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Abstract

High Order Implicit Shock Tracking using an Optimization-Based Discontinuous Galerkin
Method

by

Andrew Shi

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Per-Olof Persson, Co-chair

Assistant Professor Matthew Zahr, Co-chair

We present a framework for resolving discontinuous solutions of conservation laws using
implicit tracking and a high-order discontinuous Galerkin (DG) discretization. Central to
the framework is an optimization problem and associated sequential quadratic programming
solver which simultaneously solves for a discontinuity-aligned mesh and the corresponding
high-order approximation to the flow that does not require explicit meshing of the a priori
unknown discontinuity surface. We utilize an error-based objective function that penalizes
violation of the DG residual in an enriched test space, which endows the method with r-
adaptive behavior: mesh nodes move to track discontinuities with element faces and improve
the conservation law approximation in smooth regions of the flow. This method is shown
to deliver highly accurate solutions on coarse, high-order discretizations without nonlinear
stabilization and recover optimal convergence rates O(hp+1) for problems with discontinuous
solutions. We demonstrate this framework on a series of inviscid steady and unsteady con-
servation laws, the latter of which using both a space-time and method of lines discretization.
We also develop local mesh operations for curved meshes that are required to maintain mesh
and solution quality as our high-order meshes deform to track the shock.
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t = 0.05, 0.35, 0.65, 0.95 ( ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7 Method of lines solution of two-dimensional, inviscid Burgers’ equation with p =
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like this and it makes me seem like a masochist. Maybe that’s just how it’s supposed to
be. Before my time in graduate school, I believed research was just about results. After all,
nobody publishes their failures and the media doesn’t report on “almost” breakthroughs.
But my time here taught me to appreciate the process. The world doesn’t stop for research;
life goes on as usual, with its many challenges. But through it all, I always felt the support,
encouragement, and friendship of the people I met during my time at Berkeley, and it is my
great pleasure to acknowledge them here.

For most students, the most important factor that determines the quality of their ex-
perience in graduate school is their relationship with their advisor. I can easily say that I
hit the jackpot in this regard with my advisor Per-Olof Persson. From him, I learned many
important lessons. An early one was how to maximize productivity by procrastination. My
first few projects hit quite a few dead ends. Everybody gets stuck, but then there’s really
stuck. So stuck, I could spend an entire semester of effort working on a “baby project” only
to offer up a concrete explanation why our proposed approach was doomed to fail (and be
forced chalk that up as a relative success). After a few moments of contemplation, he would
look at me and say “I think you’re right. Maybe it is fundamental” (the memory of which
still sends chills down my spine). To me this used to seem like a death sentence，but without
missing a beat, Persson would exclaim that “This is good news! Where you see a challenge,
I see opportunity.” At the time, I can only describe my feelings as a combination of being
annoyed to no end by his attitude and so discouraged, that if I let my head hang on the way
out of his office, I could make a dent in the floor. But over time, much to his credit, his
infectious and unrelenting optimism came to rub off on me. I have always looked forward to
our meetings where I would set up shop in his office, present my numerical results on his big
monitor, and ramble on about my progress (or lack thereof) as he would patiently listen, offer
comments, and draw pictures. I can say that almost every single time I left his office feeling
re-energized with a whole slew of ideas and directions I couldn’t wait to try out before we
met again. He and I probably spent just as much (if not more) time discussing non-research
things, mathematical, departmental, or really anything else. It has been a great pleasure
and boon for me to interact with him as someone with whom I could always speak freely



xi

and candidly. Beyond research, he imparted in me valuable insights on all things academic,
such as how to give good talks or balance multiple responsibilities. Prof. Persson always
looked out for opportunities for me whether it be new projects, collaborations, conferences,
or grants. He always encouraged me to go in any direction I wanted, even if it did not
necessarily align with his own. Without his guidance I would not have been able to develop
my confidence and independence. After I hit a difficult and extended period in my personal
life, he without fail helped me out in any way I asked of him, far beyond the scope of what
can be expected from an academic advisor. I am proud to call him (in no particular order)
my teacher, advisor, mentor, collaborator, advocate, co-instructor and friend.

In the same breath, I must mention my co-advisor Prof. Matthew Zahr. Our early
interactions can be described as him enthusiastically and patiently explaining all of his
various ideas on how to develop this shock tracking method on his extremely busy (but
perfectly legible) whiteboard at the lab while I would stare blankly at him for an hour,
only for me to come back a month later and ask him what a Jacobian was. But Matt’s
near limitless patience and availability as I fumbled through the early years eventually paid
off, and I am very grateful to him for that. Matt is the ideal combination of mentor and
collaborator, letting me find my own way and directions, while at the same time helping me
clear unnecessarily cumbersome obstacles and gently reign me in when I’ve gone too far off.
I have always been in awe of the sheer breadth and depth of his mathematical and technical
knowledge as well as his academic savvy at such a young age. Just like with Prof. Persson, it
makes life much easier when you can work with someone you are almost always on the same
page with and can discuss potentially difficult issues very candidly. Matt’s attention to detail
and willingness to make large investments in developing systems such as his codebases rather
than taking shortcuts or settling for less reflects on his dedication to his craft, his genuine
investment in his students, and his integrity as a researcher and a person. It is because of
him and his extremely well designed LaTeX templates that I am probably the only student
filing their dissertation this semester to eschew the standard template and simply call my
thesis “pap.tex”. The surprisingly large amount of bureaucratic hurdles I had to clear to get
him formally acknowledged as my co-advisor was easily worth it, because now I have the
honor of calling myself his first PhD student.

I don’t seem to recall learning all that much math from either Matt or Per. Whatever
I did learn, pretty soon I’ll certainly forget most of it. But I can say I got a genuine taste
of what it really means to do research from the two of you. To not be discouraged or give
up at the first sign (or major signs, plural) of trouble, be creative and independent, balance
short term practical needs with long term visions, and maintain integrity and transparency
while still “playing the game”. It is great to work with people who embody a lot of the
characteristics and goals that you have for yourself; they remind you that it’s all possible. I
will miss working with the two of you immensely.

I have had the great pleasure of interacting with many faculty during my decade+ at
UC Berkeley. I first want to thank Prof. Alexandre Chorin. It is only through a very late
Phase I Telebears appointment I reluctantly enrolled in his Numerical Analysis course in
the Spring of 2013 my freshman year that met MWF at 8am (!!). But without fail I would
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show up at 7:55am, and each day around 8:08am, he would neatly fold up his jacket, put
away his newspaper, and began lecturing from memory and filling up the four chalkboards
in LeConte 4. I would always attempt to follow his arguments with great interest, even that
week I fell off the top bunk and sprained both my ankles (and then some). I recall fairly
clearly one of our earliest personal interactions, when I made the trek to his office to seek
an administrative signature approving my planned course schedule. I tapped on his closed
door and he curtly informed me that his office hours had just ended and I had misread them.
As I prepared to leave in embarrassment, he graciously waved me inside so I could get my
signature. After a few minutes of silence as he examined my record, he asked me about my
post-graduation plans and I offered up some vague response about finding a well-paying job.
He then asked me if I had ever considered going further in mathematics, and I attempted to
delicately reply that mathematics was not for me. When he asked why not, I thoughtlessly
blurted out something to the effect of “What is there even left to do?”. Almost a decade
later, I remember very little about his actual answer, but what stuck with me was how much
he had to say in response; the sudden excitement my näıve question sparked in this usually
soft-spoken man. I can say that day, the seed was planted in my mind. Prof. Chorin piqued
my interest in the subject and was supportive and encouraging of my decision to pursue
graduate studies in the field. I owe a great debt to him as do countless other students he has
advised and mentored over the years, and it is my great fortune that the beginning of my
academic career could overlap with the end of his fifty year teaching career. I thank Prof.
John Strain, from whom I’ve taken many courses (and taught just as many for). Prof. Strain
has always given me excellent character building advice and challenges over the years, and
I have always enjoyed working and interacting with him a great deal. Prof. Jon Wilkening
has always been a friendly face in the department who I can count on for an encouraging
word (and who I’ve long suspected was the only member on the admissions committee that
year who wanted to admit me at all). I have always been in awe of his ability to take on
many teaching, research, and service responsibilities (not to mention small children!), all
while keeping his cool. Prof. Ming Gu has always been someone who I have found very
easy to talk to, and even though we work in very different fields, I appreciate his confidence
in me through his invitation to conduct research with him on his RRQR method and his
last minute service on my dissertation committee. Even though Prof. Craig Evans and I
did not interact as much as I would have liked, I thank him for his courses, his service on
my qualifying committee, and graciously autographing my copy of his textbook that I can
show off for generations to come. While his research and pedagogical accomplishments speak
for themselves, I have always in particular been inspired by his commitment to education,
pedagogy, and the mission of the University of California as a public institution and the vital
role our department plays in that mission. Thanks to Prof. Shawn Shadden for serving on
my qualifying exam committee and teaching some excellent courses that provided my first
exposure to the finite element method. Prof. Michael Lindsey gets special mention, due
to his recent ascent from the “friends” to the “faculty” section of these acknowledgements.
I call everyone Prof. Last Name, but to me, he is and also will be Mike, even after he
gets elected to the National Academy of Science. I never would have expected the 2nd year
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graduate student that volunteered to host a prospective student (only because his roommate
was out of town and there was a $50 Amazon gift card in it for him, so why not?) would
end up serving on my dissertation committee. I also credit him for dispelling some of my
misgivings about returning to Berkeley for a second tour of duty after a two-year gap. I have
always greatly admired him as a scientific role model and more importantly as a person, and
I consider it a great honor to have been the second most frequent visitor to the earliest and
most primitive versions of your personal webpage (only behind your mother) as I had the
pleasure of watching your early career rapidly ascend. But more importantly, I thank you
for your friendship and support in your own second tour of duty at Berkeley as well as your
willingness to help me out at the last minute without the slightest hesitation to get this
dissertation through the finish line.

I also want to thank our wonderful staff. A now-retired professor once described his year
long sabbatical at a company with the following quote:

Amazingly, I came across no individual here who was less than competent at
their job. This contrasts with my experience in academia, where 5% of employees
should have been fired years ago.

This seems like an appropriate way to characterize the amazing staff in the math department.
I first want to thank Jennifer Sixt-Pinney. She graciously picked up my call to help me sort
out all of my course equivalencies and other unique situations before I had even arrived
on campus as a freshman in Fall 2012, even though looking back it should have been my
responsibility to Google 75% of the answers myself. For many years, Jennifer has been the
glue that held the department together through her tireless efforts (only she knows where all
the bodies are buried), and I and countless others have certainly benefited from her work from
behind the scenes. There have been many instances of departmental gossip that only she
and I could fully appreciate and discuss in hushed tones behind a barely cracked open door,
and I wish her a happy and well deserved retirement. I also want to thank Marsha Snow.
For many years, she always confused me some other guy who competed on the Jeopardy
College Championship. But eventually, she figured out who I was and throughout the years
I would always find an excuse to drop by the front office so we could chat, despite her and
Jennifer’s independent ridicule of me as “cowgirl”. Thank god she finally listened to my
advice and got rid of those awful Tootsie Rolls she used to stock and replaced them with
Jolly Ranchers. It doesn’t matter how many sizes or flavors they’re available in Marsha,
nobody likes them besides you! I also want to thank Jon Phillips. I don’t think he and I
have ever met face to face, but he was extremely helpful and responsive in helping me get
this dissertation through the final stages. There were many strange bureaucratic hurdles
that I believe neither of us had ever seen before, quite a few of which were caused by my own
negligence and last minute change of plans, but Jon skillfully and deftly helped me navigate
through all of them. Most of the time, my interaction with the graduate advisor doesn’t
amount anything personal, usually just filling out some Google form to enroll in units or
get a GSI assignment. But Jon showed me that during crunch time, he is more than “just
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a advisor”, but a true advocate for all the graduate students in the department, and for
that I will always be very grateful to him. I thank Vicky Lee, both from her previous role
as graduate advisor, and now as her new position of Director of Student Services. I don’t
know what the official job description of the latter title entails, but both of us know this
makes her the new keeper of all knowledge and responsibility in the department. I very
clearly remember my first impression of Vicky during the graduate orientation, where she
said something to the effect of “Cheesy as it may sound, I truly feel that my calling is to be
here at the University and help students succeed.” Years of my own observation have proven
there is quite a lot of substance behind that cheesy statement. Vicky is the one to wear
almost all the hats in the department, going above and beyond to pick up the slack and take
on and take on any responsibility to help students succeed. Anything from working with a
particular individual on their own situation to or some broader initiative that may impact
the academic outcomes of many students, despite any number of uphill climbs or thankless
tasks it takes. All while making it look easy (though I know it’s anything but) and being
incredibly approachable. I am grateful for our interactions and her help and support over
the years. Finally, I also want to thank all the other members of our staff who I may not
have directly interacted with as much, but I know are responsible for contributing to my
experience here in one way or another. Ask any of the hundreds of students who have had
the (mis)fortunate of having me as their GSI. I don’t think I am one to give out praise very
lightly or frequently. but the staff of the math department at the University of California,
Berkeley is truly world class.

I want to thank all of the great friends I made at Berkeley. In theory, I should have been
constantly discussing high level mathematics with my classmates at one of the top schools
to study mathematics until the late hours of the night like some great melding of the minds.
There were indeed many discussions until the late hours of the night (and early morning),
but I don’t recall math ever being mentioned. I wouldn’t change anything about it.

First I want to thank all of my officemates, official and unofficial. First up is my only
officemate of five years, Tong Yu. Even though I never really figured out what he does
beyond my expert parroting of buzzwords (DMET/DMFT, Hartree-Fock like...), I have
always admired him as a scientist and mathematician. He is a humble and truly capable
person, and I can only hope the multiple donuts and sweets I split with him over the years
will make me eligible for a hefty discount on the quantum computers I expect him to make
breakthroughs in. I appreciate his (reluctant) willingness to let me bogart our shared office
space to store all sorts of junk, as well as his selfless sacrifice in giving up an office with an
window so I could keep my couch (not to mention his consideration in dimming the lights for
me during the multiple times he caught me napping during business hours). I want to thank
my first set of “nighttime” office mates Charles Wang, Angxiu Ni, and Chan Bae. Even
though Chan Bae gave me terrible investment advice and our petty squabbles behind closed
doors as he played Clash of Clans frequently echoed through the hall, I am (somewhat)
grateful for the short time we spent together, nearly 7 days a week, within 15 feet from each
other. And with grandpa Angxiu Ni, we formed the original “party four” (see [51]). I recall
our many nights eating “Lavar’s”, discussing which acronyms to use for his latest algorithm,
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and his inability to recite more US states than NBA teams (Golden State is still not a state),
fondly. I also thank my second set of “daytime” officemates Michael Franco, Yanhe Huang,
and Luke Corcos. Finding any any

(
3
k

)
, k = 1, 2, 3 subset of them, we could discuss anything

from academic and non-academic career paths, to teaching Yanhe “real world English”, and
the fatal fantasy implications of drafting Mr. Big Chest with your first round pick. But
of course, the case of k = 3 allowed us to form what the recent literature described as the
“office party” (see [33]). Considering I spent many years lurking as an ever present shadow
in the dimly lit halls of Evans and rarely changing sweaters, I would hardly consider myself
a party person. But I am certainly flattered (if not bemused) to remembered as such.

Thanks to Nick Bhattacharya, who I found a distinct shared sense of humor few do
in this lifetime, even though just seeing his name evokes the clear memory of him wolfing
down those disgusting Popeyes biscuits on two-piece Tuesday. I want to thank boy wonder
Xiaohan Yan. You might have been part of the gifted youth class at Peking University,
but that doesn’t mean squat when it comes to your complete lack of appreciation of the
skill it takes to play Spider Solitaire with more than one suit. I thank Yao Yuan and Irit
Huq-Kuruvilla for our multiple excursions to eat something far away from campus. But Yao
Yuan I can only thank reluctantly, because that final excursion to Great China with the
soggy duck skin still leaves a bad taste in my mouth. Actually, it’s a wonder it left any taste
in my mouth, because in the time it takes me to delicately assemble one duck pancake, you
have already shoved five in your face hole. Splitting the bill equally with you has easily the
biggest scam in Berkeley, and eventually Irit and I will find a way to get even. I acknowledge
James Dix for our multiple Google maps tours of fast food eateries in remote college towns
and our shared quest to find of high-quality Picanha in the bay area at bargain basement
prices. If either of us gain any political influence in Berkeley, I know our first move would be
to tear down Chez Panisse (Michelin stars be damned) without the slightest hesitation and
replace it with a Sonic drive-through. Max Hlavacek has always been a source of cheerful
optimism. I could always count on her to spy on me while I was absorbing sunlight on the
patio, just as she could always count on me provide last minute lodging on my air mattress
when she gets locked out of her office late at night. (I believe as of this writing, we are still
the only two of our cohort to spend the night in Evans).

Anthony Villafranca is the original co-host of late night in Evans and fellow prisoner
during the COVID times in Cynthia’s den. We always had a good time together, from “take
a little disk” to “I saw a deer” and all the other random stuff in between. Here’s to Tugba,
∂u
∂t

= ∆u, Grimace, big boy and his wife, 35 year old, seasons 1-7 Lorelai (but only seasons
1-3 Rory, Yale just ruined her), Erika Cheung, Bibo or Biji or whatever, the middle eastern
guy from Office Space that says “Peter, If you’re so obsessed with her, why don’t you just
.... ask her out?”, which reminds me of that cute waitress at Soi Four you blew any chance
with because you looked particularly homeless that day and your card was declined, and all
the other nonsense characters that only exist in our own demented world. (But here I have
to admit I don’t nearly like Thai food as much as you do, but since you had a car...)

Out of our cohort of thirty, Adele Padgett and I are probably the most different. Gender,
ethnicity, appearance, personalities, social inclinations, mathematical interests, choice of
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restaurants, and ability to hold our booze or lie in the sun for extended periods of time
(exercise to the reader to guess who is better at which). In theory I don’t think we should
have been friends. But in reality, I have come to value her friendship a great deal over
the years. She was someone I could always confide in and came to trust, and we could
always healthily disagree without ever getting into a fight. As much as I will miss you, I
know someone from Berkeley who will miss you even more than I. Because now that you are
Canadian, Hotsy Totsy will need a small business loan to keep their doors open.

I thank Roy Zhao (@GSIRoyZhao) for always being someone I can count to help me out
with anything and commiserate with on just how damn hard it is to get anything done in
graduate school. Roy is a genuinely good guy who I admire for his dedication to his friends,
students, and the department. In fact, you are such a good guy, you were the first person to
rush to get those gift cards “Martin Olsson” urgently requested. Thanks for always sharing
your questionably obtained URep haul with me (impeach Larsen). Once you finally find the
next largest prime number (or whatever it is you actually do), I am sure 爸爸 will welcome
back his prodigal son.

And finally, I thank my friend Charles ’les Wang (@c). Out of everyone on this list, I
have easily spent the least amount of time in your physical presence because you decided
to abandon us for fancy-schmacy Harvard after a single year. But you have been the one I
have interacted with the most during my time in graduate school. Looking back, year one
of graduate school was easily the most enjoyable. Probably because I don’t seem to recall
actually doing a single thing of value towards the pursuit of my graduate degree. What I do
recall is spending countless hours in your freezing office watching you play as sillibrij, as well
as the countless hours in my much nicer office I went all in on the river with nothing but 2♣
9♥ high, saying that I’m sure this “jerk from Estonia” is going to fold. Only to get snapped
off, reload, and repeat, completely undeterred by my own stupidity and stubbornness. I
don’t think I ever got a cavity filled on my back left molar from what I suspect resulted from
our personal hoarding of multiple 5lb bags of candy after we lost faith in the previous model
of communism due to certain bad actors (who are also mentioned in these acknowledgements
but I will not call out by name.) My once sharp memory has become very fuzzy in the last
few years, but I still remember clearly your last day at Berkeley. After a night in your office
hiding from @gny and a disappointing trek to Long Life Vegi House, I lament that I only got
to feel just how soft your mermaid hair was we said goodbye (We both know exactly why
I had good reason to assume it was dirty). While the road ends for me here in the pursuit
of our shared dream that formed the basis of our strong friendship over the last few years,
I wish you the best of luck and hope you get everything you deserve, Wanglands and more.
By the way, can you explain one more time exactly “hwat in the hell” a Grassmanian is?

In closing, there are far more important things in life than research, high-order implicit
shock tracking or pretty much anything else. Some of us are lucky and never have to learn
this lesson. Some of us learn this lesson just a little bit too late. To my late mother and her
late mother, this dissertation is nothing but a small monument to my tremendous selfishness.

