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The discovery of semantic information from complex signals is a task 
concerned with connecting humans’ perceptions and/or intentions with 
the signals content. In the case of audio signals, complex perceptions 
are appraised in a listener’s mind, that trigger affective responses that 
may be relevant for well-being and survival. In this paper we are 
interested in the broader question of relations between uncertainty in 
data as measured using various information criteria and emotions, and 
we propose a novel method that combines nonlinear dynamics analysis 
with a method of adaptive time series symbolization that finds the 
meaningful audio structure in terms of symbolized recurrence 
properties. In a first phase we obtain symbolic recurrence 
quantification measures from symbolic recurrence plots, without the 
need to reconstruct the phase space with embedding. Then we estimate 
symbolic dynamical invariants from symbolized time series, after 
embedding. The invariants are: correlation dimension, correlation 
entropy and Lyapunov exponent. Through their application for the 
logistic map, we show that our measures are in agreement with known 
methods from literature. We further show that one symbolic recurrence 
measure, namely the symbolic Shannon entropy, correlates positively 
with the positive Lyapunov exponents. Finally we evaluate the 
performance of our measures in emotion recognition through the 
implementation of classification tasks for different types of audio 
signals, and show that in some cases, they perform better than state-of-
the-art methods that rely on low-level acoustic features.
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1 Introduction

This paper is an extension of work originally pre-
sented in IEEE 11th ICSC [1].

The task of capturing emotional meaning from au-
dio structure while disregarding trivial or irrelevant
information is a complex process that cannot be in-
ferred using low-level acoustics. Recent advances in
research on sound dynamics have shown that nonlin-
ear phenomena exist in complex audio signals [2, 3,
4, 5, 6]. Such complex information is shaped in the
nonlinear dynamical structure of audio content that is
brought together by repeating patterns evolving in a
temporal order. Nonlinear dynamics analysis consists
of a set of methods that unravel these fine-grained
patterns, and study their role in conveying meaning-

ful information[7]. Particularly, it was shown that the
strange attractors of the sounds’ dynamical systems
carry perceptual meaning [8]. As a consequence re-
cent studies were successful at applying methods of
nonlinear dynamics to capture voice pathologies in
speech signals [9, 3, 4, 10], recognize environmental
sounds [11, 12] and discriminate between different
singing styles [2]. Despite these advances, very few
researches have applied nonlinear dynamics for mod-
eling emotion in audio signals. In [6], measures of
the geometrical properties of the phase space recon-
struction are employed to recognize affect in speech;
in [13], recurrence properties of the vowel accurately
describe the dynamic behaviour of six basic emotions.

In our former work [1], we proposed a novel learn-
ing framework of affective auditory scene analysis us-
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ing a recently developed method of non-linear dy-
namic signal analysis, the Variable Markov Oracle
(VMO), that finds the best audio structure repre-
sentation in terms of the symbolized recurring pat-
terns, while preserving their temporal order. We
obtained symbolic recurrence quantification analy-
sis (RQA) measures without reconstructing the phase
space with embedding. Our contribution over pre-
vious recurrence analysis methods is that our model
explored the dynamics of the most informative recur-
rent patterns in the signal, by means of symbolic RQA
features. We showed that measures of periodicity and
complexity derived from our model are relevant for
the characterization of affect in auditory scenes, and
that they perform better than state-of-the-art methods
relying on low-level acoustic features.

In this paper we contribute to the ongoing re-
search on affective semantics from sound by propos-
ing a new set of symbolic dynamical invariants com-
puted from the VMO. After the symbolization step,
we propose a novel method of computing symbolic
dynamical invariants from the symbolized sequences
of the time series, after performing an embedding
step. The invariants are: the correlation dimension
(D2), correlation entropy (K2) and the Lyapunov Ex-
ponent (LE). In literature, the correlation dimension
and Lyapunov Exponent have been successful in dis-
criminating voice quality as well as in characterizing
pathologies in voice [14, 9]. Furthermore, D2 and
K2 are effective in the detection of emotion in speech
[3, 4]. In the music domain, LE and D2 were used
to characterize the clarinet tone [15], however rare are
the literatures that investigate the potential of dynam-
ical invariants in characterizing emotion in music.

The contribution of this paper is a novel method
of nonlinear dynamics that derives symbolic dynami-
cal measures from an adaptive time series symboliza-
tion method (VMO), with and without phase space re-
construction. First, it derives symbolic RQA measures
from a symbolization of the signal’s feature frames
without embedding [1]. Second, it estimates symbolic
dynamical invariants from the symbolized time series
after embedding. Then we estimate our symbolic dy-
namical measures for the logistic map and show that
they are in agreement with known methods from lit-
erature. Finally we test the performance of our sym-
bolic complexity measures in predicting emotion by
performing classification tasks on four types of sound
stimuli. The advantage of our symbolic complexity
measures is that first they quantify the dynamics of
the most meaningful recurring patterns in the sig-
nal; second, their number is determined and hence
we don’t have to address the problem of the dimen-
sionality of the dataset, therefore no feature selection
methods are employed; third we show that they are
efficient in recognizing emotions across three types of
stimuli, which suggests that their performance does
not depend on the type of sound under study.

