatic decreases.
The one exception to this trend are negative interactions,

which are more frequently observed with increased mutant
complexity. This observation is consistent with reports
highlighting the importance of genetic drift as a facilitator of
adaptation in the long term on rugged fitness landscapes.32,33

Possible mechanisms to explain the increased prevalence with
increased mutant complexity include two originally negative
mutations that may have changed in sign in the presence of a
new mutation, or that have been compensated in the new
background, or a combination of both.10

Comparison to Large-Scale Empirical Epistasis Stud-
ies Reported for TEM-1 Wild-Type Activity. A number of

Table 1. Cefotaxime IC50 of Different Single Mutants and of
the Corresponding Wild-Type TEM-1a

variant IC50(μg mL−1) z-statistic p-value

G238S 21 43.5 0.00
R164H 0.42 12.3 0.00
E104K 0.22 8.4 0.00
M182T 0.14 4.3 9.21 × 10−6

E240K 0.13 3.7 9.46 × 10−5

D254G 0.15 3.6 1.38 × 10−4

A237T 0.12 3.6 1.77 × 10−4

I173V 0.12 2.8 2.89 × 10−3

H153R 0.12 2.6 4.09 × 10−3

A184V 0.10 2.2 1.50 × 10−2

T265M 0.10 1.7 4.65 × 10−2

*A237G 0.10 1.3 1.00 × 10−1

S268G 0.087 1.0 1.60 × 10−1

N175I 0.077 0.1 4.72 × 10−1

WT 0.076 0.0 5.00 × 10−1

L21F 0.067 −0.8 7.85 × 10−1

A224V 0.063 −0.9 8.05 × 10−1

*R164S 0.000019 −1.5 9.36 × 10−1

Q39K 0.021 −4.7 1.00
R275L 0.026 −5.1 1.00

aMost frequent mutations at each position are used by default;
additional alternative mutations are indicated with *.
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recent large-scale fitness landscape studies reported TEM-1
epistasis in the context of ampicillin selection.34,35 While highly
valuable, these studies represent a fundamentally different
model system because it is hard to improve catalysis on an
optimal substrate, so it essentially measures losses in function
and compensatory mutations. Loss of function is much more
frequent than gain of function and, therefore, tends to be less
specific. To illustrate this effect, we performed a direct
comparison of epistasis under ampicillin selection and under
cefotaxime selection for a specific mutant, TEM-15
(E104K_G238S), using the data reported in ref 36. Averaging
the epistasis values for each position (since multiple mutants in
each position were characterized), we calculated the
correlation between the ampicillin and cefotaxime datasets to
be R2 = 0.69. However, when we compare the average epistasis
value for each position of the β-lactamase amino acid sequence
(Figure S4), we find that the correlation between ampicillin
and cefotaxime epistasis is driven by mutations that non-
specifically decrease enzymatic activity. Both ampicillin and
cefotaxime identify the critical residues for catalysis: positions
44 to 47, positions 64 to 76, positions 130 to 139, positions
228 to 237, and positions 244 to 252, implying that values
outside these positions are different depending on the
selection. Indeed, the residues that show the strongest epistasis
under cefotaxime selection include three positions known to be
critical for adaptation (positions 104, 238, and 240) as well as
immediate neighbors (241 and 198) (Figure S4).
Representation of GOF Mutations in Epistatic

Interactions. Mutations that confer a new biochemical
activity by themselves (GOF mutations) enable adaptation
and define adaptive trajectories.17,37,38 Their identification is
therefore crucial to build predictive models of drug resistance
based on sequencing data. Establishing GOF status requires
measuring fitness. The IC50 values that we determined are a
measure of resistance in vivo. While these phenotypic values
can be legitimately used to detect non-additive effects, they do
not represent a measure of fitness.39 In addition to reflecting
protection against exposure to the selecting agent, the fitness

exhibited by resistant mutants also includes the negative effects
that the mutation may have in the absence of drug.39,40