为了写这本天书，把你们俩送到天堂。
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Chapter 1

Introduction

It is widely believed that higher fidelity is required for problems with propagating waves,
turbulent fluid flow, nonlinear interactions, and multiple scales [75]. This has resulted in
a significant interest in high-order accurate methods, such as discontinuous Galerkin (DG)
methods [7, 31], which have the potential to produce accurate solutions on coarse meshes.
Among the most significant challenges associated with high-order methods is their sensitivity
to under-resolved features, in particular for nonlinear problems where the spurious oscilla-
tions often cause a breakdown of the numerical solvers. This is exacerbated for problems
with shocks where the low dissipation associated with high-order methods is insufficient to
stabilize the solution. Since shocks are present in many important problems in fields such
as aerospace, astrophysics, and combustion, this poses a fundamental barrier to widespread
adoption of these methods. Many solutions have been proposed, but most require excessively
refined meshes to resolve all the features, which in practice makes it difficult to accurately
predict high Reynolds, high Mach flows that feature shocks, boundary layers, and inter-
actions between them. Therefore, new advances are required to make high-order schemes
sufficiently robust and competitive for real-world problems. We first provide a simple motiva-
tion of our proposed approach to remedy these issues in context of the existing methods and
issues (Section 1.1), and then go into more detail on the related and current state-of-the-art
methods and discuss their relative advantages and drawbacks (Section 1.2).

1.1 Motivation
Consider a simple two element mesh in 1D (Figure 1.1). Typical numerical methods (such
as the Finite Element Method) rely on a set of smooth polynomial basis functions defined
on these elements (Figure 1.2) for numerical approximation. However, when the underlying
function to be approximated is a discontinuity (Figure 1.3), a fundamental issue arises when
you attempt to use a set of smooth basis functions. It is clear this does not approximate
the discontinuity very well, not to mention the fact the approximation takes on a negative
value, which is a significant problem when estimating physical quantities such as density for
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which this makes no sense.

Figure 1.1: A two element mesh in 1D.

Figure 1.2: A polynomial basis on the mesh from Figure 1.1.

Figure 1.3: Polynomial basis from Figure 1.2 along with a discontinuous function.

Figure 1.4: A numerical approximation of the discontinuous function from Figure 1.3 using
a polynomial basis.

One approach is known as limiting (Section 1.2.1), but this has the drawback of order
reduction (Figure 1.5), which is undesirable when the demand for high-order and high-
fidelity solutions (especially along features such as discontinuities) are at an all time high.
This approach can be augmented by local mesh refinement (Figure 1.6), but it doesn’t really



1.1. MOTIVATION 3

do much to improve on the crux of the issue, which is high-order accuracy in the presence
of a discontinuity.

Figure 1.5: Approximation to the discontinuous function by limiting.

Figure 1.6: Approximation to the discontinuous function by limiting and mesh refinement.

The most popular approach today for stabilizing shocks is known as shock capturing
(Section 1.2.2), in particular artificial viscosity. Rather on relying on the dissipation inherent
in the numerical scheme (such as the discontinuous Galerkin approximation), an artificial
viscosity term is added which is aimed at eliminating the high frequencies in the solution, thus
eliminating Gibbs-type oscillations (Figure 1.7), which can be reflected in the corresponding
numerical approximation (Figure 1.8).
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Figure 1.7: Artificial viscosity added to the discontinuous function.

Figure 1.8: Numerical approximation to the viscosity enhanced function in Figure 1.7.

Revisiting our discontinuous function (Figure 1.9), in this thesis we present an alternative
approach for the numerical approximation of discontinuous functions. Shock tracking (or
shock fitting), aims to align the features of the solution basis with features in the solution
using an optimization formulation and solver. In this simple example (Figure 1.10), we can
see that our numerical solution can now exactly represent the function by aligning the mesh
to the discontinuity and using smooth basis functions to represent the solution elsewhere.

Figure 1.9: The discontinuous function on the original mesh from Figure 1.1.

Figure 1.10: Mesh aligned numerical solution with the discontinuous function.
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Such an approach has been shown to have many key advantages, two of which are the
ability to obtain optimal convergence rates of O(hp+1) even in the presence of discontin-
uous solutions (Figure 1.11) [79], as well as gain orders of magnitudes of improvement in
comparison to adaptive mesh refinement procedures (Figure 1.12).

Figure 1.11: A demonstration of high-order convergence of implicit shock tracking (See [79]
for details).

Figure 1.12: Convergence of implicit shock tracking (Burgers’ equation): implicit shock
tracking (solid) vs. adaptive mesh refinement (dashed).

In this work, we propose an approach to shock tracking that does not explicitly require
generating a mesh of the unknown discontinuity surface. Rather, the conservation law is
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Figure 1.13: L2 projection of a piecewise constant function onto a non-aligned (left) vs.
discontinuity-aligned mesh with linear (middle) and cubic (right) elements and corresponding
solution. See Example 4.1 of [79] for details.

discretized on a mesh without knowledge of the discontinuity surface and an optimization
problem is formulated such that its solution is the pair (u,x), where x is the positions of the
mesh nodes that cause element faces to align with discontinuities in the flow and u is the
solution of the discretized conservation law on the mesh defined by x. That is, discontinuity
tracking is implicitly achieved through the solution of an optimization problem and will be
referred to as implicit shock tracking. While this approach works with any discretization that
allows for inter-element discontinuities, we focus on high-order DG methods due to the high
degree of accuracy attainable on coarse meshes, proper treatment of discontinuities with
approximate Riemann solvers, and the ability to use curved elements to track discontinu-
ities with curvature (Fig. 1.13). The implicit tracking optimization problem proposed here
minimizes the violation of the DG residual in an enriched test space while enforcing that the
standard DG (same test and trial space) equations are satisfied. This objective function is a
surrogate for violation of the infinite-dimensional weak formulation of the conservation law,
which endows the method with r-adaptive behavior: it promotes alignment of the mesh with
discontinuities and adjusts nodes in smooth region to improve approximation of the conser-
vation law. The optimization problem is solved using a sequential quadratic programming
method with a Levenberg-Marquardt Hessian approximation that simultaneously converges
the mesh and solution to their optimal values, which never requires the fully converged DG
solution on a non-aligned mesh and does not require nonlinear stabilization. The combina-
tion of implicit tracking with a DG discretization leads to a high-order accurate numerical
method that has been shown to provide accurate approximations to high-speed inert [79, 81,
63] and reacting flows [80].
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1.2 Related approaches

1.2.1 Limiting
One simple method is to use a sensor that identifies the mesh elements in the shock region and
reduce the degree of the approximating polynomial [3, 6]. A more sophisticated approach
includes limiting, such as the weighted essentially non-oscillatory (WENO) schemes [30,
45, 35], which perform a high-order reconstruction near discontinuities, but require a large
computational stencil which offsets the attractive compactness properties of DG methods.
For a more detailed discussion about the relative merits and drawbacks of limiting and
ENO/WENO schemes in comparison to artificial viscosity, see the introduction of [56].

1.2.2 Shock capturing
For high-order methods, artificial viscosity has also proven to be competitive, since it can
smoothly resolve the jumps in the solution without introducing additional discontinuities
between the elements [56]. Indeed, artificial viscosity has been huge in the success of making
progress towards previously intractable problems such as unsteady Large Eddy Simulation
and Aeroacoustics. A recent comparative study of artificial viscosity models [77] discusses
their relative merits, but conclude all of these artificial viscosity models suffer from a rela-
tively strong dependency on a large number of empirical parameters which must be tuned.
Parameter tuning notwithstanding, the main problem with all these approaches is they lead
to globally first-order accurate schemes. This can be remedied by local mesh refinement
around the shock (h-adaptivity) [14], although the anisotropic high-order mesh adaptation
is challenging and requires highly refined elements near the shock. This issue is further com-
plicated by transient problems where shocks and other local features propagate throughout
the domain, requiring online adaptivity to be computationally feasible. Even with aggressive
h- and p-adaptivity, simulations of complex, shock-dominated, unsteady flows are extremely
challenging and expensive.

1.2.3 Explicit shock tracking/fitting
An alternative approach is shock tracking or shock fitting, where the computational mesh
is moved such that its faces are aligned with the discontinuities in the solution. This is
natural in the setting of a DG method since the numerical scheme already incorporates
jumps between the elements and the approximate Riemann solvers employed on the element
faces handle the discontinuities correctly. However, it is a difficult meshing problem since it
essentially requires generating a fitted mesh to the (unknown) shock surface. Many previous
approaches employ specialized formulations and solvers which are dimension-dependent and
do not easily generalize [29, 28, 4] and/or are limited to relatively simple problems [65, 66,
71]. In addition, early approaches to shock fitting have been applied to low-order schemes
where the relative advantage over shock capturing is smaller than for high-order methods
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[69, 2]. Explicit shock tracking strategies [58, 48] have been proposed which are able to
attain high-order accuracy in the presence of shocks, but require a specialized strategy to
explicitly track the shock separately from the remainder of the flow. These methods are not
easily applicable to discontinuities whose topologies not known a priori. For these reasons,
shock tracking is largely not used in practical CFD today.



9

Chapter 2

Governing equations and high-order
numerical discretization

Consider a general system of m inviscid conservation laws, defined on the fixed domain
Ω ⊂ Rd and subject to appropriate boundary conditions,

∂U

∂t
+∇ · F (U) = 0 in Ω× [0, T ] (2.1)

where U : Ω×[0, T ]→ Rm is the solution of the system of conservation laws, F : Rm → Rm×d

is the flux function, ∇ := (∂x1 , . . . , ∂xd
) is the gradient operator in the physical domain such

that ∇W (x, t) =
[
∂x1W (x, t) · · · ∂xd

W (x, t)
]
∈ RN×d for any W : Ω × [0, T ] → RN and

x ∈ Ω, t ∈ [0, T ], and the boundary of the domain ∂Ω has outward unit normal n : ∂Ω→ Rd.
The conservation law in (2.1) is supplemented with the initial condition U(x, 0) = Ū(x) for
all x ∈ Ω, where Ū : Ω→ Rm. In particular, we will also consider the special case of

∇ · F (U) = 0 in Ω, (2.2)

which is sufficiently general enough to encapsulate steady conservation laws in a d-dimensional
spatial domain or time-dependent conservation laws in a (d− 1) dimensional domain, i.e., a
d-dimensional space-time domain.

In general, the solution U(x) may contain discontinuities, in which case, the conservation
law (2.2) holds away from the discontinuities and the Rankine-Hugoniot conditions [47]

F (U+)n = F (U−)n (2.3)

hold for x ∈ Γs, where Γs ⊂ Ω is a surface along which U is discontinuous, U+(x), U−(x) ∈
RM are the values of U(x) on either side of the discontinuity, and n is a normal vector to
the surface Γs.

We will construct a high-order numerical method that tracks discontinuities with the
computational grid as they evolve through the domain, which places three requirements on
the discretization: 1) a high-order, stable, and convergent discretization of the conservation
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law in (2.1), 2) employs a solution basis that supports discontinuities between computa-
tional cells or elements, and 3) allows for deformation of the computational domain. As
such, our method is based on a standard high-order DG-DIRK discretization of an Arbitrary
Lagrangian-Eulerian (ALE) formulation of the governing equations. We insist on a high-
order discretization given their proven ability [79, 8] to deliver accurate solutions on coarse
discretizations provided discontinuities are tracked. The extension to other discretizations
that support inter-element discontinuities such as finite volumes, flux reconstruction, hy-
bridizable DG, and the DG spectral element method are possible, but beyond the scope of
this work.

The remainder of this section will detail the discretization of the conservation law (2.1)
using DG such that it reduces to the semi-discrete form

r(u̇,u, ẋ,x) = 0 (2.4)

where r : RNu × RNu × RNx × RNx → RNu , u is the semi-discrete representation of the
conservation law state U , and x is the semi-discrete representation of the conservation law
domain Ω (nodal coordinates of mesh nodes). We will then apply a high-order temporal
discretization to (2.4) by a diagonally implicit Runge-Kutta method to yield a complete dis-
cretization of (2.1). The same discretization process can be used to yield a semi-discretization
from an enriched test space and corresponding temporal discretization, which will be used in
the definition of the proposed objective function. For emphasis, this discretization simplifies
considerably in the case of the steady conservation law (2.2), in which all the time-dependent
terms drop out and we are left with the semi-discrete form

r(u,x) = 0 (2.5)

where r : RNu × RNx → RNu . For a treatment of Sections 2 and 3 considering only the
steady case corresponding to 2.2 and 2.5, see [78].

2.1 Arbitrary Lagrangian-Eulerian (ALE) formulation
of conservation laws

We use an ALE formulation of the governing equations to account for the time-dependent do-
main deformations required to track discontinuities as they evolve. To this end, we introduce
a time-dependent domain mapping (Fig. 2.1)

G : Ω0 × [0, T ]→ Ω; G : (X, t) 7→ G(X, t), (2.6)

where Ω0 ⊂ Rd is a fixed reference domain, T is the final time, and at each time t ∈ [0, T ],
G( · , t) : Ω0 → Ω is a diffeomorphism. We note that the domain Ω is fixed, i.e., Ω occupies the
same region of Rd at any time t ∈ [0, T ]; the time-dependent diffeomorphism is introduced
as an integral part of the proposed numerical method to track discontinuities as they evolve.
Under the domain mapping (2.6), the conservation law (2.1) becomes
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Ω0 Ω

X1

X2
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N
n

x = G(X, t)

X = G−1(x, t)

Figure 2.1: Mapping between reference and physical domains.

∂U

∂t
+∇ · F (U) = 0 in G(Ω0, t) (2.7)

Following the approach in [54], the conservation law on the physical domain Ω is transformed
to a conservation law on the reference domain Ω0

∂UX

∂t
+∇X · FX(UX ;G, v) = 0 in Ω0 (2.8)

where UX : Ω0 × [0, T ] → Rm is the solution of the transformed conservation law, FX :
Rm×Rd×d×Rd → Rm×d is the transformed flux function,∇X := (∂X1 , . . . , ∂Xd

) is the gradient
operator on the reference domain, and the deformation gradient G : Ω0 × [0, T ] → Rd×d,
mapping Jacobian g : Ω0× [0, T ]→ R, and mapping velocity v : Ω0× [0, T ]→ Rd are defined
as

G = ∇XG, g = detG, v =
∂G
∂t
. (2.9)

The transformed and physical solutions are related, for any X ∈ Ω0 and t ∈ [0, T ], as

UX(X, t) = g(X, t)U(G(X, t), t) (2.10)

and the transformed flux is defined as

FX : (WX ; Θ, ξ) 7→ [(detΘ)F ((detΘ)−1WX)−WX ⊗ ξ]Θ−T . (2.11)

This is by an application of the divergence theorem in the physical domain, change of vari-
ables of surface integrals (Nanson’s formula), and an application of the divergence theorem in
the reference domain (See [78], equation (10) for details). The unit normals in the reference
and physical domain are related by

n =
gG−TN

‖gG−TN‖
. (2.12)

The transformed conservation law is supplemented with the initial condition UX(X, 0) =
ŪX(X) for all X ∈ Ω0, where ŪX : Ω0 → Rm is ŪX(X) = g(X, 0)Ū(G(X, 0)). In this work,
we take the reference domain to be the physical domain at time 0, which implies g(X, 0) = 1.
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2.2 Discontinuous Galerkin discretization of
transformed conservation law

We use a nodal discontinuous Galerkin method [7, 31] to discretize the transformed con-
servation law (2.8). Let Eh represent a discretization of the reference domain Ω0 into non-
overlapping, potentially curved, computational elements, where h is a mesh element size
parameter. The DG construction begins with the elementwise weak form of the conserva-
tion law (2.8) that results from multiplying each equation by a test function ψX , integrating
over a single element K ∈ Eh, and applying the divergence theorem∫

K

ψX · U̇X dV +

∫
∂K

ψ+
X · FX(UX ;G, v)N dS −

∫
K

FX(UX ;G, v) : ∇XψX dV = 0, (2.13)

where N is the outward normal to the surface ∂K and ψ+
X denotes the trace of ψ interior

to element K. To ensure the face integrals are single-valued, we replace FX(UX ;G, v)N in
the second term with a numerical flux function HX : Rm × Rm × Rd × Rd×d × Rd → Rm

associated with the reference inviscid flux FX∫
K

ψX ·U̇X dV +

∫
∂K

ψ+
X ·HX(U

+
X , U

−
X , N ;G, v) dS−

∫
K

FX(UX ;G, v) : ∇XψX dV = 0, (2.14)

where U+
X (U−

X ) denotes the interior (exterior) trace of UX to the element K; for points
X ∈ ∂K ∩ ∂Ω0, U−

X is a boundary state constructed to enforce the appropriate boundary
condition. In this work, we take the numerical flux to be a smoothed version of the Roe flux
(Section 2.3). To establish the finite-dimensional (semi-discrete) form of (2.14), we introduce
the DG approximation (trial) space of discontinuous piecewise polynomials associated with
the mesh Eh

Vp
h =

{
v ∈ [L2(Ω0 × [0, T ])]m

∣∣ v( · , t)|K ∈ [Pp(K)]m, ∀K ∈ Eh, t ∈ [0, T ]
}

(2.15)

where Pp(K) is the space of polynomial functions of degree at most p ≥ 1 on the element
K, and we take the DG test space to be Vp′

h , where p′ ≥ p. We also define the space of
admissible domain mappings as the space of continuous piecewise polynomials of degree q
associated with the mesh Eh

Wh =
{
v ∈ [C0(Ω0 × [0, T ])]d

∣∣ v( · , t)|K ∈ [Pq(K)]d, ∀K ∈ Eh, t ∈ [0, T ]
}
. (2.16)

We can now establish the finite dimensional form of (2.14) and the formal statement of DG
as: given Gh ∈ Wh, find UX,h ∈ Vp

h such that for all ψX,h ∈ Vp′

h∫
K

ψX,h·U̇X,h dV+

∫
∂K

ψ+
X,h·HX(U

+
X,h, U

−
X,h, N ;Gh, vh) dS−

∫
K

FX(UX,h;Gh, vh) : ∇XψX,h dV = 0,

(2.17)
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where the DG residual form rp
′p

h : Vp′

h × V
p
h ×Wh → R is given by

rp
′,p

h : (ψX,h,WX,h,Qh) 7→
∑

K∈Eh,q

rp
′,p

K (ψX,h,WX,h,Qh), (2.18)

and the elemental DG form rp
′,p

K : Vp′

h × V
p
h ×Wh → R is given by

rp
′,p

K : (ψX,h,WX,h,Qh) 7→
∫
K

ψX,h · ẆX,h dV

+

∫
∂K

ψ+
X,h · HX(W

+
X,h,W

−
X,h, N ;∇XQh, Q̇h) dS

−
∫
K

FX(WX,h;∇XQh, Q̇h) : ∇XψX,h dV.

(2.19)

Next, we introduce a (nodal) basis over each element for the test space (Vp
h), trial space

(Vp′

h ), and mapping space (Wh) to reduce (2.19) to a system of ordinary differential equations
(ODEs) in residual form. In the case where p′ = p, we denote the residual r : RNu ×RNu ×
RNx × RNx → RNu , which is defined as

r : (ẘ,w, ẙ,y) 7→mẘ + f(w,y, ẙ), (2.20)

where Nu = dimVp
h, Nx = dimWh, m ∈ RNu×Nu is the mass matrix associated with the

test/trial space Vp
h, and f : RNu × RNx × RNx → RNu is the algebraic form of the second

and third terms in (2.19). In this notation, the standard DG discretization reads: given
x : [0, T ]→ RNx , find u : [0, T ]→ RNu such that

r(u̇(t),u(t), ẋ(t),x(t)) = 0, u(0) = ū, (2.21)

for all t ∈ [0, T ], where u is the time-dependent coefficients of the DG solution, x is the
time-dependent coefficients of the domain mapping (nodal coordinates of the mesh), and
ū ∈ RNu is the algebraic representation of the initial condition ŪX ; additionally, we define
x̄ ∈ RNx as the initial condition for the nodal coordinates, i.e., x̄ = x(0). Typically, the
evolution of the mesh coordinates x(t) is known analytically or governed by a dynamical
system (e.g., fluid-structure interaction); however, in this work, it will be determined as the
solution of an optimization problem (after temporal discretization) such that discontinuities
are tracked over time.