2 Theoretical Background

2.1 Nonlinear Time Series Analysis

Nonlinear time series analysis (NLTSA) consists of a
set of methods that characterize dynamical informa-
tion from time-ordered values in a dataset. It is based
on the fact that the real underlying dynamical state
of a complex system is often unknown, and that all
the information needed to determine the future be-
haviour of the system’s state is independent of its
past, and can be predicted based on knowledge of the
present state, which is the observable measured by the
time series.

In order to learn about the underlying dynamics
of time-ordered data such as audio signals, it is neces-
sary to reconstruct the phase space.

Phase Space Reconstruction The states of dynami-
cal systems change in time, and their time evolution is
defined geometrically in the shape of trajectories that
belong to a phase space known as strange attractor.

In practice, we do not have a full knowledge of
the dynamical system in order to reconstruct its phase
space. But we do have a time-discrete measurement
of one observable, which results in a scalar and dis-
crete time series, that is used to reconstruct the origi-
nal system’s dynamics, through the reconstruction of
its phase space via embedding. The embedding theo-
rems guarantee that for noise-free data, there is a di-
mension m such that the embedded vectors are equiv-
alent to the original phase space vectors [16].

To reconstruct the phase space of a system from a
time series, the Takens’ embedding theorem is used
[17] and the framework is the following [18]:

Let x(t) be a trajectory of a dynamical system and
s(t) = s(x(t)) the result of a scalar measurement on it.
Then a delay reconstruction with time delay τ and
embedding dimension m is given by:

s(t) = (s(t − (m− 1)τ), s(t − (m− 2)τ), ..., s(t)) (1)

Embedding parameters One of the main chal-
lenges of the delay-coordinate embedding theorem, is
choosing appropriate values of dimension m and time
lag τ [16].

Several methods exist that derive m and τ but we
are naming the most widely used ones in literature.
First τ is estimated: if τ is very small, consecutive
elements of the delay vectors will highly correspond,
and all the vectors will be clustered around the main
diagonal, unless m is very large. If τ is very large,
consecutive elements are independent, and the points
will fill a large space in the phase space [16]. Two
functions can be used to determine τ : the first zero
of the autocorrelation function of the time series and
the first minimum of the mutual information function
(FMMI). In this work we use the FMMI.
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Once τ is chosen, the next step is to estimate the
embedding dimension m. If m is too large, the em-
bedded data will be redundant, which will confuse
the performance of prediction algorithms. Two widely
known methods can be used: the false-nearest neigh-
bour algorithm (FNN) [19] and the ‘asymptotic invari-
ant approach’. The FNN method is used in this work
since it is the most widely used one, and m is chosen
where the number of false neighbours drops to zero.

The resulting is equivalent to the attractor in the
original phase space if m ≤ 2d + 1, were d is the di-
mension of the original phase space. In general we
don’t know what the value of d is, but using the FNN
method, m is guaranteed to fulfil that requirement.

2.2 Recurrence Plots

Recurrence is a fundamental property of most dynam-
ical systems. In fact it is due to the systems’ recur-
rence to former states that we know how to predict the
future state of the system. Recurrence takes place in
the system’s phase space, and the tool that measures
it is called a recurrence plot (RP) [20].

Given a trajectory ~xi ∈ R
d in a d-dimensional

phase space of a dynamical system, the RP is a two-
dimensional visualization of the square recurrence
matrix of the embedded time series defined by:

Rm,εi,j = Θ(ε −
∥∥∥~xi − ~xj∥∥∥), i, j = 1, ...,N (2)

where ~xi and ~xj are phase space trajectories in an
m-dimensional phase space, N is the number of mea-
sured points in a trajectory, ε is a threshold distance,
Θ(.) the Heaviside function such that: Θ(x) = 0 if
x < 0 and Θ(x) = 1 otherwise, and ‖.‖ is some appro-
priate choice of a norm, such as the L2-norm, other-
wise known as the Euclidean distance. Both axes of
the RP are time axes. The dots or pixels located at
(i, j) and (j, i) on the RP are black if the distance be-
tween points xi and xj in the phase space fall inside
a ball or threshold corridor of radius ε, the threshold
distance [21, 22]. In this case, the black points refer
to recurring states also termed ε-recurrent states since
they occur in an ε-neighbourhood. The ε-recurrent
states are represented by the relation[20]:

~xi ≈ ~xj ⇐⇒ Ri,j ≡ 1. (3)

The dots are white if Ri,j ≡ 0. The RP always dis-
plays a main black diagonal line called the line of
identity (LOI), since Ri,i ≡ 1 by definition. For more
in-depth description of the RP properties, the reader
is referred to [20].

2.3 Recurrence Quantification Analysis

In order to derive meaning from the structures of the
RP, various complexity measures are computed that
quantify those structures. Such quantification is im-
portant since it will be employed to characterize the
dynamical information and to perform predictions.
These statistical measures are known as Recurrence

Quantification Analysis (RQA) and are based on the
density of recurrence points, the diagonal and verti-
cal line structures in the RP [21, 23, 24]. RQA can
be applied to non-stationary processes in continuous
or discrete time series. For example, the metric de-
terminism can discriminate signals from noise, and is
valuable in pattern mining and classification tasks.

