
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
SCRIP: Safe and Cycle-Free Multi-Path Routing

Permalink
https://escholarship.org/uc/item/0rw7b5gv

Authors
Garcia-Luna-Aceves, J.J.
Smith, B.
Samson, J.

Publication Date
2022-11-01

Data Availability
The data associated with this publication are within the manuscript.

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0rw7b5gv
https://escholarship.org
http://www.cdlib.org/

SCRIP: Safe and Cycle-Free Multi-Path Routing
J.J. Garcia-Luna-Aceves, Bradley R. Smith, Judith T. Samson

Computer Science and Engineering Department
University of California, Santa Cruz

Santa Cruz, CA, USA
{jj, brad, jtsamson}@soe.ucsc.edu

Abstract—The Safe Cycle-Free Routing Information Protocol
(SCRIP) is introduced for routing over multiple acyclic paths
based on distance vouchers that attest to the acyclic nature of
paths. Routers search and find new shortest paths to destinations
without ever creating cycles by trusting updates originated by
routers that vouch being closer to destinations. SCRIP is proven
to be acyclic and to converge to shortest paths within a finite time
even when the network partitions. SCRIP is shown to converge
faster than all current shortest-path routing approaches based
on destination sequence numbers, inter-nodal coordination, or
complete topology information.

I. INTRODUCTION

The techniques used in modern routing protocols today
to guarantee convergence are quite old and consist of us-
ing destination sequence numbers [3], establishing multi-hop
router coordination [1], or communicating complete topology
or complete path information [2]. The design of a routing
protocol that never incurs routing-table loops and converges
quickly to shortest paths has eluded the research community,
and solving this problem has large implications on the perfor-
mance of most computer networks and the Internet.

The key contribution of this paper is to present the Safe
Cycle-Free Routing Information Protocol (SCRIP), which is
the first shortest-path routing protocol that provides multiple
routes to destinations and is provably acyclic without incurring
long delays converging to optimal routes. Section II describes
SCRIP, which ensures that a router sending an update with a
valid distance voucher has an acyclic path.

Section III shows that SCRIP is acyclic and converges to
optimal routes within a finite time. Section IV shows that
SCRIP converges to valid routes faster and more efficiently
than any prior shortest-path routing method.

II. SCRIP

A. Notation

N is the set of network nodes (routers and destinations), and
E is the set of links in a network. A node in N is denoted
by a lower-case letter, and a link between nodes n and m in
N is denoted by (n,m). The set of nodes that are immediate
neighbor routers of router k is denoted by Nk.

Routers may maintain multiple paths to destinations. The
nth path from router k to destination d is denoted by P k

d (n),
and the next hop along that path is denoted by skd(n), with
skd(n) ∈ Nk. Path P k

d (n) consists of the concatenation of
the link (k, skd(n)) with a path P

skd(n)
d (m), i.e., P k

d (n) =

(k, skd(n))P
skd(n)
d (m). The distance associated with the nth

path P k
d (n) from router k to destination d is denoted by δkd(n).

The distance assigned to destination d is denoted by δ0 = 0,
and the distance assumed for any unreachable destination is
denoted by δ∞.

The variable rkd denotes the reference distance for destina-
tion d at router k.

The value of the distance voucher for destination d at router
k is denoted by νkd . The value of a distance voucher is set to
true (T) if the voucher attests that the associated path is acyclic,
and is set to false (F) otherwise.

The best next hop to destination d at router k is denoted by
skd , with skd = 0 denoting the case that there is no next hop to
d, and Sk

d is the set of neighbors of router k that can be used
as next hops to destination d.

B. Information Exchanged

Routers exchange routing messages reliably among one
another to update their routing information. A routing message
from router k is denoted by Mk and contains its identifier k
and a list of one or more updates. An update from router k
is a tuple denoted by U(d, nkd, ν

k
d , ρ

k
d, δ

k
d), where nkd is the

Identifier of the main recipient of the update, and ρkd s a
reference distance that states the distance of an attested acyclic
path if νkd = T or the maximum requested distance of an
acyclic path being requested if νkd = F .

