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ABSTRACT OF THE DISSERTATION

Description of Reaction Plane Correlated Triangular Flow in Au+Au Collisions with
the STAR Detector at RHIC

by

Cameron Thomas Lee Racz

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, June 2024

Dr. Richard Seto, Chairperson

Anisotropic flow in heavy-ion collisions describes the collective motion of participants

and products of the collisions, most commonly in the plane transverse to the axis

of the colliding beams. Mathematically, flow is decomposed into a Fourier series of

simple shapes which contribute to the overall motion, with the coefficients (vn) de-

scribing the magnitude each shape contributes on average. The third harmonic in the

series is known as triangular flow (v3) and has previously been shown to develop due

to event-by-event fluctuations that randomly produce triangular shapes in the initial

collision geometry. This dissertation describes the first study of v3 using the STAR

detector at the five lowest center of mass collision energies of gold nuclei in the second

stage Beam Energy Scan program at the Relativistic Heavy Ion Collider. A form of

v3 which does not develop from fluctuations (v3{Ψ1}) was found and measured at

the lowest energy of
√
sNN = 3.0 GeV. The source of this v3{Ψ1} was investigated

for the first time using simulated collisions and was found to arise due to two crucial

vii



components: geometry and stopping of nucleons in the collision producing initial tri-

angular shapes, and a potential within the equation of state of the medium produced

in the collisions. The strength of v3{Ψ1} was found to decrease with increasing en-

ergy, becoming consistent with zero in the region of 3.9 – 4.5 GeV. A comparison to

simulation currently suggests that the initial triangular shape does not vanish and

cannot solely explain the disappearance of v3{Ψ1}. This work provides a multitude

of new measurements to improve both heavy-ion simulations and our understanding

of the equation of state for dense nuclear matter.
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Chapter 1

Introduction

1.1 Milestones in Atomic Science

Since the discovery of atoms, the subsequent study of those atoms have led to a

multitude of influential findings that have shaped and molded the fields of science,

and even changed the fundamental view of the entire universe held by society. Some

of the largest discoveries have come from pushing the frontier of observations toward

smaller and smaller scales. From the advent of electrons that exist around atoms by J.

J. Thomson [1], to the introduction of the central nucleus and the constituent protons

by Ernest Rutherford [2], to the more recent state of atomic science, where it has been

found that the protons and neutrons are themselves not fundamental particles [3–5].

Protons and neutrons have now been categorized as “hadrons” – subatomic particles

that are made up of smaller fundamental particles called “quarks”. Furthermore, the

species of a hadron is defined by the number and species of its constituent quarks.

Hadrons that are made up of three quarks are called “baryons”, and those made up

of two quarks are called “mesons”.
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Finding new particles has always proven to be a great success for improving col-

lective understanding of the universe, but the discovery of quarks was even more

influential than that; it revealed a previously unknown natural force. The electro-

magnetic force has been well understood for a very long time; some particles have

an electromagnetic charge, which gives rise to an associated field, and thus exerts an

force on other charged entities. The models that constructed the idea of quarks came

to a point where they required that there must be another type of “charge” separate

from the usual electromagnetic type [3, 4]. This has since been named “color charge”

(just terminology and not literal colors) and the associated force called the “strong

force” [6]. The possible values of individual color charges were chosen to be red (R),

green (G), blue (B), antired (R̄), antigreen (Ḡ), and antiblue (B̄).

1.2 The Strong Force

Presently, there are four known fundamental interaction types in the universe: grav-

itational, electromagnetic, weak, and strong. The main type relevant to this disser-

tation is the strong. The strong interaction, named so because it is typically ∼ 137

times stronger than the electromagnetic interaction, is an attractive force that binds

quarks together to form hadrons and binds those hadrons together to form nuclei.

Analogously to the electromagnetic interaction, the strong interaction between par-

ticles results from a fundamental charge they carry (the color mentioned above), and

the force between them is mediated by the exchange of a vector boson. Gluons (g) are
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the bosons that carry the strong force between interacting quarks, and the significant

difference between the strong interaction and the electromagnetic interaction is the

fact that gluons themselves are colored, whereas photons do not have any charge.

This results in the presence of g to g−g splitting as shown in Fig. 1.1. The theory

that mathematically describes the strong interaction with quarks, gluons, and their

color charge is called Quantum Chromodynamics (QCD).

According to quantum field theory, it is known that an electron will randomly

emit and reabsorb photons. Between those points in time, the photons can produce

electron-positron pairs that annihilate back into photons (within the length of time

∆t ≤ ℏ/∆E allowed by the uncertainty principle). Effectively, the individual elec-

tron’s charge is “screened” by e−−e+ pairs around it, and the e+ will be preferentially

closer to the true electron. The overall magnitude of the electron’s charge that can

be measured depends on the distance from it and is shown in the plot on the left of

Fig. 1.1. If the charge is measured closer than the cloud of e−−e+ pairs, the mag-

nitude measured increases drastically, but far from it, the magnitude levels out with

a coupling strength (α) ∼ 1/137. Similarly, for color charges, there will be a color

charge screening; but there is now an additional g−g coupling that must be taken

into account. As with the example on the right of Fig. 1.1, this causes a red color

charge to be preferentially surrounded by more red charges. In the end, there is an

“anti-screening” effect where the total magnitude of the red charge is larger at farther

distances and levels out inside the cloud of quark-antiquark (q−q̄) and g−g pairs.
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Color charges are pulled together with an incredibly strong force, but once they are

within a small distance called the “confinement barrier,” the attractive force is much

smaller and they can essentially behave as free particles. The barrier is roughly 1

fm (10−15 m, A.K.A a “fermi”) from the charge, and within that distance the charges

experience “asymptotic freedom” since they are less constrained [6].

Color confinement is the phenomenon where, due to the anti-screening effects

described above, quarks are unable to exist as single particles. Quarks only exist

bound together as hadrons, and these hadrons can only be formed if the colors of the

constituent quarks form a colorless state. A colorless (white) combination would be

either RGB, R̄ḠB̄, RR̄, GḠ, or BB̄. Therefore hadrons can be separated into two

classes: baryons that have 3 q or q̄ and mesons that are a q−q̄ pair.

1.3 The QCD Phase Diagram

QCD shows that, if normal hadronic matter becomes hot and dense enough, the color

confinement barrier can be overcome. The constituent quarks and gluons are then

free to move on their own, but since they are all still strongly interacting, the net

result is a medium that behaves collectively as a single near-ideal fluid called the

Quark-Gluon Plasma (QGP). This is the state of matter that existed in the first

fractions of a second after the Big Bang, and it can be recreated if nuclei of heavy

atoms are smashed together in colliders at high enough energy. The existence of the
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Figure 1.1: Screening of an electron’s charge and qualitative graph of the resulting
charge (left). Screening of a bare color charge and qualitative graph of the resulting
color charge (right) [6].

QGP implies that there must be a region in temperature and density at which normal

nuclear matter undergoes a phase transition from hadronic to the QGP, or vice-versa.

Figure 1.2 is an example of a general phase diagram for a substance, and it shows

the regions in pressure-temperature space where that substance is in a liquid, solid,

or gaseous phase. The solid lines show the values of pressure and temperature where

adjacent phases will undergo a transition from one to the other. Phase transitions

are usually classified as a “first-order" or “second-order" transition depending on the

manner in which the material changes phases. A first-order transition is named so
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because the first derivatives of the Gibbs free energy are discontinuous. Physically,

this produces an abrupt transition that involves a latent heat during the process

(the temperature is a constant while the material changes phases). Second-order

transitions mean the second derivatives of the Gibbs free energy are discontinuous,

but in modern days these are usually called “continuous” transitions. These are less

abrupt, and do not involve a latent heat. Another important quality for materials

is something called a “critical point” which is shown as one of the red dots in Fig.

1.2. At the critical point there is no longer a discontinuous change between materials,

and small random fluctuations can make the material quickly change back and forth

between the different bordering states (such as a liquid or a gas like in the figure) [7].

Figure 1.2: Example of a generic phase diagram that exemplifies the various possible
characteristics of the substance [8].
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Similar to these diagrams, nuclear matter itself has its own phase diagram like

the one shown in Fig. 1.3 that theorists and experimentalists are trying to calculate

and probe with QCD and heavy-ion collision data. The axes of this diagram have

the temperature of the matter on the y-axis (T ), and the baryon chemical potential

(usually denoted as µB) on the x-axis. µB is the energy associated with a change in

the baryon number for the material, whether gained or released. A simpler way of

describing this quantity is that it is the imbalance of baryons and anti-baryons in the

system. A high µB means there are many more standard baryons than anti-baryons.

Hence the diagram shows a dot for “Nuclear Matter” at the point (µB, T ) ∼ (938

MeV, 0 MeV). This is where all of the average matter on Earth exists; right around

the rest mass of protons and neutrons that make up the nuclei in that matter.

The “Hadron Gas” region around that point where regular matter exists is the

region of color confinement where all color charges are bound together into colorless

states by the strong force. The diagram shows that this state and the QGP are

separated by a first-order transition like that mentioned above, but this line ends

at a critical point with a “crossover” transition at the gap around T ∼ 170 MeV. A

crossover transition means that, while two phases are qualitatively different, there is

not a well defined point of the transition between the two. Instead, there is a smooth

and continuous change as the material evolves from one phase to the other [10].

Due to the limitations of calculations in QCD at high densities, this diagram is

not exact. Currently, this QCD phase diagram is more of a rough sketch of where
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Figure 1.3: A conjectured picture of the QCD phase diagram [9].

the phase transition line could be located, but the search for this transition and the

critical point is an important and ongoing endeavor. While theorists work to predict

the locations of these phenomena using QCD calculations, experimentalists have been

performing similar searches around the phase diagram using real data from heavy-ion

collisions. Experiments such as the Large Hadron Collider (LHC) and the Relativistic

Heavy-Ion Collider (RHIC) can produce a QGP by colliding heavy-ions at energies

such that the resulting matter is within the QGP region of T and µB. An example of

such collisions by RHIC are shown in Fig. 1.3 by orange and yellow spots, with the

orange and yellow arrows describing the path that the produced medium takes as it

cools and diffuses back toward the nuclear matter point.
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Understanding how hadronic matter transitions into a QGP is an extremely im-

portant goal, but in order to do that, there must be a complete understanding of the

initial hadronic matter itself. Currently, there are various theoretical models that can

be used to describe matter below the phase transition [11–14], but the exact nature

of the dominant interactions in this region are still not fully understood. The various

forces that govern hadronic matter would be present in the equation of state (EOS)

that describes the full relation between T and µB, but the full form of this equa-

tion is unknown. Advancing the ongoing search for the proper EOS below the phase

transition is an important goal for the analysis described in this dissertation. Part of

this analysis compares observables measured at low energies that are likely below the

transition with predictions from possible models to show what kind of EOS supports

the measurements from real data.

1.4 Relativistic Heavy-Ion Collisions

Heavy-ion collisions involve stripping the electrons from large atoms and colliding the

nuclei at speeds close to the speed of light. At sufficiently high collision energies, the

nucleons that overlap and collide (the “participants") can melt into a QGP. A basic

diagram of the resulting process of the medium cooling and expanding is shown in Fig.

1.4. It includes two important stages shown as hadronization (often called chemical

freeze-out) and kinetic freeze-out. At the point of chemical freeze-out the medium has

cooled and passed the phase transition so that all deconfined quarks and gluons have
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fully recombined into hadrons. Then, at the point of kinetic freeze-out, the expansion

of the medium has reached the point where all of the final particles only move outward

and no longer collide with each other. This brings the evolution of the collision to

the “final state” consisting mainly of stable particles, with some heavier, unstable

particles which will quickly decay into stable particles. When collisions are not at

an energy which produces a QGP, the main differences are in the created medium

and chemical freeze-out. In this case hadrons do not fully melt into free quarks and

gluons, but exchanges of quarks could happen up until chemical freeze-out.

Figure 1.4: Illustration of a relativistic heavy-ion collision that produces a QGP and
then cools back into hadronic particles [15].
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1.4.1 Definitions of Important Quantities

This section defines various quantities that are used to describe heavy-ion collisions

and the final state particles that are detected.

Multiplicity

The multiplicity of a collision refers to the number of resulting particles in the final

state. If paired with a specific type of particle it just refers to the number of those

particles produced and/or transported outward from the collision, such as proton

multiplicity, for example. Experimentally, not all final state particles are able to be

detected. Whether due to the particles missing the detector, or them simply passing

through the detector without interacting (e.g. neutrons which do not interact elec-

tromagnetically), only a subset of final state particles are recorded in each collision.

Therefore experimentalists commonly refer to the “charged particle multiplicity,” (de-

noted as Nch) which refers to the total number of charged particles that were detected

in a collision.

Collision Centrality

The centrality of a collision describes the size of the overlap region between the two

colliding nuclei. The top portion of Fig. 1.5 illustrates various important parts of

a collision. First, the coordinate system necessary for a mathematical description of

the collision must be set. The common axis on which two nuclei approach each other
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is always defined as the z axis. In the center-of-mass frame of a single collision the

x axis is usually set along the direction of the impact parameter denoted as b. b is

defined as a vector that is perpendicular to z and which originates at the center of

one nucleus and points to the center of the other nucleus.

As previously mentioned, the nucleons in the overlap region are called participants,

while those from either nucleus that don’t collide are known as spectators. Spectators

will usually continue in their original directions or will at least have the smallest

amount of deflection from the z axis as compared to the participants.

Depending on the size of b, the size of the overlap region will change, and thus

the centrality will change. The bottom portion of Fig. 1.5 shows a head-on view of

collisions in three commonly mentioned centrality classes. A central collision refers to

one which has a very small impact parameter and nearly complete overlap region. On

the opposite end, a peripheral collision is one with a very large impact parameter and

a very small overlap. The intermediate scenario is known as a mid-central collision.

The quantitative convention for centrality is referred to as a percentage; 0% centrality

means b = 0 and the nuclei collide perfectly head-on, and 100% centrality means the

nuclei are just far enough apart that they pass by each other with no overlap.

Experimentally, the centrality percentage is estimated by the distribution of Nch

measured over many collisions of the same type. This distribution will look similar

to the blue line shown in Fig. 1.6. For the estimation of the centrality percentages,

the Glauber model will often be used to estimate various centrality-related quantities
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Figure 1.5: Top: Example image of a heavy-ion collision seen from a side view [16].
Bottom: Diagram of three general classes of collision centralities as seen from a
head-on view along with corresponding approximate relations between the impact
parameter b and the nuclear radius r.

such as b, the number of participants (Npart), and the centrality percentages based

on the Nch distribution [17]. The general idea behind this process is that more

central events are expected to have a larger Npart than less central events, and thus

with more interactions, more central events will also produce more particles in the

final state than less central events. Electromagnetically neutral particles are usually

undetectable without very specific types of detectors so only the charged particles are

used in this process.
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Figure 1.6: An illustrative example of a possible measured charged particle multi-
plicity and its correlation with b and Npart which can both be calculated with the
Glauber model [17].
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Center-of-Mass Collision Energy

Collisions of particles or heavy-ions are always defined in terms of one of the Man-

delstam variables,
√
s, which is the total energy of a collision in the center-of-mass

frame. In the particular case of heavy-ion collisions, this is written
√
sNN represent-

ing a nucleon-nucleon collision. Using the four-momenta pA and pB of two colliding

nucleons,
√
sNN is defined by the following (in natural units where c = 1):

pA = (EA, pAx, pAy, pAz)

pB = (EB, pBx, pBy, pBz)

sNN =(pA + pB)
2.

It can be assumed that each nucleon has no motion in x or y directions. In the

usual case where the colliding nuclei are of the same elements with the same energy,

pAx = pBx = pAy = pBy = 0 and EA = EB. Also, since they are moving in opposite

directions along the z axis, pBz = −pAz. The above expression reduces to
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sNN =(pA + pB)
2

= (EA + EB, pAx + pBx, pAy + pBy, pAz + pBz)
2

= (2EA, 0, 0, 0)
2

=4EA.

Therefore, in the case of two identical nuclei colliding head-on with energy E per

nucleon,
√
sNN = 2E.

In a fixed target scenario, one target nucleus is stationary and struck by an identi-

cal projectile nucleus that is in motion. If A denotes the target and B the projectile,

then the energy of a target nucleon reduces to its rest mass (EA = mA) with no

momentum. The above expression would then read

sNN =(pA + pB)
2

= (EA + EB, pAx + pBx, pAy + pBy, pAz + pBz)
2

= (mA + EB, 0, 0, −pBz)
2

=m2
A + E2

B + 2mAEB − p2Bz

=2m2 + 2mE.
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In the last step the identity p2Bz = |pB|2 ≡ E2
B−m2

B was used and the subscripts were

dropped since each nucleon has roughly the same mass. Therefore, in a fixed target

experiment with identical elements,
√
sNN =

√
2m2 + 2mE, with m being the proton

or neutron mass.