2.3.1 Measures based on the density of recurrence
points

Given an RP thresholded at ε (Eq. 2), the Recurrence
Rate (RR) measures the density of recurrence points
in the RP:

RR =
1
N2

N∑
i,j=1

Ri,j (4)

The RR measure corresponds to the correlation sum
(D2) measure, but D2 excludes the main diagonal line
(LOI):

D2 =
1

N (N − 1)

N∑
i,j=1
j,i

Ri,j (5)

2.3.2 Diagonal lines based measures

Given the histogram P (l) of diagonal lines of length l,
the following measures are computed:

Determinism (DET ) is the percentage of points in
diagonal line of at least length l = lmin, i.e. the ratio
of recurrence points in the diagonals to all recurrence
points, and is a measure of the predictability of the
system. Processes with chaotic behaviour cause none
or very short diagonals. Deterministic processes cause
longer diagonals and less isolated recurrence points.

DET =

∑N
l=lmin

lP (l)∑N
l=1 lP (l)

(6)

The average length of diagonal line length L is the
average time during which two segments of a trajec-
tory are close to each other, and it refers to the mean
prediction time. The length l of diagonal lines refer
to the number l of time steps during which a seg-
ment of the trajectory is close to another segment of
the trajectory at a different time. Therefore the diago-
nal lines are related to the divergence of the trajectory
segments.

L =

∑N
l=lmin

lP (l)∑N
l=lmin

P (l)
(7)

Then the length Lmax of the longest diagonal line
in the RP excluding LOI is derived:

Lmax =max({li}
Nl
i=1) (8)

And the inverse of Lmax indicates the divergence
(DIV ) of the phase space trajectory. The faster the
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trajectory segments diverge, the diagonal lines will be
shorter, and the value of DIV will be higher:

DIV =
1

Lmax
(9)

The next measure is the Shannon entropy of diag-
onal line length distribution in the RP (SRP ), which is
the probability p(l) = P (l)/Nl to find a diagonal line of
exactly length l in the RP. It is a measure of complex-
ity in the RP in terms of the diagonal lines, such that,
for uncorrelated noise the value of SRP will be small,
which indicates a low complexity.

It is defined as:

SRP = −
N∑

l=lmin

p(l) ln p(l) (10)

The RAT IO is a measure that uncovers transitions
in the system’s dynamics:

RAT IO =
DET
RR

(11)

2.3.3 Vertical lines based measures

Measures based on vertical structures in the RP un-
cover chaos-chaos transitions [20] in a dynamical sys-
tem that are not found using diagonal line based mea-
sures. These are laminarity and trapping time.

The laminarity (LAM) refers to the occurrence of
laminar states in the system independently of their
lengths. If the RP contains less vertical lines and more
single recurrence points, then the value of LAM will
be low. Its definition is analogous to the definition of
DET for vertical lines of minimal length v = vmin.

LAM =

∑N
v=vmin vP (v)∑N
v=1 vP (v)

(12)

The trapping time measure (T T ) is the average
length of vertical lines, and estimates the mean time
that the system’s state will be trapeed:

T T =

∑N
v=vmin vP (v)∑N
v=vmin P (v)

(13)

3 Our Approach

One key concern when using RPs is finding the
threshold to make sure that the RP exhibits enough
recurrence points. Another difficulty to address is the
length of the sequence used to generate the RP. This is
considered as a second embedding step that is differ-
ent from the phase space embedding, however in tra-
ditional RP construction methods these two steps are
indistinguishable, as the RP is constructed first and
then the recurring patterns are found by looking for
diagonal lines.

In this work we propose a novel method that does
not require a phase space reconstruction with embed-
ding. This is done using the Variable Markov Oracle

(VMO) [25], a suffix automaton that reduces a multi-
variate time series down to a symbolic sequence while
retaining the recurring sub-sequences. Accordingly,
we consider recurrences of symbolic sequences with-
out a need to estimate a threshold, since this step is
implicitly done during the symbolization, based on a
mutual information criterion that estimates the op-
timal threshold in terms of maximizing Information
Rate (IR) [26]. IR considers the mutual information
between past and present in a signal. In the next sec-
tion we describe this approach.

In a first phase, we estimate symbolic RQA from
the symbolic RPs generated from the VMO without
embedding. In a second phase, we estimate symbolic
dynamical invariants from the VMO generated sym-
bolic recurrences, after applying an embedding.

3.1 The Variable Markov Model

The Variable Markov Oracle (VMO) [25] is a suffix tree
data structure that is derived from Factor Oracle (FO)
[27, 28] as well as Audio Oracle (AO) [29].

FO is a suffix automaton that finds factors (re-
peated substrings) in a word (or sequence of symbols),
as well as patterns (repeated suffixes) [27]. It has been
employed mainly for optimal string matching algo-
rithms, such as biosequence pattern matching. As-
sayag et al. 2004 showed how the FO can be adapted
to learn symbolic musical sequences and generate
symbolic musical improvisations in real-time [28].

AO is an extension of FO for audio signals, that is
independent of the audio feature representation. AO
extends the applications of FO to multivariate time se-
ries such as an audio signal sampled at discrete times.
Based on a distance measure, the AO structure finds
and links all the possible combinations of audio sub-
clips that are similar. AO has been successfully ap-
plied to audio generation.

