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Persistent cohomology is a powerful technique for discovering topological structure

in data. Strategies for its use in neuroscience are still undergoing development. We

comprehensively and rigorously assess its performance in simulated neural recordings

of the brain’s spatial representation system. Grid, head direction, and conjunctive

cell populations each span low-dimensional topological structures embedded in

high-dimensional neural activity space. We evaluate the ability for persistent cohomology

to discover these structures for different dataset dimensions, variations in spatial tuning,

and forms of noise. We quantify its ability to decode simulated animal trajectories

contained within these topological structures. We also identify regimes under which

mixtures of populations form product topologies that can be detected. Our results

reveal how dataset parameters affect the success of topological discovery and suggest

principles for applying persistent cohomology, as well as persistent homology, to

experimental neural recordings.

Keywords: topological data analysis, neural manifold, dimensionality reduction, neural decoding, spatial

representation, grid cells, medial entorhinal cortex

1. INTRODUCTION

The enormous number of neurons that constitute brain circuits must coordinate their firing
to operate effectively. This organization often constrains neural activity to low-dimensional
manifolds, which are embedded in the high-dimensional phase space of all possible activity
patterns (Gao and Ganguli, 2015; Gallego et al., 2017; Jazayeri and Afraz, 2017; Saxena and
Cunningham, 2019). In certain cases, these low-dimensional manifolds exhibit non-trivial
topological structure (Curto, 2016). This structure may be imposed externally by inputs that are
periodic in nature, such as the orientation of a visual stimulus or the direction of an animal’s head. It
may also be generated internally by the network itself; for example, the grid cell network constructs
periodic representations of physical space which outperform non-periodic representations in
several ways (Fiete et al., 2008; Sreenivasan and Fiete, 2011; Mathis et al., 2012; Stemmler et al.,
2015; Wei et al., 2015; Sanzeni et al., 2016; Mosheiff et al., 2017). In either case, detecting and
interpreting topological structure in neural data would provide insight into how the brain encodes
information and performs computations.
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One promising method for discovering topological features in
data is persistent cohomology (Edelsbrunner and Harer, 2010;
de Silva et al., 2011; Edelsbrunner and Morozov, 2017). By
tracking how the shape of the data changes as we examine
it across different scales—thickening data points by growing
balls around them—persistent cohomology detects prominent
topological features in the data, such as loops and voids. This
knowledge helps to identify the low-dimensional manifolds
sampled by the data, and in particular to distinguish between
tori of different intrinsic dimensions. Furthermore, it enables
parametrization of the data and navigation of the underlying
manifolds.

FIGURE 1 | Pipeline for simulations and data analysis. (A) We generate activities for multiple neural populations along an experimentally recorded rat trajectory. For

each population, we plot activity maps as a function of position (left) and direction (right) for one example neuron. (B) Then we choose neurons for topological analysis

and form a high-dimensional vector of their firing rates at each timepoint along the trajectory. For computational tractability, we eliminate the most redundant points

using a geometric subsampling algorithm. (C) We compute persistent cohomology on these subsampled timepoints to identify low-dimensional topological structure.

We characterize how persistent cohomology can discover
topological structure in neural data through simulations of
the brain’s spatial representation system. This system contains
several neural populations whose activity exhibits non-trivial
topology, which we term periodic neural populations (Figure 1A).
Grid cells fire when an animal reaches certain locations in its
environment that form a triangular lattice in space (Hafting
et al., 2005). In each animal, grid cells are partitioned into 4–
10 modules (Stensola et al., 2012). Within each module, grid
cells share the same scale and orientation but their lattices have
different spatial offsets. Modules appear to increase in scale by
a constant ratio and exhibit differences in orientation (Stensola
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et al., 2012; Krupic et al., 2015). Head direction cells fire when
an animal’s head is oriented in a certain direction relative to its
environment (Taube et al., 1990). They respond independently of
the animal’s position. Finally, conjunctive grid × head direction
cells respond when an animal is located at the vertices of a
triangular lattice and is oriented in a certain direction (Sargolini
et al., 2006). Like grid cells, conjunctive cells are also believed to
be partitioned into modules.

We also consider neural populations whose activity exhibits
trivial topology, which we will term non-periodic neural
populations (Figure 1A). Place and non-grid spatial cells are part
of the spatial representation system, and they fire in one or
multiple regions of the environment (O’Keefe and Dostrovsky,
1971; Diehl et al., 2017; Hardcastle et al., 2017). These two
populations are found in different brain regions, and the
former tend to have sharper spatial selectivity compared to the
latter. Finally, we simulate neurons with irregular activity that
exhibits no spatial tuning. We imagine these random cells may
be responding to non-spatial stimuli or representing internal
brain states.

Persistent cohomology, as well as the closely related technique
persistent homology, has recently been applied to experimental
neural recordings within the spatial representation system.
It was used to discover topological structure (Chaudhuri
et al., 2019; Rybakken et al., 2019) and decode behavioral
variables (Rybakken et al., 2019) from head direction cells. It
was also used to do the same for grid cell recordings (Gardner
et al., 2021), and researchers have demonstrated topological
discovery in simulated grid cell data (Chaudhuri et al., 2019).
These works have improved our understanding of the large-
scale organization of spatial representation circuits through
persistent cohomology.

In contrast to the research described above, we aim
to comprehensively explore the capabilities of persistent
cohomology for simulated datasets. With complete control over
the data, we can identify features that improve topological
discovery and features that disrupt it. We can also freely
generate datasets with varied quantities and proportions of
different neural populations. A greater number of neurons
embeds underlying activity manifolds in higher dimensions,
which can strengthen the signal. However, experimental
limitations impose bounds to this number. Our simulations
allow us to evaluate persistent cohomology in regimes currently
accessible by experiments, as well as in regimes that may soon
become experimentally tractable due to advances in recording
technology (Jun et al., 2017).

2. RESULTS

2.1. Overview of Methods and Persistence
Diagrams
In this work, we simulate neural populations within the
spatial representation system, prepare the simulated data for
topological analysis, and compute persistent cohomology to
discover topological structure within the data (Figure 1). We

will now briefly describe each of these three stages; a complete
explanation is provided in the Methods section.