Finally, we use the expansions in the nodal bases to define the enriched residual R :
RNu × RNu × RNx × RNx → RN ′

u associated with a trial space of degree p′ as

R : (ẘ,w, ẙ,y) 7→Mẘ + F (w,y, ẙ), (2.22)

where N ′
u = dimVp′

h , M ∈ RN ′
u×Nu is the mass matrix associated with the test space Vp′

h

and trial space Vp
h, and F : RNu × RNx × RNx → RN ′

u is the algebraic form of the second
and third terms in (2.19). In this work, we take p′ = p+ 1, but other choices are possible as
well. The enriched residual will be used in Section 3 to define the implicit tracking objective
function.
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2.3 Numerical flux function
The numerical flux function corresponding to the reference flux (HX , i.e. reference numerical
flux) is a quantity that replaces the transformed flux dotted with the outward unit normal
(FX ·N), as done from (2.13) to (2.14). It is given by

HX(U
+
X , U

−
X , N ;G, v) =

∥∥gG−TN
∥∥ H̃(U+, U−, n; v), (2.23)

since by (2.10)-(2.12) we have

HX ∼ FX ·N = g(F − U ⊗ v) ·G−TN =
∥∥gG−TN

∥∥ (F − U ⊗ v) · n ∼ ∥∥gG−TN
∥∥ H̃, (2.24)

where arguments have been dropped for brevity. Here, H̃ : Rm × Rm × Rd × Rd → Rm is
a modified numerical flux which corresponds to the modified flux function, F̃ : Rm × Rd →
Rm×d, which is related to the physical flux as

F̃ (U ; v) = F (U)− U ⊗ v. (2.25)

The modified flux accounts for the domain motion and is obtained from the numerical flux
function corresponding to the physical flux, H : Rm × Rm × Rd → Rm.

Notice that the Jacobian of the modified flux function only differs from the Jacobian of the
physical flux by a scale multiple of the identity matrix (with scale factor v ·n), which makes
implementation of many numerical fluxes that depend on the eigenvalue decomposition of the
Jacobian matrix, e.g., local Lax-Friedrichs, Roe, Vijayasundaram, straightforward given the
decomposition of the Jacobian of the physical flux. For the remainder of this section, we will
discuss the numerical flux in the physical domain H(U+, U−, n) and it will be transformed
to the reference domain according to (2.23).

For DG methods to be stable, the numerical flux may be any two-point monotone Lips-
chitz function that is

(i) consistent with the flux function, i.e., for any U ∈ RM

H(U,U, n) = F (U) · n (2.26)

(ii) conservative, i.e., for any U,U ′ ∈ RM

H(U,U ′, n) = −H(U ′, U,−n). (2.27)

Conditions (i)-(ii) are satisfied by all standard numerical fluxes as these are the minimum
requirements for a stable and accurate DG method. However, it was observed in [79, 8]
that the requirements are higher for tracking-based discretizations since inter-element jumps
do not tend to zero under refinement. As introduced in [8], this requires the additional
condition:
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(iii) preservation of the Rankine-Hugoniot conditions, i.e., given U+, U− ∈ RM such that
F (U+) · n = F (U−) · n, then

H(U+, U−, n) = F (U+) · n = F (U−) · n (2.28)

Conditions (i)-(iii) are satisfied by exact Riemann solvers and a number of approximate Rie-
mann solvers including the Roe [61] and HLLC [67] fluxes; however, many popular numerical
flux functions such as the local Lax-Friedrichs, Rusanov, and Roe with entropy fix do not
satisfy (iii) [8]. We highlight one additional desired property of the numerical flux function
that we will show is important for optimization-based discontinuity tracking:

(iv) smoothness with respect to variations in the normal.

Since the numerical flux must have upwind-like properties, it is difficult to construct numer-
ical fluxes to satisfy (i)-(iv), particularly the smoothness property. Therefore, we choose nu-
merical fluxes that satisfy (i)-(iii) and replace non-smooth terms with smooth approximations
to recover smoothness (iv). Strictly speaking, this will not preserve the Rankine-Hugoniot
conditions (iii); in Section 4 we demonstrate this is a desirable trade-off.

As an example, consider linear advection of a scalar field u : Ω→ R in a spatially varying
direction β : Ω→ Rd governed by conservation law of the form (2.2) (see (4.2) in Section 4.2)
with flux function

Fadv(U) = UβT (2.29)
and the upwind numerical flux

Hup(U
+, U−, n) =

{
(β · n)U+ if β · n ≥ 0

(β · n)U− if β · n < 0,
(2.30)

which can equivalently be written in terms of the Heaviside function H : R→ {0, 1} as

Hup(U
+, U−, n) = (β · n)

[
U+ ·H(β · n) + U− · (1−H(β · n))

]
. (2.31)

The upwind flux satisfies conditions (i)-(iii) for an admissible flux for shock tracking, but
fails to satisfy condition (iv). Condition (i) follows from

Hup(U,U, n) = (β · n)U = Fadv(U)n (2.32)

and condition (ii) follows from

−H(U ′, U,−n) = (β · n) [U ′ ·H(−β · n) + U · (1−H(−β · n))] = H(U,U ′, n), (2.33)

for any U,U ′ ∈ R, where the second equality follows from the property of the Heaviside
function: H(−s) = 1 − H(s) for s ∈ R. To verify condition (iii), consider U+, U− ∈ R
such that U+ 6= U− (discontinuity) and assume Fadv(U

+) · n = Fadv(U
−) · n. This condition
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Figure 2.2: Smoothed Heaviside (logistic) function for a = 5 ( ), a = 10 ( ), a = 30
( ), a =∞ ( ).

implies (U+ − U−)(β · n) = 0, which in turn implies β · n = 0 from the assumption that
U+ 6= U−. Therefore condition (iii) holds from

H(U+, U−, n) = Fadv(U
+)n = Fadv(U

−)n = 0. (2.34)

Finally, it is easy to see that condition (iv) is not satisfied; the upwind flux is continuous
with respect to variations in the normal n, but not smooth due to the H(β · n) terms. A
single isolated point of non-smoothness does not necessarily hinder the optimization solver
because it is unlikely to be visited during the solution procedure. However, in this case, the
kinks in the numerical flux function lie at points where β · n = 0, which is precisely the
requirement for a discontinuous solution to satisfy the Rankine-Hugoniot conditions and will
certainly be approached as the mesh faces align with the discontinuity.

In Section 2.3 of [78], to recover condition (iv), we introduce a smoothed version of
the upwind flux where the Heaviside function is replaced with a smoothed step function
Ha : R→ R

Ha
up(U

+, U−, n) = (β · n)
[
U+ ·Ha(β · n) + U− · (1−Ha(β · n))

]
. (2.35)

where we used the logistic function as the smoothed step function

Ha(x) :=
1

1 + e−2ax
, (2.36)

where a ∈ R is the smoothing parameter (Figure 2.2). Section 4 provides a detailed study
of the impact of the smoothness of the numerical flux on the convergence of the tracking
algorithm.
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We later found in [63] that the smoothed absolute value function performs better nu-
merically as we are no longer smoothing a discontinuous function. To repeat the previous
procedure for clarity for this alternative method of smoothing, again consider linear advec-
tion of a scalar field U : Ω → R in a spatially varying direction β : Ω → Rd governed by a
conservation law of the form (2.2) with physical flux function

Fadv(U) = UβT (2.29 revisited)

with the corresponding upwind numerical flux

Hup(U
+, U−, n) =

{
(β · n)U+ if β · n ≥ 0

(β · n)U− if β · n < 0.
(2.30 revisited)

This can equivalently be written in terms of the absolute value function | · | : R→ R≥0 as

Hup(U
+, U−, n) = 0.5

[
(β · n)(U+ + U−) + (U+ − U−)|β · n|

]
. (2.37)

Due to the linearity of the flux, the modified flux function is

F̃adv(U) = U(β − v)T , (2.38)

which has an identical form as (2.29), albeit with a modified velocity field. Thus, the
corresponding modified upwind numerical flux function is

H̃up(U
+, U−, n; v) = 0.5

[
((β − v) · n)(U+ + U−) + (U+ − U−)|(β − v) · n|

]
. (2.39)

Following the approach in [81, 80], we introduce a smoothed version the upwind flux where
the absolute value function is replaced with a smoothed absolute value function

Hs
up(U

+, U−, n) = 0.5
[
(β · n)(U+ + U−) + (U+ − U−)|β · n|s

]
, (2.40)

where | · |s : R→ R≥0 is a smooth approximation to the absolute value given by

| · |s : x 7→ x tanh(kx) (2.41)

and k is a smoothness parameter (Fig. 2.3). In this work, we use k = 100. Then, the
smoothed version of the modified upwind numerical flux is given by

H̃s
up(U

+, U−, n; v) = 0.5
[
((β − v) · n)(U+ + U−) + (U+ − U−)|(β − v) · n|s

]
. (2.42)

Similarly, for the Euler equations, we use Roe’s flux [61] with the absolute value of the
eigenvalues replaced by the corresponding smoothed absolute value; a detailed derivation
of the smoothed Roe flux for the reacting Euler equations (single reaction) is included in
Appendix A of [80].
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2.4 High-order temporal discretization
Proceeding with the method of lines, we discretize the dynamical system in (2.21) using a
diagonally implicit Runge-Kutta method (DIRK) to yield a sequence of algebraic systems
of equations. Unlike fully implicit Runge-Kutta methods, an s-stage DIRK scheme has a
Butcher tableau (A, b, c) ∈ Rs×s × Rs × Rs where A is lower triangular (Table 2.1). As a
result, the ith stage only depends on the solution for stages 1, . . . , i, allowing the stages to be
solved sequentially. Because the nodal coordinates x are unknown in the proposed setting,
we first recast (2.21) as the following coupled system of ODEs

mu̇(t) + f(u(t),x(t),ν(t)) = 0
ẋ(t)− ν(t) = 0

u(0) = ū

x(0) = x̄

(2.43)

Table 2.1: Butcher tableau for DIRK schemes

c A

bT
=

c1 a11
... ... . . .
cs as1 . . . ass

b1 . . . bs
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for t ∈ [0, T ], where ν : [0, T ]→ RNx is the unknown nodal velocity, defined as

ν : t 7→ ẋ(t). (2.44)

Next, we partition the time interval [0, T ] into NT intervals of equal size ∆t = T/NT with
endpoints {tn}NT

n=0, where t0 = 0 and tn = tn−1 + ∆t for n = 1, . . . , NT . In this setting, an
s-stage DIRK discretization of (2.21) with Butcher tableau (A, b, c) reads: for n = 1, . . . , NT

and i = 1, . . . , s,

u0 = ū, un+1 = un +
s∑

j=1

bik
u
n,j, un,i = un +

i∑
j=1

aijk
u
n,j

x0 = x̄, xn+1 = xn +
s∑

j=1

bik
x
n,j, xn,i = xn +

i∑
j=1

aijk
x
n,j

mku
n,i = −∆tf (un,i,xn,i,νn,i) , kx

n,i = ∆tνn,i, νn,i = ν(tn + ci∆t)

(2.45)

where u0,un,un,i,k
u
n,i ∈ RNu and x0,xn,xn,i,k

x
n,i,νn,i ∈ RNx are implicitly defined as the

solution of (2.45); un ≈ u(tn) and xn ≈ x(tn) are the state and mesh approximation at each
time step n = 0, . . . , T ; un,i ≈ u(tn + ci∆t) and xn,i ≈ x(tn + ci∆t) are the state and mesh
approximations at each stage i = 1, . . . , s of each time interval n = 1, . . . , T ; ku

n,i and kx
n,i are

the solution and mesh stage updates, and νn,i = ν(tn + ci∆t) is the mesh velocity. Because
the mesh velocity ν is unknown, the system in (2.45) can neither be solved nor evaluated in
residual form.

Following the work in [23], we replace the unknown velocity function ν with a modified
velocity function, ν̃ : [0, T ] → RNx , that ensures the corresponding modified position x̃ :
[0, T ]→ RNx , defined as the solution of

˙̃x(t)− ν̃(t) = 0, x̃(0) = x̄ (2.46)

for t ∈ [0, T ], agree with the original stages xn,i when discretized with the same DIRK
method. Discretization of (2.46) using the DIRK scheme reads: for n = 1, . . . , NT and
i = 1, . . . , s,

x̃0 = x̄, x̃n+1 = x̃n+
s∑

j=1

bik̃
x
n,j, x̃n,i = x̃n+

i∑
j=1

aijk̃
x
n,j, k̃x

n,i = ∆tν̃n,i, ν̃n,i = ν̃(tn+ci∆t),

(2.47)
where x̃0, x̃n, x̃n,i, k̃

x
n,i, ν̃n,i ∈ RNx are implicitly defined as the solution of (2.47); x̃n ≈ x̃(tn)

is the modified mesh approximation at each time step n = 0, . . . , T ; x̃n,i ≈ x̃(tn+ci∆t) is the
modified mesh approximation at each stage i = 1, . . . , s of each time interval n = 1, . . . , T ;
k̃x
n,i is the modified mesh stage update, and ν̃n,i = ν̃(tn+ ci∆t) is the modified mesh velocity

at each stage. Because the DIRK scheme only depends on the value of ν̃ at tn + ci∆t, we
only need to define its value at these points, i.e., ν̃n,i; any smooth function z : [0, T ]→ RNx
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that satisfies z(tn + ci∆t) = ν̃n,i will lead to the same DIRK solution and is a valid choice
for ν̃. The requirement that the modified and original mesh stages agree, i.e., x̃n,i = xn,i for
n = 1, . . . , NT and i = 1, . . . , s, leads to

xn,i = x̃n,i = x̃n +∆t
i∑

j=1

aijν̃n,j = xn +∆t
i∑

j=1

aijν̃n,j, (2.48)

where we used the definition of the stage x̃n,i in (2.47) and the relationship x̃n = xn for
n = 0, . . . , NT , which follows directly from the stage-consistent requirement (x̃n,i = xn,i),
the initial condition (x̃0 = x0 = x̄), and that the DIRK schemes used to integrate (2.43) and
(2.46) are the identical (same Butcher tableau). In the case where A is full rank, which is the
case for fully and diagonally implicit Runge-Kutta methods, this equation can be inverted
to express the modified velocity stages as a linear combination of the mesh stages

ν̃n,i =
i∑

j=1

(A−1)ij
xn,j − xn

∆t
. (2.49)

This approach leads to a stage consistent velocity approximation [23] in the sense that the
modified velocity function is chosen such that it is consistent with the original mesh positions
at each stage.

With the stage consistent mesh velocity approximation, the DIRK discretization in (2.45)
becomes

u0 = ū, un+1 = un +
s∑

j=1

bik
u
n,j, un,i = un +

i∑
j=1

aijk
u
n,j

x0 = x̄, xn+1 = xn +
s∑

j=1

bik
x
n,j, xn,i = xn +

i∑
j=1

aijk
x
n,j

mku
n,i = −∆tf (un,i,xn,i, ν̃n,i) , kx

n,i = ∆tν̃n,i

(2.50)

for n = 1, . . . , NT and i = 1, . . . , s, where the stage velocity is defined in (2.49). Even
though the unknown velocity function has been eliminated using the stage consistent velocity
approximation, the new system (2.50) is underdetermined because there are effectively Nu

equations in Nu +Nx unknowns at a fixed stage. This will be resolved by the optimization-
based tracking formulation in the next section.

To close this section, we convert the modified DIRK system in (2.50) to residual form
rn,i : RNu × RNx → RNu at a fixed step n ∈ {1, . . . , NT} and stage i ∈ {1, . . . , s} as

rn,i : (w,y) 7→mξn,i(w) + ∆tf(w,y, ζn,i(y)), (2.51)

where ξn,i : RNu → RNu maps the state stage (un,i) to the corresponding stage update (ku
n,i)

ξn,i : w 7→ (A−1)ii(w − un) +
i−1∑
j=1

(A−1)ij(un,j − un) (2.52)
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Table 2.2: Butcher tableau for DIRK1 (left), DIRK2 (middle), and DIRK3 (right), where
α = 1− 1√

2
, β = 0.435866521508459, γ = −6β2−16β+1

4
, and ω = 6β2−20β+5

4
.

1 1
1

α α 0
1 1-α α

1-α α

β β
1+β
2

1+β
2
− β β

γ + ω + β γ ω β
γ ω β

and ζn,i : RNx → RNx maps the mesh stage (xn,i) to the corresponding stage-consistent
velocity (ν̃n,i) as

ζn,i : y 7→ (A−1)ii
y − xn

∆t
+

i−1∑
j=1

(A−1)ij
xn,j − xn

∆t
. (2.53)

Similarly, we define the corresponding fully discrete enriched residual function Rn,i : RNu ×
RNx → RN ′

u as
Rn,i : (w,y) 7→Mξn,i(w) + ∆tF (w,y, ζn,i(y)), (2.54)

which we use in next section to define the objective function of the implicit tracking opti-
mization problem. Notice that for Rn,i only the spatial test space is enriched; the temporal
discretization in rn,i and Rn,i is identical.

In this work, we consider three L− stable DIRK schemes with order of accuracy equal
to the number of stages s; Butcher tableaus given in Table 2.2. We denote the k-th order
accurate DIRK scheme as DIRKk, i.e. 1st order DIRK is DIRK1, etc. We note that DIRK1
is equivalent to the Backward Euler scheme.
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Chapter 3

Optimization formulation of
r-adaptivity for implicit tracking of
discontinuities

In this section, we introduce the main contribution of this work: an r-adaptivity framework
that recasts the discrete conservation law as an optimization problem over the discrete solu-
tion and mesh that aims to align features in the solution basis with features in the solution
itself. In this work these features are discontinuities since we only consider inviscid conser-
vation laws; however, future work will consider steep gradients (viscous conservation laws)
and interfaces. In the present setting, this amounts to aligning element faces with discon-
tinuities. In this section, we focus on setting up the optimization formulation and address
in detail the issue of solvers for the optimization problem. In particular, we introduce a
new error-like objective function based on the DG residual using an enriched test space and
a term to penalize mesh distortion. We first explain this framework in the case of the the
steady conservation law (2.2) with corresponding discretized form (2.5), and in Section 3.5
explain how this this framework naturally extends to the unsteady case by the method of
lines.

3.1 Constrained optimization formulation
We formulate the problem of tracking discontinuities as a constrained optimization problem
over the PDE state and coordinates of the mesh nodes that minimizes some objective function
f : RNu × RNx → R while enforcing the DG discretization of the conservation law

minimize
u∈RNu ,x∈RNx

f(u,x)

subject to r(u,x) = 0.
(3.1)

The objective function is constructed such that the solution of the optimization problem
is a mesh that aligns with discontinuities in the solution. The optimization-based tracking
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method directly inherits the benefits of standard DG methods, i.e., high-order accuracy and
conservation, due to the constraint that exactly enforces the DG discretization. Finally, the
optimization formulation in (3.1) will provide nonlinear stability if all discontinuities are
successfully tracked, which we will demonstrate using several examples in Sections 4 and 5.

The Lagrangian of the optimization problem in (3.1) L : RNu × RNx × RNu → R takes
the form

L(u,x,λ) = f(u,x)− λTr(u,x), (3.2)
where λ ∈ RNu is a vector of Lagrange multipliers associated with the DG constraint in
(3.1). The first-order optimality, or Karush-Kuhn-Tucker (KKT), conditions state that the
(u⋆,x⋆) is a first-order solution of the optimization problem if there exists λ⋆ such that

∇uL(u⋆,x⋆,λ⋆) = 0, ∇xL(u⋆,x⋆,λ⋆) = 0, ∇λL(u⋆,x⋆,λ⋆) = 0, (3.3)

or equivalently,

∂f

∂u
(u⋆,x⋆)T− ∂r

∂u
(u⋆,x⋆)Tλ⋆ = 0, ∂f

∂x
(u⋆,x⋆)T−∂r

∂x
(u⋆,x⋆)Tλ⋆ = 0, r(u⋆,x⋆) = 0.

(3.4)
Since the DG Jacobian with respect to the state variables u is assumed to be invertible, we
define the estimate of the optimal Lagrange multiplier λ̂ : RNu ×RNx → RNu such that the
first equation (∇uL = 0) (adjoint equation) is always satisfied

λ̂(u,x) =
∂r

∂u
(u,x)−T ∂f

∂u
(u,x)T . (3.5)

Then the optimality criteria becomes

c(u⋆,x⋆) = 0, r(u⋆,x⋆) = 0, (3.6)

where c : RNu × RNx → RNu is defined as

c(u,x) := ∇xL(u,x, λ̂(u,x)) =
∂f

∂x
(u,x)T − ∂r

∂x
(u,x)T

∂r

∂u
(u,x)−T ∂f

∂u
(u,x)T . (3.7)

In Section 3.4.7, ‖c(u,x)‖ and ‖r(u,x)‖ will be used to define the termination criteria for
the proposed solver.

3.2 Choice of objective function
We propose an objective function that consists of two terms: one term penalizes a measure
of the DG solution error ferr : RNu × RNx → R and the other term penalizes distortion of
the mesh fmsh : RNx → R, i.e.,

f(u,x) = ferr(u,x) + κ2fmsh(x), (3.8)
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where κ ∈ R+ is a parameter that weights the contribution of the two terms. Since a
piecewise polynomial solution on an aligned mesh will have much lower error than on a non-
aligned mesh, ferr promotes alignment of the mesh with discontinuities while fmsh prevents
the mesh from entangling or becoming unacceptably skewed.

