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Abstract

We extend our hybrid linear-method/accelerated-descent variational Monte Carlo

optimization approach to excited states and investigate its efficacy in double excita-

tions. In addition to showing a superior statistical efficiency when compared to the

linear method, our tests on small molecules show good energetic agreement with bench-

mark methods. We also demonstrate the ability to treat double excitations in systems

that are too large for a full treatment by selected configuration interaction methods

via an application to 4-aminobenzonitrile. Finally, we investigate the stability of state-

specific variance optimization against collapse to other states’ variance minima and

find that symmetry, ansatz quality, and sample size all have roles to play in achieving

stability.
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1 Introduction

Accurate predictions about doubly excited states remain a significant challenge for elec-

tronic structure methods. Although they are rare in the low-lying spectra of simple organic

molecules, states with significant or near-total doubly excited character are not uncommon

in aromatic systems, other π-conjugated settings, and transition metal compounds. Their

difficulty can be understood by considering three factors. First, they tend to be strongly

multi-reference in character, which frustrates traditional weakly-correlated quantum chem-

istry approaches. Second, predicting accurate excitation energies requires a method to also

capture weak correlation effects, and capturing both strong and weak correlation in medium

to large systems remains an open challenge in electronic structure, despite the recent progress

in smaller systems.1–11 Third, they are excited states, which remain harder to treat than

ground states. When faced with a doubly excited state, many excited state approaches

are either not appropriate or difficult to afford. Time-dependent density functional theory

(TDDFT), at least within the adiabatic approximation, is famously incapable of predict-

ing double excitations,12 while equation of motion coupled cluster with singles and doubles

(EOM-CCSD) is much less accurate in these states than in single excitations.13 Higher-level

coupled cluster is more effective,14 but the O(N8) and O(N10) cost scalings of EOM-CCSDT

and EOM-CCSDTQ make them difficult to use outside of small molecules. Similarly, se-

lected configuration interaction (sCI) methods can establish benchmark results for double

excitations in small molecules,11 but their exponential scaling makes them difficult to ex-

tend to larger systems. For these reasons, more traditional multi-reference methods like

CASPT215,16 have long been favored when dealing with double excitations.11,17–28 These

methods have their limitations as well — intruder states, smaller active space sizes than

sCI, sometimes-sensitive state-averaging choices — and so the development of alternative

high-accuracy approaches to double excitations, especially ones that rely on very different

approximations that could cross-validate current methods’ predictions, remains an important

priority.
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Quantum Monte Carlo (QMC) methods are, in principle, a promising alternative for

doubly excited states and for difficult excited states more generally. Thanks to an ability to

employ correlation factors and projector Monte Carlo methods to impart weak correlation ef-

fects on top of modest determinant expansions that capture the primary strong correlations,

QMC approaches offer one route towards an integrated treatment of weak and strong corre-

lation. Moreover, the ability of variational Monte Carlo (VMC) to work with excited states,

either in a state-averaged29–33 or a state-specific34–36 manner, offers a clear route to extend-

ing these advantages to studies of doubly excited states. However, these advantages are only

useful in practice if these sophisticated wave function forms can be optimized successfully

for excited states. In ground states, recent years have seen significant improvements in the

size and complexity of wave functions that can be treated by VMC wave function optimiza-

tion,37–43 from the development of the linear method (LM) to the adoption of accelerated

descent (AD) methods and even the combination of the two. Excited state wave function

optimization is less well developed, and variance-based state-specific approaches — which

are useful when dealing with high-lying states44 or in cases where large dipole changes raise

concerns for state-averaging45 — have been shown to face stability issues in some surprisingly

simple settings.32

To help improve excited-state-specific wave function optimization in VMC, this study

extends our hybrid LM/AD optimization approach43 to a variance-based excited state ob-

jective function and tests both its stability and its efficacy for double excitations. As in the

ground state, we find that AD provides useful support to the Blocked LM, and that their

combination is more statistically efficient than the LM alone. In terms of stability against

collapse to other states’ variance minima, we find that the difficulty that AD faces in making

large changes to the wave function43 actually prevents it from causing stability issues, but

that the LM part of the algorithm faces the same challenges as have been seen32 in New-

ton optimizations of the variance. We therefore focus our stability testing on the LM, and

find that achieving stable optimizations is greatly aided by enforcing symmetries, improving
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the sophistication of the Jastrow factor, and using a sufficiently large sample size to avoid

stochastically jumping out of a shallow minimum. In terms of efficacy for double excitations,

we find the hybrid approach to be superior to the LM in all cases, usually in terms of sta-

tistical efficiency, but in one case also in terms of successfully finding the minimum at all.

Comparisons against benchmark methods confirm VMC’s accuracy, while a demonstration

in a doubly excited state of 4-aminobenzonitrile shows that the approach can be expanded

well beyond the reach of sCI methods.

2 Theory

2.1 Excited-State-Specific Variational Monte Carlo

While VMC has historically been used for the study of ground states, multiple functionals

have been developed for the targeting and variational optimization of excited states. We

focus on the recently developed functional,35

Ω(Ψ) =
〈Ψ | (ω −H) |Ψ〉

〈Ψ | (ω −H)2 |Ψ〉
(1)

which is minimized when Ψ is the eigenstate of lowest energy greater than ω. The formulation

of VMC for this excited state functional proceeds analogously to the ground state case. Just

as ground state VMC seeks to minimize the expectation value of the energy, written as

E(Ψ) =
〈Ψ |H |Ψ〉

〈Ψ |Ψ〉
=

∫

dRΨ(R)HΨ(R)
∫

dRΨ(R)2
=

∫

dRΨ(R)2EL(R)
∫

dRΨ(R)2
=

∫

dRρ(R)EL(R) (2)

using the local energy EL(R) = HΨ(R)
Ψ(R)

and probability density ρ(R) = Ψ(R)2∫
dRΨ(R)2

, we can

write Ω as

Ω(Ψ) =

∫

dRΨ(R)(ω −H)Ψ(R)
∫

dRΨ(R)(ω −H)2Ψ(R)
=

∫

dRρ(R)(ω −EL(R))
∫

dRρ(R)(ω − EL(R))2
. (3)
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However, while the probability distribution ρ has a useful zero-variance property,46 it may

be less useful than other importance sampling functions when estimating quantities such as

the energy variance and matrix elements used in the optimization algorithms for minimizing

Ω.45,47–49 Within this work, we use the importance sampling function

|Φ|2 = |Ψ|2 + c1
∑

i

|Ψi|2 + c2
∑

j

|Ψj|2 + c3
∑

k

|Ψk|2 (4)

where c1,c2,c3 are weights on sums of squares of wave function derivatives Ψi,Ψj,Ψk for

Jastrow, CI, and orbital parameters, respectively. Effective choices for (c1, c2, c3) may be

system-dependent and require some experimentation in practice. In our results, we use