To generate neural recordings, we define tuning curves as a
function of position and direction. For each grid module, we
first create a triangular lattice in space. Each grid cell has peaks
in its positional tuning curves at a randomly chosen offset from
each lattice point. Its directional tuning curve is uniform. Head
direction cells have peaks in their directional tuning curves at
a randomly chosen angle and have uniform positional tuning
curves. Conjunctive cells have positional tuning curves like grid
cells and directional tuning curves like head direction cells. We
describe tuning curves for the non-periodic neural populations
in the Methods section.

These tuning curves are applied to an experimentally extracted
trajectory of a rat exploring its circular enclosure, producing
an activity, or firing rate, for each neuron at 0.2 s intervals.
This simulates the simultaneous recording of a large number
of neurons from the medial entorhinal cortex and the binning
of their spikes into firing rates. The time series spans 1,000
s, or 5,000 data points. Figure 1A shows examples of these
time series data mapped back onto spatial coordinates. Next,
we choose a subset of these neurons and pre-process it for
topological data analysis (Figure 1B). We form a vector of neural
activities at each timepoint, which produces a point cloud in
high-dimensional phase space. We wish to subsample it for
computation tractability while maintaining as much evidence
of topological structure embedded within it. To do so, we use
a geometric subsampling algorithm that roughly eliminates the
most redundant points, reducing the 5,000 timepoints down
to 1,000.

Finally, we apply persistent cohomology to this subsampled
point cloud (Figure 1C). We describe this technique colloquially
here, in terms of its dual, persistent homology. Both produce the
same persistence diagrams, but we use cohomology throughout
the paper both because it is faster to compute and because it
allows us to parameterize the data. See the Methods section
for a precise description. From the point cloud, we form a
Vietoris–Rips filtration, which is a nested sequence of simplicial
complexes. Each complex consists of all cliques in the near-
neighbor graph, which contains all edges between points at
distance at most r apart. As the threshold r increases, more
edges enter the graph, and more cliques enter the Vietoris–Rips
complex. Throughout this process, cycles (e.g., 1-dimensional
loops) appear and get filled in the complex (Figure 2A). There
is a unique way to pair the distance thresholds at which cycles are
born and die.

All such birth and death distances are collected into a
persistence diagram (Figure 2B). The points farthest from the
diagonal correspond to the most persistent cycles that appear
for the longest range of distance thresholds. They recover
topological structure in the space sampled by the point cloud,
which corresponds to the processes underlying the data—in our
case, the spatial representation networks and external inputs.
Persistent (co)homology is stable: the persistent points will
remain in the diagram if we make small changes to the data,
such as selecting slightly different timepoints or perturbing their
values by a small amount of noise. The points closest to the
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FIGURE 2 | Persistence diagrams for periodic neural populations. (A–C) Interpreting persistence diagrams. (A) Persistent (co)homology involves generating a filtration

of a dataset in which we connect points within ever-expanding distances. One-dimensional loops will be born and then die at various distances. (B) These values are

plotted in a persistence diagram where each point corresponds to a single loop. The points located farthest from the diagonal are the most persistent and correspond

to significant topological features. (C) This process can be performed for features of arbitrary dimension k. (D–F) Persistence diagrams for periodic neural populations

(top) and identified topological spaces (bottom). We compare the number of persistent k-(co)cycles to the k-th Betti numbers βk of different topological spaces to infer

the underlying topological structure of the dataset. (D) Grid cells from module 1 exhibit one persistent 0-cocycle, two persistent 1-cocycles, and one persistent

2-cocycle, which corresponds to a torus. (E) Head direction cells exhibit one persistent 0-cocycle, one persistent 1-cocycle, and no persistent 2-cocycles, which

corresponds to a circle. (F) Conjunctive cells exhibit one persistent 0-cocycle, three persistent 1-cocycles, and three persistent 2-cocycles, which corresponds to a

3-torus.

diagonal would appear even if the processes underlying the data
lack topological structure, and they are usually interpreted as
noise.

The process we described above keeps track of cycles of
different dimensions (Figure 2C). Besides loops (1-dimensional
cycles), it tracks connected components (0-dimensional
cycles), voids (2-dimensional cycles), and higher-dimensional
topological features, which lack a colloquial name. The
number of independent k-cycles is called the k-th Betti
number and is a topological invariant of a space. We can
infer the topology of a dataset by comparing the number of
persistent k-(co)cycles to the k-th Betti numbers of conjectured
ideal spaces, such a circle or a torus. Note that for every
dataset, the 0-(co)cycle corresponding to the entire point
cloud will never die, so we consider its death distance to
be infinity.

2.2. Persistent Cohomology for Periodic
Neural Populations
Each periodic neural population spans a particular topological
space. We recover these relationships when we compute
persistent cohomology of our simulated data (Figures 2D–F).
Each grid cell is active at one location in a unit cell that
is tiled over 2D space. Grid cells within a single module
share the same unit cell but differ in their active location,
so each grid module spans a torus, which is periodic
in two directions (Curto, 2016). Similarly, head direction
cells span a circle and each conjunctive cell module spans
a 3-torus. The correspondence between our results and
predicted topological spaces validates the basic capabilities of
our methods.

The ability of persistent cohomology to discover topological
structure depends on the number of neurons in the dataset,
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or equivalently, the dimension of the time series embedding.
Using the grid cell population as an exemplar, we form
multiple datasets with randomly selected neurons to measure the
success rate of persistent cohomology as a function of neuron
count (Figure 3A). To measure success, we only use the first
cohomology group H1, which contains 1-cocycles. We define
successful discovery of the grid cell torus as a persistence diagram
with two persistent 1-cocycles, and we define what it means
to be persistent precisely using the commonly used largest-gap
heuristic. We calculate the lifetime of each cocycle, which is the
difference between its death and birth and corresponds to the
vertical distance to the diagonal of its point in the persistence
diagram (Figures 3A,B). We find the largest gap in the lifetimes
and consider points above this gap to be persistent (Figure 3B).
Figure 3C shows that reliable discovery of the torus using this
heuristic can be achieved with≈20 simulated, idealized grid cells.
It also shows that increasing the number of grid cells improves
the success rate. This occurs because topological discovery relies
on having enough grid cells such that their fields provide a
sufficiently uncorrelated coverage of the unit cell. Instead of
using data spanning the full 1,000 s-long trajectory, which
corresponds to 5,000 timepoints, we extract portions spanning
various lengths. Discovery of the torus requires enough samples
of its manifold structure, which is achieved in this case starting at
100 s (Figure 3D). Thus, persistent cohomology generally thrives
in the large-dataset limit with long neural recordings of many
neurons.