For the error-like tracking term, we use the norm of the DG residual corresponding to
an enriched test space, i.e.,

ferr(u,x) :=
1

2
R(u,x)TR(u,x), (3.9)

where we enrich the test space using polynomials of one degree higher than the trial space.
This follows on a large body of work that uses residual-based error indicators to drive h-,
p-, and r-adaptivity [20]. This is a reasonable choice for the objective function because the
enriched test space adds additional constraints to the solution and even though a discrete
solution u containing significant oscillations satisfies r(u,x) = 0, it will likely not mini-
mize R( · ,x). Furthermore, the more the test space is enriched, the closer the DG residual
comes to enforcing the true conservation law and therefore the minimum-residual solution
approaches the exact solution of the PDE. Given that we are explicitly enforcing the con-
straint r(u,x) = 0, which fixes u for a given x (assuming r(·,x) = 0 has a unique solution),
the solution of the optimization problem must deform the mesh x to drive the pair (u,x) to
a point where the enriched residual is minimized, which we expect to be a mesh that tracks
sharp features in the solution. Therefore, we expect this choice of objective function to have
desirable tracking properties, which will be confirmed by our numerical experiments (Sec-
tion 4). Finally, this choice of objective function is agnostic to whether we are considering
an inviscid or viscous conservation law, which is not the case for many popular physics-based
feature indicators than rely, e.g., on the Rankine-Hugoniot conditions.

[79] considered the objective function in (3.9), but did not endorse it due to numeri-
cal experiments that showed it possessed non-aligned local minima that made it impractical.
However, in that work only meshes with a fixed topology were considered, which contributed
to these local minima. In the present work, we collapse elements with small volumes after
each major optimization iteration, which either eliminates the local minima of (3.9) or sug-
gests this strategy less sensitive to local minima.

Other choices for the objective function are possible, but are not considered here. The
objective function proposed in [79] is the elementwise deviation of the DG solution from its
mean, which was shown to have excellent tracking properties. However, it tends to move the
mesh in regions of the domain where the solution is smooth and therefore not ideal when the
entire mesh is parametrized. The work in [8] uses a physics-based objective function based
on the Rankine-Hugoniot conditions at all element faces for inviscid conservation laws, which
was shown to work well when combined with a DG-like discretization in a minimum-residual
framework.

To not only prevent the degradation of the mesh quality, but actively promote mesh
smoothing, we take κ ∈ R+ and define fmsh as the deviation of the distortion of the physical
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mesh from the distortion of the reference mesh

fmsh(x) =
1

2
(Rmsh(x)−Rmsh(X))T (Rmsh(x)−Rmsh(X)), (3.10)

where Rmsh : RNx → R|Eh,q | is the algebraic system corresponding to the elementwise mesh
distortion used for high-order mesh generation [41, 24]

rKmsh(Gh,q) :=
∫
K

(
‖Gh,q‖2F

(detGh,q)
2/d
+

)2

dv (3.11)

and X ∈ RNx are the nodal coordinates of the reference mesh. We define Rmsh as the
deviation from the distortion of the reference mesh rather than the mesh distortion itself
because the Hessian approximation used for our solver performs best when the objective
function approaches zero (Section 3.4.4). Even though the distortion term prevents the
combined objective function from converging to zero, if the mesh is high-quality, we expect
Rmsh(x) to be close to its minimum value (component-wise) Rmsh(X).

To close this section, we define the following vector-valued function

F (u,x) :=

[
R(u,x)

κ(Rmsh(x)−Rmsh(X))

]
(3.12)

and re-write the objective function as

f(u,x) =
1

2
‖F (u,x)‖22 =

1

2
R(u,x)TR(u,x)+

κ2

2
(Rmsh(x)−Rmsh(X))T (Rmsh(x)−Rmsh(X)),

(3.13)
to emphasize the objective function is the square two-norm of a residual function. This has
implications in terms of available solvers for the optimization problem in (3.1) as will be
discussed in Section 3.4.4.

3.3 Boundary constraint enforcement
In order to maintain a boundary-conforming mesh, the coordinates of all mesh nodes cannot
be allowed to move freely; rather, we must add boundary constraints to ensure nodes slide
along the domain boundaries. To this end, we write the mesh node coordinates as the result
of a mapping χ : RNϕ → RNx from the unconstrained degrees of freedom ϕ ∈ RNϕ that
incorporates all boundary constraints

x = χ(ϕ), (3.14)

where the specific form of the mapping depends on the domain under consideration. This
constraint is incorporated into the optimization problem (3.1) as:

minimize
u∈RNu ,ϕ∈RNϕ

f(u, χ(ϕ))

subject to r(u, χ(ϕ)) = 0.
(3.15)
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As discussed in [79], the re-parametrized formulation can also be used to explicitly incorpo-
rate mesh smoothing into the mesh deformation. By introducing the following definitions

f̃(u,ϕ) := f(u, χ(ϕ)), r̃(u,ϕ) := r(u, χ(ϕ)), F̃ (u,ϕ) := F (u, χ(ϕ)), (3.16)

the optimization problem with boundary enforcement in (3.15) becomes

minimize
u∈RNu ,ϕ∈RNϕ

f̃(u,ϕ)

subject to r̃(u,ϕ) = 0,
(3.17)

which has the same structure as the original optimization problem without boundary en-
forcement (3.1) with the following replacements: f̃ ← f , r̃ ← r, and ϕ← x.

Most of the problems in this work only require nodes to slide along boundaries aligned
with coordinate directions; the nodes on all other boundaries are fixed. Nodes sliding along
more general boundaries has been considered in [10, 78]. In this special case, we partition
the mesh node coordinates into the constrained xc ∈ RNx−Nϕ and unconstrained ϕ ∈ RNϕ

coordinates
x =

[
ϕ
xc

]
, (3.18)

which implies the boundary mapping is the padded identity mapping

x = χ(ϕ;xc) :=

[
ϕ
xc

]
,

∂χ

∂ϕ
(ϕ;xc) =

[
I
0

]
. (3.19)

3.4 Full space, minimum-residual solver for
optimization-based discontinuity tracking

With the formulation of the optimization problem given in (3.17), this section introduces a
robust, iterative solver. For simplicity, we introduce the solver for the optimization problem
in (3.1), i.e., without boundary enforcement; however, due to the mirror structure between
(3.1) and (3.17), the exact algorithm applies to solve (3.17) with the following replacements:
f̃ ← f , r̃ ← r, and ϕ← x.

For brevity, we combine the PDE solution u and mesh coordinates x into a single vector

z :=

[
u
x

]
∈ RNz , (3.20)

where Nz = Nu + Nx. In the remainder, we will replace (u,x) with z, and vice versa, as
needed. We will also abbreviate the partial derivatives of the objective function and DG
residual as

gz(z) =
∂f

∂z
(z)T gu(z) =

∂f

∂u
(z)T gx(z) =

∂f

∂x
(z)T

Jz(z) =
∂r

∂z
(z), Ju(z) =

∂r

∂u
(z), Jx(z) =

∂r

∂x
(z).

(3.21)
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3.4.1 Sequential quadratic programming solver
The proposed solver is a sequential quadratic programming (SQP) method [5] that uses
a sequence of quadratic programs to solve (3.1). Let zk denote the current iterate and
formulate a quadratic subproblem by linearizing the constraint about zk and using a second-
order Taylor series centered at zk to approximate the Lagrangian function

minimize
∆z∈RNz

gz(zk)
T∆z +

1

2
∆zTB(zk)∆z

subject to r(zk) + Jz(zk)∆z = 0,
(3.22)

where B(z) ∈ RNz×Nz a symmetric positive definite approximation of the Hessian of L(z),
i.e.,

B(z) :=

[
Buu(z) Bux(z)
Bux(z)

T Bxx(z)

]
(3.23)

such that
∂2L
∂u∂u

(z) ≈ Buu(z) ∈ RNu×Nu

∂2L
∂u∂x

(z) ≈ Bux(z) ∈ RNu×Nx

∂2L
∂x∂x

(z) ≈ Bxx(z) ∈ RNx×Nx .

(3.24)

and the dependence on the Lagrange multipliers has been dropped. Once the quadratic
subproblem is solved to obtain the current search direction ∆zk+1 ∈ RNz , the current iterate
is updated according to

zk+1 = zk + αk+1∆zk+1 (3.25)
to yield a sequence of iterates {zk} where αk+1 ∈ (0, 1] is a step length parameter (Sec-
tion 3.4.3). If B is the true Hessian and α = 1, this method is equivalent to Newton’s
method applied to the first-order optimality conditions of (3.1) [5] and therefore will con-
verge quadratically provided the initial guess is sufficiently close to a local minima.

3.4.2 Linear subproblem
The first-order optimality condition of the quadratic program (3.22) leads to the following
linear system of equations Buu(zk) Bux(zk) Ju(zk)

T

Bux(zk)
T Bxx(zk) Jx(zk)

T

Ju(zk) Jx(zk) 0

∆uk+1

∆xk+1

ηk+1

 = −

gu(zk)
gx(zk)
r(zk)

 , (3.26)

where ηk+1 ∈ RNu are the Lagrange multipliers associated with the linearized constraint
and the step ∆zk+1 is decomposed as a step in the PDE state ∆uk+1 and the nodal mesh
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coordinates ∆xk+1

∆zk+1 =

[
∆uk+1

∆xk+1

]
. (3.27)

The state update ∆u and Lagrange multipliers η can be eliminated from the linear system
to obtain an explicit expression for the state and mesh updates

∆xk+1 = −A(zk)
−1b(zk), ∆uk+1 = ∆u0(zk) +C(zk)∆x, (3.28)

where
∆u0(z) = −Ju(z)

−1r(z)

C(z) = −Ju(z)
−1Jx(z)

A(z) = Bxx(z) + 2C(z)TBux(z) +C(z)TBuu(z)C(z)

b(z) = gx(z) +C(z)Tgu(z) +
(
Bux(z)

T +C(z)TBuu(z)
)
∆u0.

(3.29)

Notice ∆u0(z) is the Newton step for the nonlinear system r(u,x) = 0 if x is fixed and
C(z) is the sensitivity of the solution u with respect to the mesh nodes x.

The linear systems in (3.26) and (3.28) are two mathematically equivalent options to
compute the solution to the SQP subproblem that place different requirements on the linear
solver. The system in (3.26) is large (size: 2Nu + Nx) since it simultaneously computes
the steps ∆u, ∆x and Lagrange multipliers η, but each (block) entry is relatively easy to
form. On the other hand, the system in (3.28) is smaller (size: Nx), but formation of A(zk)
requires computation of C(zk), which is impractical if a direct solver is not available. In
this work, we use a direct solver to solve (3.26); however, this approach is not practical for
large-scale problems. In future work, we will develop iterative solvers and preconditioners
for the full system in (3.26).

3.4.3 Line search globalization
To ensure the sequence {zk} converges to a first-order critical point of (3.1) from an arbitrary
initial guess, the SQP algorithm must be globalized with e.g., a trust region strategy or line
search. We choose to globalize the SQP method with a line search that computes the step
length such that it minimizes a merit function that combines the objective function and a
measure of constraint violation into a scalar function. In this work, we use the ℓ1 penalty
function φk : R→ R

φk(α) := f(zk + α∆zk) + µ ‖r(zk + α∆zk+1)‖1 (3.30)

where µ > 0 is the penalty parameter. This is an exact merit function in the sense that
there exists a positive scalar µ̂ such that for any µ > µ̂, any local solution of (3.1) is a local
minimizer of (3.30) [53]. Furthermore, µ̂ = ‖λ⋆‖∞, where λ⋆ are the Lagrange multipliers
associated with the optimal solution (u⋆,x⋆) [53]. Therefore, in the present setting we take
µ = 2

∥∥∥λ̂(zk)
∥∥∥
∞

, where λ̂ is defined in (3.5).
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It is well-known that it is not necessary to find the exact minimizer of the merit function
to obtain a convergent algorithm. Instead, we search for αk+1 ∈ (0, 1] that satisfies sufficient
decrease

φk(αk+1) ≤ φk(0) + cαk+1φ
′
k(0), (3.31)

where c ∈ (0, 1). We use a backtracking strategy [53] to determine αk+1: define αk+1 = τn−1

for τ ∈ (0, 1) and let n ∈ N be the smallest number such that sufficient decrease (3.31) holds.
In this work we make standard choices for these parameters [53]: c = 10−4 and τ = 0.5.

3.4.4 Levenberg-Marquardt Hessian approximation
The true Hessian of the Lagrangian in (3.2) is

H(z) =
∂F

∂z
(z)T

∂F

∂z
(z) + Fi(z)

∂2Fi

∂z∂z
(z)− λi

∂2ri
∂z∂z

(z) (3.32)

where summation is implied over the repeated index. The second and third term involves the
Hessian of the DG residual, which is a complicated third-order tensor that is rarely available
in computational mechanics codes. Therefore, we use the Gauss-Newton assumption and
approximate the Hessian as

H(z) ≈ ∂F

∂z
(z)T

∂F

∂z
(z), (3.33)

which is justified if the combined enriched residual and mesh distortion F (z) is small. While
this approximation is convenient, it could also lead to singular or ill-conditioned Hessian
approximations, which would in turn lead to poor search directions. Therefore, we use the
Levenberg-Marquardt approach that adds a scaled multiple of a symmetric positive definite
matrix to regularize the system. Based on the observations in [8] that Levenberg-Marquardt
regularization improves the mesh motion and is not needed for the state, we only regularize
the mesh components of the Hessian, i.e.,

Buu(z) =
∂F

∂u
(z)T

∂F

∂u
(z), Bux(z) =

∂F

∂u
(z)T

∂F

∂x
(z), Bxx(z) =

∂F

∂x
(z)T

∂F

∂x
(z) + γD,

(3.34)
where γ ∈ R+ and D ∈ RNx×Nx is a symmetric positive definite (SPD) matrix (Section 3.4.5).

3.4.5 Choice of regularization matrix
The classic Levenberg-Marquardt algorithm uses the identity matrix as the regularization
matrix D = INx to guard against poor search directions that could result if the Jacobian
of F with respect to x is rank deficient or ill-conditioned. However, the same result can
be achieved for any SPD matrix D. We consider a regularization matrix that is known
to possess smoothing properties: the stiffness matrix of a linear elliptic PDE. To this end,
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define a vector-valued function v : Ω0 → Rd in which each component satisfies the elliptic
PDE with homogeneous Neumann boundary conditions

∇X · (k∇Xvi) = 0 in Ω0, ∇Xvi ·N = 0 on ∂Ω0 (3.35)

for i = 1, . . . , d and the coefficient k : Ω0 → R+ is piecewise constant over each element in Eh,q.
Numerical experimentation on problems where elements in the reference mesh significantly
vary in size indicate that the natural scaling of the stiffness matrix (k = 1) is not sufficient
to provide search directions that are scaled according to the mesh resolution. Instead, we
take the piecewise constant coefficient as

k(x) = ωK , x ∈ K (3.36)

for each K ∈ Eh,q, where ωK ∈ R+ is inversely proportional to the size of the element

ωK :=

min
K′∈Eh,q

|K ′|

|K|
. (3.37)

The regularization matrix is the assembled stiffness matrix associated with the elliptic system
in (3.35)-(3.36) over the global finite element spaceWh,q. This is similar to the regularization
matrix used in [10] without volume-based scaling of the elliptic coefficient, which is important
for problems with reference domain elements of varying size (Section 4.4.2). Boundary
constraints are incorporated into the elliptic regularization matrix as homogeneous Dirichlet
boundary conditions.

3.4.6 Adaptive regularization parameter
The ideal value for the regularization parameter γ in (3.34) is difficult to know a priori.
Large values of γ produce highly regularized search directions ∆x, e.g., the search direction
becomes the solution of the elliptic PDE with the steepest descent direction as the right-hand
side; however, in this case, the Hessian approximation is poor. Alternatively, small values of
γ, particularly in early iterations, can leads to bad search directions due to ill-conditioning
of the Hessian approximation. Following the work in [8], we introduce an adaptive algorithm
to minimize the importance of choosing the appropriate value for γ a priori. Our algorithm
is based on the heuristic that γ should control the size of the mesh deformation at a given
iteration. Therefore, if a step is too large, we increase the value of γ for the next iteration
and vice versa. Let γk > 0 be the value of the regularization parameter at iteration k and
define constants κ1, κ2 > 0, σ ∈ (0, 1), γmin > 0 then

γk+1 = max{γ̄k+1, γmin}, γ̄k+1 =


σ−1γk if ‖∆xk‖ < κ1

σγk if ‖∆xk‖ > κ2

γk otherwise.
(3.38)
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For domains with dimensions O(1), we take κ1 = 10−2 and κ2 = 10−1. In this work,
we choose a conservative value σ = 0.5 to prevent γ from changing significantly between
iterations. The appropriate value of γmin is problem-dependent and will be addressed in
Section 4.

3.4.7 Termination criteria
The termination criteria for the SQP method comes from the first-order optimality criteria
discussed in Section 3.1 (3.6). That is, given tolerances ϵ1, ϵ2 > 0, zk is a considered a
numerical solution of (3.1) if

‖c(zk)‖ < ϵ1, ‖r(zk)‖ < ϵ2. (3.39)

We have empirically observed that feasibility can be driven to near machine tolerance (take
ϵ2 = 10−10); however, the optimality condition is a more difficult condition (take ϵ1 = 10−5).
For difficult problems, it may require a large number of iterations, so we safeguard the
algorithm with a maximum number of iterations (Nmax), i.e., iterations terminate when
either the convergence criteria (3.39) are met or a Nmax iterations have been completed. If
termination is based on Nmax, it is likely the DG constraint is not satisfied, i.e.,

r(zNmax) > ϵ2, (3.40)

which could lead to a non-conservative scheme. In this case, we solve the DG equations on
the fixed mesh with nodal coordinates xNmax using Newton’s method.

3.5 Extension to the unsteady case by the method of
lines

In this section, we extend the high-order implicit shock tracking framework from Sections 3.1
to 3.4 ([79, 81]) to time-dependent problems using a method of lines approach (in contrast
to the space-time approach in [8, 81]). We recast the fully discrete conservation law as a
PDE-constrained optimization problem over the discrete solution and mesh that aims to
align element faces with discontinuities at each Runge-Kutta stage for every timestep.

We formulate the problem of tracking discontinuities at a given stage i and timestep n
as a constrained optimization problem over the PDE state and mesh stage that minimizes
an objective function, fn,i : RNu × RNx → R, while enforcing the DG-DIRK discretization.
That is, we define un,i ∈ RNu and xn,i ∈ RNx as

(un,i,xn,i) := arg min
w∈RNu ,y∈RNx

fn,i(w,y) subject to: rn,i(w,y) = 0. (3.41)

for n = 1, . . . , NT and i = 1, . . . , s. For a fixed time step n, once the stage states {un,i}si=1

and meshes {xn,i}si=1 are computed, the state and mesh can be advanced to the next time
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step (un+1 and xn+1) using the relationships in (2.50). The DIRK schemes considered in
this work (Table 2.2) satisfy the property that Asi = bi for i = 1, . . . , s, which implies the
state and mesh at the final stage of time step n are identical to the state and mesh at time
step n+ 1, i.e., un+1 = un,s and xn+1 = xn,s.

The objective function is constructed such that the solution of the PDE-constrained
optimization problem is a feature-aligned mesh by using the norm of the enriched DG-DIRK
residual

fn,i : (w,y) 7→
1

2
‖Rn,i(w,y)‖22 . (3.42)

This is the same objective function as (3.1) for steady conservation laws, but unlike that
case we do not include the mesh quality term in the objective function for the unsteady
(method of lines) case. In the steady case, there is no information about the shock location a
priori, which usually requires significant deformation to the initial mesh to align with shocks,
necessitating the use of a mesh regularization term in the objective function. However, in
the context of timestepping, we have useful information from the previous timestep to use
as an initial guess for both the state and mesh. We can combine this information along with
the Rankine-Hugoniot conditions and a high-order mesh smoothing procedure to obtain an
excellent initial guess for the mesh at each Runge-Kutta stage (Section 5.1.1). In a sense, the
additional time dimension allows the mesh regularization to be decoupled from the implicit
shock tracking procedure, which is one advantage of the method of lines discretization over
the space-time formulation for solving unsteady problems.