The following conventions are used to interpret the infor-
mation carried in an update:
• nkd = 0 denotes all neighbors of router k.
• nkd = k with d = k indicates that the update is a “hello” to
refresh the presence of node k.
• nkd = q 6= k indicates that q is the primary recipient of the
update; however, all routers receiving the update process it.
C. Information Maintained

Each router k knows its own identifier (k) and maintains
a Link-Weight Table (LWT k), a Neighbor Table (NT k), a
Routing Table (RT k), and its initialization status (σk).
LWT k lists an entry for each link to a known neighbor

router n ∈ Nk. The entry for link (k, n) in LWT k states:
(a) The weight l(k, n) of the link, and (b) a lifetime LT k

n for
the neighbor entry of router n. The maximum lifetime of a
neighbor entry is a constant LT defined for the network.
NT k lists the distance and distance voucher reported by

each neighbor for each destination of interest. The entry in
NT k for destination d at router k is denoted by NT k(d) and

specifies for each neighbor p ∈ Nk the latest distance δkdp and
value of the distance voucher νkdp for the neighbor.

If a neighbor q has not reported any distance for d to router
k, then router k assumes that δkdq = δ∞ and νkdq = T .
RT k lists an entry for each destination d for which the

router must maintain routing information. The entry in RT k

for destination d is denoted by RT k(d) and states: rkd , δkd ,
νkd , skd , Sk

d , ND [pkd, λ
k
d]. The latter is a search tuple where pkd

denotes the router or routers that sent a search request for d,
and λkd is the smallest reference distance stated in an ongoing
search regarding d.

The search tuple [pkd, λ
k
d] is interpreted as follows:

• pkd = 0 and λkd = δ∞ states that router k is not part of an
active search regarding d.
• pkd = q 6= k and λkd < δ∞ states that k forwarded a search
on behalf of router q and λkd is the reference distance used in
the search.
• pkd = 0 and λkd < δ∞ states that k has been part of multiple
searches regarding d and λkd is the smallest reference distance
used in such searches.
σk is true (T) if router k has been properly initialized, which

means that an initialization period longer than LT (e.g., 5LT)
has elapsed since the router started or rebooted, and is false
(F) otherwise.

D. SCRIP Operation

This description assumes that routers send routing messages
reliably after waiting for short or long time intervals, and
that all destinations are of interest to all routers. Slightly
different mechanisms would be needed if unreliable message
transmissions were used and not all destinations were of
interest to all routers.

1) Initialization: A router k is initialized with a defined
neighbor set, which is applicable for a computer network with
wired links. The routing state for the router is started with
σk = T , δkk = rkk = δ0, and skk = k for k itself, and for each
defined neighbor q ∈ Nk: δkkq = δ∞, νkkq = T , δkqq = δ∞, and
νkqq = T , to indicate that no update has been received from q.
Router k immediately sends a routing message with a single
update U(k, 0, T, δ0, δ0).

2) Periodic Messaging: Router k maintains a timer UT k to
ensure that it sends a routing message soon after it updates its
routing table or decides to forward or respond to a query, and
sends routing messages often enough to inform its neighbors
of its presence. If a router k needs to send a routing message
with updates, it does so after a minimum amount of time tmin

has elapsed from the time it sent its prior routing message.
In the absence of updates needed to reflect changes to its
routing table, a router sends a message with a “hello” update
equals U(k, k, T, δ0, δ0) to simply updates the lifetime entries
maintained for itself by its neighbors no later than tmax

seconds from the time it sent its last message. The timer tmax

is shorter than a maximum lifetime LT . Router k sets UT k

equal to tmax after sending a routing message, and sets UT k

equal to tmin after preparing updates or queries to be sent in
response to an input event.

3) Link Changes: Router k updates LWT k when an ad-
jacent outgoing link (k, q) changes its weight l(k, q), and
updates NT k and RT k when any type of input event occurs,
such as when an adjacent outgoing link changes its weight,
an immediate neighbor router fails to send updates before the
lifetime for its LWT entry expires, or a routing message Mq

is received from a neighbor.
A router k detects that a neighbor q just became active

when it receives a “hello” update from q and its local state
for q has δkqq = δkkq = δ∞, which indicates that no messages
were being received over link (k, q). In this case, router k
immediately sends a routing message for each destination for
which it can offer a valid voucher.