Resistance mutations are rarely completely neutral, and
(consistent with Fisher’s geometric model of adaptation) the
level of protection exhibited by resistant mutants tends to
correlate negatively with their fitness.39 For measuring fitness,
the use of competitive fitness assays is preferable to growth
curves because the former integrate all phases of the growth
cycle and can capture aspects of competition that are not
reflected in single culture experiments.39 To this end, we ran a
competition assay between the 13 most frequent single
mutants used in our experiments and the wild type.
Briefly, cells transformed with plasmids bearing the original

pGFPck plasmid [TEM-WT GFPhi] were co-cultured 1:1 with
cells transformed with plasmids bearing a version of pGFPck
where the Cycle 3 GFP gene bears a point mutation (Q183R)
that inactivates fluorescence, [TEM-mut GFPlo].26 These co-
cultures were grown in 96-well plates in the presence of
increasing concentrations of cefotaxime and their fluorescence
was measured. Similarly, 1:1 co-cultures of [TEM-WT GFPlo]
and [TEM-mut GFPhi] were grown in the presence of
cefotaxime and their fluorescence was measured. Figure 2
shows the difference in fluorescence readings between the two
co-cultures for each individual mutant for an average of at least
three experiments. Measuring the difference between the two
co-cultures increases the sensitivity and dynamic range of the
assay because, if the difference between TEM-WT and TEM-
mut is real, it must go in opposite directions when the
reporters are interchanged.
To determine the level of experimental noise, we ran the

[TEM-WT GFPlo] and [TEM-WT GFPhi] 1:1 co-culture 10
times and found the variation range between individual
experiments not to exceed 5000 fluorescence units. Mutants
E104K, R164H, A237T, G238S, E240K, and S268G resulted
in a fluorescence difference well above 5000 units, suggesting
that these represent genuine GOF mutations. Indeed, these
represent all the known GOF mutations being tested, missing
only I173V.41 Further, mutations known to have global

Figure 1. Representation of interactions between mutations in the CCED database of clinical and experimental isolates, broken down by type of
interaction and number of mutations in the mutant where the pair was observed. The types of interactions are determined experimentally in the
first part of this work (Table S2).
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(M182T) or local (A184V, A224V, T265M) compensatory
effects41,42 all scored negative.
We find that GOF mutations are highly enriched in epistatic

pairs (Table 2). Only 8% of pairs with no GOF mutations
exhibit significant epistasis, compared to 59% of pairs with two
GOF mutations. When we look at the specific types of epistasis
involved, we see massive enrichment of both negative and
positive epistasis in mutants with two GOF mutations (0 vs
22.7% and 0 vs 27.3%, respectively). Of particular interest is
the representation of reciprocal sign epistatic interactions
because of their role driving the ruggedness of the fitness
landscape. Pairs with no GOF mutations show no reciprocal
sign epistasis, whereas 9.1% of the pairs with two GOF
mutations show reciprocal sign epistasis. Similar trends are
observed in triple mutants (Table 2). These results are
consistent with previous “size effect” observations, that is, with
the fact that mutations that produce large phenotypic effects
individually also are the main contributors to the ruggedness of
fitness landscapes.43

Comparing positive and negative epistatic interactions in
Table 2, we observe a preference for positive epistasis (27% vs
23% for doublets, 48% vs 38% for triplets). This bias likely
reflects the choice of test mutations, as we selected the ones
whose combinations have already undergone significant
purifying selection either in nature or in the laboratory.
We also note that, whereas the enrichment for GOF

mutations is gradual for positive epistatic interactions (going

from 0% for no GOF, to 11% for one GOF, and to 27% for two
GOFs), negative and reciprocal sign epistatic interactions are
almost completely dependent on the presence of two GOF
mutations: 0%, 2%, 23% (negative) and 0%, 2%, 9%
(reciprocal sign). Again, the same trend is seen in triplets.
This suggests that pairs of negative and reciprocal sign epistatic
interactions can be used to identify candidate GOF mutations
based on patterns of mutation representation in sequence
databases of genes under adaptive selective pressure.
Study of the Energy of Folding. Enzymes exist in a

distribution of different conformations, which can be
abstracted as a dynamic equilibrium between a folded and an
unfolded state. The energy of folding is the difference in free
energy between the protein in its folded and in its unfolded
states. For enzymes to act as catalysts, they need a precise
molecular configuration, which will generally be associated
with their folded state. Indeed, many enzymes can be
inactivated by inducing unfolding with a pH or temperature
change.
We reasoned that the introduction of mutations in a protein

could affect the stability of folding, and thus influence the
enzyme activity. Although some experimental methods exist to
evaluate folding energies, computational methods allow us to
interrogate larger datasets and extract meaningful trends. To
estimate the impact of mutations on the enthalpy of folding,
here we used FoldX, a molecular-mechanics-based suite for the
study of thermodynamic properties of proteins based on an