Because the optimization problem (3.41) exactly matches the form of the optimization
problem for the steady case (3.1) with the identical form of the Lagrangian (3.2), we use the
same SQP solver from Section 3.4 to define the sequences {u(k)}∞k=0 ⊂ RNu and {x(k)}∞k=0 ⊂
RNx as

u(k+1) = u(k) + αk+1∆u(k+1), x(k+1) = x(k) + αk+1∆x(k+1), (3.43)
for k = 0, 1, . . . , where αk+1 ∈ (0, 1] is a step length which can be determined by a line search
procedure, and ∆u(k+1) ∈ RNu and ∆x(k+1) ∈ RNx are search directions. At a given iteration
k, the search directions ∆u(k) and ∆x(k) are computed simultaneously as the solution of a
quadratic approximation to the optimization problem in (3.41) with a regularized Levenberg-
Marquardt approximation of the Hessian. A pair (u,x) is considered a solution of (3.41) if
‖c(u,x)‖ < ϵ1 and ‖r(u,x)‖ < ϵ2 for tolerances ϵ1, ϵ2 > 0.
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Chapter 4

Numerical experiments: steady case

In this section we introduce three steady inviscid conservation laws and demonstrate the
tracking framework on six problems with discontinuous solutions of varying difficulty. We
also provide a detailed study of the various algorithmic parameters introduced in Sections 2
- 3, in particular, the choice of numerical flux (H) and mesh distortion parameter (κ).
We first discuss a variety of practical considerations needed (Section 4.1) and explain how
each gradually factors into the solver in practice through a series of numerical experiments
(Sections 4.2 - 4.4).

4.1 Practical considerations

4.1.1 Solution and mesh initialization
The discontinuity-tracking optimization problem in (3.1) is non-convex and therefore the
initial guess for the SQP solver is critical to obtain a good solution. In the present context,
this means we must provide a reasonable initial guess for the mesh coordinates x0 and DG
solution u0.

Special case: straight-sided mesh (q = 1)

First consider the case of a straight-sided mesh (q = 1) combined with any finite element
space for the solution (p ≥ 0). The mesh is always initialized from the reference mesh which
comes from mesh generation agnostic to the discontinuity because we usually do not have an
estimate of the discontinuity surface. In special cases where an estimate of the discontinuity
surface is available, this could be used to drive generation of the reference mesh. The DG
solution is initialized from the DG (p = 0) solution on the reference mesh; p = 0 is used
because nonlinear instabilities resulting from oscillations about discontinuities cannot arise
with a piecewise constant solution field. For nonlinear problems the p = 0 solution is obtained
using pseudo-transient continuation [38] with adaptive time steps, initialized from uniform
flow.
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General case: high-order meshes (q > 1)

To avoid local minima in the optimization problem (3.1) that arise when high-order meshes
are used, we usually initialize the tracking problem for p ≥ 0, q > 1 from the solution of
the tracking problem for p′ ≤ p, q′ = 1. That is, we solve the the tracking problem using a
solution space with polynomial degree p′ ≤ p and mesh deformation with polynomial degree
q′ = 1 and initialize the desired tracking problem (solution space of degree p and mesh of
degree q > 1) from the resulting DG solution and mesh. This strategy comes from our
observations that q = 1 tracking is quite robust and convergence of the q > 1 solution from
a straight-sided tracking mesh is rapid. For difficult problems, it may be helpful to use
continuation on the polynomial degree for the solution as well, i.e., take p′ < p.

4.1.2 Edge collapses and solution transfer
As we will show in our numerical experiments in Sections 4.2, we typically start with an
initial mesh that is far from alignment with the shock and iterate using an SQP solver which
attempts to move nodes onto the shock. Since the deformation of the initial mesh can be
quite large, this can result in severely ill-conditioned elements that drastically degrade the
quality of our solution. To address this, we follow the approach in [8] and collapse elements
once they become problematic. In particular, after each SQP iteration, we compute the
volume of each element K in the physical domain, vK , and compare it to the volume of the
corresponding element in the reference domain, vK0 , where

vK0 =

∫
K

dV, vK =

∫
Gh,q(K)

dV. (4.1)

If the volume of an element has decreased more than a certain factor, i.e., vK < ϵvK0 (where
ϵ = 0.2 in this work), the element is tagged for removal. In principle, κ in the objective
function (3.8) could be chosen large enough to prevent these ill-conditioned elements from
ever appearing. However, such a κ would weight fmsh too heavily over ferr and interfere with
the tracking capabilities of the method. Therefore, this weighting term κ is only chosen large
enough to prevent unacceptably bad elements (such as tangled ones) which would cause the
mesh distortion term fmsh to blow up dramatically. As long as we avoid this situation, we
can handle the remainder of the ill-conditioned elements through collapses.

Each element in the physical domain x tagged for removal is eliminated by an edge
collapse [46]. For a given tagged element, we choose to collapse the shortest edge into the
longest edge (Figure 4.1). This is based off the principle that the shortest edge is likely to
be transverse to the shock and the longest edge is likely to be aligned with the shock. A
special case to note is when tagged elements have nodes or edges in common. Additional
care must be taken to choose an edge to collapse that is consistent with all affected elements.
For elements on the boundary, this logic is slightly modified to ensure that an edge collapse
does not move nodes off the boundary. Note that an edge collapse must also be applied to
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the corresponding element in the reference domain X to ensure the physical and reference
domains always have the same topology.

The solution u is transferred to the new mesh by removing the entries corresponding to
the degrees of freedom in the collapsed elements. To update the data structures for both
the mesh and the solution, we simply need to delete the entries in the element connectivity
matrix and solution vector corresponding to the collapsed elements and renumber based
off the new node numbering. Because of our choice of a DG discretization, this update is
particularly easy to do, and furthermore, removes the need to modify the degrees of freedom
in the neighboring elements. In a CG framework, the degrees of freedom in the neighboring
elements would need to be modified in order to guarantee continuity on the new mesh.

While these edge collapses do modify the objective function and formally result in a new
optimization problem, in practice this does not lead to issues in the convergence of the solver.
We observe that these collapses mostly occur in the initial iterations of the SQP solver when
the mesh is far from convergence and each iteration results in a large update to the mesh.
At some point, the line search described in Section 3.4.3 will reject steps that would cause
large deformations in the mesh, hence precluding the need for further collapses and ensuring
that they do not occur indefinitely.

Figure 4.1: Demonstration of edge collapse algorithm: the element identified in the original
mesh (left) is collapsed along the highlighted edge to produce the new mesh (right) with the
original elements shown in dashed lines for reference.

4.2 Linear advection
The first conservation law we consider is steady linear advection of a scalar quantity U :
Ω→ R through a domain Ω ⊂ Rd

∇ · (βU) = 0 in Ω, U = U∞ on Γi, (4.2)

where β : Ω → Rd is the local flow direction, Γi := {x ∈ ∂Ω | β · n(x) < 0} is the inflow
boundary, ∂Ω : Rd → is the unit outward normal to the boundary, and U∞ : Γi → R is
the inflow boundary condition. We consider the pure upwind numerical flux Hup introduced
in (2.30) because it satisfies conditions (i)-(ii) (Section 2.3) for a stable DG discretization
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and condition (iii) to be suitable for tracking, as well as its smoothed version Ha
up to recover

smoothness with respect to variations of the mesh nodes (iv). In this section we take the
smoothness parameter to be a = 10 to trade-off between smoothness and appropriate up-
winding (using the smoothed Heaviside function 2.2) The boundary condition is enforced via
the pure upwind numerical flux evaluated at the interior state U+ and the boundary state
U∂ = U∞.

4.2.1 Straight shock, piecewise constant solution
First we consider a two-dimensional (d = 2) domain Ω := (−1, 1) × (0, 1) with constant
advection field and piecewise constant boundary condition

β(x) =

[
−1.25

1

]
, U∞(x) = H(x). (4.3)

This leads to a linear discontinuity surface Γs ⊂ Ω

Γs := {(−1.25s, s) | s ∈ (0, 0.8)} (4.4)

and piecewise constant solution field

U(x) = H(x1 + 1.25x2). (4.5)

To ensure the Heaviside function on the bottom (inflow) boundary is accurately represented
and integrated in the weak form, we require our computational mesh to have an element face
that intersects (0, 0) and do not allow the corresponding node to move throughout iterations
using the boundary mapping described in Section 3.3.

Given the piecewise constant solution and linear shock surface, the solution lies in a p = 0
polynomial basis on a piecewise linear mesh q = 1, provided the mesh tracks the discontinuity.
To demonstrate the performance of the tracking method, we use this minimal basis with
p = 0, q = 1. The reference mesh is taken to be a uniform triangular mesh of the domain with
36 elements. The mesh and solution are initialized according to Section 4.1.1. The SQP solver
is used with λ chosen adaptively (Section 3.4.6). The various DG/tracking parameters are
set as follows: κ = 0 (no mesh smoothing), pure upwind numerical flux (a =∞), γ0 = 10−2

and γmin = 10−8 (regularization parameter adaptivity), and ϵ1 = 10−10, and ϵ2 = 10−12

(termination criteria). After only 10 iterations, the mesh perfectly tracks the discontinuity
(Figure 4.2) and the DG solution closely matches the exact solution; the L1 error of the
solution is 3.84×10−11. For this problem where the finite element subspace contains the exact
solution of the problem, the tracking method exhibits Newton-like convergence (Figure 4.3).
Furthermore, the tracking solver is robust with regard to the various algorithmic parameters
introduced, i.e., fast convergence to the exact solution was obtained without mesh smoothing,
with the upwind numerical flux (not smooth with respect to domain deformation), and
nearly independent of the choice of regularization adaptivity (γ0, γmin). The choice of these
parameters becomes significant for curved discontinuities and nontrivial flows as we will
demonstrate in subsequent sections.
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Figure 4.2: Solution of advection equation with a straight shock (constant advection field)
using the tracking method at various iterations throughout the solution procedure using
p = 0 basis for the solution and q = 1 basis for the mesh. The magenta line highlights
the discontinuity surface of the exact solution. The method converges to the exact solution,
which lies in the chosen finite element subspace, to near machine precision in only 10 itera-
tions.
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Figure 4.3: Convergence of the DG residual ‖r(u,x)‖ ( ), enriched DG residual ‖R(u,x)‖
( ), optimality condition ‖c(u,x)‖ ( ), and control of the regularization parameter ( )
for the tracking method applied to the advection equation with a straight shock (constant
advection field). For this simple problem, Newton-like convergence is achieved.

4.2.2 Curved shock, piecewise constant solution
Next we consider linear advection through a two-dimensional (d = 2) domain Ω := (−1, 1)×
(0, 1) with a spatially varying advection field and piecewise constant boundary condition

β(x) =

[
− sin(πx2)

1

]
, U∞(x) = H(x). (4.6)

This leads to a trigonometric discontinuity surface Γs ⊂ Ω

Γs :=

{(
cos(πs)− 1

π
, s

)
| s ∈ (0, 1)

}
(4.7)

and piecewise constant solution field

U(x) = H(πx1 − cos(πx2) + 1). (4.8)

Unlike the previous problem, this solution cannot be represented exactly using polynomial
basis functions since the discontinuity surface is non-polynomial (trigonometric). We use a
piecewise constant solution basis (p = 0) and piecewise linear, quadratic, and cubic basis for
the mesh (q = 1, 2, 3). The reference mesh is taken to be a uniform triangular mesh of the
domain with 64 elements. The mesh and solution are initialized according to Section 4.1.1;
however, for this problem we do not use continuation in the polynomial degree. The SQP
solver is used with λ chosen adaptively (Section 3.4.6). The various DG/tracking parameters
are set as follows: κ = 0 (mesh smoothing), smoothed upwind numerical flux (a = 10), γ0 =
10−2 and γmin = 10−3 (regularization parameter adaptivity), and Nmax = 80, ϵ1 = 10−10,
ϵ2 = 10−12 (termination criteria). For all polynomial degrees considered, the mesh tracks
the discontinuity as accurately as possible given the resolution in the finite element space
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Figure 4.4: Solution of advection equation with the trigonometric shock using the using
a p = 0 basis for the solution and q = 1 (top right), q = 2 (bottom left), and q = 3
(bottom right) basis for the mesh. The DG solution on a uniform triangular mesh with 64
elements is used to initialize the tracking method (top left). The magenta line highlights the
discontinuity surface of the exact solution. The method converges to a mesh and solution that
approximates the true solution as good as can be expected given the resolution of the finite
element space; however, only the high-order elements provide a reasonable approximation
on this coarse mesh.

(Figure 4.4). The q = 1 solution is under-resolved since the combination of the coarse mesh
and straight-sided elements is not sufficient to resolve the discontinuity structure and as a
result the solution exhibits over- and under-shoot; the L1 error associated with this solution is
5.79×10−2. However, the q = 2 and q = 3 solutions are extremely accurate even on the coarse
mesh due to the high-order elements that curve to conform to the discontinuity structure;
the L1 error associated with each solution is 1.15× 10−3 and 5.50× 10−4, respectively.

For all polynomial degrees considered, the solver is able to converge the KKT system to
relatively tight tolerances (‖r(u,x)‖ < 10−10 and ‖c(u,x)‖ < 10−7). As the polynomial
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degree increases, the enriched residual and mesh distortion converge to increasingly small
values and the overall convergence of the solver becomes cleaner (Figure 4.5). This comes
from the improved Hessian approximation, which comes from the mesh distortion and en-
riched residual converging to smaller values and justifies dropping of the second term in
(3.33). The regularization parameter is adapted to control the size of ∆x produced from
the linear solve and the line search ensures sufficient progress is made with respect to the
ℓ1 merit function (Figure 4.5). For this problem, a non-unity step size is only required once
the regularization parameter is small, which is required near convergence to have a decent
approximation to the Hessian.

For this problem, the mesh smoothing parameter (κ) and minimum value for the regu-
larization parameter (γmin) were important for the q = 1 tracking problem; for κ < 10−2

or γmin < 10−3, the tracking algorithm would continually collapse elements near the dis-
continuity as it pushed nodes to this region to improve the faceted approximation of the
trigonometric discontinuity surface. For q > 1, the smoothing parameter played no role as
the mesh is well-conditioned even with κ = 0 and γmin can be taken much smaller, e.g.,
γmin = 10−8, without adversely affecting the performance of the solver or the final solution.
The numerical flux plays a more significant role with regard to the behavior of the SQP
solver, even for higher order elements. For the non-smooth (with respect to domain defor-
mation) numerical flux, the solver does not converge because the first-order information is
meaningless in regions near the kink in the numerical flux, whereas the convergence is much
faster and cleaner for the smoothed upwind flux (Figure 4.6).
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Figure 4.5: Convergence of the DG residual ‖r(u,x)‖ ( ), enriched DG residual ‖R(u,x)‖
( ), optimality condition ‖c(u,x)‖ ( ), mesh distortion ‖κRmsh(x)‖ ( ), and control
of the regularization parameter ( ) and step size ( ) for the tracking method applied
to the advection equation with the trigonometric shock. Even though Newton convergence
is not achieved, the proposed solver converges the KKT system to tight tolerances in a
reasonable number of iterations.
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Figure 4.6: Convergence of the constraint (left), optimality condition (middle), and objective
function (right) of the shock tracking optimization problem for linear advection with the
trigonometric shock (p = 0, q = 2) when the non-smooth upwind flux Hup ( ) and
smoothed (a = 10) upwind flux Ha

up ( ) are used as the numerical flux function.

4.3 Time-dependent, inviscid Burgers’ equation
Next, we consider the time-dependent, inviscid Burgers’ equation that governs nonlinear
advection of a scalar quantity U : Ω→ R through the space-time domain Ω := T × Ω̄,

∂U

∂t
+ U

∂U

∂x
= 0 in Ω, U = U∞ on Γi(U) (4.9)

where T := (0, 1) is the time domain, Ω̄ := (−1, 1) is the one-dimensional spatial domain,
Γi(U) := {(t, x) ∈ ∂Ω | β(U) · n(x) < 0} is the inflow boundary, β(U) is the space-time flow
direction defined as

β(U) =

[
1
U

]
, (4.10)

n : ∂Ω → R2 is the space-time unit outward normal, and U∞ : ∂Ω → R is the inflow
boundary condition. This fits the form of a general, steady conservation law over the space-
time domain Ω with flux function

F (U) =

[
U

U2

2

]
. (4.11)

In the space-time setting, Burgers’ equation has the same form as linear advection with the
solution-dependent advection field (4.10). Similar to the advection equation, we consider a
pure space-time upwind numerical flux since it satisfies conditions (i)-(iii) (Section 2.3)

H(U+, U−, n) = Hup

(
U+, U−, n; β

(
U+ + U−

2

))
(4.12)
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and yields a stable DG discretization suitable for tracking. We also consider the smoothed
version to satisfy condition (iv)

H(U+, U−, n) = Ha
up

(
U+, U−, n; β

(
U+ + U−

2

))
. (4.13)

We consider the following piecewise quadratic boundary condition

U∞(t, x) = 2(x+ 1)2(1−H(x)), (4.14)

which is enforced via the pure upwind numerical flux evaluated at the interior state U+ and
boundary state U∂ = U∞.

For this problem, we consider a solution and mesh basis of equal polynomial degree
p = q up to p = q = 4. The reference mesh is taken to be a uniform triangular mesh of the
domain with 64 elements. The mesh and solution are initialized according to Section 4.1.1,
including continuation in the polynomial degree. The SQP solver is used with λ chosen
adaptively (Section 3.4.6). The various DG/tracking parameters are set as follows: κ = 10−4

(mesh smoothing), smoothed upwind numerical flux (a = 10), γ0 = 10−1 and γmin = 10−4

(regularization parameter adaptivity), and Nmax = 100, ϵ1 = 10−6, ϵ2 = 10−10 (termination
criteria). We initialize the p = q = 1 simulation from the p = 1 DG solution on the
reference mesh. Even though the initial mesh is far from tracking the discontinuity (some
faces are nearly orthogonal to the discontinuity, rather than parallel to it), our method
tracks a faceted approximation to the discontinuity in only 40 iterations, requiring 7 element
collapses (Figure 4.7).

The mesh and solution for the high-order elements (p = q > 1) are initialized from the
p = q = 1 tracking mesh and solution. These high-order approximations provide high-quality
approximations of the discontinuous space-time solution on the coarse mesh (Figure 4.8).
This can further be verified from the temporal slices (Figure 4.9), which show the moving
discontinuity is perfectly tracked and the solution is smooth and non-oscillatory away from
the discontinuity.

The convergence of the SQP solver in general is similar to convergence behavior observed
with the linear advection equation with a trigonometric shock in that the higher the poly-
nomial degree, the cleaner the convergence, and the enriched residual and mesh distortion
converge to smaller absolute values, indicating a solution that provides a better approxima-
tion to the continuous weak form on a higher quality mesh (Figure 4.10). The line search
is active at some intermediate iterations, but plays less of a role near convergence. Fur-
thermore, the same observations regarding the tracking parameters made for the advection
equation with the trigonometric shock hold for this problem: the smoothed upwind flux
significantly improves convergence of the solver, and if κ or γmin are any smaller, too many
elements will collapse onto the discontinuity surface for p = q = 1.
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Figure 4.7: Space-time solution of one-dimensional, inviscid Burgers’ equation using the
tracking method at various iterations throughout the solution procedure using a p = q = 1
basis for the solution and mesh. The method collapses 7 elements throughout the solution
procedure and tracks a faceted approximation of the shock trajectory using the q = 1 mesh
in only 40 iterations.
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Figure 4.8: Space-time solution of one-dimensional, inviscid Burgers’ equation using the
proposed tracking method with a p = q = 1 (top), p = q = 2 (middle), and p = q = 3
(bottom) basis for the solution and mesh with (left) and without (right) element boundaries.
In all cases, the finite element solution provides a high-quality approximation to the true
solution by tracking the discontinuity with a well-conditioned mesh. This is particularly true
for the high-order elements that curve to the space-time trajectory of the discontinuity.
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Figure 4.9: Temporal slices of the p = q = 4 tracking solution to the inviscid Burgers’
equation at times t = 0.05, 0.35, 0.65, 0.95.
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Figure 4.10: Convergence of the DG residual ‖r(u,x)‖ ( ), enriched DG residual
‖R(u,x)‖ ( ), optimality condition ‖c(u,x)‖ ( ), mesh distortion ‖κRmsh(x)‖ ( )
and control of the regularization parameter ( ) and step size ( ) for the tracking method
applied to the inviscid Burgers’ equation.
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4.4 Steady, compressible Euler equations
The Euler equations govern the steady flow of an inviscid, compressible fluid through a
domain Ω ⊂ Rd

∂

∂xj
(ρ(x, t)vj(x, t)) = 0

∂

∂xj
(ρ(x, t)vi(x, t)vj(x, t) + P (x, t)δij) = 0

∂

∂xj
([ρ(x, t)E(x, t) + P (x, t)] vj(x, t)) = 0

(4.15)

where ρ : Ω× (0, T )→ R+ is the density of the fluid, vi : Ω× (0, T )→ R for i = 1, . . . , d
is the velocity of the fluid in the ith coordinate direction, and E : Ω × (0, T ) → R+ is the
total energy of the fluid. The square velocity q2 : Ω × (0, T ) → R+ and kinetic energy
ke : Ω× (0, T )→ R+ of the fluid are

q2 = vivi, ke =
1

2
ρq2. (4.16)

The enthalpy of the fluid H : Ω× (0, T )→ R+ is defined as

ρH = ρE + P, (4.17)

where P : Ω × (0, T ) → R+ is the pressure. For a calorically ideal fluid, the pressure and
energy are related via the ideal gas law

P = (γ − 1)(ρE − ke) (4.18)

and the speed of sound is
c =

√
γP/ρ. (4.19)

The density, velocity, and energy are combined into a vector of conservative variables U and
the Euler equations take the form of an inviscid conservation law (2.1) with flux function
F (U)

U =

 ρ
ρv
ρE

 , F (U) =

 ρvT

ρvvT + PI2
ρHvT

 , (4.20)

where I2 is the 2× 2 identity matrix.
We use Roe’s flux [61] as the numerical flux function to ensure a stable discretization

suitable for tracking since it satisfies (i)-(iii) (Section 2.3); however, it is not smooth with
respect to variations in the domain deformation. To eliminate entropy violating rarefaction
shocks and improve the smoothness with respect to the domain deformations, we modify the
interior numerical fluxes with the Harten-Hyman entropy fix [29]. This leads to a numerical
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flux function that violates (iii), as observed in [8], but recovers smoothness with respect to
mesh deformation, which proves to be a reasonable trade-off.