(0.0, 0.0001, 0.0) for our stability tests on a model cyanine dye, (0.0004, 0.0002, 0.0) for the

carbon dimer, (0.0001, 0.0001, 0.0) for nitroxyl, glyoxal, and acrolein, and (0.0001, 0.0, 0.0) for

cyclopentadiene and 4-aminobenzonitrile. We have found these values enabled optimization

to lower target function values than we could achieve using |Ψ|2 and that using nonzero c3

for the orbital parameter derivatives also resulted in poorer target function values. However,

our exploration of these importance function parameters was not exhaustive and different

values may also result in equally good target function values. The general intuition is to

include wave function derivative terms, as importance sampling a linear combination of the

current wave function probability density and that of its parameter derivatives allows us to

obtain a better statistical estimate of the LM Hamiltonian. Whenever the parameters have

large effects on the nodal surface, importance sampling |Ψ|2 will lead to a large statistical

uncertainty in this Hamiltonian. Importance sampling |Φ|2 allows us to better sample areas of

parameter space where the current Ψ has negligible probability density, but linear updates to

Ψ may not, obtaining a better Hamiltonian estimate and therefore better parameter updates

in the process. Because this guiding function also has considerably fewer nodes, it can further

help avoid the divergence in the variance of the variance47,48 encountered with |Ψ|2 while

also keeping the distribution close to |Ψ|2.49 We also employ clipping of the samples based
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on the value of the local energy.50,51 We compute a deviation of the form 1
N

∑

|EL(R)− Ē|

where Ē is the mean local energy of all initial N samples. Samples with local energies

more than 5 times the deviation from Ē are discarded and only the remainder are used in

computations for the VMC optimization. We find that clipping can improve optimization

performance, especially as more flexible ansatzes with larger numbers of parameters are

considered, by reducing the statistical uncertainty in the matrix elements and derivatives

used by the algorithms. Essentially, this guards against large parameter updates.

The use of Ω for excited states also requires careful handling of the input ω. For a generic

fixed choice of ω, Ω will not be size-consistent and so ω must be updated to transform Ω into

state-specific variance minimization, which is size-consistent.36 There are multiple strategies

for achieving this transformation to have both state-specificity and size-consistency, such as

a linear interpolation between the initial fixed value of ω and the floating value of E−σ,32,36

or, as in this work, a series of fixed-ω optimizations with ω updated between each one

until self-consistency between it and E − σ is reached. The details of how ω is varied in a

calculation is one potential source of instability in the optimization as the target function

being minimized with respect to wave function parameters is now changing and there is the

possibility of slipping outside the basin of convergence, particularly if ω is varied rapidly.

2.2 Linear Method

The LM37,52–54 is based on a first order Taylor expansion of the wave function

Ψ(p) = Ψ0 +
∑

i

∆piΨi (5)

using Ψi =
∂Ψ(p)
∂pi

for first order parameter derivatives of the wave function and Ψ0 for the

wave function at the current parameter values p. Seeking to minimize the target function Ω

with respect to p leads to the generalized eigenvalue problem
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(ω −H)c = λ (ω −H)2 c (6)

which can be solved to produce an update vector c = (1,∆p). The matrices are constructed

in the basis of the initial wave function and its first order parameter derivatives, so we have

matrix elements of the form

〈Ψi |ω −H |Ψj〉 (7)

and
〈

Ψi

∣

∣ (ω −H)2
∣

∣Ψj

〉

. (8)

These matrix elements are evaluated within VMC using parameter derivatives of the wave

function and the local energy, and we have found that employing the modified guiding func-

tion |Φ|2 can be crucial for obtaining accurate estimates and effective LM optimizations.

In practice, the Hamiltonian matrix of the LM is modified with the addition of shift matri-

ces43,55 which help prevent incautiously large parameter changes in the optimization and can

noticeably influence the LM’s stability and performance. Our implementation of the LM uses

by default an adaptive scheme where three sets of shift values are used to produce candidate

parameter updates and a correlated sampling procedure is used to determine which one, if

any, should be taken to improve the target function value. This approach allows the value

of the shifts to vary over the course of the optimization, with the aim of allowing the LM

to safely take large steps in parameter space early on while automatically becoming more

cautious when close to the minimum, where statistical uncertainty will eventually prevent

steps from being able to resolve downhill.

Much recent work on VMC for excited states30,35,44,45,49,56–58 has relied on the LM for the

task of wave function optimization. However, the LM has multiple limitations, particularly

a memory cost that increases with the square of the number of optimizable parameters,

and applications with more than 10,000 parameters are rare. The quadratic growth in the

number of LM matrix elements exacerbates the nonlinear bias of the LM and eventually
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leads to the underdetermined regime where there are too few samples to effectively estimate

the LM matrices and the step uncertainty is large. To help address these issues, a variant

of the LM known as Blocked LM has been developed40 that divides the parameter set into

Nb blocks and performs a LM-style matrix diagonalization for each block. Some number

Nk of the eigenvectors from each block are retained and combined together along with No

other directions in parameter space for a second LM diagonalization to obtain an update in

the full parameter space. The lower dimension of the matrices constructed by the Blocked

LM alleviates the issues faced by the standard LM at the cost of having to run over the

samples twice instead of only once. Further details on the Blocked LM can be found in

the original publication40 and we describe our choices on the number of blocks and retained

directions in the supplementary material. A recent study43 of optimization methods for

ground state optimization indicates that tighter and more statistically efficient convergence

can be obtained through a hybrid combination of the Blocked LM and AD than when using

the LM alone.

2.3 Hybrid Optimization

There are multiple flavors of AD optimization methods that require only first order param-

eter derivatives. These methods are widespread in the machine learning community and

have been increasingly used in the context of VMC.41–43,59,60 They offer some appealing

advantages compared to the LM, including a memory cost linear in parameter number, a

lower per-iteration sampling cost to estimate derivatives, and a reduced nonlinear bias from

the stochastic evaluation of those derivatives. However, comparisons43 between AD meth-

ods and the LM indicate that the former may struggle to reach the minimum in parameter

space at comparable computational effort, especially when the wave function contains many

challenging nonlinear parameters.

An alternative approach that shows the potential to benefit from the strengths of both

classes of methods is to take a hybrid combination that alternates between them.43 Sections
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of gradient descent optimization can be used to identify important directions in parameter

space, which can be provided as input to the Blocked LM to help it account for coupling

between blocks of parameters. The inclusion of Blocked LM steps allows the hybrid method

to more efficiently reach the vicinity of the minimum, while the sections of AD enable

tighter convergence by correcting poor parameter updates by the Blocked LM due to step

uncertainty. In addition, the use of AD and Blocked LM enables the optimization of larger

parameter sets that are beyond the reach of the standard LM. In energy minimization we

found it especially useful to follow the hybrid optimization with a final section of optimization

using only descent, which has been found to more efficiently achieve lower final statistical

uncertainties than optimization based solely on the LM.43

The hybrid scheme can be used with any of the variety of AD methods, but in this work,

we use a combination of Nesterov momentum with the RMSprop algorithm41 that was found

to work well for energy minimization. It is specified by the following recurrence relations.

pk+1
i = (1− γke

−( 1
d
)(k−1))qk+1

i − γke
−( 1

d
)(k−1)qki (9)

qk+1
i = pki − τk

∂Ω(p)

∂pi
(10)

λ0 = 0 λk =
1

2
+

1

2

√

1 + 4λ2k−1 γk =
1− λk

λk+1

(11)

τk =
η

√

E[( ∂Ω
∂pi

)2](k) + ǫ
(12)

E[(∂Ω)2](k) = ρE

[

(

∂Ω

∂pi

)2
](k−1)

+ (1− ρ)

(

∂Ω

∂pi

)2

(13)

Equations 9 through 11 describe how a parameter pki of the wave function on step k of the

optimization is updated using knowledge of both the current and previous values of the

target function derivatives. The step size τk is adaptively adjusted using a running average

of the square of parameter derivatives according to equations 12 and 13, where ρ sets the
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relative weighting between the past average E

[

(

∂Ω
∂pi

)2
](k−1)

and the current value
(

∂Ω
∂pi

)2

.