3.1.1 VMO Construction

VMO inherits the strengths of both FO and AO. The
important improvement over its predecessors, is that
VMO assigns symbols to the signal frames connected
by suffix links during AO construction: it accepts a
signal O as input, outputs the oracle structure, and
keeps track of the sequence of assigned labels Q =
q1, ...,qN as well as a list of pointers to their corre-
sponding observations O = O[1], ...,O[N ]. As such
VMO performs a symbolization of a signal’s time se-
ries by storing the information regarding the repeated
substrings via the suffix links created during AO con-
struction and upgrades AO by assigning labels to the
frames connected by suffix links.

The notations of the forward and suffix links re-
main the same as in FO construction. The detailed
algorithm is found in [30, 25].

As mentioned earlier, a similarity threshold θ is
introduced to determine if a signal sampleO[i] is sim-
ilar to another sample O[j].
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In order to find the best symbolization of the sig-
nal, different VMO models can be created with dif-
ferent θ values. There is a tradeoff to consider when
choosing θ values. If θ is very low, every frame will be
different than every other frame, and VMO assigns a
different symbol to each frame in O. If θ is very high,
frames that are different are considered similar, and
the same symbol is assigned to every frame in O. In
both cases no structure in the time series can be cap-
tured by VMO.

Hence θ should be determined before VMO con-
struction. Dubnov et al. have shown that the value of
θ can be resolved by computing the Information Rate
(IR) over candidate θ values [31]. The optimal θ value
is the one that yields a highest IR value.

Information Rate IR is an information theoretic
metric that measures the information content of a
time series.

Let xN1 = x1,x2, ...,xN be a time series x with N ob-
servations, where H(x) = −

∑
P (x)log2P (x) is the en-

tropy of x, then the definition of IR is [32]:

IR(xn−1
1 ,xn) =H(xn)−H(xn|xn−1

1 ) (14)

And it is approximated by replacing the entropy
terms in equation 14 by a complexity measure C as-
sociated with a compression algorithm [32]. The com-
plexity measure is the number of bits used to com-
press xn independently using the past observations
xn−1

1 :

IR(xn−1
1 ,xn) ≈ C(xn)−C(xn|xn−1

1 ) (15)

Compror is a lossless compression algorithm based
on FO and the length of the longest repeated suffix
link (lrs). Details on Compror as well as on the method
of combining Compror with AO and IR are found in
[33]

IR is the mutual information between past and
present observation in a signal O[t] and is maximized
when there is balance between variation and repeti-
tion in the symbolized signal. This means that a VMO
with a higher IR value captures more of the repeating
patterns than a VMO with a lower IR value [32]. Fig-
ure 1 shows two oracle structures obtained with two
extreme θ values. Figure 2 visualizes the sum of IR
values versus different values of θ.

3.2 Symbolic Recurrence Plots from VMO

From the generated VMO-symbolized time series, we
obtain the symbolic RP (RPS hereafter), plotted from
the binary self-similarity matrix. The index of a suffix
link is a point on the RPS and a repeated sequence
is detected as a line since it includes repetitions of
length 1, 2, up to the longest repeated length. This
makes VMO effectively find a repetition for variable
length non-uniform embedding.

We redefine the symbolic RPS obtained from the
optimal VMO model of the signal’s time series:

RσM ,θi,j = Θ(θ − d(σqi ,σqj )) i, j = 1, ...,N (16)

Such that:

RσM ,θi,j =


1 if d(σqi ,σqj ) is ≤ θ

0 otherwise

(17)

Where N is the number of states considered, σM
refers to theMth symbolized substring, Θ is the Heav-
iside step function (i.e. Θ(x) = 0 if x < 0, and Θ(x) = 1
otherwise). θ is a threshold distance, and d(σqi ,σqj )
is a distance metric between pairs of symbolized sub-
strings qi at t = i and qj at t = j.

3.3 Feature Extraction

In our experiments, we derive two sets of complexity
features.

Symbolic RQA measures In the first phase we es-
timate symbolic RQA measures (RQAS hereafter).
Standard ways to consider similarity in audio signals
is through time-frequency representation. In a pre-
processing stage, the time series is transformed into a
constant-Q transform (CQT) feature vector. CQT is a
logarithmic spacing of filter center frequencies versus
bandwidths, that represents the audio signal in a form
that approximates human auditory analysis. Then the
CQT feature vector is passed as input to the VMO
constuction algorithm, that generates several symbol-
izations of the features in terms of their recurrence
properties. by means of IR, the optimal threshold θ is
evaluated to obtain the optimal VMO symbolization
model MS. Then the symbolic RPS is generated from
the self-similarity matrix obtained from the longest
repeated substrings (LRS) of MS. Then RQAS esti-
mates are obtained. Although standard RQA metrics
are not invariants, in our case, since their estimation
is independent of embedding, our RQAS can be con-
sidered as invariants.

Symbolic Dynamical Invariants In the second
phase we estimate symbolic dynamical invariants: the
correlation dimension (D2), correlation entropy (K2)
and the Lyapunov Exponent (LE).

