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ABSTRACT OF THE DISSERTATION

Spatial and Temporal Ecology of Corals and Algae on Palmyra Atoll, Central Pacific
Following Thermal Disturbance

Adi Khen

Doctor of Philosophy in Marine Biology
University of California San Diego, 2022

Professor Jennifer Smith, Chair

Coral reefs are valuable ecosystems that provide billions of dollars globally in
ecological goods and services, but they are facing widespread degradation due to climate
change. This dissertation provides insights into the dynamics of coral bleaching and recovery,

responses of other key taxa such as algae, and broader ecological implications for coral reef

Xii



communities in the context of thermal stress. Chapter 1 of the dissertation synthesizes results
from past studies on coral bleaching: while bleaching severity was highly variable as
expected, this was complicated by inconsistent response metrics and the fact that bleaching
measurements are often taken at different timing with respect to the onset of thermal stress.
By standardizing existing observations, this chapter allows for inter-study comparison of coral
bleaching susceptibility by genus, morphology, and/or region. Chapter 2 uses a time series of
underwater imagery taken yearly for the past decade from two habitats on Palmyra Atoll to
quantify the cover of reef-building corals, crustose coralline algae, macroalgae, turf, and other
invertebrates. One year after each of the thermal anomalies in 2009 and 2015, some sites
experienced reductions in coral cover which were replaced by turf or crustose coralline algae.
However, across the entire decade, benthic community structure changed minimally at the
functional group level, with greater stability at the reef terrace as compared to the fore reef.
Chapter 3 of the dissertation tracks the growth, discoloration (i.e., lack of pigmentation),
partial or whole-colony mortality, survival, and/or regrowth of individual coral colonies on
Palmyra. This chapter explores which species were more sensitive or tolerant than others
when exposed to thermal stress, and whether a colony’s level of discoloration at the time of
warming corresponds to its fate one year later. Finally, Chapter 4 evaluates the long-term
effects of increased seawater temperatures on benthic algae. This chapter investigates the
abundance of fleshy and calcareous algae on Palmyra’s reef habitats over time, and suggests
that a major macroalgal genus, Halimeda spp., showed evidence of temperature sensitivity.
Long-term monitoring data sets from Palmyra can be used to establish baseline information

for the conservation and restoration of more-threatened reefs at risk of decline.
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CHAPTER 1: Standardization of Coral Bleaching Measurements Highlights the Variability in

Genus, Morphology, and Region-Specific Responses

Adi Khen; Christopher B. Wall; Jennifer E. Smith

ABSTRACT

Marine heatwaves and regional coral bleaching events have become more frequent and
severe across the world’s oceans over the last several decades due to global climate change.
Observational studies have documented spatiotemporal variation in the responses of reef-
building corals to thermal stress within and among taxa across geographic scales. Although many
tools exist for predicting, detecting, and quantifying coral bleaching, certain limitations often
make it difficult to compare results among studies. For this review, we compiled over 1,500
bleaching observations representing 86 reef-building coral genera and 260 species of all
morphological groups from a total of 62 peer-reviewed scientific articles, encompassing three
broad geographic regions: the Atlantic, Indian, and Pacific Oceans. While bleaching severity was
found to vary by genus and morphology, we found that genera and morphologies both responded
differently to bleaching across regions. These patterns were complicated by the fact that (i)
methods and response metrics were inconsistent across studies; (ii) observations were taken at
different ecological scales (i.e., individual colony-level vs. population or community-level); and
(ii1) surveys were taken at different times with respect to the onset of thermal stress and the
chronology of bleaching events. To improve cross-study comparisons, we recommend that future
surveys should prioritize measuring bleaching in the same individual coral colonies over time

and incorporate the severity and timing of warming into their analyses. By reevaluating and



standardizing the ways in which we quantify coral bleaching, we propose that scientists will be

able to track responses to marine heatwaves with increased rigor, precision, and accuracy.