Persistent cohomology can succeed for mixed signals.
Separation of raw electrode recordings into single-neuron spike
trains may not always be possible or desired. To address this
scenario, we form multi-neuron units by linearly combining
time series of neural activity across different grid cells.
The mixing coefficients are drawn from a uniform random
distribution and then normalized. Example activity maps of
these multi-neuron units as a function of position are shown
in Figure 4A. The combination of many neurons destroys the
classic responses exhibited by individual grid cells. Yet, multi-
neuron units retain topological information associated with the
grid module that can be recovered by persistent cohomology
(Figure 4B). The success rate for discovering toroidal topology
is remarkably independent of the number of grid cells in
each unit. Successful recovery from randomly mixed signals is
not entirely unexpected. The preservation of distances under
random projections has been studied extensively in statistics
[cf. Johnson–Lindenstrauss lemma (Johnson and Lindenstrauss,
1984)].

Persistent cohomology can also succeed in the presence of
spiking noise. To simulate such noise, we use our generated
activity as a raw firing rate that drives a Poisson-like random
process (see Methods). We construct this process to have
different Fano factors, which is the variance in the random
process for a given firing rate divided by the firing rate.
When the Fano factor is 1, the random process is Poisson.
Figure 4C shows activity time series for two grid cells that

FIGURE 3 | Success rates of persistent cohomology for grid cells. (A) As the number of grid cells increases, two persistent 1-cocycles emerge. To define persistence

precisely, we consider the persistence lifetime of each 1-cocycle, which is the difference between its birth and death distances (length of the magenta line). (B) We

identify the largest gap in persistence lifetimes and define persistent cocycles as those above this gap. (C) Since a grid module has a toroidal topology for which

β1 = 2, we define success as a persistence diagram with two persistent 1-cocycles. We determine success rates by generating 100 replicate datasets. Success rate

increases with the number of grid cells. (D) Success rates for different durations extracted from the full simulated recording. Topological discovery benefits from longer

recording durations and more neurons.
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FIGURE 4 | Robustness of persistent cohomology for grid cells. (A,B) Linearly combining activities from multiple neurons before applying persistent cohomology. (A)

Example positional activity maps for multi-neuron units. (B) The success rate is largely independent of the number of neurons per multi-neuron unit. (C,D) Introducing

Poisson-like spiking noise with different amounts of variability, as measured by the Fano factor. (C) For each Fano factor, time series for two grid cells with very similar

offsets (left) and positional activity map of the first (right). (D) Persistent cohomology requires more neurons to achieve success with higher Fano factors. (E–K)

Success rates across many different grid cell variables with insets depicting example values. See Methods section 4.1.7 for a complete description of each variable.

(E) Introducing a square enclosure at various lattice orientations. (F) Changing the lattice scale factor, which is grid scale divided by enclosure diameter. (G) Changing

the field size factor, which is grid field diameter divided by grid scale. (H) Stretching triangular grids to various aspect ratios. (I) Jittering the position of each field by

random vectors multiplied by grid scale. (J) Introducing variability in shape and overall activity across grid fields. (K) Introducing variability in lattices across grid cells.

have very similar tuning curves and thus very similar raw
firing rates, which can be seen in the noise-free condition
(top left). Higher Fano factors lead to more variability both
across time for each neuron and across neurons. Persistent
cohomology can still recover the toroidal topology of the grid
module, though more neurons are required for higher Fano
factors (Figure 4D). In the mammalian cortex, Fano factors lie
around∼0.5–1.5 (Shadlen and Newsome, 1998; Burak and Fiete,
2009). Applying this regime to our simulations implies that
≈80 grid cells are required for reliable topological discovery,

but we acknowledge the large differences between simulated
and experimental data which may substantially increase this
number.

We further test the robustness of persistent cohomology
across wide ranges of properties associated with grid cells
(Figures 4E–K). Using a trajectory extracted from an animal
exploring a square enclosure does not meaningfully change the
success rate (Figure 4E). Grid modules have been shown to favor
a lattice orientation of 7.5◦ relative to square enclosures (Stensola
et al., 2015), but this orientation does not affect topological
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discovery. Similarly, persistent cohomology is not strongly
affected by the aspect ratio of the triangular grid (Figure 4H).
Changes in grid dimensions can have a stronger effect. Persistent
cohomology fails when the grid scale exceeds the size of the
enclosure, which makes sense because the grid module unit cell
can no longer be fully sampled (Figure 4F). When the scale does
not change but the size of each firing field is decreased, more
grid cells are required to produce toroidal structure in the data
since each neuron covers less of the unit cell (Figure 4G). Under
various forms of variability within grid cell tuning curves, the
success of persistent cohomology can be maintained if more
neurons are recorded, up to a degree (Figures 4I–K). Beyond
critical values, however, variability appears to catastrophically
disrupt topological discovery in a way that cannot be overcome
with more grid cells. The extra heterogeneity conveyed by an
additional neuron overwhelms its contribution to topological
structure. Thus, an assessment of tuning curve variability may be
a crucial component in the application of persistent cohomology
to neural data.