Table 2. Relationship between Different Categories of Interactions and the Presence of One or Multiple GOF Mutationsa

no. of
mutations no. of known epistatic pairs observed no. of GOF mutations

non-significant
(%)

positive
(%)

negative
(%)

reciprocal sign
(%)

sign
(%)

2 50 0 92.0 8.0
2 106 1 75.5 11.3 1.9 1.9 9.4
2 44 2 40.9 27.3 22.7 9.1
3 0 0
3 66 1 63.6 24.2 3.0
3 102 2 29.4 43.1 7.8 9.8 9.8
3 42 3 14.3 47.6 38.1

aResults are based on Table S2.

Figure 2. Identification of gain-of-function ESBL mutations using competition assays. [TEM-WT GFPhi] and [TEM-mut GFPlo] (1:1) co-cultures
were grown in 96-well plates in the presence of increasing concentrations of cefotaxime. Similarly, 1:1 [TEM-WT GFPlo] and [TEM-mut GFPhi]
co-cultures were also grown in the presence of cefotaxime. The fluorescence of both competition experiments at the highest concentration of
cefotaxime with observable growth was measured. The bar plot shows the difference in average fluorescence signal between the two cultures for
each individual mutant.
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empirical forcefield44 (see Methods for details). This computa-
tional approach has been shown to capture valid trends across
large sets of mutations.45

We hypothesized that thermodynamic folding constraints
may be relatively constant across a range of protein variants. As
a first approximation to exploring the overall thermodynamic
landscape of TEM, we performed a virtual alanine scanning of
the entire protein. The results, shown in Figure S5, suggest that
positions mutated in CCED are enriched for residues with
strong interactions with their neighbors. Mutations in these
residues would be predicted to affect protein fold and therefore
activity, although specific residues actively involved in substrate
recognition or catalysis need to be conserved to preserve the
protein functionality.
Next, we looked at combinations of mutations by

considering additive changes in energy after each mutation
(Figure 3). This additive use of FoldX does not distort the
results significantly. A more refined calculation for the
experimentally observed mutants is presented in Figure S6
and agrees with this approximation. An alternative way of
looking at this phenomenon is presented in Figure S7, which
also suggests that, in CCED mutants, highly destabilizing
mutations tend to be accompanied by stabilizing mutations, in
agreement with previous suggestions.14,41,42,46

We find that the combinations of mutations observed in
CCED tend to be more destabilizing than random
combinations of mutations drawn from a pool of observed
mutations in the same database (see Methods). Importantly,
the data also suggest that the energetic destabilization
introduced by mutations in TEM-1 is typically limited to the
range of 2−8 kcal mol−1, irrespective of the number of
mutations. This is consistent with the idea that TEM-1 and
other proteins have a limited buffer of stability.37 In particular,
the free energy of folding of TEM-1, ΔGfolding, has been
estimated to be around −10.9 kcal mol−1 using fluorescence
emission spectroscopy and circular dichroism.47 Thus, it
becomes possible to estimate the cumulative impact that
these mutations would have on the fraction of TEM-1 folded at
a given temperature (αf), given by eq 7, below.
Figure 4 shows the estimated impact of the change in free

energy of folding induced by mutations in TEM-1 on the
fraction of folded protein at 298 K. We can see that the
fraction of TEM-1 folded is largely insensitive to mutation-
induced changes in its free energy of folding until a threshold
of ca. 10 kcal mol−1. Our model predicts that mutations that
destabilize the protein above this threshold will be greatly
disfavored by natural selection because the fraction of folded
(active) protein would be dramatically decreased. This analysis
shows an excellent agreement with the distributions presented
in Figure 3: most mutants observed experimentally have
estimated destabilizing effects below 10 kcal mol−1, even
though, in principle, evolution could explore more destabilizing
mutations and combinations of mutations. Our findings also
agree with previous reports showing that evolvability requires
an excess of enzyme activity relative to the strength of
selection, and such enzyme activity may be capped by
structural unfolding, among other effects.48,49