Given a one-dimensional time series obtained
from an audio signal, first we embed it using Takens’
time-delay embedding method. The dimension m is
determined by the false-nearest neighbour algorithm,
and the value is chosen where the false nearest neigh-
bours are zero. The value of the time delay τ is defined
by the first minimum of the mutual information func-
tion. Next, we symbolize it with VMO, and select MS

by means of IR. Then from the selected VMO model
we obtain a representation of the LRS found in the se-
ries. From this representation we proceed to extract
D2, K2 and LE. The framework is depicted in figure
3.
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Figure 1: Two oracle structures. The top oracle has a very low θ value. The bottom oracle has a very high θ
value [30]

Figure 2: IR values on vertical axis and on horizontal axis. The solid curve in blue shows the relations between
the two measures and the dashed black line indicates the selected θ by locating the maximal IR value. [32]

Figure 3: Dynamical Invariants extraction framework
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Normally, in order to derive the LE using Rosen-
stein’s algorithm or Eckmann’s algorithm, either algo-
rithm operates directly on the time series after em-
bedding, and then computes the LE. In our approach
we obtain our symbolic invariants from the LRS of
the optimal VMO model MS. This is a novel aspect
where we obtain symbolic dynamical invariants that
describe the dynamical behaviour of only the most
meaningful recurrences found in the series.

Before employing the dynamical invariants in
emotion prediction tasks, we first probe to what ex-
tent our estimates are in agreement with known meth-
ods by illustrating their application to the logistic
map. Then we question their role in discriminating
emotion in voice, auditory scenes, instrumental mu-
sic as well as in film music.

Correlation Dimension The correlation dimension
(D2) is a geometric measure that tells how complex
are the dynamics of the system: a more complex sys-
tem has a higher dimension, which in is estimated
from the symbolic recurrence plot. D2 estimates the
complexity of the dynamics: a higher D2 indicates a
more complex system’s dynamics. D2S is computed
from the symbolic RPS by the correlation sum [20]:

D2S =
1

N (N − 1)

N∑
i,j=1
j,i

Θ(θ − d(σqi ,σqj )) (18)

Correlation Entropy The correlation entropy (K2)
also known as 2nd order Rényi entropy quantifies the
loss of information in time, in a dynamic system. It is
estimated from the symbolic RPS as:

K2S = −ln(D2S) (19)

Lyapunov Exponent Lyapunov exponents (LE) es-
timate the amount of chaos in a dynamical system
by quantifying the exponential divergence of initially
close phase-space trajectories. A system with one or
more positive LEs is defined to be chaotic.

4 Example Application

In this section we illustrate the application of the
RQAS as well as the symbolic dynamical invariants
for synthetic examples of the logistic map. Logistic
map is a well known model that exhibits different dy-
namic properties as a function of a single parameter,
and allows comparing standard non-linear dynamic
information measures with the data analysis methods
we develop here. The logistic map model allows us to
investigate some intriguing computational properties
of sequences that happen at the onset of chaos (add
references).

4.1 Symbolic RQAS for the logistic map

Mathematically, the equation of the logistic map is de-
fined as:

xi+1 = axi(1− xi) (20)

where xi is a real number between zero and one
and a is a positive constant. We generate multiple
time series from the logistic map and define the con-
trol parameter r ∈ [3.5,4], with ∆r = 0.0005, so that
for each r we have a separate time series T of length
1000. The values of the parameters are set in order
to compare the results with [20] and accordingly, we
embed the time series with dimension m = 3 and time
delay τ = 1.

Figure 4 shows plots of our VMO-derived RQAS

measures. A comparison of the plots below is made
with similar plots in [20] derived directly from the
time series after embedding.

Plots (A), (C), (E) of figure 4 show the measures
DETS, LmaxS and LS respectively that are based on
the diagonal lines. They have similar maximas that in-
dicate the periodic-chaos/chaos-periodic transitions.
LmaxS detects all such transitions, but DETS and LS
do not find them all.

Similarly, the chaos-chaos transitions to the lami-
nar states are depicted by the measures based on the
vertical structures, shown in plots (B), (D), (F): LAMS,
T TS and VmaxS. The difference between LAMS and
VmaxS is that LAMS only measures the amount of
laminar states, while VmaxS estimates the maximum
duration of the laminar states. The lines in VmaxS
plot show significant drops within periodic windows,
indicating that the chaos-order transitions are also
identified. This is in agreement with [20] who states
that RQA measures are able to identify bifurcation
points. However the LAMS plot shows a different
structure, it displays minimas or drops that corre-
spond to the chaos-chaos transitions, while in the
referenced work the LAM plot displays maximas or
peaks at the same locations. This may be due to the
fact that our LAMS is derived from a symbolic rep-
resentation of the series rather than the data itself.
However as in the referenced paper, LAMS is different
from the other two vertical-based measures VmaxS
and T TS, in that it does not peak at inner crises, possi-
bly because it is more robust against noise in the data.
Finally similarly to the method in [20], with our sym-
bolization method a 1000 data points are enough to
derive the RP-based measures.

4.2 Symbolic dynamical invariants for
the logistic map

To test the suitability of our symbolic complexity mea-
sures, we compute them for the logistic map. For each
of LE, D2, K2, IR as well as θ, there is one value per
time series.