The fixed target situation in particular is important for the analysis described

in this dissertation. The present studies were aimed at relatively low energies that

were likely below the phase transition, but those energies become difficult to reach

with a collider experiment since the beams of nuclei become very unstable and un-

controllable. However, as shown by comparing the two expressions above for
√
sNN,

low energies become much easier to access with a fixed target experiment without

dropping the energy of the single beam too low. For example, if two beams of nuclei

collide with E = 5 GeV per nucleon in a collider experiment, the collision energy

would be
√
sNN = 10 GeV. But with a fixed target experiment, the same beam energy

would yield a much lower collision energy;
√
sNN =

√
2(0.938)2 + 2(0.938)(5) = 3.34

GeV.

Transverse Momentum

Transverse momentum, denoted as pT, is defined as the component of a particle’s

momentum vector that is perpendicular to the z axis: pT =
√
p2x + p2y. Since the

heavy-ions are moving at relativistic speeds along the z axis, pT is a very important

quantity since it is Lorentz invariant and thus not affected by boosts along the z axis.
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Rapidity

Rapidity is a dimensionless variable related to speed along the z axis and denoted as

y. Instead of using velocity, rapidity is always used since it is invariant under boosts

along the z axis of motion and it is always additive, even at relativistic speeds. In

three dimensions it is defined as

y = tanh−1 βz =
1

2
ln

(
1 + βz

1− βz

)
=

1

2
ln

(
E + pz
E − pz

)
,

where βz = vz/c with vz being the velocity component in the z direction, E is the

total energy of the particle, and pz is the momentum component in the z direction.

Rapidity is also related to the angle at which it travels away from the z axis and can

be related to the the polar angle θ as

y =
1

2
ln

(
1 + β cos θ

1− β cos θ

)
,

where θ = 0 is along the z axis and θ = π/2 is perpendicular to the z axis. Since y

also depends on the mass of the particle, two different types of particles emitted at

the same angle will not necessarily have the same value of rapidity.
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Pseudorapidity

Pseudorapidity, η, is essentially the same as rapidity except it does not include the

mass dependence. For massless particles such as photons which travel at v = c, y

and η become equivalent. This is also approximately true for light, ultrarelativistic

particles, but it is not an exact equivalence. The definition is given by

η = tanh−1

(
pz
p

)
=

1

2
ln

(
1 + cos θ

1− cos θ

)
.

The similarity to rapidity, along with the fact that pseudorapidity depends only on the

polar angle of particles, has made η an ideal quantity to use for measuring the angle

of emission of particles from collision experiments. When describing the location of

final state particles, η is used rather than θ. If necessary, η could be converted back

to the usual polar angle, and the correspondence is illustrated in Fig. 1.7. Angles

between 90 and 180 degrees would correspond to negative values of η all the way to

−∞.

1.5 Anisotropic Flow

Flow is a term used in heavy-ion collisions that refers to the motion of the medium

created as it expands collectively in directions transverse to the beam. For the QGP in

particular, comparisons for many measured observables have shown that they match
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Figure 1.7: Diagram of the correspondence between η and θ.

well with theoretical predictions that treat the medium hydrodynamically as a near-

ideal fluid [18]. In essence, this strongly supports the picture that the QGP created

in collisions behaves as a single collective fluid. To visualize this simply, it is useful to

imagine that the fluid “flows” outward in various directions as it cools and dissipates.

However, this does not mean there is no sense of flow at lower energies where a QGP

is not present. The medium produced in collisions below the QCD phase transition

still exhibits an expansion in various directions and that flow is measured in the same

way as with the QGP case. The distinction to be made between these situations is

that the flow measured below the phase transition will not match model predictions

that utilize hydrodynamics while the flow measured above the transition does.

The more specific term that refers to the measured observable is anisotropic flow,

or anisotropic transverse flow since there are also possibilities of longitudinal flow

(along the beam direction) or radial flow (uniform expansion transverse to the beam).

Anisotropic flow is a measurement of the non-uniformity of the angular distribution

20



of final state particles in the transverse plane around the beam. This is done by

measuring the azimuthal angle ϕ of all detected particles of interest with respect to

the reaction plane angle Ψr and averaging over all recorded collisions. The reaction

plane itself is defined by the product b̂× ẑ, and in the lab frame, the angle that this

plane makes with the x axis is Ψr (see Fig. 1.8).

Figure 1.8: View of a heavy-ion collision in the transverse plane that shows the
azimuthal angle and reaction plane angle.

Mathematically, the measurement of flow starts with the following equation; a

triple differential distribution expanded as a Fourier series that describes the distri-

bution of final state particles in ϕ−y−pT space [19].

E
d3N

d3p
=

d3N

pTdpTdydϕ
=

1

2π

d2N

pTdpTdy

(
1 +

∞∑
n=1

2vn cos(n(ϕ−Ψr))

)
(1.1)
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In this series the sine terms all vanish due to symmetry with respect to Ψr. The

coefficients vn are are exactly the values that need to be calculated from collision

data in order to measure the strength of each term in the overall flow. These are

defined as

vn = ⟨cos(n(ϕ−Ψr))⟩; n ∈ N1, (1.2)

where the angle brackets ⟨⟩ indicate an average. In this particular case, the average

is over all particles in all events.

Since the vn values come from a Fourier series with an infinite number of possible

values for the order n, they are also called flow harmonics. While the medium can

expand in any complicated manner, Eqn. 1.1 essentially breaks down the shape of

that expansion into a series of simple shapes that, when added together, reproduce

the true overall expansion. The flow harmonics tell you the magnitude that each sim-

ple shape contributes to that sum. It is important to note that this process depends

not only on the initial shape of participant region at the time of the collision, but

also the quantum mechanical forces within the medium (depending on the equation

of state). However, a majority of the flow will be determined by the initial shape and

the pressure gradients produced from that shape (i.e. steeper gradients of pressure

produce stronger flow in that direction). Figure 1.9 shows a visual example of the ini-

tial collision geometry in position space that produces corresponding flow harmonics

from second to sixth order. As an example, for n = 2, the pressure gradients in the
1Here, and throughout this dissertation, I use the convention where N does not include zero.
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Figure 1.9: Images of flow harmonics in position space for n = 2−6. For the cases
shown here, Ψr is horizontal through the center of each shape.

horizontal directions will have steeper pressure gradients than the vertical directions,

due to the shorter distance from the center of mass to the outside. Therefore, the

momentum of the resulting expansion will be primarily in the horizontal directions,

less so in the vertical directions, and the final state distribution of ϕ − Ψr will be

anisotropic.

Like any Fourier series, the coefficients quickly become smaller as the order of

harmonics increases. Much of the core information can be found within the first

few harmonics, and experimentally, the higher orders become much more difficult to

measure. For these reasons, most past flow analyses have focused on v1, v2, and v3.

1.5.1 Triangular Flow

v3, or triangular flow, has been understood to develop from event-by-event fluctua-

tions in the initial collision geometry from heavy-ion collisions [20]. In other words,

when looking through many collisions, there may be some where the participants hap-

pen to arrange into a triangular shape like in Fig. 1.10. v3 is an important probe for
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studying the initial geometry of heavy-ion collisions, and it was also found to be very

sensitive to the hydrodynamical viscosity of the produced medium [21]. When testing

theoretical models that predict different values of viscosity, one could use the models

to predict v3 and compare those to measured v3 values from experiments to see what

model is better supported. Due to this close connection to the hydrodynamics of the

medium, it has also been proposed that v3 is only nonzero above the phase transition

when a QGP is produced [22].

A core goal of the present study was to make a measurement at a low energy that

is very likely to be below the transition. With this kind of measurement, the idea

that v3 does not exist for a hadronic medium could be tested with more certainty.

Furthermore, if this study verified that v3 only exists alongside a QGP, it would

Figure 1.10: Example of a heavy-ion collision seen in the transverse plane with strong
triangularity in the participants [20].
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support the idea that v3 could be used as a new, and very clear, signal that a QGP

was produced.
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Chapter 2

The STAR Experiment
This section explains the details of the experiment used to collect the heavy-ion

collision data presented in this dissertation.

2.1 Relativistic Heavy-Ion Collider

RHIC is a collider facility located at Brookhaven National Laboratory in Upton, New

York. It is comprised of two circular beamlines with a 2.4 mile circumference housed

underground with multiple above ground interaction points. This collider is designed

to facilitate collisions of ions from various elements, as well as polarized protons,

but the most frequent element used is gold (Au). Figure 2.1 shows an aerial view of

RHIC along with the connecting facilities that produce the ion beams. During a run of

heavy-ion collisions, the ions of the element of interest are produced at the Electron

Beam Ion Source (EBIS) where they are accelerated through the circular Booster.

From there, the ion beam is transferred to the Alternating Gradient Synchrotron

(AGS) where the beam is further accelerated. Finally, the beam is injected into

RHIC as two separate beams that travel in opposite directions. These two beams,
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Figure 2.1: Aerial view of the section of Brookhaven National Laboratory that houses
the Relativistic Heavy-Ion Collider.

called the blue and yellow beams, consist of discrete bunches of ions that are made

to collide at particular interaction points where the detectors are located.

2.2 Solenoidal Tracker at RHIC

The Solenoidal Tracker at RHIC, or STAR, is the detector used in the present anal-

ysis. STAR is a large cylindrical detector that measures 4 m long and covers the full

azimuthal angle around the beamline (∆ϕ = 2π). Figures 2.2 and 2.3 show diagrams

of STAR and most of its components. Those shown here include the Time Projection

Chamber (TPC), Time-of-Flight detector (TOF), Barrel Electromagnetic Calorimeter

(BEMC), 0.5 T solenoidal magnet, Muon Tracking Detector (MTD), Endcap Electro-
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magnetic Calorimeter (EEMC), Event Plane Detectors (EPD), Beam-Beam Counters

(BBC), and the Upgraded Pseudo Vertex Position Detectors (upVPD, or just VPD).

For conciseness, this section will focus on only the components used: the VPD, BBC,

TPC, TOF, and EPD.

Figure 2.2: 3D graphic of the STAR detector and a majority of the constituent
subsystems. Parts on the ends are pulled back to show the inner components.

2.2.1 Vertex Position Detector

The VPD consists of two rings of 19 small detectors positioned immediately outside

the beam pipe on the East and West sides of STAR. This system is designed to detect
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Figure 2.3: Cross-section of STAR seen from a side view [23].

the photons from π0 decays very close to the beampipes emanating from primary2

heavy-ion collisions. By recording the times on either side that these photons are

detected (TEast and TWest), and knowing that they travel at speed c, the VPD provides

a measurement of the z position of a primary vertex via the equation

Zvtx = c(TEast − TWest)/2. (2.1)
2A non-primary collision would be anything other than a single collision between the ions of

interest, such as an ion hitting the beam pipe, an ion or particle striking another particle again after
the initial collision, etc.
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Furthermore, the VPD provides the start time of the collision for the TOF with

Tstart = (TEast + TWest)/2− L/c, (2.2)

where L is the distance from the center of STAR to either VPD assembly [24].

2.2.2 Time Projection Chamber

The TPC is a large cylindrical detector that provides the primary means of tracking

particles as they move outward from the collision. It measures 4.2 m long, 4 m in

diameter, and covers a radial distance of 50 to 200 cm around the beam. When

operating in a normal collider configuration the TPC has good resolution of tracks

for analysis within |η| < 1 (see Fig. 2.3), although its coverage more specifically

extends out to |η| < 1.8 [25].

On a basic level, this detector consists of a gas filled chamber, a thin conductive

membrane in the center, concentric field cage cylinders, and readout end caps as

shown in Figure 2.4. The central membrane is maintained at a potential of 28 kV

and serves as the cathode of the two chambers it separates, with the two ends being

anodes at ground potential. This way, an electric field is produced that is parallel to

the beam axis. The gas used is a mixture of 10% methane and 90% Argon, commonly

known as P10, held at a pressure of 2 mbar above atmospheric pressure. As particles

stream through the TPC, they create a trail of ionized gas and freed electrons. The
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tracks of electrons in the gas will then drift toward the readouts due to the electric

field, and that path of signals is recorded as the path of particles. P10 specifically is

used since it has a fast drift velocity that stays uniform and stable at a relatively low

electric potential [25].

Each anode side of the TPC is made up of 12 sectors like that shown in Figure 2.5.

These sectors consist of three wire layers and one readout pad plane. Closest to the

pads are the anode wires, then the next layer is made of ground wires, and finally a

gating grid. The gating grid acts as a shutter to control the entry of electrons coming

near the pad plane and also prevents positive ions from escaping into the main drift

volume. The ground grid terminates the field from the anode wires. The anode grid

Figure 2.4: Basic diagram of the STAR TPC [25].
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causes incoming electrons from a particle track to accelerate and ionize the TPC gas,

causing a signal amplification of 1000 to 3000 times. The resulting positive ions induce

an image charge on the pad plane which is recorded by the readout electronics. Each

sector is also divided into an inner subsection of pad planes and an outer subsection.

Since the inner subsection involves reading a high density of tracks, it is made up

of 13 rows of many small pads for a better position resolution of tracks. For the

outer subsection where track densities are lower, it has 32 rows of slightly larger pads

to improve measurement of the energy lost by tracks as they traveled through the

gas. Therefore any particle recorded by the TPC can have up to a total of 45 hit

points that are used to trace its path [25]. The number of hit points for each track is

a variable denoted as nHits, with the maximum number of 45 called nHitsPossible.

nHitsFit is also used, which is the number of hits used to trace out the path of a track.

When this trace is followed back toward the collision point, a value is measured for

each track called the distance of closest approach (DCA). This value is useful for

ensuring that any tracks not originating from the primary collision are filtered out by

imposing a maximum allowed DCA value.

In each event recorded by the TPC, all tracks measured are considered and traced

backward to measure the x-y position of the collision vertex. The main measure-

ments of particles that are provided by the TPC for analysis are the position, charge,

momentum, and rate of energy loss as they travel through the gas. The rigidity of

each particle (momentum over charge p/q) is calculated by measuring the radius of
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Figure 2.5: Diagram of one STAR TPC pad plane. The center axis of STAR is noted
by the small dot on the right; the inner subsection is on the right and the outer
subsection on the left [25].

curvature of its path, since the magnetic field provided by the solenoidal magnet in-

duces charged particles to move in helical paths [25]. The sign of this quantity reflects

whether the particle has a positive or negative charge, and for particles with a charge

of ±1, this provides the measurement of total momentum. For particles with |q| > 1

the rigidity can be corrected into total momentum after positively identifying the

particle species.

The ionization energy loss per unit length (dE/dx) of each particle is measured

by the TPC to provide identification information. Instead of calculating an average

dE/dx (since this would include many problematic ionization fluctuations) the most

probable value is measured. 30% of the largest clusters of image charges measured in
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the pads are ignored, and then a mean is taken on the remaining 70% of the signal.

This is referred to as a 70% truncated mean and is used as the most probable dE/dx

measurement for each track [25]. The number of hits of a track in the TPC which are

used to calculate dE/dx is called nHitsDedx. This energy loss information is used to

provide crucial values called nσ associated with each track that are defined as

nσX =
1

σX

ln

(
⟨dE/dx⟩measured

⟨dE/dx⟩Bichsel,X

)
, (2.3)

where ⟨dE/dx⟩measured is the 70% truncated mean of a track, σX is the dE/dx

resolution of the TPC for that track assuming it is some particle species X, and

⟨dE/dx⟩Bichsel,X is the mean dE/dx that would be expected of a particle of type X

at the measured momentum as described by the Bichsel function [26, 27]. Once all

tracks are recorded, they are each assigned values of nσ corresponding to the as-

sumption that they are an e, π, K, and proton (nσe, nσπ, nσK , and nσp). nσ values

corresponding to a species that properly represents the true particles will most closely

represent a Gaussian distribution; i.e. the distribution of nσπ for actual pions will re-

semble a Gaussian and center at nσπ = 0, while the nσπ for protons will be skewed

and likely farther from 0 [26]. Therefore one can make a simple cut on nσ to isolate

this Gaussian peak and remove a majority of tracks that are less likely to be that

particle of interest. What remains is a sample of tracks that are most likely to be the

particle of interest, and particle identification has been completed using the TPC.
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In the case of light nuclei such as deuterons, tritons, helium-3, etc., there are no

corresponding values of nσ. The identification using ⟨dE/dx⟩ can still be done with

these species, but there is no longer a known resolution term σX as shown above.