4) Voucher State: Router k can be in one of two routing
states for a destination d depending on the value of its voucher
νkd . Router k has a valid voucher for d (νkd = T) only if it can
either: (a) vouch for one or more acyclic paths to destination
d because one or more of its neighbors has reported a valid
voucher and a distance that is smaller than its own reference
distance (rkd); or (b) state that it cannot reach d because all its
neighbors have reported a distance equal to δ∞. This condition
can be stated formally as follows:

V :
(
∃ q ∈ Nk([rkd > δkdq] ∧ [νkdq = T])) ∨ (∀q ∈ Nk(δkdq = δ∞)

)
(1)

If V is true then router k updates its routing state as follows:
νkd ← T ; Sk

d ← {q ∈ Nk | (rkd > δkdq) ∧ (νkdq = T)}; (2)

δkd ←Min{δkdn + l(k, n) | n ∈ Sk
d};

skd ←Min{n ∈ Sk
d | δkdn + l(k, n) = δkd};

if ([νkd = T]∧ [∀q ∈ Nk([νkdq = T]∨ [δkdq = δ∞])]) then rkd ← δkd

It follows from Eq. (2) that the value of rkd can be set equal
to δkd only when its own voucher is valid and either all its
neighbors provide valid vouchers or all its neighbors declared
d to be unreachable. Router k may use any neighbor in Sk

d

as a next hop to destination d, and keeps a preferred next-hop
neighbor skd .

Router k cannot vouch for acyclic paths to destination d if
V is false. In this case, router k must set νkd = F and start a
search for a neighbor router or a remote router that can vouch
for an acyclic path that is shorter than the distance value at k
when V was still satisfied, which equals rkd . Router k tracks
which neighbor can vouch for an acyclic path that router k
can use to make V true again, and resets all the vouchers
from its neighbors to F to start its search. Furthermore, to
avoid routing cycles, router k does not change its best next
hop to d (if it has any) until it obtains at least one response
to its search that makes V true again. This can be stated as
follows:

νkd ← F ; ∀q ∈ Nk(νkdq ← F); (3)

δkd ← δkdsk
d
+ l(k, skd); if (δkd = δ∞) then skd ← 0

Once V is false, an update from any neighbor q with a valid
voucher (νqd = T) and a reference distance that is shorter than

the reference distance at k (rkd > ρqd) makes V true again,
because the path from q to d consists of the concatenation
of an acyclic path from q to another router p that attests to
the acyclic nature of a path to d through a next hop n such
that δpdn = ρqd < rkd . Alternatively, to account for d being
unreachable, router k sets V to true again if all its neighbors
declare d to be unreachable (see Eq. (1)).

5) Interpreting Vouchers from Neighbors: Router k inter-
prets a valid voucher from a neighbor q as an independent
attestation to the acyclic nature of a path from q to d if V
is true. However, router k resets all its neighbor vouchers
to F when V becomes false. Accordingly, while V is false
router k must interpret a valid voucher from a neighbor q as a
relative attestation whose truth value at k depends on whether
the path offered by q takes into account the reference distance
rkd communicated by k in its request. This is stated formally
as follows as part of the method used to update NT k:

δkdq ← δqd; if (νkd = T) then νkdq ← νqd ; (4)

if ([νkd = F] ∧ [νqd = T] ∧ [rkd ≥ ρqd]) then νkdq ← T

6) Sending Updates and Search Requests: Routers use
updates with valid distance vouchers to inform their neighbors
of new distance values, and use updates with invalid distance
vouchers to start or propagate search requests for acyclic paths
to destinations.

The steps that router k takes in response to an input event
depend on whether V in Eq. (1) is true after NT k has been
updated according to Eq. (4) as a result of the input event.