We next examined the relationship between epistasis and
energy of folding (estimating the free energy of folding
additively as done above) by looking at the energy of folding
for the different categories of functional interactions. The
results are shown in Figure 5. We see that the different types of
epistatic interactions observed in CCED tend to decrease the

folding stability compared to non-epistatic interactions,
although with considerable individual variability. Such
structural destabilization seems to be particularly pronounced
for negative and�surprisingly�positive epistatic pairs of
mutations. The generally destabilizing effects of positive
epistatic interactions in the context of genetic adaptation are
consistent with the idea that more active catalysts against a
given substrate tend to be less energetically stable.50,51

These results may also explain why negative pairs, which are
particularly destabilizing, are only relatively frequent in more
complex mutants, as other stabilizing mutations need to be
present as well to keep the destabilization below 10 kcal mol−1.
Protein Dynamics and Epistasis. Researchers have

attempted to study the biophysical determinants of epistatic
interactions by investigating the contact of the relevant
residues within the 3D protein structure.13,52 While some
interactions may be explained this way, this approach has

Figure 3. Relative frequency of different CCED mutants containing
(A) 1, (B) 2, (C) 3, and (D) >3 mutations and their predicted change
in the energy of folding relative to the wild type. Distributions of 1000
random mutants were generated as a baseline comparison (orange)
using individual mutations observed in the CCED. In (D), n = 4 was
used to generate the random distribution. For this analysis, the
thermodynamic impact of individual mutations in complex mutants
was treated as additive.
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limitations, particularly when it comes to long-range
interactions.53 We hypothesized that, even in the absence of
a ligand, protein dynamics alone might help predict epistasis.
Figure 6 depicts the magnitude of the epistasis between
mutation pairs as measured by the absolute value of its z-
statistic measured in this work. Each point in the figure
corresponds to a pair of residues (alpha carbons) in the
protein. We found that strong epistatic interactions tend to
arise from positions that are close to each other (quantified by
⟨di,j⟩), although only a fraction of close residues result in
epistatic interactions, which is why the R2 value is low (Figure
6a). We also observe that strong epistatic interactions tend to
correspond to pairs of residues whose movement is coupled
(quantified by s(di,j)), although again only a fraction of the
pairs included in the analysis exhibit epistasis (Figure 6b).

Although these correlations are weak, we find that they are
statistically significant. Thus, these parameters that quantify the
extent to which two protein residues are structurally and
dynamically coupled could help predict if they would interact
epistatically or not when mutated. Figure 6c shows that the
distance between two residues and the coupling of their
movements have a limited correlation, suggesting that they
may serve as independent descriptors in predictive models. We
also compared other results of epistasis in TEM-1 reported
previously (involving E104K or S238S)34 and the molecular
dynamics (MD) descriptors proposed in this work and
detected statistically significant correlations in some cases
(Figure S8). Thus, our results suggest that MD-based
descriptors might help build predictive models of epistasis
along with other types of inputs, such as descriptors of
secondary structure, types of mutations involved, and inter-
residue contacts.
These results might be extended to the study of protein

dynamics in the presence of the ligand. During the catalysis,
some GOF positions may exert an important catalytic role and
their dynamics may become more strongly coupled to those of
other residues. This coupling may explain additional epistatic
interactions. Furthermore, it may help explain how changes in
one or two residues can impact interactions between many
other pairs of residues by altering the catalytic conformation.
Indeed, we observe that the fitness landscape can change
dramatically with just a few mutations. Moreover, essential
residues for enzymatic activity may have an unusually high
impact on the folding energy, since highly reactive residues
need to be made accessible to the substrate for it to react
rapidly. The destabilization in certain parts of the protein may
need to be compensated with mutations elsewhere for the
protein to remain in the catalytically relevant fold most of the
time. Additional factors may also contribute to the observation

Figure 4. Estimated impact of the change in free energy of folding by
mutations in TEM-1 on the fraction of folded protein at 298 K.

Figure 5. Relationship between the epistasis status of the pairs of mutations included in this study and their estimated effect on the free energy of
folding of TEM-1 β-lactamase. The estimated thermodynamic impact of pairs of mutations was modeled using FoldX assuming it considers
additivity of effects on free energy of folding (see Methods). The p-values indicate the significance of an unpaired single-sided t-test between the
corresponding type of epistasis and the group with non-significant epistasis.
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of epistatic effects, such as the possibility of mutation-induced
protein aggregation.