Instead, the identifying quantity is denoted as z, which is essentially nσ without the

resolution term;

zX = ln

(
⟨dE/dx⟩measured

⟨dE/dx⟩Bichsel,X

)
. (2.4)

Particle identification using only the TPC does have its limitations, however. As

the momenta of the tracks grow it becomes more difficult to distinguish different

species because their ⟨dE/dx⟩ values start to overlap. An example image of these

measurements as a function of rigidity are shown in Fig. 2.6. This clearly shows how

separating particle species by ⟨dE/dx⟩ is best performed at relatively low momenta.

The STAR TPC was designed to distinguish protons and pions up to 1.2 GeV/c [25].

2.2.3 Time-of-Flight Detector

The TOF system is another component of STAR that is used for particle identification

(PID) by providing the speed of particles flying out from primary collisions. The TOF

specifically measures the time at which it is hit by each track. The VPD provides the

start time at which a collision happens (Eqn. 2.2), so with the stop times from the

TOF, the relativistic velocity parameter β can be calculated for each track that hits
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Figure 2.6: Example of ⟨dE/dx⟩ measurements vs rigidity for negatively charged
particles (a) and positively charged particles (b). Note the log-scale of the x axis and
that the charge symbol shown as Z is the same as q that used in this text [28].

the TOF with the equation

β =
v

c
=

L

c(Tstop − Tstart)
. (2.5)

Here, L is the measured path length of each track. Figure 2.7 demonstrates the

improved PID capabilities of the TOF with a separation between π and K up to

p ∼ 1.8 GeV/c and between π (or K) and protons up to p ∼ 3.0 GeV/c.

Knowing β holds very important identification information since it provides a

direct measurement of particle mass with the equation

m2 = p2
(

1

β2
− 1

)
, (2.6)
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Figure 2.7: Measurements of 1/β made by a tray of the TOF with Au+Au collisions
in 2001. The solid lines show expected values for each particle type, and the inset
plots show projections of the highlighted regions onto the vertical axis [29].

which is derived from combining the two known equalities β = p/E and E2 = p2+m2.

Analogous to nσ provided for TPC tracks, TOF hits are identified by enforcing cuts

on m2 for each hit.

Using the TPC and TOF for PID simultaneously provides the best purity of

particle samples, but this does come with a trade-off in how many particles can be

recorded. Figure 2.8 shows an example of one section of the TOF and how it is made

up of many discrete detector assemblies. These assemblies are also tilted in order to

better face the center of STAR and cover regions in η more efficiently. Trays like these

are aligned along the beam direction and placed outside the TPC all around the full

2π azimuthal angle. Although the full curve of the cylinder is covered, the TOF has
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slightly less η coverage than the TPC with an acceptance of |η| < 0.9 in collider mode.

Also, the discrete nature of the TOF means there are still many particles within its η

coverage that will pass between the components unseen. Regardless, the TOF is an

extremely useful component for PID that is used or not used based on the necessities

of each particular analysis.

2.2.4 Endcap Time-of-Flight Detector

The endcap Time-of-Flight, or eTOF, was an upgrade for the TOF system which was

installed in 2019. This component consists of 36 modules arranged in a circle around

the beam pipe and placed on the West end of STAR. These modules serve the same

Figure 2.8: Expanded view of one tray of the TOF which illustrates the detector
assemblies and the angle at which they sit on each supporting wedge [29].
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purpose as those in the barrel TOF and provide the values for L and Tstop in Equ.

2.5. Since the eTOF is positioned on the endcap, it provides a significant extension to

the rapidity range covered by the entire TOF system and therefore a greater region

of high purity PID [30, 31].

2.2.5 Event Plane Detector

The EPD consists of two circular components like that shown in Fig. 2.9 which are

positioned around the beam pipe on both ends of STAR (see Fig. 2.2). This places

each detector 3.75 m from the center of the STAR TPC. Each wheel is made up of

12 supersectors of 31 scintillating tiles that emit photons when struck by charged

particles. Photons from each tile are transported via optical fibers to silicon photo-

multipliers (SiPM) to amplify them, and then the final signal is recorded in the data

acquisition system (DAQ). This signal gives a measurement of the energy deposited

into the detector by charged particles, and this energy is recorded as a multiple of the

energy that would be deposited by one minimum ionizing particle, or MIP. Therefore,

in each event, any tile which was struck records a value called nMIP that shows that

the total energy deposited is equivalent to ‘n’ number of MIPs hitting that tile.

This system is referred to as a “hit detector”, so it has no PID capabilities aside

from the fact that all hits are known to be charged particles and not neutral. The main

focus of this detector is to measure the azimuthal distribution of outgoing particles

in the high η regime. In collider operation, the EPD covers 2.14 < |η| < 5.09 [32].
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Figure 2.9: Diagram of one wheel of the EPD with one supersector highlighted in
yellow [32].

While each tile measures the total energy deposited, the ϕ and η positions of each

tile with respect to each collision vertex give the positions of each hit detected.

The regions close to the beam on either side of the collision are very important for

measuring event plane angles, which are empirical estimations of the reaction plane

angles. This is exactly what the EPD was designed to do. Event planes are calculated

based on the azimuthal distribution of particles in some region of the event, but the

high η regions will be more likely to consist of, or be similar to, the spectators. Since

spectators do not interact or flow like the participants, it is likely that an event plane

reconstructed from spectators will be more similar to the true reaction plane than an

event plane reconstructed from participants.
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2.2.6 Beam-Beam Counters

The BBC detectors, similar to the EPD, involve two identical hexagonal arrangements

of scintillating tiles positioned around the beam pipe on both ends of STAR. Each

detector consists of 18 large tiles and 18 small tiles as shown in Fig. 2.10, where the

beam pipe passes through the center into and out of the page [33, 34]. The BBC

was the original system used for measuring event plane angles, but has since been

replaced by the more precise EPD system in that capacity [32]. The BBC is still

an important component that is used as a trigger detector which determines what

events should be recorded or not. Registering a hit in one side or both sides of the

BBC simultaneously can be used to determine when an important collision event has

occurred, and thus trigger data collection.

2.3 Fixed-Target Experiment

In order to fully explore the QCD phase diagram in the region of the first order

phase transition, STAR constructed a Beam Energy Scan (BES) program with the

goal of recording data at many energies ranging from the hadronic phase to the QGP

phase (Fig. 2.11). The first stage of this program, BES-I, recorded collisions at

√
sNN = 39, 27, 19.6, 11.5, and 7.7 GeV and was completed in 2011 [36]. After

multiple upgrades to STAR, the second phase (BES-II) began in 2019. This included
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Figure 2.10: Diagram of one of the BBC detectors. The central spot marked “B”
represents the beam pipe [34].

energies at
√
sNN = 19.6, 14.5, 11.5, 9.1, and 7.7 GeV, where the repeated energies

gained new information from the new components installed as well as larger amounts

of events recorded compared to BES-I [37]. Furthermore, BES-II included a new fixed

target (FXT) program that would produce even lower energies at
√
sNN = 7.7, 6.2,

5.2, 4.5, 3.9, 3.5, 3.2, and 3.0 GeV. A sheet of gold foil 0.25 mm thick was placed on

the support structure shown in Fig. 2.12 and positioned inside the beam pipe within

STAR at 211 cm from the center of STAR as shown in Fig. 2.13. After some testing

runs, this foil was moved to 200.7 cm from the center of STAR. With the target

right on the West edge of the TPC, one gold beam moving in the East direction was
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Figure 2.11: Conjectured QCD phase diagram with the location of various collision
energies measured by STAR in the BES-I and BES-II/FXT programs [35].

circulated to strike the target [35]. In this way, many of the main components of

STAR could still capture a large portion of the products coming from the collisions.

The components that could not be used in FXT runs were those on the West end

cap, such as the EEMC and the West side of the EPD.

The plan for the project described in this dissertation was to make a measurement

of v3 in Au+Au collisions specifically at FXT energies starting at
√
sNN = 3.0 GeV

followed by an energy scan upward to uncover the energy dependence of v3. In total,

these measurements were performed at 3.0, 3.2, 3.5, 3.9, and 4.5 GeV.
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Figure 2.12: Picture of the gold target on its support and within the beam pipe [35].

Figure 2.13: Cross-section of STAR during Run 14 showing the location of the target
and direction of incident beam [35].
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Chapter 3

Initial Observation of Triangular Flow

at √
sNN = 3.0 GeV

3.1 Dataset

This analysis was performed on Au+Au collisions at
√
sNN = 3.0 GeV from 2018 as

part of the Fixed-Target (FXT) program. This corresponded to a single Au beam,

with energy Ebeam = 3.85 GeV per nucleon and rapidity ybeam = −2.09 striking

the gold foil within STAR. This system also had a center of mass rapidity value of

yCM = −1.05.

3.1.1 Sign Convention of Rapidity

In order to maintain the same conventions established with STAR collider mode

datasets, and reduce the chances of sign errors, the sign of rapidities as measured by

the detectors was not changed. Mid-rapidity was ymid = −1.045, and when shifting
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to the center-of-mass (CM) frame, the usual equation

yCM = ylab − ymid (3.1)

was used. In the lab frame, the FXT setup means that all recorded products of the

collisions would be in a similar direction. Therefore all tracks had ylab < 0, and when

producing results in the CM frame, the “forward" direction corresponded to yCM < 0

and “backward" was yCM > 0.

3.1.2 Event Selection

This analysis only used minimum bias events which were triggered to be recorded

when there was a hit in the East BBC detector and at least one track recorded by the

TOF in the same event. These events were then also required to pass through cuts

on the vertex position. With the fixed target, it was known that the vertices should

be positioned near the point (x, y, z) = (0,−2 cm, 200 cm), which was indeed what

was seen, as shown in Fig. 3.1. Only events with vertices that had a z-component of

198 cm < Vz < 202 cm were accepted, and then a circular 1.5 cm radius cut in the

transverse direction was made to accept events with
√
V 2
x + (V 2

y + 2 cm)2 < 1.5 cm.

Figure 3.2 shows how many events were left after each cut; the minimum number of

hits cut will be described later. Not all data-taking sessions (called “runs”) produced

usable data, and any which suffered from detector issues, power outages, operator
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errors, etc. were marked as bad runs. After a STAR internal study identified all bad

runs in this dataset, the first step was to omit any of these runs from the data sample

as shown in Fig. 3.2.

Figure 3.1: Vertex z position (left) and x-y position (right) of accepted events after
bad run, minbias, vertex-z and transverse vertex position cuts.
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Figure 3.2: Number of events after each set of cuts.

3.1.3 Centrality Definition

The accepted events were categorized based on their centrality. The official definition

established for this energy was determined by an internal STAR study. Table 3.1

shows this determination and the correspondence between each centrality bin and the

number of primary tracks in an event, while Fig. 3.3 shows the number of good events

found in each centrality bin. Due to a low trigger efficiency for events with centrality

> 60%, this analysis only examined collisions to a maximum of 60% centrality. At

this energy it was established that “mid-centrality” events referred to those within 10 -

40%, with central and peripheral collisions covering 0 - 10% and 40 - 60%, respectively.
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Centrality Multiplicity
0 - 5% 142 - 195
5 - 10% 119 - 141
10 - 15% 101 - 118
15 - 20% 86 - 100
20 - 25% 72 - 85
25 - 30% 60 - 71
30 - 35% 50 - 59
35 - 40% 41 - 49
40 - 45% 33 - 40
45 - 50% 26 - 32
50 - 55% 21 - 25
55 - 60% 16 - 20
60 - 65% 12 - 15
65 - 70% 9 - 11
70 - 75% 7 - 8
75 - 80% 5 - 6

Table 3.1: Centrality definition used for the STAR 3.0 GeV FXT dataset from 2018.

Figure 3.3: Number of events for each centrality in 3.0 GeV collisions.

49



3.1.4 TPC Track Selection

Once an event was accepted, the tracks detected by the TPC needed to go through

a series of quality assurance (QA) cuts to filter out any with unreliable tracking or

energy measurements. First, only tracks from the primary collision were accepted,

and these tracks needed to pass the cuts shown in Table 3.2. Depending on the η of

the particle, the total number of layers it could pass through could vary, making a

cut on the ratio nHitsFit/nHitsPossible important to ensure that track splitting from

particle decays does not introduce extra tracks into the analysis. Only tracks that

had over 52% of the possible number of hits were accepted. Finally, the DCA values

needed to be within 3 cm to further ensure that they were particles coming from the

primary Au+Au collision only.

Variable Acceptance
nHits ≥ 15

nHitsDedx > 5
nHitsFit/nHitsPoss > 0.52

DCA < 3 cm

Table 3.2: 3.0 GeV TPC track acceptance cuts.

3.1.5 EPD Hit Selection

The selection for the EPD hits dealt solely with the nMIP values from each tile.

Values less than a threshold set as 0.3 are taken as 0 and omitted while values above
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Figure 3.4: Number of tracks after each set of cuts in 3.0 GeV collisions.

2.0 are replaced with a value of 2.0. The values after this operation are known as the

truncated nMIP (TnMIP) values. This was done to filter out detector noise and large

fluctuations in the measurements which are unreliable. The average TnMIP can be

seen in Fig. 3.5 and the total number of hits per nMIP value is shown in Fig. 3.6.

3.2 Analysis Methods

3.2.1 Particle Identification

In this analysis, π±, K±, and p were identified using the TPC and TOF. The m2

information was required from the TOF for π and K, but p only used nσ from the

dE/dx information supplied by the TPC. The specific acceptance criteria used are
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Figure 3.5: Average TnMIP for each EPD supersector w.r.t. track η (top) and EPD ϕ
vs η distribution (bottom). The angled and curved distributions are due to the target
being off-center and causing a larger concentration of hits in and around supersectors
6 and 7 than around 1 and 12.

shown in Table 3.3 and a flow chart of the PID process is shown in Fig. 3.7. The

protons’ dE/dx curves are well defined at this energy, and they have relatively high

multiplicity, so using a slightly tighter nσ cut and omitting the TOF requirement was
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Figure 3.6: Total number of EPD hits per nMIP value.

safe to do without much contamination. This helped to ensure that the acceptance

range in y and pT was as large as possible for p. The dE/dx and 1/β distributions

can be seen in Fig. 3.8.

Particle dE/dx m2 Other
π |nσπ| < 3.0 −0.1 < m2 < 0.1
K |nσK | < 3.0 0.15 < m2 < 0.34
d |p⃗| dependent |p⃗| dependent Not π or K
t |p⃗| dependent |p⃗| dependent Not π or K
p |nσp| < 2.0 Not π, K, d, or t

Table 3.3: Track PID cuts at 3.0 GeV using the TPC and TOF. These criteria repre-
sent the qualities required of a track to be identified as each particle in the analysis.
The specific values used for d and t are described in the text.

Identified π+ and π− used for flow measurements were selected in a range of

transverse momentum of 0.18 < pT < 1.6 GeV/c, K+ and K− within 0.4 < pT < 1.6
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Figure 3.7: Flow chart describing the PID process at 3.0 GeV.

GeV/c, and p within 0.4 < pT < 2.0 GeV/c. Each particle type was selected with

a center-of-mass rapidity range of 0 < yCM < 0.5. These acceptance regions, which

are noted as solid black boxes in the plots shown in Fig. 3.9, are used for calculating
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Figure 3.8: dE/dx vs total momentum for all good tracks in the TPC (top) and 1/β
vs total momentum for all good tracks in the TPC with TOF information (bottom).

anisotropic flow vs. centrality. For flow measurements vs. yCM, the acceptance in

yCM was extended for protons out to 1.0. In this region, a measurement of the slope

dv3/dy|y=0 for protons was extracted by fitting the 10-40% centrality results with the

function y = ax+ bx3 since it resembles the behavior of the data points.

55



Since it was desirable to extract flow measurements for protons in a symmetric

region across midrapidity, a separate window in pT and y was chosen as −0.5 <

yCM < 0.5, and 1.0 < pT < 2.5 GeV/c. This is shown as the dashed black box in Fig.

3.9. These results were also used to make an estimate of the uncertainty in the slope

measurement mentioned above by performing the same fit on the left and right sides

of midrapidity for these rapidity-symmetric results at 10-40% centrality. With the

difference ∆a, where a is the slope from the fit function mentioned before, and aver-

age ⟨a⟩ from the two sides, a fractional difference was extracted with ∆a/(⟨a⟩
√
12).

This quantity arises since ∆a/
√
12 is the standard deviation of a continuous uniform

distribution constructed with the two slopes. Applying the fractional difference to

the main slope measurement from the rapidity non-symmetric results produced the

uncertainty estimate in the rapidity non-symmetric slope.