2.3. Animal Trajectory Decoded Through
Topological Coordinates
Persistent cohomology can not only discover topological
structure in neural data, but it can also decode information
embedded within this structure. Recall that a grid module defines
a triangular lattice in physical space with fields of each grid cell
offset in the rhombic unit cell (Figure 5A). The periodicities
of this unit cell along the two lattice vectors are detected by
persistent cohomology as two persistent 1-cocycles belonging
to a torus (as seen in Figure 2D). We can assign circular
coordinates (de Silva et al., 2011; Perea, 2018) for these 1-cocycles
(Figure 5B). These coordinates describe the topological space of
the torus and should map back onto the rhombic unit cell that
tiles physical space. To explore this relationship, we project the
entire time series of neural activities onto these coordinates. For
each neuron, we find the data points for which that neuron is the
most active within the population. These points are clustered and
define firing fields in topological space (Figure 5C). The center
of masses of these clusters are used to evaluate distances between
grid cells; these topological distances are highly correlated with
the physical distances between grid offsets within the rhombic
unit cell (Figure 5D). Thus, the topological coordinates defined
in neural activity space indeed capture the organization of grid
cells in physical space.

Furthermore, persistent cohomology can leverage the
mapping between physical and topological spaces to decode
trajectories in the former by trajectories in the latter (Figure 5E).
To do so, we trace the circular coordinates depicted in Figure 5C

through time to form a raw trajectory through topological
space. We then unshear it by 60◦ and unfold this trajectory by
identifying large jumps with wrapping through the boundary
to produce a reconstructed segment. These steps do not require
knowledge of the animal’s true trajectory (although some
general expectations about the animal’s motion are required
for unshearing; see Methods section 4.5 for details). We find
that this reconstruction can be translated, rotated, reflected,

and/or uniformly scaled to match the true trajectory very well.
Without spiking noise, almost all reconstructions deviate from
the true trajectory by<4 cm averaged across time, which is much
less than the enclosure’s diameter of 180 cm (Figures 5F,G).
This error decreases with more neurons or more timepoints
in the simulated recording. Similar trends are observed with
the introduction of Poisson noise that mimics spiking noise,
but more neurons are required, more outliers with poor fit are
observed, and geometric subsampling cannot be used to improve
computational tractability (Figures 5H,I).

2.4. Persistent Cohomology for Mixtures of
Neural Populations
Persistent cohomology can discover topological structure in
mixtures of neural populations. When neurons are recorded
from a periodic neural population and a non-periodic neural
population, the latter adds additional dimensions to the point
cloud embedding, but the topological structure contained within
the former may persist. We test if persistent cohomology can
recover this information in mixed datasets with neurons from
both a periodic population (either grid or conjunctive) and a
non-periodic population (either non-grid spatial or random).
Reliable discovery of the torus formed by grid cells is possible
when the number of spatial or random cells is less than twice
the number of grid cells (Figures 6A,B). Detection of the 3-torus
formed by conjunctive cells requiresmore neurons, but it can also
be reliably achieved in the presence of non-periodic populations
(Figures 6C,D). Thus, persistent cohomology demonstrates
robustness to the inclusion of non-periodic populations. The size
of the non-periodic population that can be tolerated increases
with the size of the periodic population.

When neurons are recorded from multiple periodic neural
populations, their structures are preserved within projected
subspaces of high-dimensional activity space. We explore
persistent cohomology in this scenario by forming mixed
datasets with neurons from two periodic populations. When
the two populations respond to unrelated signals, such as
grid and head direction cells—the combined topological space
should be the Cartesian product of those of the separate
populations. Indeed, that persistent cohomology can discover the
resultant 3-torus at intermediate mixing ratios (Figures 7A,B).
If one population contributes many more neurons—and thus
embedding dimensions—than the other, we instead detect the
corresponding single-population structure (Figure 7B).

When the two populations respond to related signals, such as
grid and conjunctive cells—the activity space of one is contained
in the activity space of the other. Grid cells and conjunctive cells
from the same module encode position with the same toroidal
structure; they both tile space with the same rhombic unit cell of
neural activity. In addition, the conjunctive population encodes
direction with a circular topology. Thus, themixed dataset should
span a 3-torus, which can be detected by persistent cohomology
(Figure 7C). For reliable discovery, at least ≈120 conjunctive
cells and at least ≈240 total neurons are required. However,
discovery of the product topology is disrupted if the number of
grid cells exceeds the number of conjunctive cells by more than
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FIGURE 5 | Correspondence between spatial and topological coordinates for grid cells. (A) Positional activity maps. A grid module tiles physical space with a rhombic

unit cell (black dashed lines) with a different offset for each grid cell. (B) Schematic of circular coordinates (color) for the two persistent 1-cocycles of a grid module

that define a topological space (left) and their mapping onto physical space (right). (C) Firing fields in the topological space of neural activities. All timepoints (gray) and

those for which a grid cell is the most active in the population (color). (D) Topological distances between firing fields depicted in (C) are correlated with physical

distances between grid offsets depicted in (A). Each point represents distances between two grid cells. (E) Reconstructing a segment of animal trajectory in the

topological space of neural activities and fitting it to the true trajectory segment. (F,G) Reconstructions for grid cells without spiking noise. (F) Sample reconstruction

fits. (G) Mean reconstruction error is the distance between reconstructed and actual positions averaged over timepoints. For each condition, we generate 10 replicate

datasets, shown as violin plots with points representing individual values. Error generally decreases with increasing grid cell number and trajectory duration. (H,I)

Same as (F,G) but for grid cells generated with Poisson spiking noise and error plotted on a logarithmic scale. Geometric subsampling was not performed. Persistent

cohomology can achieve low reconstruction error with large enough grid cell number and trajectory duration.

a factor of ≈1.5. Thus, persistent cohomology can best detect
product topologies when the mixed dataset is not dominated by
one population.

Finally, we consider the case of mixing grid cells frommultiple
modules. Grid modules have different rhombic unit cells with
different scales and orientations, so they map the same physical

space onto different topological coordinates. Thus, a mixed
dataset from two different modules should exhibit the product
topology of two 2-tori, which is the 4-torus. However, we are
unable to reliably discover this structure using the grid modules
illustrated in Figure 1A; they are too sparse. To produce a point
cloud that embeds the toroidal structure for one grid module,
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FIGURE 6 | Persistent cohomology in combinations of periodic and non-periodic neural populations. Success is defined by observing the number of persistent

1-cocycles expected from the periodic population, which is two for grid cells and three for conjunctive cells. (A) Grid cells from module 1 and non-grid spatial cells. (B)

Grid cells from module 1 and random cells. (C) Conjunctive cells from module 1 and non-grid spatial cells. (D) Conjunctive cells from module 1 and random cells.

the animal trajectory should densely sample its rhombic unit
cell. This is achieved since the enclosure contains many unit
cells. However, to produce a point cloud that embeds the 4-torus
formed by two gridmodules, the animal trajectory should densely
sample all combinations of unit cells. This is not achieved by
the grid modules illustrated in Figure 1A because the enclosure
contains too few rhombic unit cells for them to overlap in many
different configurations.

