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ABSTRACT

Objective: Data integration methods that combine data from different molecular levels such as genome, epige-

nome, transcriptome, etc., have received a great deal of interest in the past few years. It has been demonstrated

that the synergistic effects of different biological data types can boost learning capabilities and lead to a better

understanding of the underlying interactions among molecular levels.

Methods: In this paper we present a graph-based semi-supervised classification algorithm that incorporates la-

tent biological knowledge in the form of biological pathways with gene expression and DNA methylation data.

The process of graph construction from biological pathways is based on detecting condition-responsive genes,

where 3 sets of genes are finally extracted: all condition responsive genes, high-frequency condition-responsive

genes, and P-value–filtered genes.

Results: The proposed approach is applied to ovarian cancer data downloaded from the Human Genome Atlas.

Extensive numerical experiments demonstrate superior performance of the proposed approach compared to

other state-of-the-art algorithms, including the latest graph-based classification techniques.

Conclusions: Simulation results demonstrate that integrating various data types enhances classification perfor-

mance and leads to a better understanding of interrelations between diverse omics data types. The proposed

approach outperforms many of the state-of-the-art data integration algorithms.

Key words: gene expression, DNA methylation, semi-supervised learning, graph theory, ovarian cancer, data integration

INTRODUCTION

As a fast-growing field, translational bioinformatics translates biomedi-

cal and genomic data into applicable medical knowledge that can be

further used to investigate the underlying genomic structures of different

impairments in the human body.1,2 Such knowledge can be used to pre-

dict clinical outcomes or diagnose disease stages to guide medical inter-

ventions. Molecular-based data, such as DNA methylation and gene

expression, are provided by microarray technology, enabling researchers

to analyze the underpinnings of diseases at a genomic level.3,4,37,38

Despite the rich literature available on microarray data analysis and

machine learning algorithms, it is a challenge to take advantage of

different genomic levels to gain better insight into the structure of a

given disease. Each genomic level can provide us with increased infor-

mation on the tissue of interest. For example, at the genome level, copy

number alterations can broaden our knowledge to larger regions of the

genome, called chromosomes, even when entire chromosomes are not

duplicated. At the epigenome level, DNA methylation plays an impor-

tant role, and at the transcriptome level, gene expression and micro-

RNA (miRNA) represent the molecular signatures. Transcriptome data

has long been the main pillar of translational bioinformatics.5–9

Although omics data can be used directly for diagnostic purposes,

a single level of data may not include enough information to elucidate
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the underlying structure of the disease. Therefore, it seems useful to

leverage the hidden knowledge in different omics levels as a whole to

make more accurate predictions. During the past few years, integrated

omics methods have been introduced in numerous papers. This issue

has been addressed from several different points of view. In general,

data integration methods can be categorized into 2 groups:10 multi-

staged analysis and metadimensional analysis. In multistaged analysis,

only 2 scales can be used at a time to construct a model in a linear,

stepwise, or hierarchical manner. Here, scale means the numerical or

categorical features of the data. In metadimensional analysis, all the

scales of the data are combined simultaneously.10 Genomic variation

analysis methods, such as expression quantitative trait loci and methyl-

ation quantitative trait loci,11–13 and domain knowledge–guided analy-

sis methods are examples of multistaged analysis approaches.14–16

Metadimensional analysis approaches are 3-fold:10 concatenation-

based integration methods such as Bayesian networks17 and multivari-

ate Cox lasso models,18 transformation-based integration methods

such as kernel-based integration methods19 and graph-based semi-su-

pervised learning (SSL) algorithms,20 and model-based integration

methods such as majority voting21 and ensemble classifiers.22 Another

viewpoint on phenotype classification and disease gene discovery was

proposed by Hwang et al.39 Their method, called regularized non-

negative matrix tri-factorization (R-NMTF), tries to co-cluster pheno-

types and genes along with simultaneous detection of associations

between the detected phenotype clusters and gene clusters.

One of the main difficulties in handling microarray data is its com-

plexity and large number of features, eg, genes, compared to the num-

ber of samples (the “curse of dimensionality”). An efficient approach

to tackle such a computational burden is to employ graph-based

approaches that have proven to work well when dealing with complex

data such as manifolds. In this regard, Shin et al.23 proposed a graph

sharpening approach along with graph integration. In principle, graph

sharpening is a method to reduce the noise effects in a scalable manner

in order to prune irrelevant and redundant edges in a graph to increase

learning. Their method addresses the prediction of protein functions

based on graph-based SSL and graph integration in order to provide

synergy for better classification. To overcome the inherent effects of

noise, they also proposed a method called graph sharpening, which

has improved the area under the receiver operating characteristic

(ROC) curve by 30%. In another study, Tsuda et al.24 addressed pro-

tein classification using multiple protein networks such as physical in-

teraction networks. Due to the sparsity of network edges, the

computational time is linear and combinations of the weights of the

edges can provide useful information in order to reduce noise.