The quantities d,η, ρ, and ǫ are hyperparameters whose values are chosen by the algorithm’s

user. For all our results, we have used d = 100, ρ = 0.9 and ǫ = 10−8. The value of η sets an

overall scale for step size and can have a significant influence on optimization performance

depending on the choices made for different types of parameters. Our choices for η are

discussed in the supplementary material.

2.4 Optimization Stability

When working with an exact ansatz and an infinite sample size, any non-degenerate Hamil-

tonian eigenstate possesses its own variance minimum,34 and an optimization with a guess

sufficiently close to that minimum will be stable. In practice, sample sizes are finite, and

the use of an approximate ansatz may lead some states’ variance minima to be artificially

shallow or to disappear entirely, and so there is a real possibility that state-specific vari-

ance minimization will be unstable.32 If the minimum has indeed disappeared, then the only

remedy is to improve the ansatz quality, as no amount of statistical precision will allow an

optimization to find a minima that is not present. On the bright side, advances in VMC trial

functions61–69 offer a strong toolkit for improving ansatz quality, albeit one whose use can

increase optimization difficulty by increasing the number of variational parameters. If any-

thing, this reality further motivates the development of optimizers, like the hybrid approach

tested here, that are designed to handle large, challenging trial functions. In Section 3.2,

we will explore the issue of optimization stability by starting with a very simple ansatz for

which some states lack variance minima and then making improvements, either by enforcing

symmetries or by enhancing the ansatz in order to make the variance minima re-emerge.

If the variance minimum is present but shallow, either due to an approximate ansatz or

simply to a near-degeneracy in the spectrum, then the nature of the optimization update

steps, and especially their statistical uncertainty, will determine whether an optimization

is stable. Strictly speaking, finite-sample-size VMC optimizations always contain at least
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some risk of selecting a step in the tail of the distribution of steps that, if taken, will

move the optimization out of the basin of convergence for one variance minimum and into

the basin for another. To help guard against this issue, a common practice in VMC, and

one that we do use for our LM steps, is to verify on a new independent sample (usually

using correlated sampling) that the step about to be taken does indeed lower the objective

function. Even without statistical uncertainty, step size control is important in nonlinear

optimization, an issue that is typically addressed by trust radius methods that guard against

single steps making overly large parameter changes.70 In the LM, one approach to this issue

is a diagonal shift,37 and our LM implementation employs both this shift and an overlap-

based shift55 for these purposes. In Section 3.2, we will see an example of an optimization

that only becomes stable with a large enough sample size due to a shallow minimum created

by a near-degeneracy.

2.5 Wave Functions

For demonstrating the hybrid method’s effectiveness within our overall QMC methodology

for excited states, we consider multiple types of parameters in our trial wave functions. Our

ansatz is the Multi-Slater Jastrow wave function, which has the form

Ψ = ψMSψJ (14)

ψMS =

ND
∑

i=0

ciDi (15)

ψJ = exp

{

∑

i

∑

j

χk(|ri − Rj |) +
∑

k

∑

l>k

ukl(|rk − rl|)

}

(16)

where Di are Slater determinants with coefficients ci and the Jastrow factor ψJ is constructed

from splines that make up the functions χk and ukl for the respective one- and two-body

terms.55 The MSJ ansatz is a common choice in QMC, but it can be augmented further to

describe more correlation at the price of a more challenging optimization. Two means for
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doing so are to add a more complicated Jastrow factor and to optimize molecular orbital

shapes.

A variety34,62,67–69,71–76 of many-body Jastrow factors have been considered for improv-

ing QMC ansatzes, but in this work we will limit ourselves to adding a three-body term

and a number-counting factor. The three-body term is constructed from polynomials of

interparticle distances and can be written in the following form.62

u(rσI , rσ′I , rσσ′) =

MeI
∑

l=0

MeI
∑

m=0

Mee
∑

n=0

γlmn r
l
σIr

m
σ′Ir

n
σσ′ (rσI −

rc

2
)3(rσ′I −

rc

2
)3Θ(rσI −

rc

2
)Θ(rσ′I −

rc

2
)

(17)

The maximum polynomial orders are set by MeI and Mee for the electron-ion and electron-

electron distances respectively. The γlmn are the set of optimizable parameters in this poly-

nomial and are subject to constraints for ensuring the Jastrow satisfies symmetry under

exchange and cusp conditions, which can be found in the original publication.62 Finally, the

Theta functions require the three-body term become zero for electron-ion distances more

than half a chosen cutoff distance rc (10 bohr in our case).

Number-counting Jastrow factors are a recently developed63,64 ansatz component and

can be thought of as a many-body Jastrow factor in real space that aims to recover both

strong and weak correlation. They are based on a Voronoi partitioning of space, where the

population of electrons in each region, NI , is given by a sum of local counting functions CI

at each electron coordinate.

NI =
∑

i

CI(ri) =
∑

i

gI(r)
∑

j gj(r)
(18)

where

gj(r) = exp
(

(r− µ)TA(r− µ) +K
)

(19)

are Gaussian basis functions about a center µ. With these populations NI , we can construct
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the Jastrow factor

ψC = exp

(

∑

IJ

FIJNINJ +
∑

K

GKNK

)

(20)

which can be tacked on to our overall expression for Ψ. The FIJ and GK are variational

parameters though the latter is in practice eliminated with a basis transformation of the

region populations and so we only optimize FIJ .
64

State-specific orbital optimization is useful for obtaining accurate VMC results on par-

ticular excited state phenomena including charge transfer45 and core excitations44 and can

avoid some of the pitfalls of state-averaged approaches.77 Recent work65,66 with the table

method has enabled the efficient calculation of orbital parameter derivatives in MSJ wave

functions even for large expansions and we refer the reader to the original publications for

details. However, we do note that, despite these advances, orbital optimization remains the

most challenging part of the optimization, likely due to its inherently high degree of nonlin-

earity and the fact that it alters the nodal surface. One potential alternative would be to

obtain state-specific orbitals from another method77 while optimizing only Slater coefficients

and Jastrow factors, and we make a preliminary exploration of this idea in our results.