Thus, we generate two grid modules separated by the
same scale ratio as in Figure 1A, but with one-fourth of its
scale (Figure 7D). In addition, we explore different relative
orientations between the modules by generating different
orientations for module 2. Notably, these scale ratios and
orientation differences are not chosen such that the two rhombic
unit cells would share a simple geometric relationship with
each other (Kang and Balasubramanian, 2019), which would
limit their possible overlap configurations and collapse the
expected 4-torus structure to a 2-torus. As we include more
neurons from both modules into our dataset, we see that
four persistent 1-cocycles eventually emerge from the points
close to the diagonal that represent sampling noise (Figure 7E).
The success of persistent cohomology is independent of the
orientation difference between the two modules (Figure 7F).
Note that if we obtained independent activity samples from
each module, combined datasets formed from the original grid
modules with larger scales should exhibit 4-torus structure.
However, samples taken from a single animal trajectory are

not independent across modules, so smaller grid scales (or
equivalently, larger environments) are required to fully sample
the 4-torus structure.

3. DISCUSSION

We demonstrate that persistent cohomology can discover
topological structure in simulated neural recordings with as few
as tens of neurons from a periodic neural population (Figure 3).
From this structure, it can decode the trajectory of the animal
using only the time series of neural activities (Figure 5). It can
also discover more complex topological structures formed by
combinations of periodic neural populations if each population
is well-represented within the dataset (Figure 7).

By comprehensively adjusting a wide range of parameters
related to grid cells, we find that persistent cohomology generally
behaves in three different ways with respect to parameter
variation. First, topological discovery can be unaffected by
some manipulations, such as combining grid cells into multi-
neuron units and changing global geometric features, such
as enclosure geometry and lattice aspect ratio (Figure 4).
Second, topological discovery may be impeded in a way that
is counteracted by increasing neuron number. Spiking noise,
small field sizes, and inclusion of non-periodic populations are
examples of parameters that exhibit this behavior (Figures 4,
6). Third, topological discovery can fail catastrophically in
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FIGURE 7 | Persistent cohomology in combinations of periodic neural populations. Success is defined by observing the number of persistent 1-cocycles expected

from the product topology. (A,B) Discovering the 3-torus for grid cells from module 1 and head direction cells. (A) Success rates. (B) Example persistence diagrams. If

one population contributes many more neurons than the other, persistent cohomology detects the topology of the predominant population. (C) Success rates for

discovering the 3-torus for grid cells and conjunctive cells, both from the same module 1. (D–F) Combining grid cells from two modules with smaller scales. (D)

Positional activity maps for example neurons from module 1 and four different orientations of module 2. (E) Example persistence diagrams. (F) Success rates for

discovering the 4-torus.

certain parameter regimes without the possibility of recovery
by including more neurons. This happens if tuning curves are
inherently too variable or if discovery of product topologies
are desired when one neural population vastly outnumbers the
other (Figures 4, 7). These conclusions can help researchers
understand and overcome obstacles to topological discovery with
persistent (co)homology and may guide its use across a variety of
neural systems.

We have characterized the capabilities of persistent
cohomology using simple simulated data, but our results
may generalize to real neural data. A key requirement

for generalization is the separation of two timescales. The
macroscopic timescale at which topological structures are
explored—here, the time required to traverse a rhombic
unit cell of a grid module or 360◦ of head direction—must
be much longer than the microscopic timescale at which
neuronal activity is generated. This enables us to coarse-grain
over spikes and describe the activity by a firing rate. Indeed,
the inputs to our analysis pipeline are firing rates over 0.2 s
time bins, which averages over many neurophysiological
processes, including major neural oscillations found in the
hippocampal region (Lisman and Jensen, 2013). Similar forms of

Frontiers in Computational Neuroscience | www.frontiersin.org 10 April 2021 | Volume 15 | Article 616748

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Kang et al. Persistent Cohomology and Spatial Representation

coarse-graining were used by Rybakken et al. (2019), Chaudhuri
et al. (2019), and Gardner et al. (2021) to successfully apply
persistent (co)homology to experimental recordings in the
spatial representation system.

For comparison, we attempt to modify manifold
learning algorithms to enable discovery and interpretation
of topological structure (Supplementary Material and
Supplementary Figure 1). We find that Isomap (Tenenbaum
et al., 2000) followed by Independent Components Analysis
(ICA) (Hyvärinen, 1999) can successfully identify and decode
from toroidal structure with modified grid cells whose tuning
curves exhibit a square lattice. Unlike persistent cohomology,
it does not work for triangular lattices and does not consider
topological features with dimensionality >1. UMAP (McInnes
et al., 2018) can be used to embed grid cell data directly into
a 2-dimensional space with a toroidal metric, but we find that
its coordinates do not correspond well to the physical grid
periodicity. In short, persistent cohomology performs better
and requires adjusting fewer parameters for topological data
analysis compared to these alternative methods, which were not
designed for such analysis. Note that Chaudhuri et al. (2019)
formulate an alternative method for decoding topologically
encoded information; they also use persistent homology for
discovery of topological structure.