Synergistic effects of different levels of genomic data have been

addressed by Kim et al.,25 where copy number alterations, DNA

methylation, gene expression, and miRNA data have been used to

classify glioblastoma multiforme into low and high grades. They em-

ploy ordinary graph-based semi-supervised methods for each layer

and concatenate them via a linear programming model, but do not

take into account the interrelationships between different sets of ge-

nomic features. To do so, in,26 intrarelation of gene expression was

constructed from interrelation between miRNA and gene expression

to predict short-/long-term survival of patients with glioblastoma

multiforme. In a similar approach,27 interrelationships among multio-

mics data have been addressed in order to consider such relations con-

tributing to regulation or dysregulation of cancer. By incorporating

lateral biological knowledge such as pathway information into the

model proposed in,25 a boosted graph-based method is introduced

in.28 This method averages expression values of the genes belonging

to a pathway and uses them as a single new feature so that each

genomic level can be represented by 2 graphs: 1 is constructed from

the original data and the other is composed of the same samples plus

the new set of features. There are some issues with this approach.

Although this method takes the average of the genes belonging to

each pathway, not all of those genes will necessarily be upregulated or

downregulated with respect to the phenotype. On the other hand,

some of the genes in each pathway might not be statistically meaning-

ful, so just taking a simple average may not make biological sense.

To address this issue, we propose a new graph-based semi-super-

vised approach considering pathway information through employing

condition-responsive genes (CORGs).29 CORGs are sets of genes be-

longing to particular biological pathways. According to,29 to obtain

the CORGs of a certain biological pathway, the constituting genes of

the pathway are ranked in such a way that their average expression

values across all the samples provide the largest degree of discrimina-

tion between cases and controls based on statistical 2-sided t test. As a

result, for each pathway, the most discriminative set of genes contain-

ing the highest statistical signal level are picked. On the contrary, gene

set enrichment analysis employs all members of a pathway and incor-

porates them in the hypergeometric statistical test to measure the

pathway activity. In this sense, it is unlikely that the whole genes to-

gether provide the largest discrimination between cases and controls.

As a result, CORGs can keep the biological meaningfulness of their

members while yielding the maximum statistical signal.

After obtaining the CORGs for each pathway, 3 approaches are

employed, yielding 3 different sets of features. The 3 approaches are

as follows:

1. Consider all the genes in the obtained CORGs and use them to

construct the graph.

2. Sort all the genes in the CORGs in ascending order based on

their P-values and then filter out the genes having P-values larger

than a threshold.

3. Consider high-frequency genes in all the CORGs and use them

to construct the graph.

Generally, the main objectives and novelties of this research

study can be summarized as follows:

• Incorporate CORGs in the form of a graph to be coupled with

molecular data types to increase prediction accuracy.
• Develop 3 gene selection mechanisms using CORGs to extract

highly discriminative biomarkers curated from biological path-

ways to reflect the impact of latent biological knowledge on phe-

notype classification.
• Provide a more powerful graph-based SSL system than other

existing single and multiomics classification algorithms.

The remainder of this paper is organized as follows: In the next

section, a brief overview of the currently existing methods being

used are provided. Then, the proposed approach will be given under

the section ‘The Proposed Approach’ followed by the datasets being

used and numerical experiments and comparisons. Finally, conclu-

sion remarks will be discussed.

AN OVERVIEW OF THE METHODS BEING
EMPLOYED

In this section, we provide a brief overview of some of the methods

used in this paper. First, basics of graph-based SSL are reviewed.

Then the optimization framework used to integrate different geno-

mic layers is described.
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Graph-based semi-supervised learning
SSL methods stand between unsupervised methods, where training

samples are entirely unlabeled, and supervised methods, where all

training samples are labeled. SSL algorithms make use of unlabeled

data along with labeled samples to enrich the training set and con-

struct a more efficient and reliable classifier, especially when a large

amount of unlabeled samples is available. The performance of such

classifiers is measured on the unlabeled samples only. According

to,30,31,35 the key to SSL approaches is the consistency assumption,

which states that (1) points on the same structure (ie, manifolds) are

likely to have the same label and (2) nearby points are also likely to

have the same label. SSL methods have proven to be quite produc-

tive in dealing with complex datasets such as biological data, where

data structures are intertwined. Various types of SSL algorithms

such as spectral methods,32,33 graph mincuts,34 transductive support

vector machines (SVMs),31 and random walks36 can be found in the

literature.

In this paper we employed the SSL method proposed by Zhou

et al.30 In this approach, each node represents a sample and the

edges can be established between nodes using the K nearest neigh-

bors method. In fact, edges between nodes convey the mutual rela-

tionship between the samples. The more the weight of the edge, the

more likely the nodes it connects to will have the same label.