Figure 5 portrays plots of the LE computed di-
rectly from the time series after embedding, the Shan-
non entropy (SRPS ) estimated from the RPS, the sym-
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A B

C D

E F

Figure 4: RQAS from the RPS of the logistic map: r ∈ [3.5,4.0], ∆r = 0.0005 and T = 1000. (A) Determinism.
(B) Maximal diagonal line length. (C) Average diagonal line length. (D) Laminarity. (E) Maximal vertical line
length. (F) Trapping time.
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bolic LES and K2S. The plots are commented in sub-
section 4.3.

The formal relationship between the correlation
entropy K2 and the Lyapunov Exponents LE is [20]:

K2 ≤
∑
λi>0

λi (21)

where λi denote the Lyapunov exponents. From
Eq.(21) one sees that K2 is a lower bound for the sum
of the positive Lyapunov exponents.

4.3 Qualitative Comparison of Dynami-
cal Invariants

There are different dynamical regimes and transitions
that occur between the values in the range of r of the
logistic map. They appear in the form of accumula-
tion points, periodic and chaotic states, band merg-
ing points, period doublings and various order-chaos,
chaos-order as well as chaos-chaos transitions [34, 20].

In [35], authors applied various measures to de-
rive statistical meaning from the graphical structures
of symbolic recurrence plots. One such measure is the
Shannon entropy of diagonal line length distribution
in the RP (SRPS ).

The Shannon entropy is a measure of the complex-
ity of the RP, such that for uncorrelated noise it takes
a small value, which indicates a low complexity [20].
However it is not a dynamical invariant [36].

According to Eckmann et al. 1987, the diagonal
line lengths on RPs are related to the inverse of the
largest LE [37]. This is true for some cases despite the
fact that empirical studies have shown that SRPS is ca-
pable of identifying dynamical transitions, and there-
fore should grow as the system’s complexity grows.
[38].

Since the Shannon entropy quantifies the complex-
ity of the dynamical system being studied, it is ex-
pected that its values increase when the system devel-
ops, that is when it varies from non-chaotic to chaotic
regime [38]. Hence it is expected to be positively cor-
related with the LE, rather than negatively correlated.
And within periodic windows, the entropy should
considerably decrease.

Therefore in a recent work, [39] has proposed an-
other estimation of the Shannon entropy from RPs
from the relative frequency of the occurrence of the
diagonal segments of nonrecurrent points formed by
white dots, that are a signature of complexity within
the data. In this case a one-to-one correspondence
was seen between the new Shannon entropy estimate
and the positive LE. That is, the Shannon entropy in-
creased as the bifurcation parameter of the logistic
equation increased, as illustrated in the plots found in
[39]. However, [38] claim that the definition of the en-
tropy from the white nonrecurrent dots does not solve
the problem of the negative correlation between the
entropy and the positive LE.

Here we compute the positive LE from the logis-
tic map time series, after embedding and symboliza-

tion with VMO. The LE is computed from the VMO-
derived LRS, and the Shannon entropy is estimated
from the VMO-derived symbolic RPS.

Figure 5 (A) shows the plot of the LE obtained
from the time series of the logistic map. Plot (C) dis-
plays the Shannon entropy SRPS estimated from the
black diagonal lines of the symbolic recurrence plot.
The SRPS plot detects the chaos-chaos transitions as
well as the periodic-chaos and chaos-periodic transi-
tions. The plot shows that the SRPS correlates posi-
tively with the LE rather than with its inverse. We
note though that for r ∈ [3.9,4.0] the values of the en-
tropy seems to slightly decrease with the chaotic be-
haviour of LE. Further investigation is needed to un-
derstand this behaviour, that seems to correlate with
the inverse of LE for that particular region of r.

It is clear that with our method, while maintain-
ing the computation of the entropy from the black
recurrence dots of the symbolic RPS generated from
the LRS of the symbolized time series, we obtain an
estimate of the diagonal lines entropy that correlates
positively with the Lyapunov exponents plot, with the
exception of the region of r ∈ [3.9,4.0].

Plot (B) illustrates the LES obtained from the
VMO-derived LRS. Plot (D) is the K2 plot derived
from the RPS and shows that the K2 plot is a lower
bound of the LES plot. This verifies the relation ex-
pressed in Eq. 21, where K2 is defined as being a lower
bound on the sum of the positive LEs.

Plot (E) displays the IR values that correspond to
the optimal VMO model for each time series gener-
ated from the logistic map. By contrasting it with plot
(A) of figure 4, we notice that the IR plot correlates
positively to the determinism measure. Both show
maximas or peaks at the chaos-order transitions. Ad-
ditionally, IR captures the chaos-chaos transitions as
well.

5 Model of Affect

Model of Affect. Affect can be described with ba-
sic emotional categories or emotional dimensions.
We use categorical representations of Russel’s two-
dimensional model of valence and arousal (VA) de-
scribed by pleasant-unpleasant for V, and awake-tired
for A [40].

Stimuli. Four databases are used for experimental
validation of the proposed symbolic dynamical fea-
tures. The International Affective Digitized Sounds
(IADS-2) [41] consists of a set of standardized, affec-
tive environmental sounds that span a broad range
of semantic categories, and are rated on the two-
dimensional model of VA.