3.2.2 Event Planes

This analysis used the event plane method to calculate the v3. This involved con-

structing empirical versions of the reaction plane angle Ψr known as event plane

angles. These are denoted as Ψn, where n ∈ N. The event plane angles are decom-

posed into different harmonics in the same way as the flow harmonics vn. Therefore,

flow is usually calculated by measuring the same order of Ψn as vn; e.g. Ψ2 would be

used to measure v2. However, as the order n increases it becomes more difficult to

accurately measure Ψn without larger datasets. It is known that any order of flow n
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Figure 3.9: pT vs. yCM density plots for π±, K±, and p measured by STAR in Au+Au
collisions at

√
sNN = 3.0 GeV. The red dashed line represents the target rapidity and

the solid red line represents mid-rapidity. The solid and dashed black boxes mark
acceptance regions used for flow calculations in various cases explained in the text.

can be calculated using any order of event plane angle m as long as n >= m and n

is a multiple of m. When n > m, the sign of vn will be relative to vm [19]. Because

of this criteria, event plane angles in this work are denoted as Ψm, where m ∈ N,

since it is not always true that the harmonic of flow is equivalent to the order of

event plane angle. Since the target order of flow for this study was v3, the use Ψ3

was attempted first. Due to the low energy, and perhaps a lack of a large enough

dataset, a reliable measurement of Ψ3 was not possible. The only other order of Ψm

that could have been used was Ψ1, so this became the focus. Ψ1 is usually associated

with measurements of v1, and geometrically it could be interpreted as an estimate of

Ψr. Ψ1 proved to be much easier to measure, and since it was still a valid event plane

to evaluate v3, the study shifted to make measurements of v3 using Ψ1.
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Another aspect of the event plane method is that event planes have an associated

event plane resolution that is denoted here as Rnm. It is important to note that

multiple measurements of Ψm are needed in each event to calculate Rnm. Rnm values

can be found by comparing multiple copies of the same event planes constructed from

separate subsets of tracks in the same event. These smaller sections of the events are

known as subevents. In collider mode it is possible to use two symmetric subevents

with equal numbers of tracks on either side of the collision to calculate Rnm, and

this equal multiplicity means that the resolution is the same in each subevent [19].

Due to the FXT setup at
√
sNN = 3.0 GeV, the multiplicity of tracks was very non-

uniform, as shown in Fig. 3.10. This required the use of three subevents with unequal

multiplicity instead. More details about Rnm will be explained in the next section.

Figure 3.11 shows a simple diagram of the ways the EPD and TPC were divided

into smaller regions in this analysis. The EPD was separated into two regions based

on the number of rings; EPD A contains rings 1 - 8 and EPD B has rings 9 - 16.

The TPC was divided in half around η = −1.045 with a 0.1 gap, so TPC A covers

−2.0 < η < −1.1, and TPC B covers −1.0 < η < 0.

The actual reconstruction of Ψm starts with the flow vectors Q⃗ in each subevent

defined in the following way:
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Figure 3.10: η distribution of all good tracks/hits in the EPD and TPC. All EPD
hits shown in the η > 0 region are omitted from this analysis.

Q⃗m = (Qm,x, Qm,y) (3.2)

=

(∑
i

wi cos(mϕi),
∑
i

wi sin(mϕi)

)
(3.3)

Ψm =
1

m
tan−1

(
Qy,m

Qx,m

)
, (3.4)

where ϕi is the azimuthal angle of the i-th track in a subevent, and wi is the weight

applied to that track. The summations are performed over all good tracks in the

relevant region of that subevent. The weights for TPC tracks used in this analysis
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Figure 3.11: η coverage diagram of sub-event regions in the EPD and TPC.

were the pT of each track, and the EPD weights were the TnMIP values mentioned

in section 3.1.5.

The main region used for the event plane angle in flow calculations was EPD A,

with the two reference regions being EPD B and TPC B. These regions were consistent

with previous STAR flow analyses at 3 GeV [38, 39]. In order to ensure that each

subevent had enough points to reliably reconstruct Ψ1, it was required that the TPC

A region had at least 5 hits, the EPD B region had at least 9 hits, and the TPC B

region had at least 5 tracks. If an event did not meet this requirement then it was

be rejected. This cut corresponds to the last bin in Fig. 3.2. Before calculating the

resolutions of the event plane angles, re-centering and Fourier shifting processes were

used to correct for non-uniform detector acceptance issues. The following formulae

describing these processes are written in their general form, but substituting m = 1

will recreate the process for this study.

Re-centering is a process that takes raw flow vector components, Qx and Qy, and

shifts them by their averages over all events. This moves the average values back

to zero where they were expected to be had there been perfectly uniform azimuthal
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coverage and perfect detector efficiency. The event plane angles are then recalculated

using the components of Q⃗RC as follows [19]. Before and after re-centering in the

present work, any events that had no flow, Q⃗ = (0, 0), were omitted.

Qx,RC = Qx − ⟨Qx⟩ (3.5)

Qy,RC = Qy − ⟨Qy⟩ (3.6)

Ψm,RC =
1

m
arctan

(
Qy,RC

Qx,RC

)
(3.7)

The Fourier shifting method involves adding a correction term to every event plane

angle to shift the observed distribution of angles into an isotropic one. This term,

∆Ψm, is derived in theory by fitting observed distributions of event plane angles to

a Fourier expansion in order to find the terms required to remove and flatten the

distribution. This involves a sum of imax terms and this limit can be chosen by the

analyzer to be as many terms as they deem necessary to flatten the distribution; for

this analysis imax = 10 was used. Since this was only performed after re-centering, it

was the re-centered angles that were used as follows:

Ψm,shifted = Ψm,RC +∆Ψm,RC (3.8)
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∆Ψm,RC =
imax∑
i=1

2

im
(−⟨sin(inΨm,RC)⟩ cos(imΨm,RC)

+ ⟨cos(imΨm,RC)⟩ sin(imΨm,RC)), (3.9)

where the averages were over all events [19]. After these corrections, the original Ψm

distributions measured in each subevent became isotropic from −π to π as expected.

The distributions at each step can be seen in Fig. 3.12.

Figure 3.12: Distribution of event planes from each subevent in the
√
sNN = 3.0 GeV

dataset.

3.2.3 Event Plane Resolution

Rnm is a value from 0 to 1 for each centrality bin and corresponds to the effectiveness

of calculating vn using a particular reconstructed Ψm, where 1 is 100% effectiveness.

These quantities are used as corrections to the initially observed flow values from each
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track, vobsn , so that the final corrected flow is

〈
cos(n(ϕ−Ψm))

Rnm

〉
=

〈
vobsn

Rnm

〉
= ⟨vn⟩, (3.10)

Where the average spans across all tracks of interest, which contribute separate ϕ

values, and all events of interest, which have associated Ψm and Rnm values. Other

sources may represent event plane resolution corrections as ⟨cos(n(ϕ − Ψm))⟩/Rnm

where the resolutions are applied after the average, but the method shown above has

been shown to produce an accurate calculation of flow averaged over wide centrality

bins weighted by event multiplicity, while the other method could produce an overes-

timation of flow [40]. The method used here did not include the statistical uncertainty

of Rnm into the calculation of ⟨vn⟩, but that was incorporated later along with the

systematic uncertainties in Rnm.

In the three subevent method, regions A, B, and C are chosen within an event, and

the tracks they each contain are used to reconstruct subevent plane angles ΨA
m, ΨB

m,

and ΨC
m. This is essentially trying to reconstruct the same Ψm each time, but each

subevent may produce a slightly different value. Comparing how well the three ver-

sions agree with each other shows how definitively any of them can produce accurate

flow calculations. The resolution associated with ΨA
m is calculated from correlations
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of the three angles as

RA
nm =

√
⟨cos(n(ΨA

m −ΨB
m))⟩⟨cos(n(ΨA

m −ΨC
m))⟩

⟨cos(n(ΨB
m −ΨC

m))⟩
. (3.11)

The resolutions of regions B and C can be found by cycling the indices A, B, and C,

but whichever region produces the best Rnm values can be chosen as the main region

to obtain Ψm. The other two regions are simply reference regions utilized to get the

resolution of the main region.

The resolution values for EPD A are shown in Fig. 3.13 along with the other

two regions. The resolution values for TPC B are very large but this region was

not used as the main subevent because these resolution values are unreliable. From

Fig. 3.14 it is shown that the TPC B resolutions will be greatly inflated because

the correlations between EPD A and EPD B are the smallest. When calculating

the TPC B resolution the EPD A-EPD B correlations are in the denominator and

artificially inflate the resolution. The three subevent method essentially uses two

reference regions to get a baseline measurement of the event plane that the main

subevent can then be compared against. A good selection of subevents would have

two reference regions that agree very well (strong correlations) so that the main

subevent can make a reliable comparison. However, if the two reference subevents

don’t agree well, then a strong baseline is never established and a comparison with

a third subevent cannot be trusted. This was exactly what was seen with TPC B,
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so the best choice for a main subevent became EPD A. Additionally, the centrality

region which is usually the most crucial is the mid-central region. This was where

EPD A peaked in resolution, so it was again deemed the best region to use.

The results from Fig. 3.13 showed which region would be best, but the particular

values of R31 given by EPD A needed further corrections before calculating flow. One

more issue was that there was no gap in η between regions EPD A and EPD B. It is

important for all subevents in a flow study to be adequately separated so that there

are less chances that two subevents are well correlated simply because they are close

together. Some tracks may travel in a similar region due to conservation of momentum

in the collision. If two subevents X and Y are touching, it increases the chances of

those regions being influenced by this effect around their shared boundary. Tracks

around the boundary could have similar ϕ values, which could reconstruct similar

ΨX
m and ΨY

m, and thus an inflated correlation cos(n(ΨX
m − ΨY

m)). For this reason,

amendments were made to take this η gap effect into account before calculating v3.

These details are explained in section 3.2.5.

3.2.4 TPC and TOF Efficiencies

TPC reconstruction efficiencies, ϵTPC , were calculated from samples of Monte Carlo

(MC) simulated particles embedded into real data. For the MC particles, their species

and multiplicity was exactly known. This data sample was then evaluated using the
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Figure 3.13: Event plane resolutions for v3 correlated with Ψ1 for each subevent. Note
that the blue points are not the actual R31 values used to produce the final results of
v3, check Section 3.2.5 for the final values.

specifications of the STAR detectors, and then analyzers identified as many of the

tracks as if the data were real and taken from the detectors. The efficiency values

were calculated by dividing the number of MC tracks matched to the proper particle

type by the total number of MC tracks generated for that particle type in 2D bins of

pT and yCM. The values of ϵTPC can be seen in each bin of Figs. 3.15, 3.16, and 3.17.

The pT and yCM of each identified track in the real data was used to match the tracks

to their corresponding ϵTPC. TOF matching efficiencies, ϵTOF, were calculated from

only the real data by dividing the total number of TOF tracks by the total number

of TPC tracks. The ϵTOF values in bins of pT and yCM are shown in Fig. 3.18.
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Figure 3.14: Correlations between subevents EPD A, EPD B, and TPC B vs centrality
at 3.0 GeV.

The application of these efficiencies was done by weighting every term in the

average of Equ. 3.10 by the inverse of that track’s efficiency. Protons were weighted

by 1/ϵTPC while pions and kaons were weighted by 1/(ϵTPC × ϵTOF).
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Figure 3.15: TPC reconstruction efficiencies for π+ (left) and π− (right).

Figure 3.16: TPC reconstruction efficiencies for K+ (left) and K− (right).
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Figure 3.17: TPC reconstruction efficiency values for protons.

Figure 3.18: TOF matching efficiencies.
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3.2.5 Systematic Uncertainties

In order to estimate the systematic uncertainties of v3 results, all results were repro-

duced with 20% and 30% variations higher and lower on all event cuts, track quality

cuts, and particle identification cuts. Two variations in the event plane resolution

were also included by enforcing an η gap between regions EPD A and EPD B. When

there was an acceptance window with a higher and lower bound, it was treated as

one window and the total width was varied by 20% or 30% instead of each bound.

Along with the normal results, this produces 3 sets of v3 measurements with different

event plane resolutions, and 5 sets of v3 measurements related to variations on all

other cuts except for nHitsDedx. The nHitsDedx cut can only be varied higher since

it is normally at the lowest point, so this cut also has 3 variations. The size of the

variations on nHitsDedx were chosen based on the change in statistics they would

create, so they were not 20% and 30%.

The variations in the final v3 measurements were used to calculate the system-

atic uncertainties related to each cut. For a specific cut i, the contribution to the

systematic uncertainties, σsys,i, was calculated as a usual standard deviation:

σsys,i =

√√√√ 1

N

N∑
j=1

(xj − µ)2, µ =
1

N

N∑
i=1

xi.

Here, xj are the same v3 measurements for different variations of the cut i, and N is

the number of variations made for that cut. The final systematic uncertainty for any
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v3 measurement would then be
√∑

i σ
2
sys,i, where only the cuts with variations deemed

significant for that measurement would be included in the sum. If a cut with all of

its variations produces a maximum value of v3 with statistical uncertainty x2 ± δx2

and a minimum value x1± δx1, then that cut’s contribution to the systematics would

be significant if (x2 − x1)/
√
|(δx2)2 − (δx1)2| > 1 [41]. The only variation that did

not go through this check, and was included in the systematic uncertainties of every

measurement, was the event plane resolution variation. This is because the check for

significance is only relevant when a variation alters the statistics of the data sample.

When changing the R31 values, the number of events and tracks is unchanged.

For one variation of the event plane resolution, the reference region EPD B, made

from rings 9 - 16, was changed to rings 10 - 16, placing an η gap of roughly 0.1

between the two EPD regions. The second variation was similar, but made EPD B

into rings 13 - 16 to put a much larger gap between the EPD regions and also shrink

the size of EPD B as much as possible without completely losing the subevent corre-

lations. These variations were made in an attempt to account for possible effects of

momentum conservation on our calculation of R31 and include them into the system-

atic uncertainties. Due to the large gap between EPD B and TPC B, no variations

to TPC B were made.

Figure 3.19 shows how the event plane correlations change as EPD B shrinks one

ring at a time. The left and right plots show that the shape of the correlations stay

consistent while the only major change was that the magnitude of the correlations are
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reduced (simply from the fact that EPD B was getting smaller). The peak position

in the left figure stays the same for all variations and the peak in the right figure

only shifts a small amount toward more central collisions. Since these correlations,

and the resulting resolutions in Fig. 3.20, behaved similarly for different sizes of the

reference region EPD B, this again showed that EPD A was a consistent and reliable

region to use as the main source of Ψ1 in flow calculations.

Figure 3.19 also shows that, once EPD B was reduced down to rings 12 - 16 and 13

- 16, fluctuations in the correlation values became significant enough to cause them

to become negative in some bins. These fluctuations were likely due to the small

size of EPD B making it more difficult to calculate very accurate reconstructions of

Ψ1. This prevented the calculation of the true value of R31 at these points, and in

Fig. 3.20 real values are only obtained out to 40 - 45% centrality (green points).

The resolutions for EPD B rings 13 - 16 were also affected by the fluctuations in the

correlations so the trend is less smooth. Knowing that the correlations stay consistent

in their shape, the resolutions from the normal setup (EPD B made of rings 9 - 16)

were taken and scaled down so that ⟨R31⟩ between 20 - 45% matches the same average

when EPD B made from rings 13 - 16. In this way, the empty bins of the 13 - 16

setup were filled, and the distribution was smoothed to get an estimation of what the

real resolutions would likely be (Fig. 3.21). For the second event plane resolution

variation in practice, the analysis was run using EPD B as rings 13 - 16 to get the

event statistics correct for this setup, but the estimated event plane resolutions were
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used to get the final v3 results. Figure 3.22 shows a comparison of all three R31

distributions used for estimating systematic uncertainties.

If the resolutions obtained from using rings 9 - 16 for EPD B were used as the

main setup and EPD B rings 10 - 16 and 13 - 16 were used as the two systematic

variations, all systematic uncertainties associated with the event plane resolution

would be asymmetric. Instead, the average of these three distributions was used as

the main event plane resolution values. The systematic uncertainty for each bin was

then set as the maximum difference between the average and the three variations.

These final resolutions and systematic uncertainties are shown in Fig. 3.23.