INTRODUCTION
Reviewing the Causes and Consequences of Coral Bleaching

Reet-building corals are important ecosystem engineers for tropical coral reefs. Corals
exist in a mutualistic symbiosis with photosynthetic dinoflagellate symbionts (Symbiodiniaceae)
which support coral nutrition and growth (Muscatine and Porter 1977). However, environmental
stress can push this symbiosis into a state of dysbiosis, with the coral losing its symbionts in a
process termed “coral bleaching.” Bleaching increases a coral’s vulnerability to disease and
colony fragmentation, and can reduce coral growth or reproduction (Baird and Marshall 2002).
Under prolonged duration (weeks to months) and/or increased magnitude of thermal stress,
bleaching can lead to coral mortality (Cook et al. 1990). However, corals can recover from
bleaching once non-stressful conditions are restored (Jones and Yellowlees 1997). During this
period of dysbiosis and post-stress recovery, corals can compensate for the lack of symbiont-
derived nutrition by feeding on suspended particles and plankton (i.e., heterotrophy; Grottoli et
al. 2006; Palardy et al. 2008) or rely on the consumption of energy reserves, such as lipids, to
sustain metabolism (Porter et al. 1989; Grottoli et al. 2004; Rodrigues and Grottoli 2007; Wall et
al. 2019). Ultimately, corals surviving bleaching events can regain their endosymbiont
communities by incorporating new Symbiodiniaceae symbionts into their tissues from
environmental reservoirs (Fitt et al. 1993) or through the repopulation of symbionts remaining
within coral tissues (Baker 2003). To better understand the dynamics of coral bleaching and

recovery and the individual, local, or regional factors contributing to bleaching susceptibility, we



need more precise colony-level data incorporating the severity of warming and the reef’s
surrounding environment.

Many environmental triggers can result in coral bleaching (e.g., reduced salinity [Goreau
1964; Van Woesik et al. 1995], decreased sea water temperature [Muscatine et al. 1991; Gates et
al. 1992], solar radiation [Lesser et al. 1990; Brown et al. 1994], and bacterial infection
[Kushmaro et al. 1996]; see Brown 1997). However, widespread coral bleaching events are
largely due to marine heatwaves that cause anomalously high seawater temperatures and are
driven by global climate change (Spalding and Brown 2015; Heron et al. 2016; Hughes et al.
2017). Mass coral bleaching events in particular occur in areas of high accumulated heat stress,
where sea surface temperatures (SST) have exceeded the bleaching threshold for multiple
consecutive weeks. Mass coral bleaching was first described in scientific literature in 1984,
following the severe El Nifio-Southern Oscillation (ENSO) event from 1982-1983 (Glynn 1984).
As of 2011, regional bleaching has been documented over 7,000 independent times worldwide
(ReefBase; Donner et al. 2017). In the span of the past few decades, bleaching has been reported
in nearly every location where coral reefs exist across the globe (Donner et al. 2017; Fig. 1.1). In
an effort to catalog these bleaching events and their consequences, a historical coral bleaching

database has been compiled (https://simondonner.com/bleachingdatabase/) which is currently the

most comprehensive archive of bleaching records publicly available. This archive combines
observations compiled by the non-profit global information system, ReefBase

(http://www.reetbase.org), with reports from researchers and reef managers. For instance, the

Great Barrier Reef predominantly suffered from the 2002 bleaching event while the 2005 event
was centralized on the Caribbean (Fig. 1.2). Three global bleaching events were observed across

all tropical oceans in 1998, 2010, and 2015. The 2015 global coral bleaching event lasted for an
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unprecedented three successive years of bleaching (2014-2017) in some locations and hit nearly
every major tropical region on Earth (Eakin et al. 2019; Fig. 1.3). Altogether, this has allowed

for geographic explorations of patterns in bleaching prevalence.