2.6 Variance Matching

While optimization of the parameters improves the absolute quality of the wave functions,

the results are still approximate due to the limited ansatz and accurate determination of

excitation energy differences requires cancellation of errors. This relies on a balanced treat-

ment of both the ground and the excited state, which we attempt to obtain using variance

matching. As shown in previous work,45,49 this approach improves predicted excitation ener-

gies by optimizing ansatzes of different CI expansion lengths for the two states so that their

variances are approximately equal. To facilitate interpolation, the variances for a series of

excited state calculations at different expansion lengths can be fit to an analytic form such
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as the power law decay

σ2(N) = c+
d

Nα
(21)

to determine parameters, c, d, and α. For a given expansion length for the ground state

and a resulting variance σ2
g , we can estimate the expansion length N∗ that will yield a

matching variance for the excited state and take the corresponding energy when computing

our prediction for the excitation energy.49 In practice, some additional varying of N by hand

can be performed to find an explicit variance match. All our reported excitation energies

were obtained using this explicit variance matching procedure.

3 Results

3.1 Computational Details

All our VMC calculations used an implementation of the described optimization algorithms

within a development version of QMCPACK.55,78 A recently developed set of pseudopoten-

tials79 and associated basis sets were used for all molecules. For constructing our ansatzes,

we have employed Molpro80 and PySCF81 for CASSCF calculations to generate Slater de-

terminant expansions. In one case, we instead use CASSCF to provide orbitals for a selected

CI calculation in Dice.6,7 CASPT2 calculations in Molpro80 were used alongside other meth-

ods’ literature values in benchmarking our VMC results. Specific active space and basis set

choices are given in each system’s section. Molecular geometries, absolute energies for our

doubly excited state calculations, and additional optimization details can be found in the

supplementary material.
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Figure 1: Examples of unstable and stable LM optimizations of Ω for CN5. We consider the
singlet near -40.5 Eh, which is dominated by a HOMO to LUMO excitation, as well as the
next triplet and singlet above it, which are dominated by a HOMO-2 to LUMO excitation.
Initial wave function guesses were obtained from a diagonalization of the Hamiltonian in a
26 determinant space with pre-optimized one- and two-body Jastrow factors present. These
Jastrows were optimized further along with the 26 determinant coefficients. For each state,
the value of ω was set to the E-σ value from a one million sample evaluation using the initial
wave function and held fixed throughout the optimization. The LM shifts were kept constant
at 0.1 for the diagonal shift and 1 for the overlap-based shift throughout the optimizations
with 50,000 samples per iteration in all cases. For the unstable cases, we found that using
increased sampling effort alone did not ensure stability. A proposed parameter update was
rejected if our correlated sampling assessment predicted it would raise the target function
value, but all optimizations contain hundreds of accepted steps. Horizontal lines show the
lowest 7 eigenenergies from our diagonalization, with solid lines for singlet states and dashed
for triplets.

3.2 Stability in a Model Cyanine Dye

To explore the stability of Ω-based variance minimization, we have performed a series of LM

tests on the model cyanine dye C3H3(NH2)
+

2 (denoted hereafter as CN5) in which Filippi

and coworkers discovered variance optimization instabilities for some choices of the trial

function.32 In particular, they showed that while a CAS(6e,5o) wave function was stable,
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other ansatze from CAS(6e,10o) and CIPSI were not. They also showed that a small CSF

expansion, constructed of HOMO-to-virtual excitations of B1 symmetry, was especially prone

to optimize to a different state than the one targeted by the initial guess due to the absence

of variance minima in this simpler case. Here we perform similar tests to study the absence of

variance minima, confirming that instabilities are present when the sample size is small and

the trial function is simple, but also demonstrating that improvements in the trial function

and sampling effort can overcome these instabilities. To start, we note that virtual orbitals

outside the CASSCF active space are often not physical in their shapes, and so for the states

we target, we make sure that the primary orbitals involved are within the (6e,5o) CASSCF

active space. In this active space, we performed an equal-weight state-averaged CASSCF

optimization of the lowest four B1 singlet states using an aug-cc-pVDZ basis set in Molpro,80

after which we imported all determinants with weights above 0.05 in any state into our VMC

ansatz. This resulted in a 26-determinant ansatz, or, in the cases where we enforced singlet

spin symmetry in VMC, a 13-CSF ansatz. Note that this trial function differs from the

one used previously,32 which is intentional, as the previous approach examined some states

whose dominant orbitals were virtual in the quantum chemistry calculations and so may not

have been as well optimized as orbitals containing electrons. Here, we try to ensure that

orbital quality is balanced between states by ensuring that the dominant orbitals of the states

we test are within our CASSCF active space. Nonetheless, we can still find optimization

instabilities when using this simple ansatz, which confirms that ansatz components beyond

a small determinant expansion can be necessary to achieve stable variance optimization.

As seen in Figure 1, the stability of an optimization using our 26-determinant ansatz

depends on which state is being targeted and in some cases on whether or not spin symmetry

is enforced. First, consider the optimization that guesses the singlet near -40.5 Eh and then

collapses to the triplet below it. This failure shows that, at least at this level of statistical

resolution, the singlet in question lacks a local variance minimum in the variable space of

the 26 different determinant coefficients. However, after enforcing spin symmetry by instead

16



0 200 400 600 800
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 
of
 W

F

1- and 2-Body Small Sample
3-Body Small Sample
3-Body Large Sample

Figure 2: Fractions of the CI expansion corresponding to the third singlet’s dominant CSF
over the course of LM optimizations. When starting from the energy eigenstate with only 1-
and 2-body Jastrows are present, the weight of this CSF quickly collapses as the optimization
drifts to a higher singlet. This optimization used 50,000 samples per iteration and starting
from solely the dominant CSF with an additional 3-body Jastrow delayed, but did not
prevent, the drift at this sampling effort. Upon increasing the sample size to 500,000 samples
per iteration, the 3-body Jastrow wave function optimization became stable, as shown by
the solid line. Note that the CI expansion fraction is simply the sum of the squares of
the determinant coefficients within the given CSF divided by the sum of all the squared
determinant coefficients.

optimizing the 13 coefficients for the singlet CSFs, the variance minimum for this state

reappears. Next, we note that when we optimize the 26 determinant coefficients starting

with a guess for the triplet just below -40.4 Eh, the optimization is stable. Thus, in these

cases, moving to a more sophisticated ansatz is not necessary so long as symmetries are

enforced. The same cannot be said for the most difficult case we consider, in which a guess

for the singlet just above -40.35 Eh is unstable and optimizes to a higher singlet even when

spin symmetry is enforced. With no more symmetries to make use of, we must conclude that

variance minimization is not stable for this state when using this simple ansatz.