A table of the 20% variations made can be seen in Table 3.4 and the 30% variations

can be seen in Table 3.5. As a measure of the significance each analysis cut had on

the final systematic uncertainties, Table 3.6 shows the standard deviation that each

cut contributed to the final systematic uncertainties relative to the v3 signal, and

averaged over all bins in the results plots where that cut’s variations were deemed

significant.
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Figure 3.19: Correlations between each subevent event plane angle vs centrality for
different sizes of EPD B. The curves are drawn to help guide the eye.
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0 10 20 30 40 50 60
Centrality (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.231
R

EPD A Resolutions

EPD B Rings

9 - 16

9 - 16, Scaled

13 - 16

EPD B Rings

9 - 16

9 - 16, Scaled

13 - 16

EPD B Rings

9 - 16

9 - 16, Scaled

13 - 16
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Figure 3.23: Main event plane resolutions used in this analysis (average of those
in Fig. 3.22) where the uncertainties show the full combination of statistical and
systematic uncertainties. The systematic uncertainties are the spread shown in Fig.
3.22.
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Value Normal
Acceptance

20% of
Normal

Low
Settings

High
Settings

Vertex r < 1.5 cm 0.3 cm < 1.2 < 1.8
Vertex z (198, 202) cm 0.8 cm (198.4, 201.6)

cm
(197.6, 202.4)

cm
nHits >= 15 3 >= 12 >= 18

nHitsdEdx > 5 > 9
nHitsFit /
nHitsPoss

> 0.52 0.104 > 0.416 > 0.624

DCA < 3 cm 0.6 cm < 2.4 cm < 3.6 cm
nσ π (−3, 3) 1.2 (−2.4, 2.4) (−3.6, 3.6)
nσ K (−3, 3) 1.2 (−2.4, 2.4) (−3.6, 3.6)
nσ p (−2, 2) 0.8 (−1.6, 1.6) (−2.4, 2.4)
m2 π (−0.1, 0.1) 0.04 (−0.08, 0.08) (−0.12, 0.12)
m2 K (0.15, 0.34) 0.038 (0.169, 0.321) (0.131, 0.359)

Table 3.4: Table of analysis cuts/acceptance windows and the 20% variations made
for the estimation of systematic uncertainties.

Value Normal
Acceptance

30% of
Normal

Low
Settings

High
Settings

Vertex r < 1.5 cm 0.45 cm < 1.05 < 1.95
Vertex z (198, 202) cm 1.2 cm (198.6, 201.4)

cm
(197.4, 202.6)

cm
nHits >= 15 4.5 >= 10 >= 20

nHitsdEdx > 5 > 12
nHitsFit /
nHitsPoss

> 0.52 0.156 > 0.364 > 0.676

DCA < 3 cm 0.9 cm < 2.1 cm < 3.9 cm
nσ π (−3, 3) 1.8 (−2.1, 2.1) (−3.9, 3.9)
nσ K (−3, 3) 1.8 (−2.1, 2.1) (−3.9, 3.9)
nσ p (−2, 2) 1.2 (−1.4, 1.4) (−2.6, 2.6)
m2 π (−0.1, 0.1) 0.06 (−0.07, 0.07) (−0.13, 0.13)
m2 K (0.15, 0.34) 0.057 (0.1785, 0.3115) (0.1215, 0.3685)

Table 3.5: Table of analysis cuts/acceptance windows and the 30% variations made
for the estimation of systematic uncertainties.
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Table 3.6: Average contribution of each varied cut to systematic uncertainties in
v3{Ψ1} as a percentage of the v3{Ψ1} value for three centrality ranges.

Systematic source Uncertainties in percent

Centrality interval 0-10% 10-40% 40-60%

Track quality 13.5 3.0 3.9
Event quality 2.8 0.3 0.7
π ⟨dE/dx⟩ 6.0 2.8 3.4
K ⟨dE/dx⟩ 5.7 4.1 11.3

Proton ⟨dE/dx⟩ 53.8 3.1 3.2
TOF m2

π 3.1 1.0 1.4
TOF m2

K 13.1 13.5 7.4
Event plane resolution 7.7 4.9 9.9
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3.3 Results

This section shows the results of v3 correlated with Ψ1 (v3{Ψ1}) at
√
sNN = 3.0 GeV

for identified π±, K±, and p. v3{Ψ1} and its dependence on centrality, rapidity, and

pT are shown. For rapidity and pT, these results are shown with wide centrality bins

of 0-10% (central), 10-40% (mid-central), and 40-60% (peripheral). The systematic

uncertainties are shown as square brackets on all plots.

3.3.1 v3{Ψ1} vs Centrality

v3{Ψ1} is shown against centrality in Figs. 3.24 and 3.25. Figure 3.24 in particular

shows that, while pions are very near zero, the protons develop a significant v3 signal

as centrality increases. The conclusion for kaons in Fig. 3.25 is less certain since their

production is relatively low at this collision energy.
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Figure 3.24: v3 from Ψ1 vs centrality for π+, π−, and protons using the event plane
method. Protons show a clear negative v3 while pions remain near zero. Statisti-
cal uncertainties are shown as lines while systematic uncertainties are open square
brackets.

80



0 10 20 30 40 50 60
Centrality (%)

0.1−
0.08−
0.06−
0.04−
0.02−

0

0.02

0.04

0.06

0.08

0.1} 1
Ψ

 { 3v

+K
-K

 = 3.0 GeV FXTNNsAu+Au 
 < 0.5

c.m.
0 < y

 < 1.6 GeV/c
T

0.4 < p

STAR

Figure 3.25: v3 from Ψ1 vs centrality for K+ and K− using the event plane method.
This method requires more statistics to fully understand if this signal is present for
kaons. Statistical uncertainties are shown as lines while systematic uncertainties are
open square brackets.
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3.3.2 v3{Ψ1} vs Rapidity

Figure 3.26 shows v3{Ψ1} vs rapidity in a symmetric rapidity region around midra-

pidity (−0.5 < yCM < 0.5). It reveals that the triangular flow that is correlated to

the reaction plane is rapidity-odd; this is opposite to the rapidity-even signal from

the fluctuation driven triangular flow seen in the past [42].

In Fig. 3.27 v3{Ψ1} vs rapidity is shown, but only in the backward region of

0 < yCM < 1, where it was possible to extend the range in pT down to 0.4 GeV/c.

Since Fig. 3.26 showed that v3{Ψ1} was odd in rapidity, the measured points have

been mirrored and shown as open circles to illustrate what the distribution could look

like in a wider range of rapidity.

82



1− 0.5− 0 0.5 1
mid

y-y

0.08−

0.06−

0.04−

0.02−

0

0.02

0.04

0.06

} 1
Ψ{ 3v

0 - 10%
10 - 40%
40 - 60%

 = 3.0 GeV FXTNNsAu+Au 
Proton

 2.5 GeV/c≤ 
T

 p≤1.0 

STAR

Figure 3.26: v3 from Ψ1 vs rapidity for protons in three large centrality bins from
a symmetric acceptance across midrapidity. Protons gain an increasingly negative
slope as the centrality increases. Statistical uncertainties are shown as lines while
systematic uncertainties are open square brackets.
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Figure 3.27: v3 from Ψ1 vs rapidity for protons in three large centrality bins from only
the backward region (solid markers) along with mirrored points across midrapidity
(open markers). Note that the pT acceptance here is slightly lower than in Fig. 3.26.
Statistical uncertainties are shown as lines while systematic uncertainties are open
square brackets.
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3.3.3 v3{Ψ1} vs pT

In Fig. 3.28 v3{Ψ1} from protons vs. pT is shown in the same three centrality regions.
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Figure 3.28: v3 from Ψ1 vs pT for protons in three large centrality bins. v3 is increas-
ingly negative as pT and centrality increase. Statistical uncertainties are shown as
lines while systematic uncertainties are open square brackets.

3.4 Conclusion

As mentioned in section 1.5.1, v3 has been previously understood to come from ran-

dom fluctuations in the initial geometry of collisions; this is what is measured when

calculating v3 from Ψ3. These fluctuations of course should have no correlation to

Ψr. The expectation once this analysis shifted to using Ψ1 was that there would be

no signal of v3. The results presented for this study at 3.0 GeV proved contrary to
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this hypothesis. There was no significant signal for pions and kaons, but protons did

have a strong signal. The fact that there was any particle with a nonzero v3{Ψ1} was

an interesting result that brings into question the generating source of this triangular

flow. Since this type of v3 has a correlation to Ψ1, this means that it must have

a consistent connection to the geometry of the collision rather than arising from a

random triangular shape. As will be discussed in Chapter 5, simulated collisions were

used to reveal more information about the source of v3{Ψ1}. These studies confirmed

that the source is not initial geometry fluctuations, and they showed a previously

unknown connection to the EOS of the produced medium.

These measurements of v3{Ψ1} at
√
sNN = 3.0 GeV marked only the second

time that this observable had been measured. After making these observations

and searching previous publications for relevant information, it was found that the

HADES experiment had recently produced measurements of v1 through v6 using Ψ1

at
√
sNN = 2.4 GeV [43]. Their measurements of v3{Ψ1} for protons were significantly

larger than those shown here, even though the collision energies were relatively close.

Since 3.0 GeV is the lower limit to the capabilities of RHIC, finding an experiment

at lower energies that produced the same type of measurement was an exciting con-

nection. Combining the data from the two collaborations showed the first glimpse of

how v3{Ψ1} depends on collision energy, but more energies needed to be studied for

a more complete picture. The FXT program of BES-II was the perfect avenue which

allowed this study to be repeated at successively higher energies to achieve this goal.
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Chapter 4

Energy Dependence of Reaction Plane

Correlated Triangular Flow

4.1 Dataset

This analysis was performed on Au+Au collisions at
√
sNN = 3.2, 3.5, 3.9, and 4.5

GeV as part of the STAR Fixed-Target (FXT) program. This corresponded to single

Au beam energies Ebeam = 4.59, 5.75, 7.3, and 9.8 GeV per nucleon, respectively,

and beam rapidities ybeam = −2.29, −2.51, −2.75, and −3.04, respectively. The

important detectors for this study consisted of the TPC, East side EPD, and TOF.

Since PID becomes more difficult as the collision energy increases and more particles

are produced, the eTOF was also included at
√
sNN = 4.5 GeV in order to reduce the

misidentification of protons. The dataset for
√
sNN = 3.9 GeV consisted of two sets

that were taken separately in 2019 and 2020. The 3.2 GeV dataset was taken in 2019

while 3.5 and 4.5 GeV were taken in 2020.
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4.1.1 Sign Convention of Rapidity

This study, like the 3.0 GeV study in the previous chapter, also did not change the

sign of rapidities as measured. Mid-rapidity at
√
sNN = 3.2, 3.5, 3.9, and 4.5 GeV

was ymid = −1.14, −1.25, −1.38, and −1.52 respectively, and when shifting to the

center-of-mass (CM) frame, the usual equation

yCM = ylab − ymid (4.1)

was used. In the lab frame, the FXT setup means that all recorded products of

the collisions were in a similar direction. Therefore all ylab < 0, and when produc-

ing results in the CM frame the “forward" direction corresponded to yCM < 0 and

“backward" was yCM > 0.

4.1.2 Event Selection

All energies underwent the same sequence of cuts as shown in Fig. 3.2 for 3.0 GeV,

although the particular cuts themselves were slightly different in some cases. Any

bad runs for each energy determined by the STAR collaboration were removed. This

analysis used minimum bias events which were triggered by at least one hit in the

TOF along with a hit in either the East EPD, East BBC, or East VPD. The vertex

selection of events for each energy is shown in Table 4.1. The upper bound of the

vertex z-component is lower than 202 cm for 3.2, 3.9, and 4.5 GeV in order to cut
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out a problem of out-of-time collisions. These are events that were recorded with

incorrect timing information, so their vertex shows up at an incorrect position. Each

energy also required a minimum number of tracks or hits in each subevent in a manner

consistent with the study at 3.0 GeV. The details of this requirement and the specific

subevents chosen are explained later. The starting number of events and the final

number of good events that pass all event cuts described below can be seen in Table

4.2.

√
sNN Vz ∈

√
V 2
x + (V 2

y + 2 cm)2 <

3.2 (198, 200.1) 2.0
3.5 (198, 202) 2.0
3.9 (198, 200.3) 2.0
4.5 (198, 200.25) 2.0

Table 4.1: Table of vertex z and transverse radius cuts for each energy listed in cm.
Columns 2 and 3 represent the qualities required of an event to be accepted in the
analysis.

√
sNN Starting Events Final Good Events

3.2 192.135× 106 159.135× 106

3.5 107.942× 106 89.4509× 106

3.9 138.527× 106 102.298× 106

4.5 146.588× 106 123.418× 106

Table 4.2: Table of energies with number of events before and after all event cuts.
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4.1.3 Centrality Definition

Events at each energy were again categorized into centralities from 0 to 60%, with

central, mid-central, and peripheral events corresponding to 0-10%, 10-40%, and 40-

60%, respectively. Each centrality bin with the corresponding number of primary

tracks for every energy is shown in Table 4.3. The two datasets at 3.9 GeV were

treated separately when determining the centrality definitions, so these definitions

were employed separately to ensure accuracy of event numbers in each bin.
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Table 4.3: Table of centrality definitions for
√
sNN = 3.2, 3.5, 3.9, and 4.5 GeV

datasets.
Centralities Multiplicities

3.2 GeV 3.5 GeV 3.9 GeV 2019 3.9 GeV 2020 4.5 GeV

0 - 5% 197 - 287 216 - 325 235 - 344 236 - 344 257 - 367
5 - 10% 166 - 196 181 - 215 198 - 234 198 - 235 216 - 256
10 - 15% 141 - 165 153 - 180 168 - 197 167 - 197 182 - 215
15 - 20% 118 - 140 128 - 152 141 - 167 141 - 166 154 - 181
20 - 25% 98 - 117 108 - 127 119 - 140 118 - 140 130 - 153
25 - 30% 81 - 97 89 - 107 98 - 118 97 - 117 108 - 129
30 - 35% 66 - 80 73 - 88 81 - 97 80 - 96 88 - 107
35 - 40% 53 - 65 59 - 72 65 - 80 64 - 79 72 - 87
40 - 45% 43 - 52 47 - 58 52 - 64 51 - 63 57 - 71
45 - 50% 33 - 42 37 - 46 41 - 51 40 - 50 45 - 56
50 - 55% 26 - 32 28 - 36 32 - 40 31 - 39 35 - 44
55 - 60% 20 - 25 21 - 27 24 - 31 24 - 30 27 - 34
60 - 65% 15 - 19 16 - 20 18 - 23 17 - 22 20 - 26
65 - 70% 11 - 14 12 - 15 13 - 17 13 - 16 14 - 19
70 - 75% 7 - 10 8 - 11 9 - 12 9 - 12 10 - 13
75 - 80% 5 - 6 6 - 7 7 - 8 6 - 8 7 - 9

4.1.4 TPC Track Selection

Once an event was accepted, the tracks detected by the TPC went through the same

series of QA cuts as imposed at
√
sNN = 3.0 GeV to filter out any with unreliable

tracking or energy measurements. Only primary tracks were used, and those tracks

were only accepted in the analysis if they also passed the cuts shown in Table 3.2.
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4.1.5 EPD Hit Selection

The selection for the hits in the EPD was also unchanged from the analysis at
√
sNN =

3.0 GeV in order to maintain consistency and accurate comparisons of results across

datasets. Each tile’s TnMIP value was used as its weight in the event planes from the

EPD, with a threshold of 0.3 and a maximum of 2. Any tiles with an nMIP < 0.3 is

set to 0 and anything above 2 is set back to 2.

4.2 Analysis Methods

4.2.1 Particle Identification

Due to the lack of definitive results found for π and K at
√
sNN = 3.0 GeV, and the

fact that the datasets above 3.0 GeV were smaller, this portion of the analysis focused

only on protons. However, the proton identification relied on the identification of π±,

K±, deuterons (d), and tritons (t) to remove them from the proton sample when

possible. These identifications were performed using the nσ and z values from the

TPC as well as the m2 information from the TOF (and eTOF at 4.5 GeV). The

acceptance criteria for each particle type can be seen in Table 4.4 as well as a flow

chart describing the PID process in Fig. 4.2. The m2 cuts for d and t were chosen

as 2σ from the means extracted by a Gaussian fit on m2 for all tracks with |zd| < 1
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Particle dE/dx m2 Other
π |nσπ| < 3.0 −0.1 < m2 < 0.1
K |nσK | < 3.0 0.15 < m2 < 0.34
d |zd| < 0.2 3.1518 < m2 < 3.8842 Not π or K
t |zt| < 0.2 7.0142 < m2 < 8.7578 Not π or K
p |p⃗| dependent Not π, K, d or t

Table 4.4: Track PID cuts using the TPC and TOF. These criteria represent the
qualities required of a track to be accepted as each particle in the analysis.