Coral Bleaching Assessment Methods

Current methods for assessing bleaching usually involve satellite remote sensing, aerial
surveys, underwater surveys, or image analysis of transects or quadrats. While all of these
methods contribute to our knowledge of bleaching severity, they operate under varying levels of
taxonomic and spatial resolution (reviewed in van Woesik et al. 2022; Fig. 1.4) and present their
own advantages and disadvantages. Satellite remote sensing, while informative and large-scale
(e.g., 50 km or 5 km resolution), only captures emergent reefs and relies on predictions from
temperature metrics rather than in situ bleaching data (Liu et al. 2014). Other complications with
remote-sensing include cloud cover and the fact that bleached corals can have a similar spectral
signature as sand (Elvidge et al. 2004). Moreover, satellites can only provide bleaching forecasts
whereas aerial surveys conducted via aircrafts (Hughes et al. 2017) or small unmanned drones
(Levy et al. 2018) can map entire reefs but quantify bleaching on a reef-wide basis. However,
new technologies such as fluid lensing (Chirayath and Earle 2016), which uses water-
transmitting wavelengths to passively image underwater objects, are now being developed to
improve the use of remote sensing tools and could potentially deliver centimeter-resolution data
at regional scales. Similarly, airborne mapping combined with laser-guided imaging
spectroscopy and deep learning models (Asner et al. 2020) can provide regional-scale

quantitative estimates of reef condition.



Underwater surveys (i.e., SCUBA/snorkel surveys, tow-boards) offer the opportunity to
make direct observations but are more time-intensive and vary in scale from focal colony
assessments to towed-diver surveys at the community or reefscape level. Alternative approaches
for surveying entire reef communities are diver-led surveys at the tens-of-meter scale (i.e., point-
intercept and transects), which can give insights into population or colony-level bleaching
responses. Corals are often categorized as “bleached,” “unbleached,” or another qualitative
bleaching group (McClanahan et al. 2004) rather than quantifying percent of color change
relative to an unaffected (i.e., non-bleached) conspecific colony, although this can be subject to
observer bias (Siebeck et al. 2006). A color reference card (Siebeck et al. 2006; Bahr et al. 2020)
can also be used to visually compare coral pigmentation in situ to “healthy” representatives,
however, these color references require extensive local ground-truthing to capture the range of
color for healthy and bleached corals in a specific region (Bahr et al. 2020). Image analysis, in
which bleached areas within photoquadrats taken during underwater surveys are digitally traced
using computer software (e.g., Neal et al. 2017), is arguably the most precise, yet this method
can be time-consuming (Williams et al. 2019). Image analysis is also traditionally small-scale at
the colony level, which does not always represent the population or community as a whole.
Recent machine learning initiatives, such as exclusively-automatic bleaching detection, are now

being attempted by the XL Catlin Seaview Survey (https://www.catlinseaviewsurvey.com/).

Other automated classification programs such as CoralNet (Beijbom et al. 2015,

https://coralnet.ucsd.edu/), have not yet been achieved to a sufficient level of taxonomic

resolution and cannot measure bleaching within colonies (Bryant et al. 2017). In the future, a
combination of human-validated, computer-annotated image analysis will likely optimize

efficiency and allow for thorough examination of how corals bleach over time on an individual
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colony basis. While bleaching observations of all scales have merit, in order to predict regional
or taxonomic responses more accurately, it is also important to acknowledge underlying

physical, biological, or contextual factors.