We consider three types of boundaries: slip wall (Γw), supersonic inflow (ΓD), and super-
sonic outflow (ΓN). The supersonic inflow is also known as a farfield or Dirichlet condition
and the supersonic outflow is a Neumann condition. For a slip wall (v ·n = 0), the boundary
state is defined as

U∂
w(U, n) :=

 ρ
ρv−

ρE,

 (4.21)

where v− = (v− 2v · n)n is the velocity reflected about the normal. For a supersonic inflow,
all characteristics are coming into the domain and the boundary state depends solely on the
prescribed density ρ∞, velocity v∞, and pressure p∞

U∂
D(U) :=

 ρ∞
ρ∞v∞

p∞
γ−1

+ ρ∞
2
v∞ · v∞

 . (4.22)

Finally, at a supersonic outflow, all characteristics are leaving the domain and the boundary
state is taken from the interior

U∂
N(U) := U. (4.23)

All boundary conditions are enforced via the pure Roe flux (without entropy fix) evaluated
at the interior state U+ and appropriate boundary state

U∂(U, n) =


U∂
w(U, n) on Γw

U∂
D(U) on ΓD

U∂
N(U) on ΓN .

(4.24)

A useful property of the inviscid flows is the enthalpy is constant throughout the do-
main. Therefore, to quantify the error in the numerical solution obtained using the pro-
posed method, we will use the deviation of the flow enthalpy from the inflow enthalpy,
H∞ := γ

γ−1
p∞
ρ∞

+ 1
2
v∞ · v∞

eH(U) :=

√∫
Ω
(H(U)−H∞)2∫

Ω
dV

. (4.25)

4.4.1 Supersonic flow over wedge
First we consider supersonic flow (M∞ = 2) over a θ = 10◦ inclined plane (Figure 4.11).
Since all wall boundaries are straight-sided and the incoming flow is uniform, the flow is
piecewise constant and the shocks are straight.
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Figure 4.11: Geometry and boundary conditions of the wedge problem. Boundary conditions:
slip wall ( ), supersonic inflow with ρ∞ = 1.4, v∞ = (2, 0), p∞ = 1 (M∞ = 2) ( ), and
supersonic outflow ( ).

Therefore, we apply the tracking method with a p = 0 polynomial basis for the solution
and q = 1 basis for the mesh. The reference mesh is taken to be a uniform triangular mesh of
the domain with 48 elements. The solver is initialized with the p = 0 DG solution on the ref-
erence mesh (Section 4.1.1). The SQP solver is used with λ chosen adaptively (Section 3.4.6).
The various DG/tracking parameters are set as follows: κ = 0 (no mesh smoothing), Roe
flux (without entropy fix), γ0 = 1 and γmin = 10−8 (regularization parameter adaptivity),
and ϵ1 = 10−8, and ϵ2 = 10−12 (termination criteria). After only 20 iterations, the mesh per-
fectly tracks the shock (Figure 4.12) and the DG solution closely matches the exact solution;
the enthalpy error of the solution is eH = 7.94× 10−10. The solver performs similarly to the
advection equation with a straight discontinuity and therefore a full discussion is omitted
for brevity.

4.4.2 Supersonic flow over airfoil
Next, we apply the proposed tracking method to solve for supersonic flow over a NACA0012
airfoil (Figure 4.13). This is a difficult problem because there are two distinct shocks that
must be resolved: a bow shock ahead of the leading edge and an oblique shock off the tail.
The reference mesh is taken as an unstructured triangular mesh of the domain with 160
elements generated by DistMesh [57]. The mesh and solution are initialized according to
Section 4.1.1, including continuation in the polynomial degree. The SQP solver is used with
λ chosen adaptively (Section 3.4.6). The various DG/tracking parameters are set as follows:
κ = 10−4 (mesh smoothing), Roe flux with entropy fix, γ0 = 1 and γmin = 1 (regularization
parameter adaptivity), and Nmax = 100, ϵ1 = 10−6, ϵ2 = 10−10 (termination criteria).

For the p = q = 1 simulation, the proposed method tracks a faceted approximation to
the discontinuity in only 100 iterations, requiring 11 element collapses and maintain high-
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Figure 4.12: Solution (Mach) of Euler equations over a wedge (supersonic regime) using the
tracking method at various iterations throughout the solution procedure using p = 0 basis
for the solution and q = 1 basis for the mesh. The method converges to nearly the exact
solution (enthalpy error eH = 7.94× 10−10), in only 20 iterations.
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Figure 4.13: Geometry and boundary conditions of the airfoil problem. Boundary conditions:
slip wall ( ) and farfield (characteristic) conditions with ρ∞ = 1.4, v∞ = (M∞, 0), p∞ = 1
(M∞ = 0.85 for the transonic case and M∞ = 1.5 for the supersonic case). ( ).

quality elements, despite the coarse elements in the initial mesh that do not conform to
either shock (Figure 4.14). Even though the discontinuities are successfully tracked, the
solution is under-resolved, particularly near the body, since the large p = 1 elements are
not sufficient to resolve the solution in this region. As a result, the enthalpy error is large
eH = 1.30 × 10−3. The p = q = 2 and p = q = 3 tracking solutions provide highly accurate
approximations to the true flow even on this coarse mesh due to the high-order resolution
of the discontinuity surface with curved elements and high-order approximation of the flow
(Figure 4.14); the enthalpy error for the p = q = 2 tracking solution is eH = 6.73 × 10−5

and for p = q = 3 is eH = 1.02× 10−5. The perfect (zero-thickness) capturing of the shocks
and high-order approximation of the solution can further be seen from the solution slices in
Figure 4.15.

For this problem, the convergence of the solver is not as clean as the other problems
(Figure 4.16) and heavily relies on the line search throughout the solution procedure to
ensure sufficient decrease in the ℓ1 merit function. However, the solver still drives the KKT
conditions to reasonable tolerances within 100 iterations for the p = q = 3 simulation. The
spikes in the KKT residuals around iterations 20 and 60 in the p = q = 1 simulation are due
to element collapses. Our choice of algorithmic parameters were critical for this case. If κ is
significantly larger, the element collapses would not occur and the mesh would not be able
to track the shocks, particularly the weaker shock at the trailing edge. Furthermore, it was
important to use the relatively large value of γmin = 1, otherwise the line search would be
taxed more heavily in the later iterations and completely stalled convergence.

Finally, we mention that this is the first problem where our choice of the elliptic regular-
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Figure 4.14: Solution (Mach) of Euler equations over the NACA0012 airfoil (M∞ = 1.5)
using the proposed tracking method with a p = q = 1 (center) and p = q = 2 (right) basis
for the solution and mesh with (top) and without (bottom) element boundaries. In both
cases, the tracking procedure successfully tracks the shocks given the resolution in the finite
element space, despite the initial mesh and solution (left) being far from aligned with the
shock. The high-order (p = q = 2) basis yields an accurate approximation to the flow on the
coarse mesh while the low-order (p = q = 1) solution is under-resolved.
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Figure 4.15: Slices of density (left), Mach number (center), and pressure (right) of the
p = q = 3 tracking solution along the curve Γ := {(s, 0.14) | s ∈ (−0.5, 1.5)} for the NACA
problem. The discontinuities are captured perfectly between DG elements and the solution
is smooth and non-oscillatory away from the discontinuities, indicating that the solution is
well-resolved and the discontinuities are successfully tracked.

ization matrix with the coefficients chosen inversely proportional to the size of the element
in the reference domain (Section 3.4.5) is significant. The other choices we explored included
the identity matrix [8], elliptic PDE stiffness matrix without volume-based weighting [10],
and other choices involving the finite element mass matrix. All of these options performed
similarly in creating unacceptably large search direction in regions near the leading and trail-
ing edge (small elements) relative to other regions in the mesh (large elements). Without a
line search, these steps would cause the mesh to entangle and the simulation to crash. With
the line search, the step size in regions with larger elements would be driven nearly to zero
causing the solver to fail to track the discontinuity in these regions. From this, we conclude
the combination of the elliptic PDE stiffness matrix and the weighting of the coefficients
inversely with respect to the element size in the reference domain is important for meshes
with elements of significantly varying size.

4.4.3 Transonic flow over airfoil
Next, we consider transonic flow (M∞ = 0.85) over the same NACA0012 airfoil and domain
from the previous section (Figure 4.13). This problem has a shock attached to the curved
airfoil profile, which requires a nontrivial boundary mapping (Section 3.3) to ensure nodes
slide along the airfoil surface. We construct the mapping χ using the procedure in [78], i.e.,
the x-coordinates of the nodes on the surface are taken as optimization parameters and the
y-coordinates are determined from the expression for the airfoil profile

y(x) = 0.6
(
0.2960

√
x− 0.126x− 0.3516x2 + 0.2843x3 − 0.1036x4

)
. (4.26)

The reference mesh is taken as an unstructured triangular mesh of the domain with 127
elements generated by DistMesh [57]. The mesh and solution are initialized according to



4.4. STEADY, COMPRESSIBLE EULER EQUATIONS 55

10−5

10−2

101

So
lv

er
co

nv
er

ge
nc

e

10−5

10−3

10−1

p = 1, q = 1

10−5

10−2

101

10−4

10−2

100

So
lv

er
co

nv
er

ge
nc

e

10−3

10−2

p = 2, q = 2

10−5

10−2

101

0 20 40 60 80 100
10−7

10−4

10−1

Iteration

So
lv

er
co

nv
er

ge
nc

e

0 20 40 60 80 100
10−4

10−3

Iteration

p = 3, q = 3

0 20 40 60 80 100
10−5

10−2

101

Iteration

Figure 4.16: Convergence of the DG residual ‖r(u,x)‖ ( ), enriched DG residual
‖R(u,x)‖ ( ), optimality condition ‖c(u,x)‖ ( ), mesh distortion ‖κRmsh(x)‖ ( )
and control of the regularization parameter ( ) and step size ( ) for the tracking method
applied to solve the supersonic flow around the NACA airfoil. For this difficult problem,
the convergence of the KKT system is not as clean as the other problems and relies heavily
on the line search; however, the solver still tracks the shocks and returns an accurate flow
as seen from the solution plots (Figures 4.14-4.15). The spikes in the KKT conditions for
p = q = 1 are due to element collapses.
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Section 4.1.1, including continuation in the polynomial degree. The SQP solver is used
with λ chosen adaptively (Section 3.4.6). The various DG/tracking parameters are set as
follows: κ = 10−3 (mesh smoothing), Roe flux with entropy fix, γ0 = 10−2 and γmin = 1
(regularization parameter adaptivity), and Nmax = 30, ϵ1 = 10−6, ϵ2 = 10−10 (termination
criteria).

For polynomial degrees p = q = 1, 2, 3, the tracking method accurately tracks the at-
tached discontinuity without requiring element collapses and produces an accurate flow so-
lution given the resolution of the approximation space (Figure 4.17). The high resolution of
the p = q = 3 simulation can be seen through the slices of the solution (Figure 4.18): the
discontinuity is captured perfectly and the solution away from the discontinuity is smooth
and non-oscillatory. The convergence of the method has been thoroughly studied in the
previous sections and omitted for brevity.

4.4.4 Sod shock tube
Sod’s shock tube is a Riemann problem for the unsteady Euler equations that models an
idealized shock tube where the membrane separating a high pressure region from a low
pressure one is instantaneously removed. This is a commonly used validation problem since
it has an analytical solution and features a shock wave, a rarefaction wave, and contact
discontinuity. The flow domain is Ω = [0, 1], the final time is T = 0.2, the initial condition
is given in terms of the density, velocity, and pressure as

ρ(x, 0) =

{
1 x < 0.5

0.125 x ≥ 0.5
, v(x, 0) = 0, P (x, 0) =

{
1 x < 0.5

0.1 x ≥ 0.5,
(4.27)

and the density, velocity, and pressure are prescribed at x = 0 and the velocity is prescribed
at x = 1 (values can be read from the initial condition). The solution of this problem
contains three waves (shock, contact, rarefaction) that emanate from x = 0.5 and move
at different speeds, which is a generalized triple point in space-time. The method of lines
approach cannot handle this case because a single node lies at (x, t) = (0.5, 0), which cannot
track all three waves at time t > 0. Thus, we use the space-time implicit shock tracking
approach to solve this problem. The method is initialized with an unstructured mesh of the
space-time domain Ω̄ = [0, 1] × [0, 0.2] consisting of 173 simplex elements (p = 3, q = 1)
with additional refinement near (0.5, 0) to resolve the geometric complexity of the triple
point for a total of 5190 spatiotemporal degrees of freedom. The DG solution is initialized
with the p = 0 solution on the reference mesh. The final space-time tracking solution is
shown in Figure 4.19 where all features (head and tail of rarefaction, shock, and contact) are
tracked. A total of 47 element collapses are required, mostly near the triple point to obtain
elements that do not cross between the five distinct regions (left state, rarefaction, between
rarefaction and contact, between contact and shock, and right state); the final mesh contains
126 elements (3780 degrees of freedom). Despite the reduction in the number of degrees of
freedom, the solution at the final time T agrees well with the exact solution (Figure 4.20)
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Figure 4.17: Solution (Mach) of Euler equations over the NACA0012 airfoil (M∞ = 0.85)
using the proposed tracking method with a p = q = 1 (center) and p = q = 2 (right) basis
for the solution and mesh with (top) and without (bottom) element boundaries. In both
cases, the tracking procedure successfully tracks the shocks given the resolution in the finite
element space, despite the initial mesh and solution (left) being far from aligned with the
shock.
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Figure 4.18: Slices of density (left), Mach number (center), and pressure (right) of the
p = q = 3 tracking solution along the curve Γ := {(s, 0.14) | s ∈ (−0.5, 1.5)} for the NACA
problem (M∞ = 0.85). The discontinuity is captured perfectly between DG elements and
the solution is smooth and non-oscillatory away from the discontinuity, indicating that the
solution is well-resolved.

because the cubic basis functions do not cross discontinuities or kinks. This is an example
of an unsteady conservation law which is best suited to be solved as a “steady” problem
through a space-time approach vs. the method of lines approach described in Section 2.4
due to the multiple XXX. This distinction will be further highlighted in Section 5.
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Figure 4.19: Space-time solution of Sod’s shock tube (density) using implicit shock tracking
using a p = 3 DG discretization (center with element boundaries, bottom without element
boundaries), initialized from an unstructured mesh without knowledge of the discontinuity
surfaces and a p = 0 DG solution (top).
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Figure 4.20: Slice of space-time implicit shock tracking solution ( ) at time T = 0.2
relative to the exact solution ( ).
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Chapter 5

Numerical experiments: unsteady
case

In this section, we extend the work of the previous section by considering the same three
inviscid conservation laws but now in unsteady form (2.1). We demonstrate the tracking
framework on five problems with discontinuous solutions of varying difficulty. These unsteady
conservation laws are solved by the method of lines as described in (Section 3.5), where we
“solve a steady problem at each timestep”. We also demonstrate high-order convergence in
time and present the convergence behavior of the SQP solver.

5.1 Practical considerations

5.1.1 Initial guess for optimization
The implicit shock tracking optimization problem (3.41) is non-convex and therefore the
initial guess for the SQP solver is critical to obtain a good solution. In the method of lines
setting where implicit shock tracking is performed at each time step, an obvious idea for the
initial guess is the converged mesh and solution from the previous time tn. In practice, this
is too far off to attain good convergence properties except for prohibitively small choices
of timestep ∆t. Instead, we employ an initial guess where we advect each node on the
discontinuity surface from the previous time by the instantaneous shock speed determined
by the Rankine-Hugoniot conditions (Fig. 5.1). The remaining nodes are updated using a
standard optimization-based mesh smoothing using the high-order mesh distortion metric
rmsh
K :Wh → R developed in [24], defined as

rKmsh : Q 7→
∫
K

(
‖∇XQ‖2F

d(det∇XQ)2/d+

)2

dv. (3.11 revisited)

This provides a good initial guess for the shock-aligned mesh for each stage of the optimiza-
tion problem. However, the advection of these shock nodes can result in a tangled mesh
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Figure 5.1: Shock nodes ( ) (left), advected by instantaneous shock speed (middle) and
smoothed mesh (right).

(Fig. 5.1, middle). We modify the mesh distortion metric (3.11) following the approach in
[26] where the Jacobian (det∇XQ) is regularized to allow for the optimization procedure to
recover from initially invalid configurations.

For the initial guess for the solution, we use the converged physical solution (U) from
the previous timestep. However, since we applied our DG discretization to the transformed
reference conservation law (2.8), we are solving for the reference solution (UX). Therefore,
to use the physical solution at time tn as the initial guess for time tn+1, we multiply it by
the ratio of the Jacobian of the initial guess for the mapping at time tn+1 (advection based
on Rankine-Hugoniot conditions and smoothing) to the Jacobian of the converged mapping
at time tn. More precisely, the initial guess for the ith Runge-Kutta stage in physical space,
denoted Ǔh, is obtained by constant extrapolation of the physical state at time t

Ǔh(x, t+ ci∆t) := Uh(x, t) = gh(X, t)
−1UXh

(X, t). (5.1)

Let G̃ ∈ Wh be the mapping to the configuration obtained by the Rankine-Hugoniot-based
procedure and associated smoothing, then the initial guess for the ith Runge-Kutta stage in
the reference domain, denoted ǓXh

, is

ǓXh
(X, t+ ci∆t) := g̃(X, t+ ci∆t)Ǔh(x, t+ ci∆t) =

g̃(X, t+ ci∆t)

gh(X, t)
UXh

(X, t). (5.2)

Future work to enhance the robustness of these initial guesses might consider more advanced
methods to approximate the shock velocity [58] and higher order extrapolation-based esti-
mates for the solution.

5.1.2 Line search
In the steady case, the initial mesh is generated independently of the a priori unknown shock
location, and as such can begin quite far from alignment with the shock. Element collapses
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were required to remove small and poorly shaped elements that arose between iterations as
the coarse high-order mesh deformed to align with the shock. Because of this, we chose the
step length parameter αk+1 of (3.43) based off a backtracking line search procedure based
on the ℓ1 merit function in our previous work [81].

In this work, we simply take αk = 1 and do not require any topology changes to the
mesh. This is possible because we are able to construct high-quality initial guesses for the
optimization problem in the unsteady case that already contain information about the shock
(unlike the steady case). In Sections 5.2 and 4.4, we demonstrate this choice leads to rapid
convergence of the SQP solver.

5.2 Linear advection
The first problem we consider is linear advection of a scalar quantity U through a domain
Ω ⊂ Rd

∂

∂t
U(x, t) +

∂

∂xj
(U(x, t)βj(x)) = 0 for x ∈ Ω, t ∈ [0, T ]

U(x, 0) = Ū(x) for x ∈ Ω,

(5.3)

where U : Ω× [0, T ]→ R is the conserved quantity implicitly defined as the solution of (5.3),
β : Ω→ Rd is the flow direction, and Ū : Ω→ R is the initial condition.