Figure 4.1: Distribution of m2 for all tracks at
√
sNN = 3.0 GeV with |zd| < 1 (left)

and |zt| < 1 (right). Gaussian fits are shown around the expected masses to extract
the mean values.

and |zt| < 1 found at
√
sNN = 3.0 GeV as shown in Fig. 4.1. Before using the

PID process described above, the proton nσ values needed to be corrected since the

calibrations for the TPC were less than ideal at these FXT energies. In this analysis,

only the proton nσ values were corrected since all other identified particles had the

assistance of TOF requirements to ensure high purity and/or wider nσ cuts than the

protons. The code and process for correcting the values of nσ were developed and
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Figure 4.2: Flow chart describing the PID process at all energies above 3.0 GeV.

provided to me by other STAR members. Essentially, the process involved shifting

the provided nσ values into the proper region depending on the momentum of the

track since lower momentum tracks were skewed farther than high momentum tracks.

The exact cuts on nσp used to select protons varied with the total momentum of

the tracks in order to avoid contamination and maintain the highest purity of protons
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Figure 4.3: Distributions of nσp vs total momentum for all TPC tracks that pass QA
cuts at 3.2 GeV (top left), 3.5 GeV (top right), 3.9 GeV (bottom left), and 4.5 GeV
(bottom right).

95



Figure 4.4: Corrected distributions of nσp vs total momentum for all TPC tracks that
pass QA cuts at 3.2 GeV (top left), 3.5 GeV (top right), 3.9 GeV (bottom left), and
4.5 GeV (bottom right).
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Figure 4.5: Corrected distributions of nσp vs total momentum for only TPC tracks
that are part of the possible proton sample. Final accepted protons are all entries
shown that pass the momentum dependent nσp cuts shown in Table 4.5. Plots shown
correspond to 3.2 GeV (top left), 3.5 GeV (top right), 3.9 GeV (bottom left), and 4.5
GeV (bottom right).
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as possible. The cuts chosen are shown in Table 4.5 and the resulting density plots

in pT and yCM are shown in Fig. 4.6.

Total Momentum (GeV/c) nσp Acceptance
|p⃗| < 1.2 (−2, 2)

1.2 ≤ |p⃗| < 1.3 (−1.5, 2)
1.3 ≤ |p⃗| < 1.4 (−1, 2)
1.4 ≤ |p⃗| < 1.5 (−0.5, 2)
1.5 ≤ |p⃗| < 1.6 (0, 3)
1.6 ≤ |p⃗| < 1.7 (0, 3)
1.7 ≤ |p⃗| < 1.8 (−2, 2)
1.8 ≤ |p⃗| < 1.9 (−3, 0.25)

1.9 ≤ |p⃗| (−3, 1)

Table 4.5: Momentum dependent cuts on nσp used for proton identification at each
energy.

4.2.2 Event Planes

This analysis used the same event plane methods as the study at 3.0 GeV to calculate

v3{Ψ1}. The inner sections of the EPD were used as the main subevent for the

reconstruction of Ψ1 with two reference subevents to calculate R31. Various subevent

arrangements were tested until the choice of EPD A was found such that it was as large

as possible while also correlating well with two reference regions. The arrangements

which determined the best EPD A region are shown in Table 4.6. At each energy,

the TPC was divided in half around midrapidity with a 0.1 gap for consistency with

the method used at 3.0 GeV. The half section of the TPC closest to the target (TPC

98



Figure 4.6: pT vs. yCM density plots for identified protons at each energy from 0% to
80% events. The red dashed line represents the target rapidity and the solid red line
is mid-rapidity. The solid black boxes show acceptance regions for flow calculations
against centrality and the dashed black boxes show one acceptance region used for
flow vs rapidity that is symmetric across midrapidity.

B) was used as the one subevent from the TPC while the other half (TPC A) was

not used for event planes. The event plane resolutions obtained from the regions in

Table 4.6 were not used to calculate flow. Instead, just like at 3.0 GeV, variations of

EPD B were used to get 3 resolutions at each centrality and the average resolution

was used to calculate flow. This process is described in more detail in Section 4.2.4.
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√
sNN EPD A EPD B TPC B

3.2 Rings 1-6 Rings 7-13 −1.1 < η < 0
3.5 Rings 1-6 Rings 7-11 −1.2 < η < 0
3.9 Rings 1-5 Rings 6-10 −1.32 < η < 0
4.5 Rings 1-3 Rings 4-9 −1.47 < η < 0

Table 4.6: Table of subevent regions used to determine the main subevent EPD A.

All Ψ1 distributions underwent the same process of detector bias corrections as

described in section 3.2.2. Events with Q⃗ = (0, 0) were removed, re-centering was

performed, events with Q⃗ = (0, 0) were checked for again and removed, and then the

Fourier shifting correction was performed. This resulted in isotropic distributions of

Ψ1 for every subevent at every energy, and the resolutions were then calculated. The

values of R31 at each energy were again calculated according to equation 3.11 with

EPD A as the main subevent.

4.2.3 TPC Tracking Efficiencies

TPC reconstruction efficiencies for protons were calculated from an embedding sample

produced for
√
sNN = 3.2 GeV and applied to the flow calculations at every energy.

The sample was not changed between energies since it was determined within STAR

that the efficiencies would likely not change by any perceptible amount within this

relatively small change in collision energies. The efficiency distribution is shown in

Fig. 4.7. In order to match up tracks from multiple energies to the efficiencies from

only one energy, the proton tracks’ values of y − (−1.14) were matched to the x-axis
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of Fig. 4.7 rather than y−ymid since ymid changes at each energy. v3{Ψ1} for protons

was again calculated using equation 3.10, and the terms in the average were weighted

by 1/ϵTPC.

1− 0.5− 0 0.5 1

mid
y-y

0

0.5

1

1.5

2

2.5

 (
G

eV
/c

)
Tp

h2_ratio_pr
Entries  5690
Mean x  0.1696
Mean y   1.418
Std Dev x  0.5032
Std Dev y  0.6355

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h2_ratio_pr
Entries  5690
Mean x  0.1696
Mean y   1.418
Std Dev x  0.5032
Std Dev y  0.6355

RC/MC Proton

Figure 4.7: Proton TPC tracking efficiencies from 3.2 GeV.

4.2.4 Systematic Uncertainties

The systematic uncertainties for all v3{Ψ1} measurements were calculated in the same

manner as described in section 3.2.5. All track QA and PID cuts were varied higher

and lower by both 20% and 30% at each energy, but this time there were no variations

of the vertex position for events. STAR collaborators had determined that the vertex

position was measured precisely enough that it did not need to be incorporated into

systematic uncertainties. This judgement was also corroborated with the analysis at
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3.0 GeV since the “Event Quality” row of Table 3.6 shows very small contributions

compared to other variations. Also, the normal cut of nHitsdEdx > 5 is the minimum,

so the only variations that could be made were higher than 5. The size of these

variations were also a judgement call to adequately change the statistics rather than

20% and 30%.

At each energy, the R31 values were varied by altering the size of the reference

region EPD B. These variations worked to incorporate the contribution of momentum

conservation into the systematic uncertainties since they control the size of the gap

between regions EPD A and EPD B. The variations in the size of EPD B can be seen

in Table 4.7.

Each energy includes one variation with no gap between the two EPD regions,

one variation with one ring removed between the two, and finally one variation with

two rings removed between the two. Due to the large gap between EPD B and TPC

B, no variations were made to TPC B.

√
sNN Variation 1 Variation 2 Variation 3

3.2 Rings 7-13 Rings 8-13 Rings 9-13
3.5 Rings 7-11 Rings 8-11 Rings 9-11
3.9 Rings 6-10 Rings 7-10 Rings 8-10
4.5 Rings 4-9 Rings 5-9 Rings 6-9

Table 4.7: Table of variations on the size of the EPD B subevent above 3.0 GeV.

The resolutions found with all variations shown in Table 4.7 are shown in Fig. 4.8.

The resolutions were found to be very unstable above 40% centrality for energies 3.5
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and 3.9, so at those energies, v3 results for only 0 - 40% centralities were produced.

The main resolutions used at each energy were the average of the variations in Fig.

4.8. These averages are shown in Fig. 4.9. The systematic uncertainty for each bin

in these plots was set as the maximum difference between the average and the three

variations.
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Figure 4.8: All event plane resolutions found from varying the size of EPD B at 3.2
GeV (top left), 3.5 GeV (top right), 3.9 GeV (bottom left), and 4.5 GeV (bottom
right).
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Figure 4.9: Final R31 values used at 3.2 GeV, 3.5 GeV, 3.9 GeV, and 4.5 GeV. Statis-
tical uncertainties are shown as vertical lines and systematic uncertainties as square
brackets.

To incorporate the uncertainties in R31 into the systematic uncertainties of v3{Ψ1},

the main resolution values were increased and decreased by the total uncertainty in

R31. Then v3{Ψ1} was calculated using the normal subevent setup shown in Table

4.6. This produced 3 sets of v3 measurements with different event plane resolutions;

one with the averaged resolution and two with increased and decreased resolutions

based on the uncertainties. At 3.9 GeV, the statistical and systematic uncertainties

in R31 added in quadrature for the 0-5% centrality point did cross below zero. In that
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case, the variation in R31 toward the low end produced a negative resolution and flow

could not be calculated. For this reason, all measurements at 0-5% centrality for 3.9

GeV were omitted from the results.

For all other variations aside from the event plane resolutions, a table of the 20%

variations made can be seen in Table 4.8 and the 30% variations can be seen in

Table 4.9. As a measure of the significance of each analysis cut in the systematic

uncertainties, Tables 4.10, 4.11, 4.12, and 4.13 show the standard deviation that each

cut contributed to the systematic uncertainties as a fraction of the v3 signal, and

averaged over all bins in the results plots where that cut’s variations were deemed

significant.

Value Normal
Acceptance

20% of
Normal

Low
Settings

High
Settings

nHits >= 15 3 >= 12 >= 18
nHitsdEdx > 5 > 9
nHitsFit /
nHitsPoss

> 0.52 0.104 > 0.416 > 0.624

DCA < 3 cm 0.6 cm < 2.4 cm < 3.6 cm
nσ π (−3, 3) 1.2 (−2.4, 2.4) (−3.6, 3.6)
nσ K (−3, 3) 1.2 (−2.4, 2.4) (−3.6, 3.6)
nσ p (−2, 2) 0.8 (−1.6, 1.6) (−2.4, 2.4)
z d (−0.2, 0.2) 0.08 (−0.16, 0.16) (−0.24, 0.24)
z t (−0.2, 0.2) 0.08 (−0.16, 0.16) (−0.24, 0.24)
m2 π (−0.1, 0.1) 0.04 (−0.08, 0.08) (−0.12, 0.12)
m2 K (0.15, 0.34) 0.038 (0.169, 0.321) (0.131, 0.359)
m2 d (3.1518, 3.8842) 0.1465 (3.2251, 3.8109) (3.0785, 3.9575)
m2 t (7.0142, 8.7578) 0.3487 (7.1886, 8.5834) (6.8398, 8.9322)

Table 4.8: Table of analysis cuts/acceptance windows and the 20% variations made
for the estimation of systematic uncertainties.
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Value Normal
Acceptance

30% of
Normal

Low
Settings

High
Settings

nHits >= 15 4.5 >= 10 >= 20
nHitsdEdx > 5 > 12
nHitsFit /
nHitsPoss

> 0.52 0.156 > 0.364 > 0.676

DCA < 3 cm 0.9 cm < 2.1 cm < 3.9 cm
nσ π (−3, 3) 1.8 (−2.1, 2.1) (−3.9, 3.9)
nσ K (−3, 3) 1.8 (−2.1, 2.1) (−3.9, 3.9)
nσ p (−2, 2) 1.2 (−1.4, 1.4) (−2.6, 2.6)
z d (−0.2, 0.2) 0.12 (−0.14, 0.14) (−0.26, 0.26)
z t (−0.2, 0.2) 0.12 (−0.14, 0.14) (−0.26, 0.26)
m2 π (−0.1, 0.1) 0.06 (−0.07, 0.07) (−0.13, 0.13)
m2 K (0.15, 0.34) 0.057 (0.1785, 0.3115) (0.1215, 0.3685)
m2 d (3.1518, 3.8842) 0.21972 (3.2617, 3.7743) (3.0419, 3.9941)
m2 t (7.0142, 8.7578) 0.52308 (7.2757, 8.4963) (6.7527, 9.0193)

Table 4.9: Table of analysis cuts/acceptance windows and the 30% variations made
for the estimation of systematic uncertainties.
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Systematic Source ⟨σsys,i/v3⟩ ∗ 100
0-10% 10-40%

Track Quality 6.4 4.5
nσπ 1.1 0.6
nσK 0.7 0.2

nσproton 10.5 19.2
zd 0.2 0.5
zt 0.0 0.1
m2

π 0.7 0.5
m2

K 1.3 0.4
m2

d 0.6 1.0
m2

t 0.0 0.1
EP Resolution 18.4 11.6

Table 4.11: 3.5 GeV Average contributions to systematic uncertainties as a percentage
of the v3 value for three centrality ranges. The average for each cut is over all bins of
the results figures (not even/odd v3 plots) where that cut’s variations were deemed
significant enough to be included in the systematic uncertainties.

Systematic Source ⟨σsys,i/v3⟩ ∗ 100
0-10% 10-40%

Track Quality 1896.0 9.8
nσπ 0.6 1.4
nσK 0.5 0.6

nσproton 6748.4 45.8
zd 64.6 1.0
zt 15.1 0.2
m2

π 218.3 1.7
m2

K 278.8 2.0
m2

d 363.3 1.7
m2

t 0.0 0.1
EP Resolution 23.1 14.1

Table 4.12: 3.9 GeV Average contributions to systematic uncertainties as a percentage
of the v3 value for three centrality ranges. The average for each cut is over all bins of
the results figures (not even/odd v3 plots) where that cut’s variations were deemed
significant enough to be included in the systematic uncertainties.
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Systematic Source ⟨σsys,i/v3⟩ ∗ 100
0-10% 10-40% 40-60%

Track Quality 31.2 3.2 1.1
nσπ 5.2 0.3 0.3
nσK 3.0 0.2 0.1

nσproton 32.8 9.1 3.8
zd 0.6 0.5 0.1
zt 0.03 0.1 0.1
m2

π 2.5 0.3 0.1
m2

K 1.4 0.3 0.2
m2

d 0.2 1.9 0.1
m2

t 0.0 0.3 0.1
EP Resolution 11.2 4.9 16.7

Table 4.10: 3.2 GeV Average contributions to systematic uncertainties as a percentage
of the v3 value for three centrality ranges. The average for each cut is over all bins of
the results figures (not even/odd v3 plots) where that cut’s variations were deemed
significant enough to be included in the systematic uncertainties.

Systematic Source ⟨σsys,i/v3⟩ ∗ 100
0-10% 10-40%

Track Quality 24.8 312.8
nσπ 4.8 57.6
nσK 3.5 37.2
nσp 81.3 938.09
zd 6.2 146.0
zt 4.2 45.1
m2

π 8.1 8.6
m2

K 7.5 11.5
m2

d 4.8 74.5
m2

t 4.3 51.6
EP Resolution 33.4 208.1

Table 4.13: 4.5 GeV Average contributions to systematic uncertainties as a percentage
of the v3 value for three centrality ranges. The average for each cut is over all bins of
the results figures (not even/odd v3 plots) where that cut’s variations were deemed
significant enough to be included in the systematic uncertainties.
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4.3 Results

4.3.1 Raw results of v3{Ψ1}

All 3.0 GeV results in this section are repeated from the previous chapter for compar-

isons. Figure 4.10 shows the centrality dependence of v3{Ψ1} for energies of
√
sNN = 3

to 4.5 GeV. The trend seen at 3.0 GeV quickly decreases as the energy increases,

reaching close to zero at 3.9 GeV and 4.5 GeV. This same behavior is also seen in

the rapidity dependence shown in Figs. 4.11 and 4.12 as well as the pT dependence

shown in Fig. 4.13.