In principle, variance minimization should become stable as the ansatz is improved and
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the sample size increased. The question, of course, is whether stability can be achieved

in practice, especially given that overly aggressive embellishments of the ansatz may lead

to an impossibly difficult optimization. First, let us improve the ansatz by adding the 3-

body Jastrow factor introduced by Needs and coworkers,62 which we first optimize for the

guessed CSF expansion with the CSF coefficients held fixed before finally optimizing all

variables together. As seen in Figure 2, which shows the key CSF weights during the final

optimization in which all parameters are free to vary, this ansatz improvement does lead to a

stable optimization, but only when a larger sample size is used, suggesting that the variance

minimum is now present but shallow. Given how close in energy this state is to the singlet

state above it (about 15 mEh), a shallow minimum makes sense, which is a good reminder

that optimization objective functions based on the energy and variance are at a disadvantage

when states are nearly degenerate. For low-lying states, state-averaged energy minimization

can often deal with this type of situation,32 but near-degeneracies remain a challenge for

higher-lying states or in situations where state-averaging introduces its own challenges. In

future, it may therefore be worth considering ways to involve other properties in the objective

function, possibly via a VMC analogue of a generalized variational principle.82 Even with

this near-degeneracy, which we stress involves states significantly closer together in energy

than any of those tested in the small-determinant-expansion case in the previous study,32

we do see that a modest improvement in ansatz quality produces a stable Ω-based LM

optimization.

While this finding is reassuring, we must stress that difficult optimization cases remain

a serious challenge. For example, Filippi and coworkers found32 that highly sophisticated

wave functions derived from a (6,10) active space faced optimization instabilities even though

wave functions derived from a smaller (6,5) active space did not, showing that in practice

it is not always easy to predict when these instabilities will arise. This in mind, we have

checked carefully for signs of optimization instability in the double excitations we now turn

to, and while we did not observe any such issues in these states, finding a more complete
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resolution to this problem is clearly an important direction for future research.

3.3 Carbon Dimer

For our doubly excited state applications, we first consider the carbon dimer, a very heavily

studied system for the testing and development of theoretical methods.2,11,83,84 We use the

2 1Σg state, which is characterized by a HOMO to LUMO squared double excitation, as

a simple starting test case for validating the hybrid method’s results against the LM’s and

assessing the accuracy of VMC. In this case, selected CI methods are able to achieve millions

of determinants and provide high quality benchmark data11,85 on the vertical excitation

energy that we can use to assess our results with more compact wave functions. We consider

only an equilibrium bond length of 1.248 Å.

To construct our ansatzes, we use a (8e,8o) CASSCF calculation in Molpro80 with a

carbon pseudopotential and the corresponding cc-pVTZ basis.79 The resulting CI expansions

are used in our variance matching procedure and we consider cases both for standard MSJ

ansatzes using only one- and two-body Jastrows, and with an additional NCJF and orbital

optimization. The NCJF was produced using a set of 16 counting regions composed of 8

octants for each carbon atom.64
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Figure 3: Excitation energy of the 2 1Σg state in C2 for LM and hybrid method on both
MSJ and all parameter ansatzes. See also Table 1. 20 determinants were used for all ground
state optimizations. The excited state optimizations used 23 determinants for both the LM
and Hybrid MSJ cases, 71 for the LM All case, and 50 for Hybrid All case. The benchmark
value is taken from a selected CI calculation using the CIPSI algorithm.11

Table 1: Excitation energies and uncertainties for the 2 1Σg state in C2. Literature values
for selected CI, CCSDT, CC3, and CASPT2 using an aug-cc-pVQZ basis set are included
for comparison.11

Method Excitation Energy (eV) Uncertainty (eV) Total Samples
LM MSJ VMC 2.34 0.04 100,000,000
LM All VMC 2.36 0.03 100,000,000

Hybrid MSJ VMC 2.32 0.02 138,000,000
Hybrid All VMC 2.34 0.01 138,000,000

Selected CI 2.40
CCSDT 2.87
CC3 3.24

CASPT2 2.50
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Figure 3 shows the predicted excitation energy achieved by the LM and the hybrid method

on both the simpler MSJ ansatzes and on all parameter wave functions that include the NCJF

and orbital rotations. It is reassuring to find that the hybrid method’s results agree with

the LM’s to within statistical uncertainty. In terms of accuracy, the VMC results are within

about 0.05 eV of the selected CI value with the all parameter optimizations offering some

improvement over the MSJ results. This has been achieved with very modest CI expansions,

using less than 100 determinants in all cases, compared to the 5 million used to produce the

benchmark energy.11
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Figure 4: Example optimization of target function Ω for all parameters using the hybrid
method. Points for AD correspond to an average over 50 iterations while those for the
Blocked LM are individual iterations.

We also explore the potential benefits of the hybrid approach over a pure LM optimiza-

tion. Figure 4 shows an example optimization by the hybrid method of all parameters

including NCJF and orbitals. With these more challenging parameters, the Blocked LM is

more prone to step uncertainty and upward fluctuations of the target function, which in this

case we see the AD sections correct. The hybrid method also exhibits a statistical advantage
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over the LM based on the uncertainty and sampling data in Table 1. For slightly greater

sampling effort, the hybrid method provides about a factor of 3 improvement in the uncer-

tainty on the excitation energy, which would require a factor of 9 more samples to obtain

solely with the LM. This advantage in computational efficiency persists in our results for

more difficult systems.

3.4 Nitroxyl, Glyoxal, and Acrolein

One nuance to the study of doubly excited states is distinguishing between different types

of such states. For instance, the state we have considered in the carbon dimer is multi-

determinantal while some other molecules’ states can be viewed as single reference, enabling

higher order coupled cluster11 or orbital optimized DFT86 to obtain accurate excitation

energies. The work of Loos and coworkers has categorized a set of doubly excited states

using the percentage of singles amplitudes in CC311 and we briefly consider several of the

same systems to compare our methodology against their benchmark results. Specifically, we

consider the 2 1A′ state in nitroxyl, the 2 1Ag state in glyoxal, and the 3 1A′ state of acrolein.

These systems exhibit some of the diversity of doubly excited states, with acrolein’s state

containing a high percentage of single excitations, while nitroxyl and glyoxal have almost

none. For all systems, we use cc-pVTZ basis sets with pseudopotentials79 and generate

determinants for MSJ ansatzes from CASSCF calculations in Molpro.80 Our active spaces

are (12e,9o) for nitroxyl, (8e,6o) for glyoxal, and (10e,10o) for acrolein. Each CASSCF

calculation was state-averaged over four singlet states.