5.2.1 1D spatially varying advection
As a simple benchmark problem to demonstrate the capabilities and performance of the
unsteady shock tracking framework, we consider the advection equation in one spatial di-
mension with a spatially varying advection field β : Ω→ R

β : x 7→ 1 +
1

2
sin2(2πx) (5.4)

with initial condition Ū : Ω→ R:

Ū(x) =

{
sin(πx) x ≤ 0.5

sin(π(x− 1)) x > 0.5
(5.5)

and periodic boundary conditions. We initialize with a mesh of the reference domain Ω0 =
[0, 1], which we construct such that an element interface lies at the initial shock location
(x = 0.5), i.e., the shock in the initial condition is tracked. The shock tracking solution
is computed using a DG discretization on this equispaced mesh with 20 elements of degree
p = 4, q = 1 and a DIRK3 temporal discretization with 25 time steps with final time
T = 0.25 (Figure 5.2). The SQP solver is used with tolerances ϵ1 = 10−6 and ϵ2 = 10−8. At
each timestep n + 1, we are able obtain a solution to within the specified tolerances, which
corresponds to the solution of the optimization problem (3.41) at time step n and stage s,
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Figure 5.2: Method of lines solution of the one-dimensional, spatially varying advection
equation with p = 4, q = 1. Initial condition Ū(x) ( ) and tracking solution at times
t = 0.05, 0.15, 0.25 ( ).

and only need 2-3 iterations of the SQP solver to do so (Figure 5.3). Note that the sth stage
tends to be more difficult for the SQP solver – one possible explanation is because each stage
of the DIRK method has low stage order (first order), making it easier on the SQP solver
compared to the sth stage, which is in fact the high-order solution because of our specific
choice of DIRK schemes. We acknowledge this is an easy example for the SQP solver, and
will demonstrate similar behavior for a more challenging example in the following sections.

We obtain a reference solution of (5.3) at T = 0.25 using the method of characteristics;
the characteristic equations and corresponding solution are integrated using classical RK4
with 10,000 timesteps. The shock tracking solution compares well to the reference solution
at the final time T = 0.25 (Figure 5.4). We use this reference solution to demonstrate high-
order convergence in time of both the L1 error of the solution at the final time and the shock
location, verifying the design order of accuracy of the DIRKk schemes even in the presence
of a discontinuity (Figure 5.5).
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Figure 5.3: Final converged value of the constraint (top left), optimality condition (top right),
and objective function (bottom left) for the solution to 1D spatially varying advection at each
timestep ( ) and the specified tolerances ( ), and the number of SQP steps needed at
each stage of each time step for convergence (bottom right); stage 1: ( ), stage 2 ( ),
stage 3 ( ).
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Figure 5.4: Comparison of shock tracking ( ) and reference ( ) solutions at T = 0.25.
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Figure 5.5: Temporal convergence of the DIRK1 ( ), DIRK2 ( ), and DIRK3 ( )
schemes for the L1 error of the shock location (left) and the solution (right) for the spatially
varying advection equation.
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5.3 Time-dependent, inviscid Burgers’ equation
The time-dependent, inviscid Burgers’ equation governs nonlinear advection of a scalar quan-
tity through the domain Ω ⊂ Rd

∂

∂t
U(x, t) +

∂

∂xj

(
1

2
U(x, t)2βj

)
= 0 for x ∈ Ω, t ∈ [0, T ]

U(x, t) = 0 for x ∈ ∂Ω, t ∈ [0, T ]

U(x, 0) = Ū(x) for x ∈ Ω,

(5.6)

where U : Ω× [0, T ]→ R is the conserved quantity implicitly defined as the solution of (5.6),
β ∈ Rd is the flow direction, and Ū : Ω → R is the initial condition. We investigate this
problem in both one and two dimensions.

5.3.1 1D Burgers’ equation
For Burgers’ equation in one spatial dimension, we take β = 1 and consider the initial
condition Ū : Ω→ R

Ū : x 7→ 2(x+ 1)2(1−H(x)), (5.7)
where H : R → {0, 1} is the Heaviside function. Our approach only requires a mesh of the
reference domain Ω0 = [−1, 1], which we construct such that an element interface lies at the
initial shock location (x = 0), i.e., the shock in the initial condition is tracked. The shock
tracking solution is computed using a DG discretization on this equispaced mesh with 20
elements of degree p = 4, q = 1 and a DIRK3 temporal discretization with 20 time steps
with final time T = 1 (Figure 5.6).

5.3.2 2D Burgers’ equation
We now consider Burgers’ equation in two spatial dimensions. We take Ω0 = [−1, 1]2 as our
two-dimensional spatial domain, β = (1, 0) as the flow direction, and Ū : Ω → R as the
initial condition, defined as

Ū : (x1, x2) 7→

{
(0.5− 2(x22 − 0.25))

(
4
3
(x1 + 0.75)

)
x ∈ Ω□

0 elsewhere,
(5.8)

where Ω□ := [−0.75, 0] × [−0.5, 0.5]. The problem is constructed such that the initially
straight shock curves over time, which is tracked by the high-order mesh. The shock tracking
solution is computed using a DG discretization on a mesh with 128 simplex elements of degree
p = 2, q = 2 and a DIRK3 temporal discretization with 40 time steps with final time T = 2
(Figure 5.7). The mesh smoothing procedure described in Section 5.1.1 is important here to
maintain high-quality elements as the shock moves across the domain.
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Figure 5.6: Method of lines solution of the one-dimensional, inviscid Burgers’ equation with
p = 4, q = 1, including initial condition Ū(x) ( ) and tracking solution at times t =
0.05, 0.35, 0.65, 0.95 ( ).

Figure 5.7: Method of lines solution of two-dimensional, inviscid Burgers’ equation with
p = q = 2. Initial condition Ū(x) (left) and solution at T = 2 (right)
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5.4 Unsteady, compressible Euler equations
The Euler equations govern the flow of an inviscid, compressible fluid through a domain
Ω ⊂ Rd

∂

∂t
ρ(x, t) +

∂

∂xj
(ρ(x, t)vj(x, t)) = 0

∂

∂t
(ρ(x, t)vi(x, t)) +

∂

∂xj
(ρ(x, t)vi(x, t)vj(x, t) + P (x, t)δij) = 0

∂

∂t
(ρ(x, t)E(x, t)) +

∂

∂xj
([ρ(x, t)E(x, t) + P (x, t)] vj(x, t)) = 0

(5.9)

for all x ∈ Ω, t ∈ [0, T ], i = 1, . . . , d and summation is implied over the repeated index
j = 1, . . . , d, where ρ : Ω × (0, T ) → R+ is the density of the fluid, vi : Ω × (0, T ) → R for
i = 1, . . . , d is the velocity of the fluid in the xi direction, and E : Ω × (0, T ) → R+ is the
total energy of the fluid, implicitly defined as the solution of (5.9). For a calorically ideal
fluid, the pressure of the fluid, P : Ω × (0, T ) → R+, is related to the energy via the ideal
gas law

P = (γ − 1)
(
ρE − ρvivi

2

)
, (5.10)

where γ ∈ R+ is the ratio of specific heats. By combining the density, momentum, and
energy into a vector of conservative variables U : Ω× [0, T ]→ Rd+2, defined as

U : (x, t) 7→

 ρ(x, t)
ρ(x, t)v(x, t)
ρ(x, t)E(x, t)

 (5.11)

the Euler equations are a conservation law of the form (2.1). We investigate the shock
tracking framework on two benchmark examples: the Shu-Osher problem and a blast wave
problem in 2D.

5.4.1 Shu-Osher problem
The Shu-Osher problem [64] is a one-dimensional idealization of shock-turbulence interaction
where a Mach 3 shock moves into a field with a small sinusoidal density disturbance. The
flow domain is Ω0 = [−4.5, 4.5], and the initial condition is given in terms of the density,
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velocity, and pressure as

ρ(x) =

{
3.857143 x < −4
1 + 0.2 sin(5x) x ≥ −4

v(x) =

{
2.629369 x < −4
0 x ≥ −4

P (x) =

{
10.3333 x < −4
1 x ≥ −4,

(5.12)

and the density, velocity, and pressure are prescribed at x = −4.5 and the velocity is pre-
scribed at x = 4.5 (values can be read from the initial condition). The shock tracking solution
is computed using a DG discretization on a mesh with 288 elements of degree p = 4, q = 1,
half of which are equispaced to the left of the initial shock location from [−4.5,−4], and
the other half equispaced from [−4, 4.5]. The temporal discretization is done by the DIRK3
method with 110 time steps with final time T = 1.1. The final time is chosen such that waves
trailing behind the primary shock do not steepen into shock waves; shock formation will be
the subject of future work. In Figure 5.8, we present the shock tracking solution along with
a reference solution computed using a fifth-order WENO method with 200 elements and
temporal integration via RK4 with 110 timesteps [64]. The shock tracking solution actually
overshoots the reference solution at the formation of the trailing waves, which suggests the
reference solution is being overly dissipated by the WENO scheme (left inset). The shock
is perfectly represented by the aligned mesh in the shock tracking solution compared to the
reference (right inset).

The SQP solver is used with tolerances ϵ1 = 10−4 and ϵ2 = 10−8, which is easily attained
at each Runge-Kutta stage and timestep and in very few SQP iterations (Figure 5.9). We
note that the objective function is steadily growing because we are using a fixed amount of
resolution to represent an increasingly oscillatory numerical solution. This is not an issue of
any other fundamental concern, and can be addressed with adaptive element collapses and
refinement, which is straightforward in the one-dimensional case.

The Shu-Osher problem is ideal for implicit shock tracking because it starts off with a
well-defined shock that maintains its topology over time and the flow away from the shock is
smooth. At present, one could imagine combining this shock tracking approach with a shock
capturing method, where strong well-defined shocks could be tracked and weaker shocks
which form over time could be captured [36]. Future work will focus on the simulation of the
full Shu-Osher problem to additionally track the smaller shocks which form as the trailing
waves steepen.

5.4.2 Blast wave
In the final example, we consider a spherical blast wave problem featuring a strong, radially
expanding shock. Our problem is inspired by the classic Sedov problem, which is an idealized
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Figure 5.8: Density at T = 1.1 of Shu-Osher problem for the reference ( ) and shock
tracking ( ) solutions.

model of the self-similar evolution of a cylindrical (or spherical) blast wave starting from a
large total energy deposited at a single point placed into an otherwise homogenous medium
of a uniform ambient density with negligible pressure. The Sedov problem is a workhorse
verification test for traditional shock capturing methods since there is an analytical solution
[62] available in one-, two-, and three-dimensions for comparison. It is primarily used to
test geometrical concerns, such as the ability to track a curved shock and maintain spherical
symmetry.

We take Ω = [−1, 1]2 as our two-dimensional spatial domain with the initial condition
given in terms of the density, velocity, and pressure by a function of the distance from the
origin r =

√
x21 + x22 as
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Figure 5.9: Final converged value of the constraint (top left), optimality condition (top
right), and objective function (bottom left) for the solution to the Shu-Osher problem at
each timestep ( ) and the specified tolerances ( ), and the number of SQP steps needed
at each stage of each time step for convergence (bottom right); stage 1: ( ), stage 2 ( ),
stage 3 ( ).
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ρ(r) =

{
5.378
0.252

r2 r ≤ 0.25

1 elsewhere

v(r) =

{
1.304
0.25

r r ≤ 0.25

0 elsewhere

P (r) =

{
0.978
0.252

r2 + 1 r ≤ 0.25

10−3 elsewhere
.

(5.13)

Like the other numerical examples considered in this work, the initial condition is constructed
such that the shock is exactly meshed. This initial condition is inspired by the solution to the
Sedov problem at a time when the primitive variables have already taken on a “bowl-like”
structure. The shock tracking solution is computed using a DG discretization on a mesh
with 422 simplex elements of degree p = 2, q = 2 and a DIRK2 temporal discretization with
140 time steps and final time T = 0.14 (Figure 5.10). In the shock tracking framework,
the ability to track curved shocks accurately while maintaining radial symmetry comes very
naturally. Since the initial value for pressure in the ambient region is close to zero and much
smaller than the value inside the shock, a slight modification was made to the SQP solver to
avoid negative values for energy in the ambient region. After each SQP step, the elements in
the ambient region with a negative value for energy are reinitialized with their element-wise
average. This helps stabilize the solver in its initial iterations, and it quickly converges from
there.
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Figure 5.10: Method of lines solution of two-dimensional blast wave problem with p = q = 2.
Initial condition Ū(x) (left) and solution at T = 0.14 (right)
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Chapter 6

Local element operations for curved
meshes

Mesh optimization procedures are generally a combination of node smoothing and discrete
operations which affect a small number of elements to improve the quality of the mesh ele-
ments. These procedures are useful as a post-processing step in mesh generation procedures
and in applications such as fluid simulations with severely deforming domains. In order to
perform high-order mesh optimization, these ingredients must also be extended to high-order
meshes. In this section, we present a method to perform local element operations on curved
meshes. The mesh operations discussed in this work are edge/face swaps, edge collapses,
and edge splitting (more generally refinement) for triangular meshes. These local operations
are performed by first identifying the patch of elements which contain the edge/face being
acted on, performing the operation as a straight-sided one, placing the high-order nodes by
an isoparametric mapping from the master element, and smoothing the high-order nodes on
the elements in the patch by minimizing a Jacobian-based mesh distortion measure. Since
the initial straight-sided guess frequently results in invalid elements, a regularization of this
distortion measure which allows for mesh untangling is critical for the optimization to suc-
ceed. We present several examples to demonstrate these local operations and how they
can be combined with a high-order node smoothing procedure to maintain mesh quality for
problems with severe deformations.

6.1 Background
Much of the great promise of high-order methods is due their ability to handle complex
geometries with unstructured meshes. These methods require high-order (curved) meshes
to ensure the curved geometry is represented with sufficient accuracy to enable the high-
order convergence rate of these methods. However, the existence (or rather, lack thereof)
of robust and automated high-order mesh generation procedures is still one of the main
bottlenecks in the widespread adoption of these methods in the design process. To this end,
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the high-order community has identified high-order mesh generation as a topic deserving of
considerable research attention and as one of the top pacing items in high-order method
research [75, 74]. One might say curved meshing solidified itself a “mainstream” topic of
research in the meshing community in 2015, the first year it had its own dedicated session at
the International Meshing Roundtable [42]. The introduction of [70] contains a recent survey
of the current state of affairs of high-order meshing research and ample additional references.
In terms of available software, Gmsh is a widely used free software with the capability to
generate and display curved meshes for elements of arbitrarily high-order [27]. Up until very
recently, there were no commercial high-order mesh generators available before Pointwise
released support for this in 2019 [1].

Most straight sided mesh generation procedures proceed in two steps: 1) the initial cre-
ation of a mesh from geometry through a method like advancing front, Delaunay or octree,
and 2) a mesh optimization post-processing step to improve element quality. There is a large
body of literature on these heuristic mesh optimization procedures (sometimes referred to as
a “mesh clean-up phase”). While those works may differ in their notions of optimality and
specific techniques used, they largely agree the best way to perform mesh optimization is
through a combination of node movement/smoothing and discrete, localized element opera-
tions. Freitag and Ollivier-Gooch [22] consider various node smoothing procedures and face
and edge swapping operations, and show that each mechanism fails to significantly improve
the mesh quality when used individually but result in very high quality meshes when com-
bined. They offer a variety of empirical recommendations on how to do so and demonstrate
the effectiveness of their schedules on a variety of tetrahedral mesh geometries. De Cougny
and Shephard [11] combine edge collapses and splitting operations for the purpose of mesh
adaptation. Klinger and Shewchuk [40] consider a richer set of operations in an effort to take
these ideas to an extreme to find the highest quality mesh, assuming that speed is not the
highest priority. We refer the reader to Section 3 of their paper where they survey many of
the commonly (and some uncommonly) used mesh operations.

Now the question is how to extend these “mesh clean-up” ideas to high-order meshes.
Existing work [59, 37, 15, 26] on high-order node smoothing mostly takes the approach
of optimization-based minimization of some energy functional or objective function that
quantifies the global high-order mesh distortion. The key issues here are the need for mesh
distortion metrics for high-order elements [60, 25] and a procedure for high-order untangling
[68, 16]. In principle, some of the approaches to curved mesh generation such as the solution
of a linear/nonlinear elasticity analogy [55, 76, 52, 49] or a PDE-based approach [21] could
also be adapted for the purpose of high-order mesh smoothing. There is practically no
literature on the use of local element operations for curved meshes. To the best of the
author’s knowledge, the only existing work on high-order mesh operations [19] considers face
and edge swaps for meshes with second-order elements.

It is clear that further developments in these areas will be required to advance the current
state of curved mesh generation and adaptivity. The difficulty of directly acting on high-
order meshes is one possible explanation for why most curved mesh generation approaches
are of the a priori variety rather than direct methods which proceeds in the same two phases
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as most linear mesh generators do. In the context of high-order finite element solutions,
solution quality is frequently dictated by the mesh element of the worst quality. Local
mesh operations for curved meshes could be an inexpensive and direct way to deal with
this and other applications such as the repair of deforming high-order domains occurring in
time-dependent fluid simulations.

Node Smoothing Edge Swap

Edge Collapse Edge Splitting

Figure 6.1: Straight sided mesh operations.

The main goal of this section is to answer the question, “How we can extend these local
element operations (Figure 6.1) to high-order triangular meshes?” One key difference from
the low-order case is that there are many valid ways to perform these operations due to
the additional degrees of freedom afforded by the high-order nodes (Figure 6.2). So there
is now an optimal way to perform these local operations by placing these additional nodes
in a way to minimize a high-order Jacobian-based mesh distortion measure (Section 6.2).
We go onto describe the actual process of performing these operations in Section (6.3) and
some practical details related to their implementation, and illustrate their use in multiple
numerical examples in Section (6.4) that show how these operations can be combined with
high-order mesh smoothing and untangling to repair curved meshes that undergo severe
deformations.
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Figure 6.2: Only one possible flip for straight-sided elements, but many possible flips in the
high-order setting.

6.2 Distortion measure and untangling
We describe the construction of the high-order distortion measure used in this work for node
smoothing from a standard linear distortion measure, which is then regularized to allow for
simultaneous smoothing and untangling. We also offer some comments on how this measure
is used our setting for optimization.

6.2.1 High-order distortion measure
We introduce the distortion measure for linear elements (6.2). This measure – known as the
inverse mean-ratio shape measure – was first introduced in [43, 44]. This measure is widely
used in the meshing community as a shape distortion metric due to its many desirable
properties such as the standard invariance to translation, rotation, and scaling, but is also
special as a geometric shape measure that also enjoys many of the desirable properties of
an algebraic mesh quality metric [41]. In particular, this measure is shown to be convex [50]
and well-suited for optimization.

Consider a linear element EI having the desired shape and size (the ideal element) and
a corresponding element in physical space EP . From these we can define a unique affine
mapping ϕE : EI → EP . It is frequently convenient to introduce the notion of the master
element EM and define two additional mappings ϕI , ϕM (Figure 6.3a) that map from the
master element to the ideal and physical element, respectively. We can define ϕE in terms
of the these mappings as follows

ϕE : EI ϕ−1
I−−→ EM ϕP−→ EP . (6.1)
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Figure 6.3: Mappings between the master, ideal and physical elements: (a) linear case (left)
and (b) high-order case (right).

The element shape distortion metric η is defined as

η(DϕE) =
||DϕE||2F
d|σ|2/d

(6.2)

where d is the spatial dimension, || · ||F is the Frobenius norm, and σ = det(DϕE). Note
that for linear elements, since ϕE is affine, its Jacobian DϕE is constant. This distortion
measure quantifies the deviation of the shape of the physical element EP with respect to the
ideal element EI . This distortion measure is 1 for the ideal element and tends to infinity
as the physical element degenerates. It is often convenient to define a corresponding quality
measure q as

q =
1

η
∈ [0, 1]. (6.3)

For high-order elements, we can no longer apply (6.2) directly because the mapping ϕE is
no longer affine, so DϕE is no longer constant. Roca et al. describes an extension of the linear
distortion measure to high order triangular [60] and tetrahedral [25] elements. The idea is
that since the linear measure quantifies the local deviation between the ideal and physical
elements, we can obtain a high-order element-wise distortion η̂ measure by integrating the
linear measure on the physical high order element

η̂(DϕE) =

(
1

|t|

∫
t

ηr(DϕE) dx

)1/r

(6.4)

where |t| is the area of the physical element and r = 2 in this work. Explicit expressions for
the isoparametric mappings for the high-order case (Figure 6.3b) in terms of shape functions
are given in [60].
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6.2.2 Regularization and untangling
The distortion measure η needs to be modified to eliminate the singularity so an optimiza-
tion procedure can recover from an invalid initial configuration. We use the regularization
introduced in [16] which replaces σ in the denominator of (6.2) by

σδ(σ) =
1

2

(
σ +
√
σ2 + 4δ2

)
(6.5)

where δ is a positive element-wise parameter. This regularized Jacobian σδ(σ) is a monoton-
ically increasing function of σ such that σδ(0) = δ, which tends to 0 when σ tends to −∞,
which allows us to overcome the vertical asymptote at σ = 0 in the original measure. This
parameter δ is only set for a non-zero value if there exists an invalid element in the mesh
under consideration, otherwise it is set to zero for a mesh with all valid elements. Using the
regularized Jacobian, we can now modify (6.2) to obtain a linear distortion measure capable
of simultaneous smoothing and untangling

ηδ(DϕE) =
||DϕE||2F
d|σδ|2/d

(6.6)

and use this to define a high-order regularized measure η̂δ analogous to (6.4). Figures 5 and
6 of [26] provide a useful illustration of how this regularized distortion metric compares to
the original for a simple example.