The trends of 3.0 and 3.2 GeV in Fig. 4.12 exhibit a nearly rapidity-odd behavior,

as expected, but it is not exact. This seems to fall apart even more as the energy

increases, and it becomes clear that the data points are being shifted toward negative

v3 by some secondary effect. This implies that all measurements of v3 vs yCM are

being biased toward the negative direction. The effect that is contaminating these

measurements of the targeted rapidity-odd v3{Ψ1} could be a rapidity-even v3{Ψ1}

that is also picked up by the calculation. The source of this veven3 {Ψ1} could be due

to a bias introduced by using an event plane from only one side of the collision. This

may be related to momentum conservation effects, but to be certain, more studies

must be done in the future to isolate and explain this issue.
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Figure 4.10: v3 from Ψ1 vs centrality for protons at
√
sNN = 3− 4.5 GeV. Statistical

uncertainties are shown as vertical lines while systematic uncertainties are shown as
colored vertical rectangles.
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Figure 4.11: v3 from Ψ1 vs yCM for protons at
√
sNN = 3 − 4.5 GeV. Statistical

uncertainties are shown as vertical lines while systematic uncertainties are shown as
colored vertical rectangles.
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Figure 4.12: v3 from Ψ1 vs yCM for protons at
√
sNN = 3 − 4.5 GeV. Statistical

uncertainties are shown as vertical lines while systematic uncertainties are shown as
colored vertical rectangles.
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Figure 4.13: v3 from Ψ1 vs pT for protons at
√
sNN = 3− 4.5 GeV. Statistical uncer-

tainties are shown as vertical lines while systematic uncertainties are shown as colored
vertical rectangles.
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4.3.2 Separation of even and odd flow

Directed flow is known to be rapidity-odd since it is defined as the “bounce-off” that

participants from either nuclei experience during the collision. Participants in the

forward direction will bounce-off toward one side within the reaction plane while those

in the backward direction will then move in the opposite direction within the plane. v1

has also been shown to include a rapidity-even component when measured [44]. Ref.

[44] by the ALICE collaboration has shown a way to completely separate veven1 and

vodd1 my making identical measurements of v1 using two symmetric spectator event

planes on either side of the collision point. To illustrate the process mathematically,

let Ψ+
SP represent the spectator event plane from the η > 0 region of the collision and

let Ψ−
SP be the symmetric version from η < 0. The odd part is extracted by averaging

the measurements from the two event planes, and the remaining even part can be

seen by the subtraction of the measurements:

vodd1 {ΨSP} =
1

2

[
v1{Ψ+

SP}+ v1{Ψ−
SP}
]

(4.2)

veven1 {ΨSP} =
1

2

[
v1{Ψ+

SP} − v1{Ψ−
SP}
]
. (4.3)

In this study, a similar process was adopted to separate vodd3 and veven3 , but it was

necessary to first verify that it was valid to do so without two symmetric event planes.

v1 is used here as an example to explore what equations 4.2 and 4.3 do when there
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are 2 event planes, as well as what assumptions are required. Next, the same was

done considering only one event plane was available on one side of the collision to see

how the situation becomes different.

Thought Experiment: 2 symmetric event planes

For a simpler notation, let v+1 ≡ v1{Ψ+
SP} and v−1 ≡ v1{Ψ−

SP}. The first assumption

is that the spectator event planes are accurate and contain no contamination by

participants (or at least very minimal). From the observations of v3{Ψ1} shown

in this dissertation, and v1 in Ref. [44], it appears that each measurement of flow

as a function of rapidity includes a contamination (which will be denoted g) from

something that could be a constant as a function of rapidity. The assumption that

the contamination is a constant will be abandoned to allow it to be a function of

rapidity. The form of the measured v1 with respect to either side of the collision may

be something like

v+(y) = vtrue1 (y) + g+(y)

v−(y) = vtrue1 (y) + g−(y)

where g± are the measurements of the contamination with respect to the event planes

on either side, g± = g±(y, pT, c), c is centrality, and g±(y) =
∫∫

dpTdc [g
±(y, pT, c)].
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Following equations 4.2 and 4.3,

vodd1 =
1

2
[v+1 (y) + v−1 (y)]

=
1

2
[vtrue1 (y) + g+(y) + vtrue1 (y) + g−(y)]

=
1

2
[2vtrue1 (y) + g+(y) + g−(y)]

= vtrue1 (y) +
g+(y) + g−(y)

2

veven1 =
1

2
[v+1 (y)− v−1 (y)]

=
1

2
[vtrue1 (y) + g+(y)− vtrue1 (y)− g−(y)]

=
g+(y)− g−(y)

2
.

At this point more information on g is necessary. Since Ψ+ and Ψ− are exact opposites

of each other, and v1 is evaluated with the same tracks in both cases, it should be

safe to predict that g+ and g− are equal and opposite; g+ = −g−. However, no

assumptions are made about the rapidity dependence of g. The above quantities

then reduce to

vodd1 = vtrue1 (y) +
g+(y) + g−(y)

2

= vtrue1 (y)
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veven1 =
g+(y)− g−(y)

2

= g+(y)

= −g−(y).

Therefore, in the case where two symmetric spectator event planes are used to

make identical measurements of v1(y), and assuming the measurements are a su-

perposition of vtrue1 (y) and some contamination g±(y), equation 4.2 will completely

isolate vtrue1 (y), and equation 4.3 will isolate the contamination. It also seems that

the sign of the contamination values will be determined by which event plane is con-

sidered. If equation 4.3 produces some function g+(y) that should be associated with

the use of Ψ+, then g−(y) will be the same but with opposite signs and should only

be considered with respect to Ψ−. In order to determine if g+(y) or g−(y) was found,

one can just add it with vtrue1 (y) and see if v+(y) or v−(y) is recreated.

Thought Experiment: 1 asymmetric event plane

Next, the same measurements are explored in the case that only one spectator event

plane on one side of the collision can be found. With this restriction, only one set of

measurements can be made. The case where Ψ+ is used is considered here so that

the measurements are

v+(y) = vtrue1 (y) + g+(y).
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Two sets of measurements are still necessary, so the v+(y) measurements would only

be useful if they could be made in a symmetric region around midrapidity. If that

requirement can be met by the experiment, a second set of measurements can be

simulated by rotating the data points by 180 degrees (reflect across y = 0, and flip

the sign). This makes the transformed quantities

v+t(y) ≡ −v+(−y) = −vtrue1 (−y)− g+(−y).

The true directed flow is a rapidity-odd quantity, so vtrue1 (−y) = −vtrue1 (y) and v+t(y)

reduces to

v+t(y) = vtrue1 (y)− g+(−y).

Then, using v+1 (y) and v+t
1 (y) with equations 4.2 and 4.3:

vodd1 =
1

2
[v+1 (y) + v+t

1 (y)]

=
1

2
[vtrue1 (y) + g+(y) + vtrue1 (y)− g+(−y)]

= vtrue1 (y) +
g+(y)− g+(−y)

2

veven1 =
1

2
[v+1 (y)− v+t

1 (y)]

=
1

2
[vtrue1 (y) + g+(y)− vtrue1 (y) + g+(−y)]

=
g+(y) + g+(−y)

2
.

116



At this point, assumptions about the rapidity dependence of g+(y) were necessary;

this requirement was not present in the case with two symmetric event planes before.

First, it was assumed that g+(y) was an odd function of rapidity, where g+(−y) =

−g+(y). This results in

vodd1 = vtrue1 (y) + g+(y) = v+(y)

veven1 = 0.

If the contamination is purely rapidity-odd, then equation 4.2 will do nothing and

equation 4.3 will be zero. While this would be unfortunate to see when the goal is to

separate the two, this result would still reveal that the contamination is something

which is a rapidity-odd effect.

In the second case, it was assumed that g+(y) is an even function of rapidity,

where g+(−y) = g+(y). Equations 4.2 and 4.3 reduced to

vodd1 = vtrue1 (y)

veven1 = g+(y).

In this situation the operations worked properly to completely separate the true v1

from the contamination. Of course in practice this would require a secondary source

of information or argument to justify the assumption that g+(y) was something which

was rapidity-even.
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For the third case, it was assumed that the contamination was a simple superpo-

sition of rapidity-odd and rapidity-even effects.

g+(y) = g+even(y) + g+odd(y)

g+odd(−y) = −g+odd(y)

g+even(−y) = g+even(y),

vodd1 =
v+1 (y) + v+t

1 (y)

2

=
1

2
[vtrue1 (y) + g+odd(y) + g+even(y) + vtrue1 (y)− g+odd(−y)− g+even(−y)]

= vtrue1 (y) +
1

2
[g+odd(y) + g+even(y) + g+odd(y)− g+even(y)]

= vtrue1 (y) + g+odd(y)

veven1 =
v+1 (y)− v+t

1 (y)

2

=
1

2
[vtrue1 (y) + g+odd(y) + g+even(y)− vtrue1 (y) + g+odd(−y) + g+even(−y)]

=
1

2
[g+odd(y) + g+even(y) + g+odd(−y) + g+even(−y)]

=
1

2
[g+odd(y) + g+even(y)− g+odd(y) + g+even(y)]

= g+even(y).
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So if the contamination was not purely rapidity-odd or rapidity-even, then equations

4.2 and 4.3 would still fully extract any rapidity-even part of the contamination. The

final vodd1 results would not be exactly equal to vtrue1 , but they would be closer than

the original v+1 measurements.

Based on the measurements shown of v3{Ψ1} and its source described in Ref [45]

(and the next chapter), it is shown that v3{Ψ1} is itself a rapidity-odd observable.

Therefore, in all calculations presented above, v1 could be replaced with v3{Ψ1}.

Following the procedure described above when one event plane is used, the present

results of v3{Ψ1} were separated into vodd3 {Ψ1} and veven3 {Ψ1}.

4.3.3 Results of vodd3 {Ψ1} and veven3 {Ψ1}

Due to the requirement in the asymmetric event plane case that the flow measure-

ments must be made in a rapidity-symmetric region, the separation of odd and even

components in this analysis can only be made in the acceptance −0.5 < yCM < 0.5

and 1.0 < pT < 2.5 GeV as shown in Fig. 4.11.

Figure 4.14 shows the separation of odd and even components of v3{Ψ1} vs cen-

trality. This shows that vodd3 {Ψ1} becomes consistent with zero more clearly than the

raw measurement in Fig. 4.10. veven3 {Ψ1} on the right may exhibit a constant value in

the region of 10-40% centrality. In peripheral collisions veven3 {Ψ1} increases drastically

for the energies of 3 and 3.2 GeV where it could be measured. These data points were

calculated by making plots like Fig. 4.11 for each 5% centrality bin, using equations
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4.2 and 4.3 for each bin, and then finding the average value in each odd and even

plot. For the odd distributions, the average was calculated by flipping the sign of half

of the data points before averaging (otherwise the average would be zero every time).

Figure 4.15 shows the separate components of v3{Ψ1} vs rapidity. The left plot is
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Figure 4.14: Odd (left) and even (right) components of v3{Ψ1} as a function of
centrality for collision energies

√
sNN = 3 - 4.5 GeV. Note the factor of 2 difference

in the scale of the vertical axis. Statistical uncertainties are shown as vertical lines
while systematic uncertainties are shown as colored vertical rectangles.

now fully rapidity-odd, and again the slope is close to zero when the energy reaches

3.9 GeV with 4.5 GeV fluctuating around zero. It is difficult to extract precise infor-

mation about the even component in the right plot due to the large uncertainties and

statistical fluctuations, but future studies into v3{Ψ1}, or perhaps v1, which require

a similar odd and even separation with larger amounts of data could help distinguish

what is happening.
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Figure 4.15: Odd (left) and even (right) components of v3{Ψ1} as a function of
rapidity for collision energies

√
sNN = 3 - 4.5 GeV. Note the factor of 2 difference in

the scale of the vertical axis. Statistical uncertainties are shown as vertical lines while
systematic uncertainties are shown as colored vertical rectangles.

In order to connect the present analysis to the first measurements of v3{Ψ1} made

by the HADES experiment [43], another version of measurements like Fig. 4.11 were

made using the same acceptance of protons as HADES. All measurements were then

separated into odd and even parts, and the odd distributions were fitted with the

function y = ax + bx3. This equation was chosen since it reflects the behavior of

the HADES measurements where v3{Ψ1} is strongest. The value of a is the slope

dv3/dy|y=0, and these can be seen in Fig. 4.16. These fits again show that the

strength of v3{Ψ1} reaches zero at 3.9 GeV with 4.5 GeV remaining consistent with

zero within uncertainties.
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Figure 4.16: Results of fitting y = ax+ bx3 to each set of vodd3 {Ψ1} measurements in
the same acceptance as the HADES measurements [43].
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Chapter 5

Model Comparisons and Conclusions

5.1 Source of v3{Ψ1}

The initial study of v3{Ψ1} at
√
sNN = 3 GeV produced exciting results that showed

the first measurement for mesons, corroborated the existence of a signal for protons

as first seen by HADES, and added a new energy of proton measurements to show the

first look at an energy dependence. However, more information was necessary in order

to truly understand how v3{Ψ1} develops. This was achieved by using simulations

of Au+Au collisions at 3 GeV where all participants could be tracked through the

collision, and the identities of all particles were known exactly. There are multiple

simulation packages to choose from, but the two chosen for this task were those that

have previously been published with comparisons to STAR data: JAM1 [14] and

SMASH [13]. These choices were also ideal since they offered options for the EOS to

include mean field potentials, which produce an approximate description of the forces

between participants, or to have no potentials in a “cascade” mode, where particles are

essentially treated as colliding balls with finite radii and no long range interactions.
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5.1.1 Role of Collision Geometry

When examining the geometry of the collisions, it was important to take into account

the relatively slow passing time of the nuclei. At high energies, above
√
sNN ≈ 30

GeV, the timescale of the collision is very short (typically about 1 fm/c) and geometric

effects are essentially two-dimensional in the x-y plane. However, at
√
sNN = 3 GeV

the passing time is about 10 fm/c, so the geometry effects of the collision should not

be considered only in the transverse plane.

The proposed geometric source of v3{Ψ1} can be seen in Fig. 5.1. When consid-

Figure 5.1: Illustration of the proposed triangular geometry of participants as dis-
cussed in the text. Side (a) shows a side view, with the eye indicating the beam
view as shown in (b). The horizontal dotted line represents the axis by which the
two triangles separate, and the vertical dashed line in (b) is the reaction plane. The
lines in the red triangle portray the pressure gradients along the directions of the red
arrows.
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ering the longitudinal direction within mid-central or peripheral collisions, it is clear

that the tip of each nucleus will collide with the thicker central region of the opposing

nucleus. This is portrayed in Fig. 5.1a. The net motion of the participant region after

the collision above and below the dotted line is most likely to be in the same direction

as the nucleus which was thicker. This leads to a shearing effect along the dotted

line so that the participant region begins to split in half. It is important to note

that this does not mean there is a clean break for the entire participant region. This

splitting must be considered with respect to a particular rapidity of the participants.

For example, if a portion of the participants above the dotted line with high positive

rapidity in Fig. 5.1a are moving toward the right, one should compare these particles

to those with an equal and opposite value of rapidity. This would be participants

with high negative rapidity moving left, and in this proposed picture, those would

only be found below the dotted line with essentially none moving left above the line.

This is an important distinction because, if there was a clean slicing of participants

for all rapidities, this would severely disrupt or eliminate the development of v2 at

midrapidity, which is known to be nonzero at 3 GeV [38]. This proposed geometry

for v3{Ψ1} preserves the development of v2 as shown by the usual almond shape

in Fig. 5.1b. If the participants with positive rapidity are picked out, they would

resemble the red triangle with pressure gradients mainly pointing in the directions

perpendicular to the sides. Since this triangularity is essentially half of the almond

shape, which is always present at nonzero centrality, the correlation between v3 and
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Ψ1 is ensured. Ψ1 (and Ψr) is shown in Fig. 5.1b by the vertical dashed line, with

positive x pointing up. Since the gradients are arranged opposite to positive x, this

means that cos(3(ϕ−Ψ1)) will be negative in the direction of the red nucleus where

v1 is positive. This ensures that there will also be opposite signs to v1 and v3{Ψ1} as

shown by the data.

Fig. 5.2 shows the number of protons in JAM 50 fm/c after the collision when

flow has had time to develop. The protons are also selected with 0.6 < yCM < 0.85

Figure 5.2: Snapshot of the x vs. y position of protons from JAM at t = 50 fm/c for
particles with rapidity 0.6 < y < 0.85 and 0 < pT < 2 GeV/c (avoiding spectators)
illustrating the half-moon, “triangular” shape. Note that the high density region is
centered at x ≈ 7 fm. The arrows depict the average momentum obtained by dividing
the collision region into cells. The length of each arrow represents the magnitude of
the average momentum in each cell. The white dot indicates the x = 0, y = 0
position.
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and 0 < pT < 2 GeV/c in order to avoid spectators around yCM = 1.05. All collisions

are arranged such that Ψr = 0. Since the white dot in Fig. 5.2 shows the center of

the collision, and the only concentration of the protons is on one side of the collision

with the same half-moon shape as predicted, this strongly supports the proposed

geometric source necessary to seed v3{Ψ1}.