The excitation energy predictions from the LM and the hybrid method are shown in

Figures 5 through 7 with precise values given in Tables 2 through 4. We compare our results

to the theoretical best estimates (TBE) from Loos and coworkers as well as their coupled

cluster and CASPT2 values.11 For this trio of systems, we find that we can obtain good

accuracy with very modest wave functions and consistent results between the LM and hybrid

method. For nitroxyl, we come within 0.03 eV of the TBE, while our excitation energies in
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glyoxal and acrolein are within about 0.2 eV. This level of accuracy outperforms the coupled

cluster approaches as well as some versions of CASPT2 in the case of acrolein. As in the

carbon dimer, these calculations use less than 100 determinants in all cases compared to the

millions used in the benchmark selected CI calculations, which are restricted to smaller basis

sets in glyoxal and acrolein. We note that our methodology allows for further systematic

improvement through more sophisticated ansatzes and in order to consider its performance

on larger systems beyond the reach of selected CI, we now turn to some molecules outside

the benchmark set of Loos and coworkers.
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Figure 5: Excitation energy of the 2 1A′ state in nitroxyl for LM and hybrid method on MSJ
ansatzes. See also Table 2. Both methods used 20 determinants the ground state and 40 for
the excited state. Reference values for coupled cluster, CASPT2, and selected CI are taken
from the work of Loos and coworkers.11 They take the selected CI value as the theoretical
best estimate.
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Table 2: Excitation energies and uncertainties for the 2 1A′ state in nitroxyl. The included
literature values for CCSDT, CC3, CASPT2, and selected CI all use an aug-cc-pVQZ basis
set.11

Method Excitation Energy (eV) Uncertainty (eV) Total Samples
LM MSJ VMC 4.30 0.06 100,000,000

Hybrid MSJ VMC 4.29 0.01 138,000,000
TBE/Selected CI 4.32

CCSDT 4.8
CC3 5.23

CASPT2 4.34
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Figure 6: Excitation energy of the 2 1Ag state in glyoxal for LM and hybrid method on MSJ
ansatzes. See also Table 3. Both methods used 50 determinants the ground state and 20
for the excited state. Reference values for coupled cluster, CASPT2, and selected CI are
taken from the work of Loos and coworkers.11 Their theoretical best estimate is obtained by
adding a 0.06 eV basis set correction to the selected CI result.
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Table 3: Excitation energies and uncertainties for the 2 1Ag state in glyoxal. The included
literature values use an aug-cc-pVDZ basis set for selected CI and aug-cc-pVQZ for CCSDT,
CC3, and CASPT2.11

Method Excitation Energy (eV) Uncertainty (eV) Total Samples
LM MSJ VMC 5.90 0.09 140,000,000

Hybrid MSJ VMC 5.75 0.03 138,000,000
TBE 5.54

Selected CI 5.48
CCSDT 6.35
CC3 6.76

CASPT2 5.43
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Figure 7: Excitation energy of the 3 1A′ state in acrolein for LM and hybrid method on
MSJ ansatzes. See also Table 4. Both methods used 20 determinants the ground state and
70 for the excited state. Reference values for coupled cluster, CASPT2, and selected CI are
taken from the work of Loos and coworkers.11 Their theoretical best estimate is obtained by
adding a -.13 eV basis set correction to the selected CI result.
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Table 4: Excitation energies and uncertainties for the 3 1A′ state in acrolein. The included
literature values use a 6-31+G(d) basis set for selected CI, an aug-cc-pVTZ basis CC3, and
an aug-cc-pVQZ basis for the three versions of CASPT2.11

Method Excitation Energy (eV) Uncertainty (eV) Total Samples
LM MSJ VMC 7.74 0.08 140,000,000

Hybrid MSJ VMC 7.66 0.03 138,000,000
TBE 7.87

Selected CI 8.00
CC3 8.08

CASPT2 7.84
MS-CASPT2 8.3
XMS-CASPT2 7.84

3.5 Cyclopentadiene

For a more challenging test of our methodology, we consider the doubly excited 3 1A1 state

of cyclopentadiene (CPD). This state has been repeatedly studied in theoretical benchmark

investigations22,23,87–90 and in some experimental investigations.91,92 As before, we construct

multi-Slater wave functions and add traditional 1 and 2-body Jastrow factors. For this larger

molecule, we use the heatbath selected CI (HCI) method6,7 in the Dice code to produce our

CI expansions by correlating 26 electrons in the lowest 46 orbitals from a (6e,5o) CASSCF

in Molpro with pseudopotentials and cc-pVTZ basis sets.79

In this system, we find that the LM fails to optimize the Ω functional as well as the

hybrid method and leads to an inferior energy prediction. However, for relatively simple

variance-matched multi-Slater Jastrow ansatzes of 20 and 500 determinants for the ground

and excited states respectively, the hybrid method is able to achieve an excitation energy

within about 0.1 to 0.2 eV of CASPT2 as seen in Figure 8 and Table 5.
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Figure 8: Excitation energy of 3 1A1 state in CPD for LM and hybrid method. See also Table
5. Both the LM and hybrid optimizations used 20 and 500 determinants for the ground and
excited states, respectively. Literature values are taken from Schreiber et al.22 for CASPT2
and CCSD LR and from Shen and Li89 for MR-CISD+Q.

Table 5: Excitation Energies and uncertainties for 3 1A1 state in CPD.

Method Excitation Energy (eV) Uncertainty (eV) Total Samples
LM MSJ VMC 7.59 0.06 140,000,000

Hybrid MSJ VMC 8.27 0.03 210,000,000
CASSCF 10.29
CASPT2 8.39

Lit. CASPT222 8.52
Lit. CCSD LR22 8.95

Lit. MR-CISD+Q89 9.02

To elaborate on the failure of the LM in this case, we present data in Table 6 on a head to

head comparison of the LM and the hybrid method on the same excited state wave function
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with a determinant expansion length of 50 and using the same fixed value of ω in the target

function. We find that the hybrid method achieves a lower value of the target function,

which corresponds to a significantly higher energy for the excited state. This results in its

substantially better prediction for the excitation energy as both optimization methods give

comparable results for the ground state calculation. We note that extensive experimentation

with the technical details of the LM, including choices for the shifts, sampling effort, and

guiding function failed to bring it into agreement with the hybrid method. When we started

the LM with the hybrid method’s optimized wave function, it remained at roughly those

parameter values with the same target function value and energy as found by the hybrid

method. This test indicates that the LM agrees that the hybrid method has found an optimal

location in parameter space if it starts close enough, but is apparently unable to find it itself

when starting from the unoptimized wave function.

Table 6: Head to head comparison of LM and hybrid for CPD on the same excited state
wave function at fixed ω.

Method Energy (a.u.) Energy Uncertainty
(a.u.)

Target Function
Ω(Ψ) (a.u.)

Target Uncertainty
(a.u.)

LM MSJ VMC -31.541 0.0013 -0.747 0.0023
Hybrid MSJ VMC -31.517 0.0007 -0.752 0.0004

3.6 4-Aminobenzonitrile

Our final system, 4-aminobenzonitrile (ABN), has been heavily studied as an example of

intramolecular charge transfer(ICT) with many attempts to determine the geometry of the

ICT state.93–96 Here we test our ability to treat a doubly excited state at the ICT geometry.

We selected this system for an initial exploration of possible benefits of using state-specific

orbitals within VMC while forgoing orbital optimization. These orbitals were obtained from a

recent state-specific CASSCF approach77,96 that employs a root tracker based on combination

of an excited state variational principle and density matrices. For a twisted geometry of

ABN96 (coordinates in supplementary material), we construct Multi-Slater wave functions

from both state-averaged (over four states) and state-specific CASSCF calculations that use
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a (12e,11o) active space along with pseudpotentials and cc-pVDZ basis sets.79 Both types

of CASSCF calculations were performed in a development version of PySCF.81 The excited

state with double excitation character that we consider appears as the fourth CASSCF state

in energy, directly above the ICT state.