The application of persistent (co)homology to neuroscience
data is still in its developing stages. In addition to the research
on spatial representation circuits described above (Chaudhuri
et al., 2019; Rybakken et al., 2019; Gardner et al., 2021), notable
lines of work include: simulations of hippocampal place cells
in spatial environments with non-trivial topology (Dabaghian
et al., 2012; Spreemann et al., 2015; Babichev et al., 2018, 2019;
Chowdhury et al., 2018); analysis of EEG signals, for classification
and detection of epileptic seizures (Piangerelli et al., 2018; Wang
et al., 2018) and for construction of functional networks in
a mouse model of depression (Khalid et al., 2014); inferring
intrinsic geometric structure in neural activity (Giusti et al.,
2015); and detection of coordinated behavior between human
agents (Zhang et al., 2020). There is potential for persistent
(co)homology to provide insight to a wide range of neural
systems. Topological structures generally can be found wherever
periodicities exist. These periodicities can take many forms, such
as the spatial periodicities in our work, temporal regularities
in neural oscillations, motor patterns, and neural responses to
periodic stimuli.

The toolbox of topological data analysis has more methods
beneficial to the analysis of neural data. The methods described
in this paper, including geometric subsampling, are sensitive
to outliers. This problem can be addressed within the same
framework of persistent cohomology by using the distance-to-
a-measure function (Chazal et al., 2011). In practice, this would
translate into a slightly more elaborate construction (Guibas
et al., 2013) of the Vietoris–Rips complex. Furthermore, our
analysis pipeline benefits from having neural activity embedded
in a high dimensional space, i.e., from having many more
neurons than the intrinsic dimensions of the recovered tori.
It is possible to adapt this technique to the regime of limited
neural recordings (even to a single neuron) by using time-delay

embeddings (Takens, 1981). However, for spatial populations,
such a technique would require control over the smoothness of
the animal’s trajectory, which may not be feasible in practice.
Also, the method we present cannot make inferences on network
topology. If connectivity information were present in neural
activities, they should appear on fast timescales related to
synaptic integration, action potential propagation, and synaptic
delay. By averaging neural activity into 0.2 s time bins, we destroy
this information, but it is possible that a modified method may
access it.

Our results also suggest research directions in topological
data analysis. Throughout the paper, we relied on 1-dimensional
persistent cohomology to infer whether we recovered a particular
torus. But that is a relatively weak method: many topological
spaces have cohomology groups of the same dimension.
Although the trajectories that we recover via circular coordinates
serve as a convincing evidence that we are indeed recovering
the tori, it is possible to confirm this further by exploiting cup
product structure in cohomology, which is a particular kind
of a topological operation that turns cohomology into a ring.
Computing a “persistent cup product” would provide additional
evidence about the structure of the recovered spaces.

4. METHODS

4.1. Generating Neural Recordings
4.1.1. Animal Trajectory
We simulate the simultaneous recording of neurons from a rat as
it explores a circular enclosure of diameter 1.8m. We use 1,000 s
from a trajectory extracted from an experimental animal (Hafting
et al., 2005; Burak and Fiete, 2009). This trajectory is provided
as velocities sampled at 0.5ms intervals along with the initial
position. We average these to positions and directions at 0.2 s
intervals as follows: the position of the animal is simply the
average position within each 0.2 s time bin, and the direction
of the animal is the circular mean of the velocity vector angle
within each 0.2 s time bin. We ignore the distinction between
body direction and head direction.

4.1.2. Periodic Neural Populations
We generate tuning curves as a function of position and/or
direction for each neuron. These localized tuning curves are
based on a shifted and truncated cosine function:

f (z) =







1+ cosπz

2
|z| < 1

0 |z| ≥ 1.
(1)

For each grid module, we set a scale l and an orientation φ.
This defines a transformation matrix from the space of phases
[

− 1
2 ,

1
2

)

×
[

− 1
2 ,

1
2

)

to the rhombic unit cell of the grid module in
physical space:

A = l

(

cosφ cos
(

φ + π
3

)

sinφ sin
(

φ + π
3

)

)

. (2)

Unless otherwise specified, we use l = 40 cm and φ = 0. The
inverse of this matrix A−1 maps the rhombic unit cell onto the
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space of phases. We also define ‖ · ‖ as the vector norm and
〈a〉m ≡ (a + m mod 2m) − m as the shifted modulo operation.
The tuning curve of a grid cell as a function of position x is then

sgrid(x; b) = f
(

1
0.45l

∥

∥A〈A−1x− b〉1/2
∥

∥

)

(3)

Each grid cell is shifted by a uniformly random phase offset b. The
full width at half maximum of each grid field is 0.45l. In physical
space, the offset of a grid cell isAb, where integers can be added to
either component of b; the shortest distance between these offsets
for two grid cells is the physical distance shown in Figure 5D.

The tuning curve of a head direction cell as a function of
direction θ is

sdir(θ; c) = f
(

4〈θ − c〉π
)

. (4)

Each head direction cell is shifted by a uniformly random
direction offset c. The full width at half maximum of the head
direction field is π/2.

The tuning curve of a conjunctive cell is simply the product

sconj(x, θ; b, c) = sgrid(x; b)sdir(θ; c). (5)

Each conjunctive cell has uniformly random offsets b and c.

4.1.3. Non-periodic Neural Populations
For non-grid spatial cells, we generate tuning curves as a function
of position for each neuron of the form

sspatial(x) =
1

2

(

e−‖x−d1‖2/2σ 2 + e−‖x−d2‖2/2σ 2
)

, (6)

where σ = 40 cm and the di’s are chosen uniformly randomly
between (0, 0 cm) and (180, 180 cm).

For random neurons, we obtain activity time series by
sampling from a distribution every 2 s, or 10 timepoints,
and interpolating in between using cubic polynomials. The
distribution is Gaussian with mean 0 and width 0.5, truncated
between 0 and 1.

4.1.4. From Tuning Curves to Time Series
To obtain activity time series for all populations except for
random neurons, we apply the tuning curves to each trajectory
timepoint. Whenever the velocity decreases below 5 cm/s, we
set the activity to be 0. This threshold simulates the behavior
of neurons in the hippocampal region that exhibit high activity
during locomotion and low activity during idle periods (Sargolini
et al., 2006; Kropff et al., 2015; Hinman et al., 2016).

4.1.5. Multi-Neuron Units for Grid Cells (Figures 4A,B)
We generate multi-neuron units (Figure 4) by linearly
combining activity time series from multiple grid cells. Each
mixing coefficient is chosen from a uniform random distribution
between 0 and 1. The activity is then normalized by the sum of
squares of the mixing coefficients.