■ CONCLUSIONS
Understanding the principles governing non-additive (epis-
tatic) functional interactions between mutations selected

during genetic adaptation is of high interest because of their
enormous impact restricting or opening pathways to increased
fitness. Epistasis also provides an important link between
structures, properties, and functions of proteins.
In this work, we introduced a quantitative method of

assessing epistatic interactions based on growth curves and
used it to produce a partial empirical cefotaxime resistance
map of combinations of TEM-1 β-lactamase point mutants
across positions undergoing adaptive selective pressure. We
also generated a library of mutants that evolved under positive
selective pressure that we used to guide our approach for
exploring the empirical landscape of cefotaxime resistance, to
place the results in the context of observed adaptive
trajectories, and to model the thermodynamic constraints of
genetic adaptation.
Note also that our measurements of epistasis were done

based on cefotaxime resistance and not on fitness. Using drug
resistance measurements to calculate epistasis is in line with
previous analyses of small combinations of point mutations37

but not with more recent reports involving more extensive
mutant combinations.34,35 Measurements of fitness, unlike
measurements of resistance, take into account the impact of
resistance mutations in the absence of the drug and do not
correlate well with MIC measurements.39 Nonetheless, 18 out
of the 29 pairwise epistatic interactions that we identified were
previously reported and only two are inconsistent with
previous results, supporting the validity of our analysis (see
Table S3).
We find that epistatic pairs are highly enriched GOF

mutations, particularly negative and reciprocal sign pairs. This
finding implies that GOF phenotypes can be inferred based on
the topology of mutation co-occurrence networks, such as the
ones constructed for β-lactamases undergoing evolutionary
radiation in β-lactamase.18,27 We previously observed this
correspondence between topology and GOF status in the cases
of two class A β-lactamases (TEM-1 and CTX-M-1) and one
Class D β-lactamase (OXA-51).18,27 This work implies that
this is likely a more general principle. GOF mutations are
typically the ones that initiate the process of adaptation and
that define adaptive trajectories. Their identification is
therefore very important to predictive models of drug
resistance based on sequencing data, which is important for
microorganisms that are slow-growing or hard to culture54,55

and for the design of small-molecule inhibitors.
Using the software FoldX to estimate the effects of

mutations on TEM-1 folding stability, we find that epistatic
pairs tend to be thermodynamically unstable but that the
instability of adaptive mutation trajectories is limited by the
free energy of folding of the protein. Our results confirm and
extend principles previously proposed to underlie adaptive
evolution. The idea that thermodynamic stability is not as
limiting for genetic adaptation as once thought is in line with a
number of recent reports.11,37,56−58 Our work thus shows a
connection between moderate thermodynamic instability and
epistatic interactions.
While thermodynamic stability limits the sequence space

accessible to evolution, it does not explain changes in fitness
for mutants that do not substantially destabilize the protein.
Thus, kinetics factors (dynamics, catalysis) must play an
important role. We find evidence that epistasis involves
dynamic interactions between residues and introduce and
interpret new descriptors based on ligand-free MD simulations
that could be useful to predict epistasis, possibly in

Figure 6. Modeling of epistasis observations based on protein
molecular dynamics (MD) parameters. The magnitude of the epistasis
between two mutations is quantified here by the absolute value of its
z-statistic, introduced in this work. Each point in each panel
corresponds to a pair of alpha carbons in the protein. For the
amino acid positions considered (i and j), we evaluate their average
distance, ⟨di,j⟩, as well the fluctuation of such distance over time,
s(di,j), by carrying out MD simulations of the wild-type structure
(PDB: 1ZG4). (a) Relationship between the distance between two
residues over time and extent of epistasis. (b) Relationship between
the variation of the distance between two residues over time and the
extent of epistasis. (c) Relationship between the average distance
between two residues and the variability of this distance over time.
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combination with other descriptors (see, for example, ref 59).
We also hypothesize that related MD descriptors taking into
account the ligand and the catalytic process might enable
improved predictions of epistasis. This hypothesis is also in
agreement with recent results in which epistasis is found to
impact the catalytic proficiency of the enzyme without
necessarily affecting the free enzyme structure.60,61