What remains is the issue of how to pick this positive elementwise regularization param-
eter δ. We certainly require the original (η̂) and regularized (η̂δ) distortion measures to have
nearby minima, so δ needs to be sufficiently small. On the other hand, δ has to be large
enough to ensure that 4δ2 is significant compared to σ2 in the expression for σδ. When this
idea was originally introduced in [16], this parameter was chosen in a fairly ad hoc manner
by testing a few values for a given initial tangled mesh. In [26], a heuristic was developed
to choose a constant value of δ for each element. Their setting deals with high-order mesh
generation by curving the boundaries of a well-shaped straight-sided mesh and minimizing
the regularized distortion metric. For them, in the mapping ϕE, each physical element EP

in the curved mesh has the ideal element EI as the corresponding element in the original
straight-sided mesh. They propose to choose this parameter δ solely based off information
from the straight-sided ideal element. Defining σ∗ = − detϕI and imposing

σδ(σ
∗) =

1

2

(
σ∗ +

√
(σ∗)2 + 4δ2

)
= τ > 0 (6.7)

for some given tolerance τ implies

δ(σ∗) =
1

2

√
(2τ + |σ∗|)2 − (σ∗)2 =

√
τ 2 + τ |σ∗|. (6.8)

They argue that τ should be small compared to σ and select τ = α|σ∗|, giving the final value
for δ as

δ(σ∗) = |σ∗|
√
α2 + α.
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The value α = 10−3 is observed to work well in practice and accomplish the tradeoff required
on the value of δ (Figure 6.4). Our setting deals with high-order mesh smoothing, so we
choose the ideal element EI to always be the equilateral triangle/tetrahedron. For the
unregularized distortion measure, the actual size of EI is irrelevant since the measure is
invariant to scaling. This is no longer true for the regularized distortion measure. So in
order to maintain the assumption from their setting that each EI and EP are roughly of the
same size, we need to scale the ideal element to have the same volume as each corresponding
physical element.

Figure 6.4: Representation of σδ(σ) (reproduced from [26])

6.2.3 Numerical optimization
We need to aggregate the distortion measures for single elements into a single quantity for
a group of elements for optimization purposes. What we really want is to optimize for the
worst element, since the distortion of the worst element in a mesh is often what drives the
solution quality in the context of numerical simulation. But since minimizing the maximum
distortion is difficult optimization-wise, we consider the normalized sum of squares of the
elementwise distortion of each element ei in a group of elements M

η̂agg(M) =
1

|M |
∑
ei∈M

η̂δ(Dϕei)
2. (6.9)

The two settings we perform mesh smoothing are over a small “patch” of elements that
share a single vertex, or over the entire mesh. For small problems such as patches, solving the
global problem works well. For smoothing over the entire mesh, we largely follow the localized
approach given in Appendix A of [26], which considers a “Gauss-Seidel” like method which
iteratively updates each node by a Newton step with backtracking line search until either the
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objective function or the amount of node movement satisfies some stopping criteria. Instead
of looping over nodes, we loop over patches (Figure 6.5), which seems to help mitigate some
of that “back and forth” which has been shown to empirically improve the robustness of the
high-order optimization [15]. We note this solver offers no guarantees for especially tangled
or pathological meshes, due to the choice of solver, the issues with the regularization method
which many authors have pointed out fails quite often in practice such as if the boundary of
the mesh is also tangled [34], or the possible failure of the high-order Gauss quadrature rule
to detect inversion at the corners of our high-order elements.

Figure 6.5: Patch-based high-order mesh smoothing

6.3 Local element operations
We describe how to perform the local element operations of edge/face swaps, edge collapses,
and edge splitting for curved, simplex elements in 2D. The operations roughly proceed by
performing the action as a straight-sided one and simultaneously untangling and smoothing
the result. We note some practical issues along with differences in the high-order setting.

6.3.1 Edge/face swaps
Once a group of elements is identified to perform edge/face swaps on, we first do the straight-
sided initial guess. This is done by freezing the boundary, discarding all the interior nodes
and replacing them in the flipped configuration by the straight-sided information. This
initial flip is extremely prone to tangling even when starting out with fairly well-shaped
elements. By the high-order distortion measure (6.4), many high-order elements which seem
valid on visual inspection with all their interior nodes contained in the boundary are actually
invalid. Finally, we apply the simultaneous untangling and smoothing procedure described
in the previous section to arrive at the curved flip (Figure 6.6). We decide to accept the
resulting flip if it results in a lower aggregate distortion η̂agg from the original configuration.
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The normalization by the number of elements in the group in the definition is to allow
comparison of the original and flipped configuration, since in 3D there are many possible
flips which in general change the number of elements.

Figure 6.6: Edge flips in 2D: original elements (left), initial straight-sided flip (middle),
curved flip (right)

6.3.2 Edge collapses
Once an edge is identified to collapse, we first do the straight-sided initial guess. This is
done by identifying the patch of elements that contains either endpoint of the edge being
collapsed, freezing its boundary, discarding all the interior nodes, and replacing them by the
straight-sided edge collapse to the midpoint of the original curved edge. Then we apply the
simultaneous untangling and smoothing procedure to arrive the final curved collapse (Figure
6.7). If the edge identified for collapse is on the boundary of the domain, information will
inevitably be lost but can be well mitigated in the high-order case by performing projection
based interpolation on the patch boundary by standard techniques encountered in hp-FEM
methods [13].

6.3.3 Edge splitting
Depending on the setting, the edges to be split could either be directly identified or implied
by choosing elements. Either way, once an element is identified to be split and the straight
sided guess is performed according to one of the templates in 2D (Figure 6.8), its neighbors
must also be split by a straight-sided guess with the corresponding template to prevent
hanging nodes. Then, we apply simultaneous untangling and smoothing on this group of
elements to arrive at the final curved split (Figure 6.9).
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Figure 6.7: Edge collapses in 2D: original elements (left), initial straight-sided collapse (mid-
dle), curved collapse (right)

Figure 6.8: Element subdivision templates in 2D: 1→ 2 (left) and 1→ 4 (right)

Figure 6.9: Edge splitting in 2D: original elements (left), initial straight-sided split (middle),
curved split (right)
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6.4 Numerical experiments
We demonstrate how curved local element operations can be combined with high-order mesh
smoothing to maintain element quality and sizing for high-order meshes subject to severe
deformations in 2D. All the meshes used for the numerical experiments are generated by
Gmsh [27] and are of polynomial degree four.

6.4.1 Rotation
We first demonstrate how node smoothing combined with edge flips can maintain element
quality under rotation. The 2D mesh is a circle-in-square mesh of 116 elements, where the
circle is centered at the origin with radius 0.5 inside the square [−1, 1]2 (Figure 6.10 left).
At each step, we rotate the nodes on the circle, perform high-order node smoothing while
keeping the nodes on the circle fixed, apply curved flips according to Algorithm 1, and
smooth again. Algorithm 1 constructs a priority queue of elements with higher distortion
than a floating threshold value and considers all topologically possible flips for each element,
accepting the one (if any) that results in the greatest improvement. It performs sweeps over
all the elements with a reset floating threshold for each sweep until no further improvement
is possible.

Algorithm 1: Application of Curved Flips
Input curved mesh M with elements {ei}
if dim = 2D then tmin = 1.5
Set distortion threshold T = min(tmin,min(D)), D(i) = distortion of ei
Create priority queue P = {(ej, D(j)), ∀j D(j) > T descending}
while true do

for i in P do
if dim = 2D then consider all possible 2→ 2 flips with ei
if best of topologically possible flips improves η̂agg then

Update the mesh M
Remove all involved elements from the queue P and renumber

end
end
if no flips done in sweep then

return M
end
Recompute T and P

end

Rotation cannot exceed much more than a quarter turn with only node smoothing (Figure
6.10 middle). A straight sided mesh cannot rotate this far with smoothing alone; the presence
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of high order nodes grant us the flexibility to maintain valid (albeit highly stretched) elements
for more severe deformations. The 2D case can maintain high quality indefinitely with the
application of flips. It is well known in the straight-sided case that such greedy flip algorithms
like the one used here converge to an optimal triangulation (in the sense of Delaunay) in the
2D case, but offers no such guarantees in higher dimensions [12].

Figure 6.10: 2D rotation with flips: original mesh (left), quarter turn with smoothing only
(middle), quarter turn with smoothing and flips (right).

Table 6.1: Mesh distortion of figure 6.10

2D
max agg

Original mesh 1.167 1.141
Smoothing only 5.327 7.876

With flips 1.197 1.179

6.4.2 Coarsening
Though this example does not deal with mesh deformation, we demonstrate how curved
collapses can be combined with high-order node smoothing to coarsen a mesh (Figure 6.11).
We begin with a rather fine 2D mesh with 690 elements of the square [−1, 1]× [−1, 1] with a
circular hole at the origin with radius 0.5 (Figure 6.11, top left). We apply multiple passes of
curved edge collapses to coarsen the mesh according to a uniform size function (Algorithm
2). We to also coarsen elements on the boundary with projection by interpolation in the L2

error minimizing sense to maintain an accurate representation of the circular boundary with
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fewer elements.

Algorithm 2: Application of Collapses
Input curved mesh M with edges {Ej}
Compute list of edge lengths L
Set ideal edge length L0 = 0.1
Create priority queue P = {(Ek, L(Ek)), ∀k L0

L(Ek)
> 1.5 descending}

while true do
for i in P do

Perform curved collapse on edge ei and update the mesh M
Remove all edges in collapse patch from P and renumber

end
if no collapses done in sweep then

return M
end
Recompute L

end

6.4.3 Translation
We demonstrate the combination of all three curved element operations with mesh smoothing
to maintain both element quality and uniform sizing. The 2D mesh is a circle-in-rectangle
mesh of 314 elements, where the circle is centered at (−1, 0) and has radius 0.5 inside the
rectangle [−2, 2]× [−1, 1]. At each step, we translate the nodes on the circle, perform high-
order node smoothing while keeping the nodes on the circle fixed, apply all three types of local
mesh operations according to Algorithm 4, and smooth again. Algorithm 4 applies sweeps
of collapses and splits until convergence, and then applies sweeps of flips until convergence.



6.4. NUMERICAL EXPERIMENTS 88

Figure 6.11: 2D coarsening with collapses: original mesh (top left), one sweep of collapses
(top right), five sweeps of collapses (bottom left), final mesh (bottom right).
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Algorithm 3: Application of Splitting
Input curved mesh M with edges {Ej}
Compute list of edge lengths L
Set ideal edge length as uniform L0 = avg(L)
Create priority queue P = {(Ek, L(Ek)), ∀k L0

L(Ek)
> 1.5 descending}

while true do
for i in P do

Identify elements K containing edge Ei

for j in K do
Identify all edges of element ej in queue P to choose template
Perform curved split on element ej and update the mesh M
Remove all edges in collapse patch from P and renumber

end
end
if no splits done in sweep then

return M
end
Recompute L

end

Algorithm 4: Application of all operations: flips, coarsening, and splitting
Input curved mesh M with elements {ei} and edges {ej}
Perform sweeps of splits (Algorithm 3) with uniform ideal edge length
Perform sweeps of collapses (Algorithm 2) with uniform ideal edge length
Perform global smoothing of mesh M
Perform sweeps of flips (Algorithm 1)
Perform global smoothing of mesh M
return M

Translation cannot make it more than halfway across the prism with only node smoothing
(Figure 6.12). With the addition of flips, we can make it across the entire domain but with
some poorly sized elements. This can be remedied with the addition of collapses and splitting
to maintain a uniform size, which allows us to practically maintain the original element sizes
and qualities after translation across the entire domain (Table 6.2).
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Figure 6.12: 2D translation: original mesh (top left), smoothing only (top right), smoothing
with flips (bottom left), smoothing with flips, collapses, and splitting (bottom right).

Table 6.2: Mesh distortion of Figure 6.12

2D
max agg

Original mesh 1.1821 1.0473
Smoothing only 2.8378 2.3771

With flips 2.0643 1.2075
Flips, collapses, and splitting 1.1821 1.0498
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Chapter 7

Conclusion and future research

7.1 Conclusion
We introduce a formulation of an optimization-based implicit shock tracking method and
an associated solver that leverages the structure of the problem. The proposed optimization
problem minimizes the DG residual in an enriched test and the distortion of the mesh,
constrained by the standard DG residual (equal trial and test spaces). The enriched residual
is a practical surrogate for the violation of the weak formulation of the conservation law; its
magnitude serves as an error indicator for a DG solution. Therefore, penalizing the enriched
DG residual promotes alignment of the element faces with discontinuities; otherwise, the DG
solution would oscillate about the discontinuities and provide a poor approximation to the
conservation law. The proposed solver for the constrained optimization problem over the DG
solution and mesh coordinates is an SQP method that uses a Levenberg-Marquardt Hessian
approximation and is globalized via a line search on the ℓ1 merit function. The Hessian
approximation is regularized with the stiffness matrix corresponding to a linear elliptic partial
differential equation with coefficients inversely proportional to the local element size and
adaptively chosen regularization parameter, which turns out to be significant for meshes
containing elements of significantly different size.

For problems where the finite element space contains the exact solution, the SQP method
exhibits Newton-like convergence to the exact solution, which was demonstrated via linear
advection of a scalar through a constant advection field and supersonic, inviscid flow over a
wedge. The framework was also shown to be effective in accurately resolving more complex
flows with intricate shock structures using coarse, high-order meshes as demonstrated using
the inviscid Burgers’ equation (time-dependent), and transonic and supersonic flow over a
NACA0012 airfoil. For these problems, the convergence of the solver is slower, but still drives
the first-order optimality conditions to tight tolerances in a reasonable number of iterations.

We then extend the high-order implicit shock tracking framework for inviscid, steady
conservation laws to the unsteady case by a method of lines discretization via a diagonally
implicit Runge-Kutta (DIRK) method. In essence, we are “solving a steady problem at each
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timestep”, and as such inherit the desirable qualities from the steady case, namely a conser-
vative and feature-aligned discretization at each timestep. We demonstrate our framework
on a variety of one- and two- dimensional examples, and in particular show that our method
is capable of preserving the design order of accuracy of our high-order temporal discretiza-
tion for both the solution and the shock location, the latter of which is inaccessible to shock
capturing methods because they do not maintain a perfect representation of discontinuities.
The ability to construct good initial guesses for the optimization problem from information
at the previous timestep is key to enable the SQP solver to converge rapidly.

This is in contrast to the steady case, where the initial mesh generation and correspond-
ing guess for the solution has to be done independent of the shock location because we lack
any a priori knowledge. Correspondingly, the steady case requires significant mesh deforma-
tion and edge collapses, which needs a more sophisticated line search procedure based on the
ℓ1 merit function to achieve convergence. The development of this method of lines approach
gives us an additional tool to tackle unsteady problems in addition to the previously devel-
oped space-time approach. In general, the method of lines approach will be more practical
and scale better as the size and difficulty of the problem increases. However, it is limited in
that it cannot handle colliding shocks (triple points in space-time) without complex mesh
operations and solution re-initialization. In these cases, the space-time approach is preferred
due to its generality of tracking discontinuities in space-time, which naturally handles triple
points.

7.2 Future research: shock tracking
Future work will develop iterative solvers and preconditioners for the SQP linear system in
(3.26) to make the approach practical for large-scale problems. We also intend to further
improve the robustness of the solver by incorporating pseudo-transient continuation to avoid
the need to initialize from a p = 0 DG solution and use continuation on the polynomial
degrees p (DG solution) and q (domain deformation). In [32], practical robustness measures
are incorporated into the SQP solver that expand the capabilities of the high order implicit
shock tracking framework to obtain results for more complex 2D problems such as the high-
order resolution of steady, hypersonic (Mach 5) flow through a two-dimensional scramjet
(Section 6.4.3 of [32]) and certain 3D problems.

Building on the method of lines, another direction would be the incorporation of topology
changes, such as edge flips, refinement and coarsening as developed in Section 6 along with
a corresponding high-order solution transfer procedure to the 2D unsteady examples. The
issue is somewhat exacerbated by the fact that we are working with very coarse meshes
to begin with. This difficultly manifests itself in our numerical experiments as seen in the
unsteady case (Section 5.4), such as in the area immediately trailing the shock of the Shu-
Osher problem as well as inside the circular region of the blast wave example as the shock
expands radially; this loss of resolution is indicated by the gradual increase in the objective
function over time (Figure 5.9). We emphasize that this is not a fundamental issue and the
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method performs as expected under the constraint imposed by the fixed topology. However,
the incorporation of adaptive mesh coarsening and refinement on curved meshes combined
with L2 error minimizing solution transfer between meshes will unlock the full potential of
the method.

An entirely different direction would be the exploration of shock formation, most com-
monly illustrated by the time evolution of Burgers’ equation from a smooth initial condition
or the steepening of the waves trailing the shock in the Shu-Osher problem. Implicit shock
tracking has the potential to cleanly form and subsequently track shocks due to its r-adaptive
behavior and the optimization formulation that implicitly tracks shocks and simultaneously
resolves the flow; this was shown by the authors of the MDG-ICE method for inviscid and
viscous shocks in the space-time setting [9, 39]. In contrast, shock tracking approaches that
handle shocks explicitly do not readily show potential to handle shock formation without
significant specialization. A proof of concept using this implicit shock tracking framework
has been demonstrated in Section 6.2.2 of [32], where a system governed by inviscid Burgers’
equation takes a smooth initial condition and forms two distinct shock waves that eventually
merge using a space-time formulation. However, analogous to the discussion in this thesis
when contrasting the method of lines approach to the corresponding space-time formulation,
when applicable, the former is preferable to the latter. The same reasoning applies to shock
formation as well, and we believe our framework can be modified to do so.

7.3 Future work: high-order methods
Further work in the area of high-order numerical methods which would be useful in (but not
limited to) shock tracking would be the extension of the local element operations for curved
meshes introduced in Chapter 6 to 3D. To illustrate the general idea of this direction, the
main difference here would be the introduction of many more possible “templates” for each
of these element operations with the extra dimension. For example, for edge flips in 3D,
some possibilities are shown by (but not limited to) the ones in Figure 7.1, because of the
variety of many different possible initial topological configurations in 3D.

Figure 7.1: Edge/face swap templates in 3D.

One could proceed analogously with the procedure for 2D as shown in Figure 6.6 in 3D
(Figure 7.2). In the same vein, the element subdivision templates in 2D (Figure 6.8) are
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shown in 3D (Figure 7.3).

Figure 7.2: Face swaps in 3D: original elements (left), initial straight-sided swap (middle),
curved swap (right)

Figure 7.3: Element subdivision templates in 3D: 1 → 2 (left), 1 → 4 (middle), and 1 → 8
(right)

In order to incorporate these local element operations for curved meshes in high-order nu-
merical simulation, it would need to be accompanied by a corresponding high-order solution
transfer procedure. A conservative interpolation procedure between unstructured straight
sided meshes that incorporate the construction of a “supermesh” as well as a corresponding
L2 minimizing error Galerkin projection was first introduced in ([18], [17]). Our case differs
in two aspects: it is more difficult because we seek to do this for high-order meshes, but
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simpler because our interpolation procedure would be localized (only for where the topology
change occurs) rather than for the entire domain. The development of such a procedure
would allow us to extend the numerical results in [72, 73] for the ALE based discontinuous
Galerkin method for moving domains with large deformations to the high-order case along
with a richer set of mesh operations.

The final direction we will mention is that of high-order unstructured mesh tangling
and unsmoothing. This is practically taken for granted in this work, particularly in certain
phases of the shock tracking framework and the execution of the high-order local element
operations. However, the current procedure used in this work and others in the literature
widely depend on the selection of a set of heuristically chosen parameters. This currently
doesn’t present any problems, but for more difficult 2D cases and 3D cases, robustness can
be an issue. This is especially the case since our methods deal with large mesh deformations,
such as in the initialization of our shock tracking procedure where mesh generation is done
without any a priori knowledge of the shock, which can result in mesh edges and faces
initialized that are nearly perpendicular to the final unknown shock location. We believe
there is ample potential to be unlocked in the Winslow equations, building on the work of [21]
for high-order unstructured mesh generation to mesh smoothing and untangling, particular
when it comes to fast and robust solvers.
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