Figure 9 shows the excitation energies obtained by the LM and hybrid method for the

cases where we use state-averaged and state-specific CASSCF orbitals. In this instance, we

find that the optimization methods agree with each other and that there is no clear difference

between using state-averaged and state-specific orbitals within our VMC ansatzes. There

is about a 0.4 eV difference between our VMC results and CASPT2, but in the absence of

an experimental result or higher level benchmark, it is not obvious which is more accurate.

The agreement between the state-averaged and state-specific VMC excitation energies may

not be too surprising given that we also find little difference at the CASSCF level. While

this is a null result for the usefulness of state-specific orbitals for this state in ABN, other

cases may perform differently, including the ICT state. In terms of optimization, the across

the board agreement in ABN offers further evidence that the hybrid method is at least as

accurate as the LM, while continuing to provide better statistical efficiency.
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Figure 9: Excitation energy of the doubly excited state in ABN for LM and hybrid method.
See also Table 7. Excitation energies for all other methods were obtained in Molpro. 20
determinants were used in all ground state optimizations. The excited state optimizations
used 70, 100, 500, and 300 determinants for the LM SA, Hybrid SA, LM SS, and Hybrid
SS cases respectively. These numbers of determinants were chosen to achieve an explicit
variance match between the ground and excited states for each method.

Table 7: Excitation Energies and uncertainties for ABN.

Method Excitation Energy (eV) Uncertainty (eV) Total Samples
LM SA MSJ VMC 6.73 0.10 140,000,000

Hybrid SA MSJ VMC 6.58 0.04 174,000,000
LM SS MSJ VMC 6.78 0.08 140,000,000

Hybrid SS MSJ VMC 6.61 0.04 192,000,000
SA CASSCF 6.10
SS CASSCF 6.15
SA CASPT2 6.23
EOM-CCSD 7.16
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4 Conclusion

We have presented an extension of a hybrid LM/AD optimization approach to the case of

excited-state-specific variance optimization and tested its efficacy for doubly excited states.

As in energy minimization, we find the hybrid method to be more statistically efficient than

the linear method, and, in one case, we were surprised to find it to be more effective at

finding the variance minimum. Thanks to VMC’s ability to combine a linear combination

of determinants (for capturing strong correlation) with sophisticated correlation factors (for

weak correlation) and its ability to explicitly balance wave function quality between different

states, we find it to be highly accurate compared to theoretical benchmarks in our tests on

doubly excited states. As it relies on far more modest determinant expansions than sCI

methods, it can also be used to treat both strong and weak correlation in system sizes where

capturing both through sCI is not currently possible. We have also performed some simple

tests on the stability of state-specific variance minimization and found that using symmetry,

increasing sample sizes, and improving the quality of the wave function approximation all

play important roles in preventing collapse to other states.

Looking forward, there are multiple avenues for further improvement. Our optimiza-

tion stability testing was limited to a relatively simple example, and while it does suggest

steps that can be taken to alleviate stability concerns, it remains to be seen how effective

these steps will be in general. The demonstration by Filippi and coworkers32 that opti-

mization instabilities can persist even when highly sophisticated CIPSI-based VMC trial

functions are employed makes clear that there is more work to be done to resolve this issue.

As variance-based approaches are particularly ill-suited to degenerate or near-degenerate

states, it would be quite interesting to explore whether generalized variational principles

that incorporate properties beyond the energy can be usefully adapted for VMC optimiza-

tion. Another priority is improving user-accessibility, as the recent improvements in VMC

optimization methodology have in many cases brought with them a significant increase in the

methodological complexity. Finding ways to robustly automate choices for stability shifts,
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what balance to strike between linear method and accelerated descent steps, what hyper-

parameters to choose for the descent, and how to arrange variables into blocks within the

blocked linear method would significantly simplify the practical application of these tools.

The systematic study of effective importance sampling functions is another supporting step

for excited state optimizations, where their use is more crucial than in the ground state. A

third improvement would be to automatically stage the optimization of different parameters

according to the statistical significance of their gradients, which would allow the noisiest

and most difficult parameters to be handled at the end of the optimization without any di-

rect human decision-making. Finally, although VMC optimization is becoming increasingly

capable, it will likely be profitable to map out areas where difficult parameters like orbital

shapes can be safely kept at their quantum chemistry values, whether from state-averaged

or state-specific CASSCF. Given the high accuracy that VMC can offer for very challenging

excited states, providing easy-to-use incarnations of the best available VMC optimization

methods is a high priority.

Supplementary Material

See the supplementary material for molecular geometries, absolute energies, and optimization

details for doubly excited states.
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Molecular Geometries

Table S1: Structure of CN5. Coordinates in Å.

C 0.000 000 0.000 000 0.340 620
C 0.000 000 1.188 120 −0.363 814
C 0.000 000 −1.188 120 −0.363 814
H 0.000 000 0.000 000 1.424 530
H 0.000 000 1.160 200 −1.449 150
H 0.000 000 −1.160 200 −1.449 150
N 0.000 000 2.389 120 0.164 413
N 0.000 000 −2.389 120 0.164 413
H 0.000 000 2.531 430 1.161 940
H 0.000 000 −2.531 430 1.161 940
H 0.000 000 3.211 380 −0.414 923
H 0.000 000 −3.211 380 −0.414 923

S-1
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Table S2: Structure of nitroxyl. Coordinates in Å.

O 0.111 655 0.000 000 1.140 178
N −0.236 949 0.000 000 −0.018 994
H 0.625 294 0.000 000 −0.621 185

Table S3: Structure of glyoxal. Coordinates in Å.

C 0.642 211 0.401 329 0.000 000
C −0.642 211 −0.401 329 0.000 000
O 1.722 903 −0.139 984 0.000 000
O −1.722 903 0.139 984 0.000 000
H 0.508 726 1.491 662 0.000 000
H −0.508 726 −1.491 662 0.000 000

Table S4: Structure of acrolein. Coordinates in Å.

C −0.590 800 −0.361 686 0.000 000
C 0.638 441 0.442 999 0.000 000
C 1.835 351 −0.152 787 0.000 000
O −1.712 769 0.101 534 0.000 000
H −0.426 590 −1.453 900 0.000 000
H 0.522 297 1.516 693 0.000 000
H 2.756 647 0.409 814 0.000 000
H 1.910 074 −1.232 987 0.000 000

Table S5: Structure of cyclopentadiene. Coordinates in Å.

H −0.879 859 0.000 000 1.874 608
H 0.879 859 0.000 000 1.874 608
H 0.000 000 2.211 693 0.612 518
H 0.000 000 −2.211 693 0.612 518
H 0.000 000 1.349 811 −1.886 050
H 0.000 000 −1.349 811 −1.886 050
C 0.000 000 0.000 000 1.215 652
C 0.000 000 −1.177 731 0.285 415
C 0.000 000 1.177 731 0.285 415
C 0.000 000 −0.732 372 −0.993 420
C 0.000 000 0.732 372 −0.993 420

S-2



Table S6: Structure of 4-aminobenzonitrile. Coordinates in Å.