Coral Bleaching Resistance and Reef Resilience

It is generally accepted that corals have different susceptibilities to bleaching based on
taxonomy (Marshall and Baird 2000), life history strategy (Darling et al. 2013), morphology
(Loya et al. 2001; van Woesik et al. 2012), colony size class (Shenkar et al. 2005), symbiont type
and/or density (Berkelmans and van Oppen 2006), as well as any other distinguishing
characteristics. ‘Weedy’ genera (i.e., ones that are fast-growing, opportunistic, and able to
dominate post-disturbance, such as Acropora or Pocillopora spp.) may be more sensitive to
bleaching yet quicker to regain their pre-bleaching cover following substantial losses (Darling et
al. 2013; McClanahan et al. 2014). Morphology is also thought to play a role, though results are
often contradictory. For instance, massive (i.e., mounding) corals show high (Marshall and Baird
2000) or low (Williams et al. 2010) resistance to thermal bleaching. Branching corals may
experience more bleaching-related mortality than massive or encrusting corals (Marshall and
Baird 2000; Hoegh-Guldberg and Salvat 1995), presumably because the thinner tissues of
branching corals expose symbionts to higher light intensities (Loya et al. 2001). Larger colonies
with more tissue area could hypothetically have an advantage over smaller colonies during
bleaching due to their higher symbiont densities, although some studies indicate otherwise
(Shenkar et al. 2005; Brandt 2009; Wagner et al. 2010). Tissue biomass may also correlate with
symbiont density, as species with lower tissue biomass have been found to experience increased

mortality following bleaching (Thornhill et al. 2011).



Additionally, it has long been known that certain symbionts may be more stress-tolerant
and that symbiont-switching may serve as an adaptive function for corals (Baker 2003). The
“Adaptive Bleaching Hypothesis” (Buddemeier and Fautin 1993) suggests that bleaching is
adaptive and that after bleaching, corals may replace their symbionts (“symbiont-switching™)
with more heat-resistant varieties in order to withstand future heat stress. There is experimental
evidence of this, albeit short-term (i.e., less than a year; see Toller et al. 2001). For instance, if
coral bleaching was not severe, recovering corals maintained the same symbiont species post-
treatment; however, corals whose symbionts had been depleted post-bleaching were repopulated
with new symbiont taxa for up to nine months later (Toller et al. 2001). Other than symbiont-
switching, corals may undergo symbiont-shuffling, in which colonies change the relative
abundance of their existing symbionts (Baker 2003). Other studies have found a high degree of
specificity among coral-Symbiodiniaceae associations in the long term (Thornhill et al. 2006;
Stat et al. 2009; Lee et al. 2016), implying that the uptake of new symbionts with different stress
tolerance may be transient (Coffroth et al. 2010), particularly for adult corals (but see:
Scharfenstein et al. 2022; Boulotte et al. 2016). Further, some coral taxa exhibit higher flexibility
in their Symbiodinium assemblages than others (Goulet 2006; Putnam et al. 2012) and individual
colonies may have their own ‘Symbiodiniaceae signature’ (Rouzé¢ et al. 2019). The dynamics of
these symbioses are also affected by environmental regimes (Baker et al. 2013) and the
symbionts’ physiological traits (Wong et al. 2021), making it difficult to predict post-bleaching
recovery or mortality based only on changes in symbiont communities.

Physical factors such as location (Sully et al. 2019), reef habitat type (Wagner et al.
2010), human population density (Sandin et al. 2008), and/or environmental variability (Jokiel

and Brown 2004; Bahr et al. 2017) may also affect bleaching outcomes, along with prior



bleaching history (Brown et al. 2002; Pratchett et al. 2013). Depth is thought to provide a refuge
for corals from solar heating and light (Smith et al. 2014; Baird et al. 2018), but this does not
always confer resistance to bleaching, as has been seen in both the Caribbean (Neal et al. 2014)
and Pacific (Venegas et al. 2019). Resistance to thermal stress can be defined as the ability of
individual corals to avoid bleaching or survive post-bleaching (West and Salm 2003). Factors
that reduce thermal stress (e.g., cold-water upwelling; Goreau et al. 2000), enhance water flow
and flush out toxins (Nakamura and Van Woesik 2001), and decrease light stress (e.g., shading
from cloud cover [Mumby et al. 2001] or light absorption by dissolved organic matter [Anderson
et al. 2001]) can determine bleaching resistance.

While resistance pertains to the ability to withstand or not be harmed by disturbance,
resilience is a reef’s ability to return to its previous state of biodiversity and abundance following
disturbance (West and Salm 2003). The speed at which this occurs, along with the magnitude of
disturbance, can also be considered when defining resilience (Nystrom et al. 2000; Gunderson
2000). E