■ METHODS
1. Approach for Empirical Mapping of Cefotaxime

Resistance. To cover a broad sequence space, we decided to
include combinations of 17 mutant positions that are found in
our CCED database and that include a wide range of
frequencies (Figure S1). Based on previous evidence indicating
that ESBL TEM-1 variants with alternative substitutions at a
given position are largely functionally equivalent,15 we selected
the amino acid substitution most frequent for each of these
positions (listed in Table 1), and in some cases we also
included the second most frequent mutation (indicated with
an asterisk in Table 1). To measure the impact of higher-order
combinations of mutations, we generated 206 mutants
containing two or three mutations at these positions (listed
in SI03.xlsx).
As a host strain, we used JS200 (polA) cells complemented

with WT Pol I. This B-strain-based host cell system has
increased susceptibility to cefotaxime relative to DH5α or
Top10 cells.18 To express mutant TEMs we used pGFPck, a
plasmid vector that carries kanamycin resistance and Cycle 3
GFP,26 and measured growth in the presence of cefotaxime by
both OD and fluorescence (see section 3 below). For 13
selected single mutants, gain-of-function activity (seen as
protection from cefotaxime toxicity) was determined by
measuring fitness using a competition assay (see section 6
below).
2. Mutagenesis by the Megaprimer Method. Desired

point mutations were introduced into the β-lactamase gene of
the vector pGFPuv using the megaprimer method.62 Briefly, a
600−800 bp segment of DNA (megaprimer) was generated by
polymerase chain reaction (PCR) using gene- and vector-
specific primers, one of which contained the relevant mutation.
Forward and reverse vector-specific primers were designed to
anneal to the pGFPck vector flanking the β-lactamase gene by
about 150 bp, amplifying toward the gene. These were also
used to sequence final mutant constructs. Gene-specific
primers were designed to incorporate the mutation of interest
in the middle of the primer, with primer length between 19 and
30 bp. In general, when mutations in the first half of the gene
were desired, a forward primer was generated, and it was paired
with a reverse vector-specific primer. When mutations in the
second half of the gene were desired, a reverse primer was
generated, and it was paired with a forward vector-specific
primer. When two mutations were within 3 amino acid
residues from each other (e.g., M182T_A184V), a gene-
specific primer was designed to incorporate both mutations
simultaneously. The PCR product was gel purified (Machery-
Nagel, cat. no. 740609) and used as a megaprimer to amplify
the entire vector (extension time = 2 min/kb) by rolling circle
amplification (RCA). Finally, the product from the mega-
primer PCR was digested with DpnI (New England Biolabs,
cat. no. R0176L) to remove template DNA, leaving only newly
generated plasmid DNA containing the relevant mutation. This
was then transformed into chemically competent Top10 cells
(7 μL DNA/50 μL competent cells). Single colonies were used

to inoculate liquid overnight cultures, which were then
miniprepped (Machery-Nagel, cat. no. 740499), and the
plasmid-borne β-lactamase was sequenced. For double mutant
constructs, the process was repeated using a single mutant as
the template for the first round of PCR, such that the
megaprimer contained both desired mutations.
3. Quantitative Measurement of Cefotaxime Sensi-

tivity Using Fluorescence. To measure cefotaxime
sensitivity, we used deep-well 96-well microtiter plates
containing one sterile 3 mm glass bead per well for liquid
culture. Overnight cultures were normalized to an OD600 = 1,
and each well was inoculated with 10 μL in 990 μL LB broth
containing kanamycin, chloramphenicol, and cefotaxime. Plates
were sealed with Airpore air-permeable sealing strips (Qiagen)
and grown overnight at 30 °C with shaking. The following
morning, 200 μL of each culture was transferred to a black-
walled 96-well microtiter plate (Greiner, cat. no. 655087), and
fluorescence (ex: 395 nm, em: 509 nm, autocutoff: 495 nm)
and OD600 were measured in tandem on a Spectramax M2e
plate reader (Molecular Devices).
The range of informative cefotaxime concentrations was

wide, from 0.05 μg mL−1 to 400 μg mL−1. Therefore, we had
to customize cefotaxime exposure to each mutant based on an
initial set of experiments designed to find the general level of
resistance. Based on this information, we performed a second
set of experiments, grouping mutants with a similar level of
resistance on the same plate, and used this higher resolution
data for modeling dose−response curves.
4. Modeling of Dose−Response Curves. To identify

epistasis (non-additive interactions between the effects of
mutations), the following approach was used. The dose−
response data for every β-lactamase variant was fit to a classic
sigmoidal equation (Hill equation), which is often used for
kinetics with inhibition.63 The equation has the following
form:

=
+ ·cfluorescence inhibition ( )

1
1 10 c(log (IC ) log ( )) Hill50

(1)

where log is the decimal logarithm function, c is the
concentration of antibiotic, and IC50 is the concentration
that causes 50% inhibition in growth, which is the fitting
parameter in the equation. The curves were fit using a
Levenberg−Marquardt nonlinear least-squares algorithm as
implemented in the MATLAB function nlinf it. Both IC50 and
the Hill slope were allowed to vary in the fitting, and the
corresponding variances and covariances were obtained from
the fit.
To obtain a more conservative estimate of the standard

errors associated with these coefficients, the 155 dose−
response curves were re-fit a second time to eq 1, but fixing
in this case the Hill coefficient to a value of unity, since under
the null hypothesis we would not expect the dose−response
curve slope to change. From these regressions, we obtained
new estimates for the variance of each log(IC50). Since the
latter models have one degree of freedom less, the variance
estimates tended to be higher. The maximum of both variance
estimates was then used to perform the z-tests, described
below.
5. Evaluating the Impact of Mutations Using z-Tests.

To assess the significance of the effect of individual mutations,
we define a z-statistic comparing the null hypothesis that the
mutation does not affect the IC50 (H0: IC50,M = IC50,WT) vs the
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alternative hypothesis that it increases it (HA: IC50,M >
IC50,WT):

=
+

z
log (IC ) log (IC )

(log (IC )) (log (IC ))
M

50,M 50,WT

2
50,M

2
50,WT (2)

with the normal distribution taken as the corresponding
sampling distribution and the standard errors σ2 the maximum
of the two fits to each mutant, as indicated above.
The z-test was extended to the case of multiple mutations in

order to determine the significance of non-additive interactions
between mutations (epistasis). The following test was
conducted under the null hypothesis that no epistasis is taking
place between the mutations M1 and M2 under consideration:

= +
+

X X X X X X

X X X X X X

H :

H :
0 12 WT 1 WT 2 WT

A 12 WT 1 WT 2 WT (3)

where Xi = log(IC50,i).
This leads to the following z-statistic:

=
+ + +

z
X X X X

X X X X( ) ( ) ( ) 3 ( )
M1,M2

12 1 2 WT
2

12
2

1
2

2
2

WT

(4)

The relevant one-sided z-test was conducted for every pair
of mutations at a 99.95% confidence level. Results are included
in the supporting file SI03.xlsx. In frequentist hypothesis
testing, decreasing the significance level α of the test reduces
the probability of incurring a type I error (erroneously
rejecting the null hypothesis, in this case, identifying an
epistatic interaction when the mutations have only additive
effects). The influence of this decision can be easily evaluated
in the supporting file SI04.xlsx.
In the case of triple mutants, we considered all three possible

double mutants as baselines on which to compare the effect of
an additional mutation. Notice that this can give rise to one
mutation being identified as epistatic in the presence of the
other two, while other point mutations or mutations in the
same triple mutant do not necessarily have to interact
epistatically.
If a statistically significant epistasis is detected, then the type

of epistasis is assigned according to the first of the following
logical rules that evaluates to True:

· < · <

· < · <

> +

< +

X Y Y Y Y

Y Y Y Y

Y Y Y

Y Y Y

If OR( 0; 0) Sign epistasis

If AND( 0; 0) Reciprocal sign epistasis

If ( ) Positive epistasis

If ( ) Negative epistasis

12 1 12 2

12 1 12 2

12 1 2

12 1 2

(5)

where Yi = Xi − XWT.
6. Competition Assays. Our assay is outlined in Figure 1.