V is true after input event: In this case, router k updates its
routing state according to Eq. (2) and sends an update, sends a
response, or forwards a request depending on the value of δkd ,
its search tuple [pkd, λ

k
d], and the update that may be received

from a neighbor q ∈ Nk.
(i) Router k detects a link-cost change or receives an update

U(d, nqd, T, ρ
q
d, δ

q
d) from q:

If δkd < δ∞ before the input event, then router k sends an
update if the value of δkd changes or k needs to send a response
to a prior request. Router k knows that it must send a response
to a prior request if: (a) λkd < δ∞, which indicates that router
k has a pending request; and (b) ρqd < λkd , which indicates
that a remote router vouches for an acyclic path that satisfies
the pending request. In this case, its update U(d, nkd, T, ρ

k
d, δ

k
d)

states nkd = pkd and ρkd = ρqd; router k also resets its search
tuple [pkd, λ

k
d] to [0, δ∞]. If δkd changed its value and router

k is neither part of a search (λkd = δ∞) nor can it satisfy a
pending request (ρqd ≥ λkd) , then router k sends an update
U(d, 0, T, rkd , δ

k
d).

If δkd = δ∞ before the input event, then router k updates
its routing state according to Eq. (2) and sends an update
U(d, nkd, T, ρ

k
d, δ

k
d) with nkd = pkd and ρkd = rkd if either the

value of δkd changed (δkd < δ∞) or the input event allowed
V to be satisfied, which router k identifies because rkd < δ∞
before the input event in that case.

(ii) Router k receives a request U(d, nqd, F, ρ
q
d, δ

q
d) from q:

Router k can vouch for an acyclic path that is shorter than
the reference distance in the request if the following condition
is satisfied:

R : (νkd = T) ∧ (ρqd > δkdskd
) (5)

If R in Eq. (5) is satisfied, then router k sends an update
U(d, q, T, ρkd, δ

k
d) with ρkd = δk

dskd
as a response to q.

If R in Eq. (5) is not satisfied, then router k propagates or
stops the search depending on the values of [pkd, λ

k
d] and nqd,

and sends an update depending on the value of δkd .
If router k was asked to help (i.e., nqd = k or nqd = 0) and

ρqd < λkd , then router k forwards request U(d, skd, F, ρ
k
d, δ

k
d)

with ρkd = ρqd, sets pkd = q if λkd = δ∞ to remember that
a response is needed for q, and sets λkd = Min{λkd, ρ

q
d} to

remember the smallest reference distance stated in a request.
If router k was asked to help and ρqd ≥ λkd , then router

k stops the request because it already has forwarded a prior
request with a reference distance that satisfies the current
request from q. In this case, k sets pkd = 0 to ensure that a
future response is sent back to all its neighbors. Furthermore,
router k sends update U(d, q, T, ρkd, δ∞) in which ρkd = ρqd
if δkd = δ∞ to inform q that it cannot reach d, and sends
update U(d, 0, T, rkd , δ

k
d) if δkd changed in value and δkd < δ∞

to inform all its neighbors of its new shortest distance to d.
If router k was not asked to help (i.e., nqd 6= k and nqd 6= 0)

and R is not satisfied, router k sends an update in two cases
only. Router k sends update U(d, 0, T, rkd , δ

k
d) if δkd changed

as a result of the request from q and δkd < δ∞. Alternatively,
router k sends response U(d, q, T, ρkd, δ

k
d) with ρkd = ρqd if

δkd = δ∞ to inform q that it cannot reach d.

V is false after input event: In this case, router k updates
LWT k and NT k as needed, updates RT k as stated in
Eq. (3), and sends an update, a response, or forwards a request
depending on the value of δkd , its search tuple [pkd, λ

k
d], and the

update that may be received from a neighbor q.
(i) Router k detects a link-cost change or receives an update

U(d, nqd, T, ρ
q
d, δ

q
d) from q ∈ Nk:

Router k sends a request U(d, nkd, F, ρ
k
d, δ

k
d) with ρkd = rkd

and nkd = skd if rkd < λkd , because any pending request does
not satisfy its own reference distance. If this is the case,
router k updates λkd = Min{λkd, rkd} to remember the smallest
reference distance used in a request, and updates pkd = k if
λkd = δ∞ or pkd = 0 if λkd < δ∞ to remember how to forward
responses to its request. On the other hand, if rkd ≥ λkd , router
k knows that it has sent a prior request with a smaller reference
distance than its own and simply updates pkd = 0 to remember
that it is involved in multiple requests.