4.1.6. Spiking Noise for Grid Cells (Figures 4C,D)
The activities described above are dimensionless, and we typically
do not need to assign a scale because we divide each time series
by its mean before applying persistent cohomology. To create
spiking noise, however, we must set the firing rate. We linearly
rescale the rate given by Equation (3):

λ = 0.4+ 7.6sgrid. (7)

This sets the maximum firing rate to be 8 and creates a baseline
rate of 0.4; with 0.2 s time bins, these values correspond to 40
and 2Hz, respectively. However, we still set the firing rate to 0Hz
when the animal’s velocity decreases below 5 cm/s.

Using λ, we generate Poisson-like spiking noise with different
levels of variability (Figure 4). At each timestep, the noisy activity
is given by

snoisy = F · X, X ∼ Pois(λ/F). (8)

F sets the Fano factor of the random process, which is its variance
divided by its mean (for any given λ). The F = 1 case corresponds
to a Poisson random process; F < 1 implies sub-Poissonian noise
and F > 1 implies super-Poissonian noise.

4.1.7. Generating Grid Cells With Various Properties

(Figures 4E–K)
• Square enclosure (Figure 4E): We use 1,000 s from a trajectory

extracted from an experimental animal in a square enclosure of
width 1.5m (Stensola et al., 2012), binned in the same way as
for the circular enclosure (section 4.1.1). To change the lattice
orientation, we use a non-zero value for φ in Equation (2).
• Scale factor (Figure 4F): Grid scale is modified by changing l

in Equation (2). The scale factor is l divided by the diameter of
the enclosure, 1.8m.
• Field size factor (Figure 4G): Field size is modified by

replacing 0.45 in Equation (3) by the field size factor. In other
words, the field size factor multiplied by the grid scale is the
full width at half maximum of each grid field.
• Aspect ratio (Figure 4H): The grid lattice is elongated to

an aspect ratio ε ≥ 1, which is the ratio between the
major and minor axes of the ellipse that circumscribes each
hexagonal lattice domain. This is accomplished by replacing
the transformation matrix in Equation (2) with

A = l ·
√
3

2
sec 2ψ

(

2 cosψ cosφ cos
(

φ + ψ
)

2 cosψ sinφ sin
(

φ + ψ
)

)

, (9)

where ψ ≤ 60◦ is the angle between the two lattice vectors. ψ
is related to ε by

ψ = arcsec

(

3

ε
− 1

)

. (10)

When ε = 3/(1 +
√
2) ≈ 1.24, ψ = 45◦ and the lattice

becomes square.
• Field jitter (Figure 4I): Jitter in the position of grid fields is

introduced by shifting each field in physical space by

U1l

(

cosφ
sinφ

)

+ U2l

(

cos
(

φ + π
3

)

sin
(

φ + π
3

)

)

, (11)
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where l is the grid scale, φ is the grid orientation, and Ui ∼
Unif(−field jitter, field jitter).
• Field variability (Figure 4J): Variability across grid

fields is introduced by choosing random numbers
Uij ∼ Unif(−field var., field var.) at 20 cm-intervals
throughout the enclosure for each grid cell. A linear
interpolation is constructed for these points, which is
smoothed by a Gaussian filter of width 20 cm. This resulting
random function is added to the standard tuning curve in
Equation (3), and all values under 0 are clipped to 0.
• Lattice variability (Figure 4K): Variability in lattices

across grid cells is introduced by randomly perturbing
the transformation matrix for each grid cell (Equation 2)
according to

A =
(

1+W11 W12

W21 1+W22

)

l

(

cosφ cos
(

φ + π
3

)

sinφ sin
(

φ + π
3

)

)

, (12)

where

Wij ∼ Unif(−lattice var., lattice var.). (13)

4.2. Neural Activity Maps
We construct activity maps for each neuron as a function of
position or direction. To do so, we simply tally the total amount
of activity in each positional or directional bin. Note that these
maps do not depict firing rate because we do not divide by the
occupancy of each bin; we decided against this in order to show
the activity experienced through the animal trajectory.

4.3. Processing Neural Recordings
For each neuron, we first divide its activity at every timepoint
by its mean activity. We then delete all timepoints whose neural
activities are all smaller than a small limit 1 × 10−4. This simple
procedure removes points at the origin that we do not expect to
participate in topological structures.

To improve computational efficiency, we reduce the number
of input points while preserving their topological structure
by applying a geometric subsampling strategy. We pick the
first point at random, and then iteratively add a point to our
subsample that is the furthest away from the already chosen
points. Specifically, if P is the input point set and Qi is the
subsample after i iterations, we form Qi+1 by adding the point
qi+1 chosen as

argmax
p∈P

min
q∈Qi

‖p− q‖. (14)

Figure 1B illustrates a result of this strategy. By construction, the
subsample Qi forms an εi+1-net of the input point sample, which
means the largest distance from any input point to the nearest
point of the subsample does not exceed εi+1 = minq∈Qi ‖qi+1 −
q‖. Because persistent cohomology is stable, this guarantees that
the persistence diagram we compute for the subsample Qi is
at most εi+1 away, in bottleneck distance (Cohen-Steiner et al.,
2007), from the persistence diagram of the full point set P. We
generally select 1,000 points through this process. The results in
Figures 5H,I were obtained by applying persistent cohomology
on the full dataset without subsampling.

To measure success rate, we apply persistent cohomology on
100 replicate datasets and measure the proportion of successes as
determined by the largest-gap heuristic.

4.4. Applying Persistent Cohomology
We refer the reader to extensive literature on persistent
(co)homology (Edelsbrunner and Harer, 2010; Edelsbrunner and
Morozov, 2017) for the full details. More details on the involved
constructions are presented in the Supplementary Material.
Here, we only briefly mention some of them. For technical
reasons—both to recover the circular coordinates and for
computational speed—we work with persistent cohomology,
which is dual to persistent homology, which a reader might be
more familiar with.