For each mutant to be tested, we generated a non-fluorescent
version by introducing an R at position Q183 of GFP.26 For
each comparison to be made, the overnight cultures of
fluorescent and non-fluorescent transformants were normalized
and mixed 50/50. The 50/50 mixture was then used to
inoculate 1 mL cultures containing serial dilutions of
cefotaxime and grown overnight in a 96-well deep-well plate.
The following morning, 200 μL of each culture was transferred
into black-walled 96-well microtiter plates, and fluorescence
(ex: 395 nm, em: 509 nm, autocutoff: 495 nm) and OD600

were measured in tandem on a Spectramax M2e plate reader
(Molecular Devices). The highest cefotaxime concentration for
which there was observed growth (OD600 ≥ 0.1) was used for
further analysis.
7. Estimating the Effects of Mutations on the Free

Energy of Folding. FoldX is a molecular-mechanics-based
suite for the study of thermodynamic properties of proteins
based on an empirical force field.44 The optimization of
residues in FoldX is conducted in a sequential manner, one
residue at a time. While this is a computationally efficient
approach, the absolute accuracy of the results is limited
because only a small subspace of conformations for a subset of
residues around the mutation in question is considered. This is
partly alleviated by applying the same heuristic optimization to
both the parent and the mutant enzyme as a pair, which has
been shown to inform valid trends across large sets of
mutations.45 In this work, we applied some modifications of
the original approach. Instead of applying the heuristic in
FoldX once, we applied the optimization 72 times using a
different random seed each time. The number of residues that
are optimized across each run of the same mutant is always the
same, but the order in which they are optimized and the
rotamers selected are not. Crucially, we selected the mutant
with the lowest folding free energy (ΔG(Mi)) and the parent
enzyme with the lowest free energy (ΔG(WT)) among the 72
pairs of structures and then subtracted their energies to assess
the impact of the mutation on the stability of the enzyme
(ΔΔG(Mi) = ΔG(Mi) − ΔG(WT)). Notice that the parent
and mutant thus selected may come from different FoldX
output pairs. Because a relatively large number of runs are
conducted, the structures selected should be a better
approximation of the lowest energy configuration for both
the mutant and the parent than those obtained from a single
heuristic run. Moreover, this approach makes FoldX’s output
more consistent irrespective of the initial seed used. On the
downside, this is a much more computationally expensive
approach than the original FoldX pipeline. Thus, we
parallelized its execution in the Hummingbird cluster at
UCSC (each node comprising an Intel Xeon E5-2650v4, 2×12
cores, 128 GB DRAM). The 64-bit version of FoldX 5.0 for
Linux was used. A high-quality structure of TEM-1 was
obtained from the PDB (1ZG4, 1.55 Å resolution, Rfree =
0.240, Rwork = 0.185). An initial optimization of the parent
structure was carried out using the RepairPDB command
before further manipulation. Special options used with
BuildModel in FoldX include “--vdwDesign=2 --out‑pdb=false
--nrotamers=5”. The free energy values computed by FoldX
were used without further transformation. Secondary structure
assignments were obtained from the PDB structure using the
software STRIDE.64

8. Relationship between Free Energy of Folding and
Fraction of Folded Protein. Mutations can affect the free
energy of folding (ΔGfolding) and, consequently, the fraction of
TEM-1 folded at a given temperature:
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(6)

where Kfolding is the folding equilibrium constant and [f] and
[u] are the activities (concentrations) of the protein in the
folded and unfolded states. Rearranging this expression and
introducing the fraction of folded protein, αf:
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9. Molecular Dynamics Simulations. MD simulations
were carried out using Acellera’s SimpleRun.65 The crystal
structure of TEM-1 β-lactamase (PDB: 1zg4) was prepared
using SystemBuilder, after removing water molecules from the
structure. The system was protonated at a pH of 7.4, and
13 608 water molecules were incorporated along with the
protein in a cubic box. Equilibration is done in the NPT
ensemble (300 K, 1 atm). First, 500 steps of minimization are
run. Then simulation starts, and 1 kcal mol−1 restraints are
applied throughout the first half of the equilibration run on CA
atoms and ligands, and 0.1 kcal mol−1 on other heavy atoms. In
the second part of the equilibration, the restraints are scaled
down linearly over time to 0 kcal mol−1. The equilibration run
spans a total of 10 ns. Then, a 15 ns production is carried out
in NVT with no restraints. Simulations were carried out at 300
K using a 4 fs integration step. The production run trajectory
was analyzed using the Python library mdtraj.66 Custom scripts
were created to compute the average pairwise distance between
CA of all residues during the run. We also computed the
standard deviation of each pairwise distance during the run.
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