(ii) Router k receives a request U(d, nqd, F, ρ
q
d, δ

q
d) from q:

If ρqd < λkd , then router k sends a request U(d, 0, F, ρkd, δ
k
d)

to all its neighbors with ρkd = ρqd, and updates λkd = ρqd and
pkd = 0. Otherwise, if ρqd ≥ λkd , router k knows it has sent a
request that satisfies the request from q. In this case, router
k updates pkd = 0 to remember that it is involved in multiple
requests, and sends update U(d, q, T, ρkd, δ

k
d) with ρkd = ρqd if

δkd = δ∞ to inform q that it cannot reach d.

E. Example of SCRIP Operation

Figure 1 illustrates the fast convergence of SCRIP in a
five-node network. The reference distance, distance, and next
hop to destination d are indicated next to each router. In
contrast to the other methods, routers may have multiple
next hops to destinations, as indicated by arrowheads. An
update sent by router k omits destination d and is denoted
by U [nkd, ν

k
d , ρ

k
d, δ

k
d] and the Boolean values of true and false

for vouchers are denoted by T and F, respectively.

Figure 1: Fast convergence without blocking in SCRIP

Figure 1(b) shows that router c sends an update with a valid
distance voucher after the failure of link (c, d) because its
distance increases to 9 but its neighbor e satisfies V in Eq. (1)
with 2 = rcd > δcde = 1 and νcde = T .

As Figure 1(c) shows, the update from router c makes V
not be satisfied by any neighbor of c. This causes router b
to start a search for a router that can vouch for an acyclic
path. Accordingly, the update from b is a request for a router
to vouch for a path shorter than rbd = 3 and states νbd = F ,
ρkd = 3, and δbd = 10. Router b keeps sbd = c while its search
proceeds. This is the case because δbdc + l(b, c) = 10 < δ∞;
however, router b cannot change its next hop until it receives
an update vouching for an acyclic path shorter than rbd = 3.

Figure 1(d) shows that routers c and a send back updates to
b with valid distance vouchers. This is the case because both
routers have neighbors that reported a distance smaller than
the reference distance ρbd = 3 in the request from b and hence
V is satisfied at both routers.

Figures 1(e) shows that the updates from a and c allow
router b to set δbd = 6 and νbd = T . Accordingly, router b sets
rbd = δbd = 6 because all its neighbors provided updates with
valid vouchers and reference distances smaller than rbd = 3.
Figures 1(f) shows that router c decreases its distance and
reference distance to 7 after it processes the update from b.

This example illustrates that SCRIP is acyclic while routers
converge quickly to optimal paths. A router that needs to
search for routers that can vouch for acyclic paths can trust
the first update with a valid distance voucher and a reference
distance that is shorter than its own reference distance.

III. SCRIP CORRECTNESS

The following theorems make use of the following nomen-
clature and formalize the previous argument to prove that
SCRIP is acyclic and converges to optimal paths within a finite
time.
U denotes the proposition that router k executes SCRIP

according to the specification provided in Section IV while
having a valid voucher for destination d.
W denotes the proposition that router k executes SCRIP

according to the specification provided in Section IV while
waiting for a valid voucher for destination d.
C denotes the proposition that SCRIP is executed at every

router for destination d. according to the specification provided
in Section IV, i.e., C ≡ U ∨W .
A denotes the proposition that a routing protocol is acyclic.
O denotes the proposition that a routing protocol converges

to paths with optimum weights, and it is true that δkd = ωk
d

for any destination d at each router k.
P denotes the proposition that valid distance vouchers

propagate through acyclic paths.
I denotes the proposition that all routers in a connected

network component converge to δ∞ for a destination d that is
not reachable from the network component.
E denotes the proposition that the reference distance equals

the shortest distance at each router for a destination d within a
finite time after network changes stop occurring in a network.

Theorem 1: A path in which U is true at every router cannot
be a loop.