The Montreal Affective Voices (MAV) [42] consist
of 90 nonverbal affect bursts, enacted by 10 different
actors in the following 8 categorical emotions: anger,
disgust, feat, pain, sadness, surprise, happiness and
pleasure, in addition to the neutral expression. The
durations of the vocalizations vary between 0.385 to
2.229 seconds sampled at 44100 Hz. In order to per-
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Figure 5: Dynamical Invariants of logistic map: r ∈ [3.5,4.0], ∆r = 0.0005. (A) LE from the time series. (B) LES
from LRS. (C) Shannon entropy from RPS. (D) K2S from RPS. (E) Information rate from RPS.

www.astesj.com 1736

http://www.astesj.com


P. Mouawad et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1727-1740
(2017)

form a comparative analysis with different databases
and to ensure consistency in the affective annotations,
the emotional categories of MAV sounds were mapped
on the VA model described by: pleasant-unpleasant
(V) and awake-tired (A).

The Musical Emotional Bursts (MEB) [43] consist
of 80 short instrumental musical clips, played using
the clarinet and the violin, in the following 3 categor-
ical emotions: happiness, sadness and fear, plus the
neutral expression. The mean duration of the MEB
clips is of 1.6 seconds. The discrete emotions were
mapped on the VA model.

The Film Music Excerpts (FME) [44] consist of 360
musical excerpts at 44100 Hz sampling rate, anno-
tated on the VA dimensional model of emotions de-
scribed with: high valence, low valence, high energy,
low energy. The FME is designed to provide musical
stimuli that allow a systematic comparison of the per-
ceived emotions in music.

Dataset. Two datasets are evaluated: the symbolic
RQAS measures for the IADS, MAV, MEB and FME
stimuli, and symbolic dynamical invariants for the
IADS, MAV and FME stimuli.

Classification Model. In this work we use a feed-
forward artificial neural net (ANN) [45]. The feedfor-
ward ANN is chosen for its simplicity and suitability
for the problem studied. The network has one hidden
layer and one output layer. It was trained with the
Levenberg- Marquardt as well as the scale conjugate
gradient backpropagation learning algorithms, and
the validation was performed using the mean squared
error function (MSE).

6 Experiments

The experimental work as well as the results obtained
are described in this section.

6.1 Experimental work

For the computation of the RQAS dataset, the CQT
is obtained at 44100 Hz sampling rate, hop length of
512 and 84 bins. Then we apply the symbolization
process and estimate the RQAS. For the computation
of the dynamical invariants, the time series is embed-
ded first and then we apply the symbolization. The
datasets are normalized before training so that col-
umn features are scaled to have standard deviation 1,
and centered to have mean 0.

Classification. The dataset is divided into 70%
training, 15% validation and 15% testing. The clas-
sification tasks are conducted in a multi-class one-
versus-all fashion whereby each of the six affective
sub-dimensions is in turn considered as positive and
negative class. The final results are then averaged
to get the classifier’s performance on VA. The Neural
Network Toolbox in MATLAB is used. No feature se-
lection was made prior to classification.

Performance evaluation. If the dataset is too small
or biased, over-fitting can occur. Therefore in addi-

tion to the MSE function, we applied the Adaptive
Synthetic Sampling (ADASYN) algorithm to rebalance
the datasets. The classifier’s performance is evaluated
before and after dataset rebalancing, using a combi-
nation of performance metrics taken from the confu-
sion matrix. These are: accuracy (ACC), precision, re-
call, F1-measure, F2-measure, area under the receiver
operating characteristic curve (AUC), as well as Co-
hen’s Kappa. Accuracy and precision are highly sensi-
tive to data imbalance therefore three additional mea-
sures are computed: Cohen’s Kappa (κ), F1-measure
and F2-measure.

6.2 Results

Classification performance

In order to evaluate the generalizability of our fea-
tures, we tested them on four different types of stim-
uli.

The classification performance rates of the RQAS

measures are reported in tables 1 to 5, and perfor-
mance rates of the dynamical invariants are in tables
6 and 8.

In table 1, the prediction accuracies on VA are
(74%, 90%) respectively for the auditory scenes
(IADS). Comparing to other existing work, in [46]
a classification task was evaluated for the IADS
database using a set of 101 acoustic features, and
achieved a performance of less than 50% accuracy. We
note some poor metrics values such as κ is very low for
the arousal dimension indicating an agreement close
to chance level; AUC is 0.66 for valence. However the
values of F1, F2, precision and recall are fairly high.
These results could be consolidated or checked if the
same tests are repeated with a much larger dataset.

In tables 2 and 3 high prediction accuracies of
(97%, 90%) and (81%, 90%) are attained respectively
on VA for the musical clips. The values of the remain-
ing metrics are higher for the violin music than for
the clarinet music. Although in both cases κ > 0.40
for both VA which shows an agreement above chance
level between observed and predicted values.

Table 4 shows a success rate of (79%, 93%) on VA
for the MAV dataset using RQAS. This rate is verified
with the values of the remaining metrics which are
fairly high: both F1 and F2 are > 0.70, κ > 0.40, and
the AUC is close to 1 for arousal and 0.79 on valence.