C 0.031 570 −0.001 678 1.801 388
C 0.046 873 −1.225 280 1.069 477
C 0.035 483 −1.235 146 −0.304 583
C −0.115 039 0.000 908 −1.046 464
C 0.031 512 1.235 978 −0.302 121
C 0.042 951 1.223 413 1.071 925
C 0.047 593 −0.003 141 3.231 727
H 0.052 819 −2.162 843 1.609 066
H 0.044 455 −2.181 757 −0.831 777
H 0.037 413 2.183 658 −0.827 425
H 0.045 866 2.159 919 1.613 382
N 0.059 850 −0.006 281 4.396 999
N 0.660 760 0.003 409 −2.284 953
H 0.225 584 0.003 579 −3.196 767
H 1.677 891 0.005 163 −2.289 493

Absolute Energies and Optimization Details for Doubly

Excited States

Our reported excitation energies in the main text are the energy differences between ground

and excited state optimizations of approximately matching variances, and the total numbers

of samples we report are the sum of the amounts used for the two optimizations. We

note that obtaining variance matched values in practice requires optimizations at multiple

determinant expansion lengths beyond pairs of ground and excited state results presented

here. For our double excitations results, all LM optimizations used our adaptive three shift

scheme described in Section 2.2 of the main text with 1,000,000 samples per iteration. Hybrid

optimization consisted of multiple macro-iterations each composed of 100 AD iterations and

3 Blocked LM iterations before a descent finalizing section of 1100 iterations. In all cases

over all systems, each Blocked LM iteration used 1,000,000 samples, which were doubled in

our calculation of the total sampling effort as the Blocked LM runs over its sample twice

and each AD iteration used 30,000 samples, both within the hybrid method and the pure
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descent finalizing section. Energies and uncertainties for each state were computed from an

average over the last 10 steps for LM optimizations and from the last 500 descent finalizing

steps for hybrid optimizations.

We took a staged approach to our excited state optimizations by first optimizing only

a short CI expansion alongside the one- and two-body Jastrow factors, and then adding

additional determinants until the variance matched that of the ground state. In the cases

where they were used, NCJF and orbital parameters were only optimized starting from a

pre-optimized MSJ wave function. In the hybrid method, AD sections were used to identify

5 vectors in parameter space that were provided to the Blocked LM steps. The Blocked LM

sections divided parameters into 5 blocks in all hybrid optimizations. As discussed in section

2.2 of the main text, the Blocked LM first performs a LM-style matrix diagonalization for

each block and retains some of the eigenvectors. For the carbon dimer MSJ case, nitroxyl,

glyoxal, and acrolein, 10 eigenvectors were retained from each block and in all other cases,

30 eigenvectors were retained. In each hybrid optimization, these retained eigenvectors were

combined with the 5 vectors from the preceding AD section for another diagonalization to

obtain the Blocked LM’s parameter update. On AD sections, we lowered initial step sizes

for the later optimization stages to avoid kicking the optimization out of the target function

minimum. Table S7 shows the initial step sizes used for different parameter types when they

were unoptimized. For later stages, the step sizes for the Jastrow factors and CI coefficients

were reduced by factors of 10 and 2 respectively. The NCJF and orbital parameters required

relatively small changes in their values compared to the other parameter types and we found

that significantly smaller step sizes for them were effective in stably improving the target

function. Based on our experience from this work, these choices for step sizes and Blocked

LM parameters within our staged optimizations form a reasonable default option for applying

our methodology in similar studies. However, adjusting these settings may be necessary in

challenging cases to either achieve a better optimization or at least verify that one is not

easily obtainable.
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Table S7: Initial step sizes for completely unoptimized parameters of different types.

Parameter Type Step Size
One-Body Jastrow 0.1
Two-Body Jastrow 0.1
CI Coefficient 0.01
NCJF F Matrix 0.0005
Orbital Parameter 0.0005

In tables S8 through S13, we list the total number of optimizable parameters and the

absolute energies for each of the systems we consider in our doubly excited state calcula-

tions. The parameter numbers are for results with CI expansion lengths chosen to obtain an

explicit variance match between the ground and excited state. In some cases, the LM and

hybrid method needed different expansion lengths to variance match their respective ground

state results leading to different total numbers of excited state parameters. Our statistical

uncertainties on the last digit of the absolute energies are shown in parentheses. In table

S14, we list the number of iterations in each optimization for the different cases in all our

molecules.

Table S8: Absolute energies and parameter numbers for the carbon dimer.

GS Parameters ES Parameters GS Energy (a.u.) ES Energy (a.u.)
LM MSJ 50 53 -11.0232(7) -10.9372(7)
Hybrid MSJ 50 53 -11.0230(3) -10.9377(4)
LM All 1080 1251 -11.0338(6) -10.9469(6)
Hybrid All 1080 1170 -11.0343(2) -10.9483(1)

Table S9: Absolute energies and parameter numbers for nitroxyl.

GS Parameters ES Parameters GS Energy (a.u.) ES Energy (a.u.)
LM MSJ 70 90 -26.387(1) -26.229(1)
Hybrid MSJ 70 90 -26.3858(4) -26.3851(4)

Table S10: Absolute energies and parameter numbers for glyoxal.

GS Parameters ES Parameters GS Energy (a.u.) ES Energy (a.u.)
LM MSJ 70 90 -44.445(2) -44.228(2)
Hybrid MSJ 70 90 -44.4440(6) -44.2324(5)
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Table S11: Absolute energies and parameter numbers for acrolein.

GS Parameters ES Parameters GS Energy (a.u.) ES Energy (a.u.)
LM MSJ 70 120 -35.319(2) -35.319(1)
Hybrid MSJ 70 120 -35.3169(6) -35.3169(5)

Table S12: Absolute energies and parameter numbers for cyclopentadiene.

GS Parameters ES Parameters GS Energy (a.u.) ES Energy (a.u.)
LM MSJ 60 540 -31.830(1) -31.551(1)
Hybrid MSJ 60 540 -31.8287(4) -31.5253(6)

Table S13: Absolute energies and parameter numbers for 4-aminobenzonitrile.

GS Parameters ES Parameters GS Energy (a.u.) ES Energy (a.u.)
LM SA MSJ 70 120 -62.855(2) -62.608(2)
Hybrid SA MSJ 70 150 -62.8453(8) -62.6037(6)
LM SS MSJ 70 550 -62.855(2) -62.606(2)
Hybrid SS MSJ 70 350 -62.8463(9) -62.6035(6)

Table S14: Iteration numbers for all systems. The hybrid method values are the number of
macro-iterations before the descent finalizing section.

GS Iterations ES Iterations
LM MSJ C2 50 50
Hybrid MSJ C2 4 4
LM All C2 50 50
Hybrid All C2 4 4
LM MSJ nitroxyl 50 50
Hybrid MSJ nitroxyl 4 4
LM MSJ glyoxal 70 70
Hybrid MSJ glyoxal 4 4
LM MSJ acrolein 70 70
Hybrid MSJ acrolein 4 4
LM MSJ CPD 50 90
Hybrid MSJ CPD 8 8
LM SA MSJ ABN 70 70
Hybrid SA MSJ ABN 7 5
LM SS MSJ ABN 70 70
Hybrid SS MSJ ABN 7 7
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