Proof: Assume that U is true at every router along a path
L. For the sake of contradiction, assume that L is a routing-
table loop that excludes destination d at time t and let L =
{v1 → v2 → ... → vh → vh+1}, where vh+1 = v1. Each
router vi ∈ L informs its neighbors of its distance to d at
a time denoted by ti, where ti < t, and its neighbors in L
use that value at a subsequent time to determine whether V is
satisfied. The time when router vi ∈ L makes router vi+1 ∈ L
a next hop to d is denoted by t+i and t+i ≤ t, which implies
that svid (t) = svid (t+i), δvid (t) = δvid (t+i), and rvi

d (t) = rvid (t+i)
for all vi ∈ L.

The following results are a consequence of the fact that
U is true at each router vi ∈ L: (a) rvid (t+i) = rvid (t) >
δvidvi+1

(t); (b) δvidvi+1
(t) = δvidvi+1

(t+i) = δ
vi+1

d (ti+1); and (c)
δ
vi+1

d (ti+1) = r
vi+1

d (ti+1) = r
vi+1

d (t). It follows from (a), (b)
and (c) that rvid (t) > r

vi+1

d (t). However, these results consti-
tute a contradiction, because they imply that rvid (t) > rvid (t)
for all vi ∈ L; therefore, the theorem is true.

Theorem 2: No routing-table loop can be created by a router
for which W is true.

Proof: A router that determines that V is not satisfied
and sends a request for valid vouchers either has no next
hop or must keep its current next hop. The first case negates
the existence of a routing-table loop. In the second case, the
current next hop was part of a path established by routers for
which U is true, which negates the existence of a routing-table
loop because of Theorem 1.

Theorem 3: SCRIP is acyclic for any destination d.
Proof: If U is true at every router, then it follows from

Theorem 1 that no routing-table loops can form. It also follows
from Theorem 2 that no router for which W is true can create
a loop. Therefore, the proof needs to show that a router for
which W is true and then receives valid voucher and selects
a next hop to destination d can create a loop.

OnceW is true for a given router k, the router must receive
an update with a valid voucher, and a router n ∈ Nk can send
a response to router k only if it has a valid voucher itself. The
path from n to d either consists only of routers for which U is
true, or consists of routers for which either U or W is true. In
the first case, it follows from Theorem 1 that router k cannot
create a loop by setting n = skd because then the path from
n to d is loop-free and extending that path with link (k, n)
cannot create a loop. In the second case, the path from n to
d is the concatenation of subpaths, each consisting of one or
more routers for which U is true or W is true, and it follows
from Theorems 1 and 2 that such subpaths are loop-free and
hence extending the path from n to d with link (k, n) cannot
create a loop. Therefore, the theorem is true.

The following theorems show that SCRIP converges to
optimal distances for destinations that can be reached, and
to δ∞ for unreachable destinations.

Theorem 4: Valid distance vouchers propagate through
acyclic paths.

Proof: The proof needs to show that C → P . By
definition, a valid distance voucher attests that a path is acyclic
and hence A → P . From Theorem 3, C → A . Therefore, the
theorem is true because (C → A)∧ (A → P)→ (C → P)

Theorem 5: SCRIP converges to optimal routes for any
given destination within a finite time after network changes
stop occurring in a finite connected network.

Proof: The proof must show that C → O for any
destination d. The proof proceeds by showing that C ∧ ¬O
is a contradiction. Accordingly, assume that SCRIP works
correctly and also assume that router k converges incorrectly
with δkd > δ?kd , where δ?kd is the optimum distance from router
k to destination d.

Given that the network is connected and finite, all acyclic
paths in the network are finite and it takes a finite time for
updates starting from destination d to propagate over any
acyclic path. Distance δ?kd corresponds to an acyclic path from
k to d through some neighbor router s ∈ Nk because it is
optimum. From Lemma 1 and the fact that C is true, this
implies that router k must receive an update from router s
reporting δ?kd and a valid voucher for destination d. However,
this is a contradiction to C being true, because then Eqs. (4)
and (5) would require router k to make δ?kd its distance to
destination d.

Theorem 6: SCRIP converges to δ∞ at every router of a
finite connected-network component for any destination that
is unreachable from the network component within a finite
time after network changes stop occurring.