To recover the topology of the space sampled by a point
set P, we construct a Vietoris–Rips simplicial complex. Given a
parameter r, Vietoris–Rips complex consists of all subsets of the
point set P, in which every pair of points is at most r away from
each other,

VR(P, r) = {σ ⊆ P | ‖p− q‖ ≤ r ∀p, q ∈ σ }. (15)

The cohomology group, Hk(VR(P, r)), defined formally in the
Supplementary Material, is an algebraic invariant that describes
the topology of the Vietoris–Rips complex. Its rank, called the
k-th Betti number, counts the number of “holes” in the complex.

As we vary the radius r in the definition of the Vietoris–Rips
complex, the simplicial complexes nest: VR(P, r1) ⊆ VR(P, r2),
for r1 ≤ r2. The restriction of the larger complex to the smaller
induces a linear map on cohomology groups, and all such maps
form a sequence:

Hk(VR(P, r1))← Hk(VR(P, r2)← Hk(VR(P, r3))← . . . (16)

It is possible to track when cohomology classes (i.e., “holes”)
appear and disappear in this sequence. Recording all such birth–
death pairs (ri, rj), we get a persistence diagram, which completely
describes the changes in the sequence of cohomology groups.

For a persistent class, i.e., one with a large difference between
birth and death, de Silva et al. (2011) describe a procedure for
turning it into a map from the input data points into a circle,
which assigns a circular coordinate to each data point. Perea
(2018) extends that procedure to allow computation of persistent
cohomology on a subsample of the data, e.g., the geometric
subsample mentioned in the previous subsection.

4.5. Reconstructing Animal Trajectory
From Circular Coordinates
The process for obtaining circular coordinates outlined in the
previous subsection (and presented in greater detail in the
Supplementary Material) outputs one value between 0 and 2π
for each persistent 1-cocycle at each timepoint. A grid module
yields two persistent 1-cocycles, so our circular coordinates form
a vector ut = (ut1, ut2) at each timepoint t = 1, . . . ,T. We divide
each coordinate value by 2π so that each uti ∈ [0, 1). No matter
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the recording duration used to obtain circular coordinates, we
only reconstruct the first 100 s of the animal trajectory.

We first perform a preliminary unfolding of the circular
coordinates. We calculate all the difference vectors between
adjacent timepoints and cancel out changes by more than±1/2:

1uunfoldedti = 〈uti − ut−1,i〉1/2,
where 〈a〉1/2 ≡ (a+ 1/2 mod 1)− 1/2. (17)

Next, we seek to unshear the coordinates. The rhombic unit cell
in physical space is sheared by 30◦ relative to the orthogonal axes
of topological space. We wish to apply this transformation to the
difference vectors to restore the unsheared trajectory. There are
two possible unshearing matrices

S± =
(

cos 0 cos
(

π
2 ±

π
6

)

sin 0 sin
(

π
2 ±

π
6

)

,

)

(18)

and we could perform the rest of the analysis for both
transformations separately, knowing that one trajectory is
unsheared and the other is doubly shared. Instead, we
assume knowledge that the animal is exploring an open field
environment in which all directions of motion should generally
be sampled uniformly. We calculate the covariance matrix for
both sets of transformed difference vectors:

6±ij =
1

T

∑

t

1u±ti1u±tj , where 1u±t = S±1uunfoldedt . (19)

The proper unshearing S produces the covariance matrix whose
ratio of eigenvalues is closest to 1. This heuristic could be changed
assuming different statistics of animal motion, for example those
corresponding to a linear track.

After identifying the unshearing matrix S, we return to
the raw coordinates and apply this transformation first, before
unfolding:

1uunshearedt = S(ut − ut−1). (20)

Since shear transformations change distances, we reevaluate our
unfolding. We compare the norm of every difference vector
1uunshearedt to its norm after possible unfoldings along the
unsheared lattice vectors given by the columns of S. The shortest
vector at each timepoint is the reconstructed difference 1urecont ,
and the reconstructed trajectory segment shown in Figure 5E is
their accumulation urecont =

∑

t 1urecont .
So far, this reconstruction has not incorporated detailed

information about the animal trajectory. To judge its quality,
we now fit the reconstruction to the true segment of animal
trajectory xt through rigid transformation and uniform scaling.
We first determine whether or not the reconstruction needs to be
unreflected. To judge this, we calculate the signed vector angles
between adjacent steps for both the reconstruction and the true
trajectory

1θ recont =
〈

arctan(1urecont2 /1urecont1 )− arctan(1urecont−1,2/1urecont−1,1)
〉

π

1θt = 〈arctan(1xt2/1xt1)− arctan(1xt−1,2/1xt−1,1)〉π , (21)

where 〈a〉π ≡ (a+π mod 2π)−π . If the mean square difference
between−1θ recont and1θt is less than that between1θ recont and

1θt , then we reflect our reconstruction uorientedt =
(

1 0
0 −1

)

urecont .

Otherwise, uorientedt = urecont .
Finally, we fit the reconstruction to the true trajectory segment

by minimizing the mean squared error after uniform scaling a,
translation b and rotation θ :

min
a,b,θ

∑

t

∥

∥

∥

∥

xt − a

(

cos θ − sin θ
sin θ cos θ

)

uorientedt + b

∥

∥

∥

∥

2

. (22)

Note that we chose to try particular unshearing matrices in
Equation (18) and use the general assumption of isotropic
animal motion to select between them, all before fitting the
reconstruction to the actual animal trajectory in Equation (22).
These choices were designed to obtain the most faithful
reconstruction without using the animal trajectory, which is the
information that we would like to infer. This process assumes
knowledge of the angle between directions of periodicity, which
is ∼60◦ for grid modules. Moreover, it also relies on the
circular coordinates implementation (explained in greater detail
in Supplementary Material) selecting two of the shortest non-
parallel vectors between lattice vertices as its basis—that selection
is not guaranteed, but empirically, it frequently occurs in our
case, as indicated by low reconstruction errors in Figure 5.
An alternative method for unshearing before comparison with
the true trajectory is to find a transformation matrix that
yields a covariance matrix for the transformed difference vectors
(analogously to Equation 19) with a desired ratio of eigenvalues.
Otherwise, if a sheared reconstruction is sufficient, unshearing
can be skipped.
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