5.1.2 Role of Mean Field Potentials

The geometric source of v3{Ψ1} has been presented, but this is not necessarily enough

to fully explain the signal. If that were the case, mesons such as π and K would likely

have shown a similar signal to that of baryons presented here. This was also checked

by running JAM and SMASH in cascade mode with no potential and comparing the

results to the data at 3 GeV. Figure 5.3 shows the results of this comparison as a

function of rapidity. This test revealed that the geometry alone is not enough to

produce any signal at all since the models produce effectively no triangular flow for

any rapidity or centrality. This result was particularly interesting as it is known that

v1 and v2 signals can still be produced by these models in cascade mode as shown by

the examples in Fig. 5.4 calculated using JAM. These calculations of v1 and v2 do

not match current data, but the fact that any signal can be produced without any

v3{Ψ1} shows that there must be another force that drives the development of v3{Ψ1}

aside from just geometry.
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Figure 5.3: v3{Ψ1} for protons in three centrality regions in the JAM model (left) and
SMASH model (right) as compared to the data. Cuts used in the model are identical
to the data, but centrality in the models is defined by cuts in impact parameter.
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Figure 5.4: v1 vs. rapidity (left) and v2 vs. pT (right) for protons and π+ in 3
GeV center of mass “minimum bias” Au+Au collisions as given by the JAM model in
cascade mode.

The next step was to add potentials in the models which could produce forces

that drive v3{Ψ1}. Since this observable had not been studied to this detail before,

the only potentials used were those that have previously been shown to perform well

at reproducing recent results. In the SMASH model, which has been primarily aimed

at low energy collisions below
√
sNN = 3 GeV, a Skyrme+Symmetry potential was
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used. Fermi motion and Pauli blocking were incorporated. The potential in SMASH

was taken as

U = A(ρ/ρ0) +B(ρ/ρ0)
τ ± 2Spot

ρI3
ρ0

(5.1)

where ρ is the baryon density and ρI3 is the baryon isospin density of the relative

isospin projection I3/I. ρ0 = 0.1681/fm3 is the nuclear ground state density. Param-

eters for the Skyrme potential were A = −124.0 MeV, B = 71 MeV, and τ = 2. For

the Symmetry potential, Spot = 18 MeV and the positive and negative signs refer to

neutrons and protons, respectively. This model also reproduces an incompressibility

of K = 380 MeV. These values are taken from values used by URQMD, which gave

reasonable fits to the recent HADES data on v1, v2 and v3{Ψ1} [46].

A relativistic mean field in the JAM1 model (RQMD.RMF) was employed. The

potential invokes a relativistic mean field theory incorporating σ- and ω-meson-baryon

interactions and momentum-dependent potentials as described in [47]. The parameter

set MD2, described in the reference, has the same incompressibility as the SMASH

model used here (K = 380 MeV). The parameter set yields results that are consistent

with numerous data sets on sidewards flow ⟨px⟩ from mid-central Au+Au collisions

from E895 and E877 at
√
sNN = 2.7–4.86 GeV. STAR and NA49 v1 measurements

from mid-central Au+Au collisions at
√
sNN < 8.87 GeV are also consistent with JAM

using the MD2 parameter set. It is also consistent with the recent
√
sNN = 3 GeV

proton directed and elliptic flow results [38]. However, above
√
sNN = 8.87 GeV, an

additional attractive orbit is required, consistent with a softening of the EOS. Figure
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Figure 5.5: Total energy per nucleon for the potential used in both models. The
relatively hard Skyrme potential used in the SMASH model is shown as the blue-
solid line. The relativistic mean field potential with parameter set MD2 used in the
JAM model is shown as the dashed red line [47].

5.5 depicts the energy per nucleon vs. ρ/ρ0 used in the two models in this work. Note

that higher baryon density regions are to the right and the force will be towards lower

baryon density regions. This will naturally produce a pressure away from regions of

high baryon density, typically outwards in a collision.

Note that centrality for the models uses cuts on the impact parameter b, where it

is assumed that the nucleus is a spherical ball with radius 6.64 fm. While this is not

an exact comparison to the centrality determination of the data, this avoids issues

that could arise if the models fail to reproduce the proper particle yields and number

of spectators as seen in real data. Before the empirical centrality definition used in

the data can be repeated with models, a dedicated study of the particle multiplicities,

rapidity, and pT distributions between models and data should be performed. For all
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comparisons between data and models in this study, all other cuts within the data

are reproduced exactly in the models.

Figures 5.6(a-c) and Figs. 5.6(d-f) show comparisons of the data with JAM and

SMASH simulations, respectively, where potentials were been included in the models.

JAM and SMASH values are shown vs. rapidity, pT, and centrality. For JAM and

SMASH vs. centrality, values for π+, π− and protons are shown. The introduction

of potentials reproduced the trends of the v3{Ψ1} observed in the data as a function

of rapidity, pT, and centrality. Both models appeared to have a weaker response for

peripheral collisions than the data, although JAM is slightly better; this is reflected in

the rapidity and pT distributions as well as the centrality distributions for peripheral

events (Figs. 5.6(e-f)). JAM had a slightly weaker response, i.e. smaller v3{Ψ1}, than

SMASH at higher pT for mid-central collisions (compare Figs. 5.6(b) and 5.6(e)). In

analogy to the eccentricity (or ellipticity) used to quantify the strength of the almond

shape which produces v2, the triangularity ϵ3 was defined as follows [48]:

ϵ3 = −⟨r2 cos(3(ϕ−Ψr))⟩
⟨r2⟩

. (5.2)

Here, ϕ represents the angle between the particle and the reaction plane, which was

set to Ψr = 0 in both SMASH and JAM for all events. In these calculations, the origin

was reset to the center of the distribution in the particular rapidity slice of interest.

For example, this would be the position near (7fm, 0fm) in Fig. 5.2. Figures 5.6(g-i)
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Figure 5.6: The top two rows show fits of JAM (top row, Figs. (a-c)) and SMASH(2nd
row, Figs. (d-f)) to the v3{Ψ1} data vs. rapidity (first column), pT (2nd column) and
centrality (3rd column). The fits to distributions vs. rapidity and pT (a,b,d,e) are fits
to protons, for three centrality bins. Hollow points in Figs. (a,d) are reflected around
the mid-rapidity as explained in the text. Fits to centrality (c,f) show protons, π+,
and π−. The bottom row (Figs. (g-i)) depicts ϵ3 in the JAM simulation for protons
at t = 20 fm/c vs rapidity, pT and centrality.
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display the results for ϵ3 using the JAM model at t = 20 fm/c, considering particles

sorted by rapidity or pT. The time t = 20 fm/c was chosen to allow spectators to

distinguish themselves from the participants while also ensuring that the passing time

of the nuclei had elapsed; the flow, which would dilute the spacial shape, was not yet

fully developed. These plots show that the there was a real and quantifiable triangular

component that was producing the v3{Ψ1} signal.

In total, the two essential ingredients required to generate v3{Ψ1} were identified

in this study: (1) the initial condition supplied by the triangular shape resulting from

a combination of the centrality and stopping, and (2) the force within the medium

supplied by the potential. Figures 3.24 and 3.25 indicate that v3{Ψ1} for π+, π−,

and K+ are essentially zero. v3{Ψ1} for K− may be negative, but that is at most a

1σ effect. The potentials used in the models are currently developed to only act on

baryons. Any flow effect from these potentials on pions or kaons, such as on v1, stem

from secondary interactions resulting from the multiple scattering off baryons or from

decays [49]. The models do not generate any v3{Ψ1} for pions or kaons, hence v3{Ψ1}

appears to be a uniquely sensitive probe for a baryon density dependent mean-field

potential. It appears that the potential affects only baryons, and the presence of

v3{Ψ1} produced by a mean field potential acting only on baryons lends support to

the conclusions of Ref. [38]; the collisions studied here are in the hadronic phase where

protons and neutrons are the dominant degrees of freedom and not the partonic phase

(like in the QGP).
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5.2 Disappearance of v3{Ψ1}

After uncovering the source of v3{Ψ1} and completing the energy scan of measure-

ments, the next question to answer was why v3{Ψ1} seems to disappear. Since there

are two elements necessary to develop the signal, the possibilities were already nar-

rowed down. Either the initial triangularity is no longer present to start v3{Ψ1}, or

there are no longer any hadrons to experience the force from the mean field potential.

Since the potential is part of the EOS associated with nuclear matter, it is not

likely that the potential itself would change. Rather, it could be that the hadrons

themselves are melting into partonic degrees of freedom; and as has been shown in

this work, the forces involved in developing v3{Ψ1} may only act on hadrons. This

implies that, if v3{Ψ1} is disappearing, it could be a signal that the collision energy

is nearing the QCD phase transition. Thorough investigations will be necessary to

definitively make this conclusion, such as testing how well models can predict basic

kinematics of particles in the collisions (multiplicity, pT, y, etc.), tuning models to

describe the results presented here better, and including different models to support

the idea that a specifically baryon-density dependent potential is required. However,

it is worth noting that recent developments in theory have predicted the location of

the phase transition to be near
√
sNN = 4 – 4.8 GeV [50]. An in-depth study into this

possible connection between v3{Ψ1} and the phase transition is certainly warranted

and should be pursued in the future.
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In order to develop initial plausible solutions to the disappearance of v3{Ψ1}, the

JAM1 model was used once again. Comparisons to the data were made to test if JAM

could model the energy dependence, and calculations of ϵ3 were made to estimate the

initial triangularity in collisions at each energy. Predictions of v3{Ψ1} at 3.0 GeV

using the cascade mode are also included to further showcase the importance of a

mean field potential.

Figure 5.7 shows the JAM1 model calculations compared to v3{Ψ1} results at

each energy. The energy trend does seem to be replicated fairly well with respect to

centrality. Figure 5.8 shows the same comparison using the selection of v3{Ψ1} vs

rapidity in the backward region. The JAM results in this case agree well with the

data in the midrapidity region out to approximately ±0.5, but higher rapidities show

that JAM1 systematically overestimates v3{Ψ1} for all energies except perhaps 4.5

GeV. Figure 5.9 shows the pT distributions, and it is apparent that JAM1 significantly

underestimates v3{Ψ1} for all energies except 3.9 GeV and 4.5 GeV where the signal is

near zero in both data and simulation. These comparisons illustrate that JAM1 could

be an effective model choice for future studies, but there is certainly more work to be

done in adapting the model to more closely reproduce the pT and rapidity dependence

of v3{Ψ1} regardless of collision energy.

Figures 5.10, 5.11, and 5.12 show JAM1 calculations of ϵ3 vs centrality, rapidity,

and pT, respectively, at t = 20 fm/c. The conclusion drawn from each of these plots
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Figure 5.7: v3 from Ψ1 vs centrality for protons at
√
sNN = 3 – 4.5 GeV along with

model calculations using JAM1. All model lines use the mean field potential described
in the text except for one at 3.0 GeV which shows the cascade mode.
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Figure 5.8: v3 from Ψ1 vs rapidity for protons at
√
sNN = 3 – 4.5 GeV along with

model calculations using JAM1. All model lines use the mean field potential described
in the text except for one at 3.0 GeV which shows the cascade mode.
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√
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the text except for one at 3.0 GeV which shows the cascade mode.

is that the triangularity soon after the collision is essentially the same at each energy.

Only Fig. 5.11 shows a slight ordering by energy, but ϵ3 at 4.5 GeV still shows a

rapidity dependence similar to the other energies and an apparent nonzero slope at

midrapidity. It can be clearly separated from the behavior of the cascade results,

whereas v3{Ψ1} between 4.5 GeV and the 3.0 GeV cascade mode cannot be so easily

distinguished. According to the JAM model, the disappearance of v3{Ψ1} cannot be

explained solely due to a disappearance of the initial triangular shape. The model

calculations showed that the shape remained at approximately the same magnitude

for every energy, even as the final results of v3{Ψ1} were shrinking down to zero.
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Figure 5.11: ϵ3 vs rapidity for protons at t = 20 fm/c in Au+Au collisions at
√
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– 4.5 GeV from JAM1.
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Figure 5.12: ϵ3 vs pT for protons at t = 20 fm/c in Au+Au collisions at
√
sNN = 3 –

4.5 GeV from JAM1.

5.3 Summary and Outlook

This dissertation has presented the experimental methods and results of a study of

triangular flow in Au+Au collisions at the five lowest collision energies in the BES-II

FXT program at RHIC:
√
sNN = 3.0, 3.2, 3.5, 3.9, and 4.5 GeV. A signal of triangular

flow which is correlated to the first-order event plane, v3{Ψ1}, was found at 3.0 GeV

to be nonzero for protons and likely zero for the charged π and K mesons. This effect

was nearly rapidity-odd, and grew with increasing centrality, y, and pT. The slope

at midrapidity, dv3/dy|y=0, for protons also had an overall sign which was opposite

to the same slope for directed flow, v1. An explanation for how v3{Ψ1} could arise

and exhibit these behaviors was presented based on simulated Au+Au collisions at
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3.0 GeV from the JAM1 and SMASH models. It was found that v3{Ψ1} requires two

main components in order to develop: an initial triangular shape in participants after

the collision, and a potential in the equation of state which governs the interactions

between the participants.

Investigations into the participants in simulations showed that the initial triangu-

larity at 3.0 GeV can form due to the relatively long passing time of the nuclei and the

varied amount of stopping experienced by the colliding nucleons. The net motion of

the participants on either side of the reaction plane tends to be in the same direction

as the spectators on the same side. The usual almond shape of the participants essen-

tially divides into half-moon shapes which possess the necessary triangularity. This

happens for higher values of y and pT and is not seen near midrapidity, preserving the

usual almond shape which develops elliptic flow v2. By running JAM and SMASH

simulations without any potential, and then again with two baryon density dependent

potentials, it was shown that v3{Ψ1} cannot be developed without the inclusion of

a potential. Both baryon density dependent potentials tested performed fairly well

at reproducing the trends of the data, suggesting this type of potential could be ef-

fective in modeling the behaviors of v3{Ψ1}. Furthermore, the meson results lend

themselves nicely to this idea since they showed no appreciable v3{Ψ1} effect. The

stark contrast between the presence or absence of a potential distinguishes v3{Ψ1}

as an extremely effective discriminator to use in the study of the nuclear equation of

state and baryon/meson dynamics in heavy-ion collisions.
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Following the study at
√
sNN = 3.0 GeV, the results at each collision energy were

presented. The data showed that v3{Ψ1} decreased as the collision energy increased,

effectively reaching zero at 3.9 and 4.5 GeV. Based on the results in the symmetric

region around midrapidity, it was clear that the measurements were influenced by an

effect skewing the rapidity dependence away from the expected rapidity-odd behavior.

A known procedure to separate the odd and even portions of flow measurements was

adapted for FXT experiments and presented. Future studies into the efficacy of this

method in FXT experiments should be carried out, but when applied to each energy

of this study, the energy dependence of v3{Ψ1} became more clear. The results of

vodd3 {Ψ1} suggested that the signal becomes consistent with zero around 3.9 GeV,

with the same behavior continued at 4.5 GeV. This was shown in particular for the

same proton selection as HADES, providing the largest energy dependence of v3{Ψ1}

currently possible from 2.4 – 4.5 GeV.

To provide the first steps into deeper studies of v3{Ψ1}, JAM predictions were

presented for each energy. Overall, the ordering of energies and the reduction of

v3{Ψ1} is also seen in the model results. This supports that the model is on the right

track to describe this observable, but there are obvious deficiencies in reproducing

the detailed behaviors in centrality, y, and pT. These comparisons to new data will

provide valuable information to start these improvements and better model heavy-ion

collisions. With the model as it stands currently, the first test into a reason for the

disappearance of v3{Ψ1} was presented. The triangularity ϵ3 was presented at each

141



energy to describe the strength of the initial triangular shape after the collisions (the

first necessary component to develop v3{Ψ1} as described above). JAM showed that

the magnitude of ϵ3 was roughly the same at each energy and did not reduce to zero.

This suggests that the disappearance of v3{Ψ1} is not due to changes in the initial

shape after the collision.

All measurements of v3{Ψ1} from data presented here represent a substantial

success in the field of heavy-ion physics. A multitude of data has been produced that

can be used to further constrain theoretical representations of heavy-ion collisions

as well as predictions of the EOS for dense nuclear matter. The initial tests of

modern simulations to reproduce v3{Ψ1} have proven useful in understanding the

signal itself, and they should conversely be useful to begin the process of improving

those simulations further. This work has also opened multiple avenues of continued

research around v3{Ψ1}, such as looking at the signal produced by larger baryons (d,

t, 3He, etc.), further testing of the signal from mesons with larger datasets, verification

of the source of veven3 {Ψ1} and its isolation in FXT experiments, and narrowing down

the true reason why v3{Ψ1} disappears. Further study of this observable should

be carried out in the future, and will undoubtedly produce significant and exciting

results.
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