Proof: The proof needs to show that C → I and proceeds
by showing that C ∧ ¬I is a contradiction.

Assume that no network changes occur after time tn and
¬I is true with at least one router nk converging to a finite
distance for d at time tk ≥ tn. Because C is true, any router
ni that has a valid voucher and a distance δni

d < δ∞ at time tk
must have a next-hop neighbor ni−1 ∈ Nni such that δni

dni−1
<

δni

d and νni

dni−1
= T . It follows from Theorem 3 that there must

be an originating router no that issued a valid voucher and a
distance δno

d < δ∞ that allowed updates with valid vouchers
and finite distances to propagate along one or more acyclic
paths to nk before time tk. Furthermore, because C is true,
router no must be a neighbor of destination d. However, this
is a contradiction because d is not in the connected component
starting at least at time t0, and hence no router in the connected
component can consider itself being a neighbor of d after some
finite time to ≥ tn.

Theorem 7: The reference distance used in SCRIP for
any given destination converges to the correct distance value
for that destination at every router within a finite time after
network changes stop occurring in a network.

Proof: The proof needs to show that (C ∧ [O∨I])→ E ,
which is equivalent to ([C ∧ O]→ E) ∧ ([C ∧ I]→ E).

(C ∧ O) → E : Assume that all routers have converged to
their optimum distances for any given destination d at time
to. This implies that V is satisfied at every router and each
router updates its routing state according to Eq. (2). Router k
can have rkd < δkd indefinitely after time to only if at least one
neighbor reports an invalid voucher for d indefinitely, which
is a contradiction to the correct operation of SCRIP and the
fact that V is satisfied at every router.

(C ∧ I) → E : Assume that all routers have converged to a
distance of δ∞ to destination d at time to. This implies that
d is not reachable from any router because C is true. For the
sake of contradiction, assume that router k has converged to
rkd < δkd = δ∞ at time tk ≥ to and maintains that value of rkd
indefinitely. Because C is true, each router q ∈ Nk must report
a distance equal to δ∞ by time to, which is a contradiction to
rkd < δkd = δ∞, given that the updates received by k from all
its neighbors satisfy V and hence router k must set rkd = δkd
according to Eq. (2) within a finite time after to.

IV. PERFORMANCE COMPARISON

SCRIP is compared with two existing methods for acyclic
routing and the topology-broadcast method, which is not
acyclic but is known to have fast convergence after distance
increases.

The time complexity TC (worst-case number of steps)
and communication complexity CC (worst-case number of
messages) needed by all routers to obtain acyclic paths to a
given destination after a single link-weight increase are strong
indicators of the signaling overhead of a routing protocol.

The blocking/looping complexity BC is the worst-case time
during which blocking or looping occurs after a link-weight
increase before all routers have valid routing state. It is a strong
indicator of the speed with which a routing protocol restores
valid routing state after input events.

TC, CC and BC are used to compare the performance of
SCRIP and other shortest-path routing methods independently
of implementation or topology parameters that may bias
comparisons by simulation. In the following, H denotes the
network diameter in number of hops, A denotes the average
degree of a router, T denotes a timer delay that by design
must be much longer than the time an update takes to traverse
the network diameter, and N and E are the number of routers
and number of links in the network, respectively.

Figure 2: Example of worst-case link-weight increase

Fig. 2 shows an example of a single link-weight increase
that impacts distances to destination d at all other routers. The
numbers in parenthesis in Fig. 2(a) denote distances to d, solid
links with arrowheads are part of shortest paths to d and each
has a weight of 1, and links in dashed lines are assumed to
have large weights that make the chain involving all nodes
other than d correspond to the shortest paths to d.