In table 5, the classification results on the FME
dataset using the RQAS metrics are of (65%, 77%) on
VA. This shows that the RQAS do not capture well va-
lence in the film music excerpts. Further investiga-
tions are needed in this respect, to determine what is
impacting the differences in the recognition rates be-
tween the short music clips and the short film music
excerpts.

The classification success rates using the dynami-
cal invariants achieve (72%, 82%) for IADS (table 6),
(69%, 73%) for FME (table 7) and (84%, 91%) for MAV
(table 4). The invariants perform well for IADS and
MAV, however they have a rather low rate for FME,
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Table 1: RQAS performance measures for IADS on VA
Affect ACC PPV TPR F1 F2 κ AUC
Valence 0.74 0.93 0.73 0.82 0.76 0.17 0.66
Arousal 0.90 1.00 0.90 0.94 0.92 0.06 0.72

Table 2: RQAS performance measures for Violin music on VA
Affect ACC PPV TPR F1 F2 κ AUC
Valence 0.97 0.95 0.98 0.96 0.97 0.93 0.98
Arousal 0.90 0.73 1.00 0.83 0.92 0.76 0.92

Table 3: RQAS performance measures for Clarinet music on VA
Affect ACC PPV TPR F1 F2 κ AUC
Valence 0.81 0.75 0.71 0.73 0.72 0.56 0.85
Arousal 0.90 0.83 0.89 0.86 0.88 0.78 0.95

Table 4: RQAS performance measures for MAV on VA
Affect ACC PPV TPR F1 F2 κ AUC
Valence 0.79 0.78 0.77 0.74 0.75 0.47 0.79
Arousal 0.93 0.78 0.81 0.79 0.80 0.75 0.96

Table 5: RQAS performance measures for FME on VA
Affect ACC PPV TPR F1 F2 κ AUC
Valence 0.65 0.60 0.87 0.71 0.80 0.30 0.71
Arousal 0.77 0.87 0.46 0.60 0.51 0.47 0.83

Table 6: Dynamical invariants performance measures on IADS
Affect ACC PPV TPR F1 F2 κ AUC
Valence 0.72 0.91 0.71 0.79 0.74 0.14 0.64
Arousal 0.82 0.78 0.76 0.75 0.75 0.09 0.61

Table 7: Dynamical invariants performance measures for FME on VA
Affect ACC PPV TPR F1 F2 κ AUC
Valence 0.69 0.69 0.70 0.69 0.70 0.39 0.75
Arousal 0.73 0.72 0.46 0.56 0.50 0.38 0.79

Table 8: Dynamical invariants performance measures for MAV on VA
Affect ACC PPV TPR F1 F2 κ AUC
Valence 0.84 0.72 0.80 0.75 0.78 0.59 0.91
Arousal 0.91 0.61 0.90 0.72 0.82 0.45 0.91
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although they perform better than RQAS on valence.
In [47], an emotion classification task is made on

the same FME stimuli, using 200 acoustic features and
five emotional categories: anger, fear, happiness, sad-
ness and tenderness. The recognition rates using sup-
port vector machines (SVM) are: 65%, 67%, 59%, 69%
and 67% for the five emotions respectively. Although
in our case we did not use discrete emotions but the
VA model, however with only five nonlinear dynami-
cal features our recognition rates are (69%, 73%) and
using our RQAS the rates are (65%, 77%).

7 Conclusive Remarks and Dis-
cussion

In this work we proposed a novel method to esti-
mate complexity measures from the symbolic RPS of
the VMO symbolized time series of audio signals.
The symbolic RQAS measures were estimated with-
out phase space reconstruction. The symbolic dy-
namical invariants were estimated after embedding.
We estimated our dynamical measures for the sym-
bolized time series of the logistic map and through a
qualitative analysis of the respective plots, we showed
that our symbolic measures are in agreement with the
same measures obtained using different methods in
literature. Furthermore, we estimated the symbolic
Shannon entropy SRPS of the RP diagonal lines from
the LRS of the optimal VMO model, and showed that
it correlates positively with the Lyapunov exponents
except for the region r ∈ [3.9,4.0].

In order to evaluate the performance of our sym-
bolic dynamical measures in characterizing affect in
various sounds, we conducted classification tasks on
four types of stimuli. High emotion recognition rates
were achieved for the IADS, MAV and MEB datasets
for both sets of symbolic measures. This highlights
the powerful performance of the measures in emotion
recognition independently of the type of stimuli and
shows that they generalize well across different types
of stimuli. Furthermore it encourages future work to
test the features in large scale tasks to determine if
they can gain consensus as a general-purpose feature
set.

However we obtained rather low recognition rates
for film music excerpts on valence, and an average
rate for arousal of 77% and 73%. Further work is
needed to explore why both sets of complexity mea-
sures, the RQAS as well as the dynamical invariants
obtained in this work, achieve rather low recognition
rates on film music excerpts, compared to the results
obtained on the IADS, MAV as well as the music clips
datasets. Obviously the dynamics differ across differ-
ent sounds, but it would be interesting for future work
to further investigate what particular aspects of the
dynamics carry affective information. It would also be
interesting to determine how such knowledge differs
across different types of audio signals.
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