Inter-Nodal Coordination (c): Using diffusing computa-
tions is more efficient than other techniques based on inter-
nodal coordination, and is the technique assumed in this
analysis. A single link-weight increase may cause the start
of a diffusing computation that causes queries, replies, and
final updates to traverse the directed acyclic graph (DAG)
formed by the routers affected by the computation. In the
worst case (Fig. 3), the DAG involves most network links
and N −1 routers (see Fig. 3). Therefore, TCc = O(3N) and
CCc = O(6E). These are loose bounds, because convergence
may occur after an update traversing a single hop [1].
BCc = 0 after a link-weight increase in DUAL, because

routers continue using their current next hops while they wait
for replies. However, the source of a diffusing computation
caused by a link or node failure remains blocked until all
its neighbors send their replies (see Fig. 2). Accordingly,
BCc = O(2N) in this case, because a query and its replies
must traverse a DAG whose length may be O(N).

Topology Broadcasting (t): In this method, a single link-
weight change requires link-state updates (LSU) to be flooded
in the network over all links, independently of next-hop
routing choices. Therefore, CCt = Θ(E). However, routers
may have incorrect routing-table entries until a LSU with the
most recent sequence number is stored at every router, and
the change may occur such that almost an entire timer delay
T is incurred waiting for the periodic transmission of the
next sequence number from the head of the link issuing the
LSU. If all links have similar delays, then TCt = O(H +T),
because the paths traversed by LSU’s have O(H) length. If

link weights reflect link delays, the paths traversed by LSU’s
may have O(N) length and hence TCt = O(N + T).

As Fig. 3 illustrates, routing loops may occur until all
routers store the same data in their topology tables. The steps
incurred for an LSU to reach all other routers is O(H + T)
if all links have similar delays, and O(N +T) if link weights
reflect their delays; therefore, BCt = O(N + T).

Distance Vouchers (v): When the weight of link (s, d)
increases in Fig. 3, router s sends update to all its neighbors
stating a larger distance. This causes router b to send request
U [s, F, ρbd, δ

b
d] with ρbd = rbd = 2 to s to search for a valid

acyclic path (see Fig 3(b)). Router s responds with update
U [b, T, 0, δsd] because δsdd = 0 < 2, and router u sends a
request U [b, F, ρud , δ

u
d] to b with ρud = λud = 2 = Min{2, δ∞}.

The response from s allows b to send update U [0, T, 0, δbd]
to u and all its neighbors reporting a valid path, and this in
turn allows u to send U [0, T, 0, δud]. The same request-update
process takes place at each hop along the reverse path Pps,
which has N−2 hops, taking a total of N+1 steps. Therefore,
TCv = O(N) and CCv = O(E), given that updates are sent
to all neighbors. These are loose bounds, because a search
after a weight increase may involve a single hop (e.g., the
weight of link (s, d) increases in Fig. 3) or very few hops.
BCc = 0 after a link-weight increase in SCRIP, because in

this case routers continue using their current next hops while
they wait for responses with valid vouchers. A link or node
failure may prevent a router from using any neighbor as a
next hop and force it to search for remote routers with valid
vouchers. The resulting request-update process may take place
over paths of length O(N); therefore, BCc = O(N) in this
case. However, this is a loose bound, because a search may
reach routers with valid vouchers in just h hops, with h� N ,
and take only O(h) steps.

These results show that SCRIP incurs less signaling over-
head and converges to acyclic paths faster than all prior
shortest-path routing methods.

V. CONCLUSIONS

The Safe Cycle-Free Routing Information Protocol (SCRIP)
was introduced. Its novelty consists of: (a) Replacing destina-
tion sequence numbers with distance vouchers and reference
distances that allow routers to attest that they are closer to
destinations than those routers seeking to establish new acyclic
paths; and (b) using inter-nodal coordination after routing
tables are updated with valid routes to allow routers to increase
their reference distances. SCRIP was proven to be correct
and loop-free, and it was shown to be more efficient and to
converge faster to shortest paths than routing protocols based
on destination sequence numbers, inter-nodal coordination, or
topology broadcasting.

REFERENCES

[1] J.J. Garcia-Luna-Aceves, “Loop-Free Routing Using Diffusing Compu-
tations,” IEEE/ACM Trans. Networking, 1993.

[2] J. Moy, “OSPF Version 2” RFC 2328, 1998.
[3] C. E. Perkins and P. Bhagwat, “Routing over Multihop Wireless Network

of Mobile Computers,” Proc. ACM SIGCOMM ‘94, 1994.