K nearest neighbors of each sample can be computed by ordinary

Euclidean distance, and the weight of the edges obtained using the

Gaussian kernel. Suppose X ¼ fx1; x2; . . . ; xl;xlþ1; . . . ; xng � <m is

the entire set of n samples comprising l labeled samples and n� l

unlabeled samples. Let L ¼ f1; . . . ; cg denote the class labels. Let

F ¼ ½Ft
1; . . . ; Ft

n�
t be an n� c matrix corresponding to classification

of the set X, where sample xi belongs to class j if yi ¼ arg max j2L Fij.

Here, F is a vector function that assigns a vector Fi to each sample xi.

According to,30 the matrix F is obtained from (1):

F ¼ ðI � aSÞ�1Y (1)

where I is an n� n identity matrix and a denotes the tradeoff

parameter between the 2 conditions of smoothness and loss. Also,

Y ¼ ½y1; . . . ; yl; 0; . . . ; 0� denotes the labels where samples are la-

beled by 1 and �1 and unlabeled samples are represented by 0.

Here, S ¼ D�W is the graph Laplacian matrix, where W is the

symmetric weight matrix calculated in Eq. 2 and D is given by (3).

wij ¼
exp

ðxi � xjÞtðxi � xjÞ
r2

� �
; i 6¼ j

0; Otherwise

8><
>: (2)

D ¼ diagðdiÞ (3)

where di ¼
X

j

wij.

Graph integration
One of the goals of this paper is to integrate the computed graphs as

the result of applying SSL on each genomic level. The purpose of

graph integration is to leverage hidden knowledge in the gene ex-

pression and DNA methylation data along with biological knowl-

edge such as pathway information to obtain the best classification

performance. The integration process can be carried out by finding

the optimal combination of each dataset represented by a graph.

Suppose that there are K graphs. The weights of the combined

graphs can be obtained using the following optimization model:28

min a Yt I þ
XK

k¼1

akSk

 !�1

Y

s:t:
XK

k¼1

ak�l

(4)

where Sk and ak represent the graph Laplacian matrix and the opti-

mum weight coefficient of the graph k, respectively.

The final solution of the above-mentioned model can be calcu-

lated by Eq. 5:28

F ¼ I �
XK

k¼1

akSk

 !�1

Y (5)

THE PROPOSED APPROACH

The main contribution of this paper is to provide a systematic ap-

proach to incorporating biological knowledge in the form of biologi-

cal pathways into a graph-based SSL algorithm, to gain better

phenotype classification performance. Here, each genomic level,

such as gene expression or DNA methylation graph, will have a

complementary graph containing its corresponding pathway infor-

mation. Figure 1 illustrates the overall pipeline of the proposed ap-

proach. In this figure, each node represents a sample, where the

samples are the same for all genomic levels being considered. Graphs

of each level are constructed by the SSL algorithm. It should be men-

tioned that in the context of SSL, all samples, including labeled and

unlabeled, are taken into account during the process of learning. In

Figure 1, the 2-class problem is addressed where node classes are

represented by “1” and “0” and unlabeled samples are represented

by “?.”

Although construction of the graphs with respect to each dataset

is performed by the existing SSL algorithm discussed in the previous

section, in order to construct the graphs considering biological path-

ways, 3 new approaches have been developed based on the set of

CORGs.29 The overall pipeline of these approaches is depicted in

Figure 2.

Given a set of gene-wise normalized samples, each cell member

of the data matrix is represented by zij where i and j represent the

corresponding gene and sample, respectively. As shown in Figure 2,

first the set of genes corresponding to the pathway being consid-

ered is extracted from the dataset. The extracted genes are then or-

dered in an ascending manner based on their P-values, computed

by the statistical 2-sided t test. In the next step, a loop is applied to

the members of the ascending-ordered gene set: starting from the

first gene, the activity vector of that gene is constructed, and then

its respective activity score A is calculated. In the next step, the sec-

ond gene is considered along with the first one, and their corre-

sponding activity score is calculated. The process of adding new

genes to the list of selected genes continues until the activity score

no longer improves. Note that in Figure 2, the activity score of the

activity vector is the same as the P-value of the vector. It should be

mentioned that P-value represents the strength of the statistical

discrimination between the cases and controls. In other words, the

activity vector of the CORGs (a subset of certain genes belonging

to a biological pathway) represents the average expression values

of the most influencing genes inside the pathway such that the

2-sided statistical t test assigns the highest difference between cases

and controls using this vector. By this, we can come up with a par-

ticular set of genes belonging to the same pathway while keeping

Journal of the American Medical Informatics Association, 2017, Vol. 0, No. 0 3



the average expression levels across all cases and controls as differ-

ent as possible. Given that the statistical t test is a widely used

method for extracting biomarkers, activity score coupled with the

t test combines the useful hidden biological knowledge of

pathways with characterizing the most powerful discriminatory

genes available in the data.

After extracting all the signaling genes (CORGs) of each path-

way, 3 approaches were considered to shape the final set of genes

Figure 1. A graphical representation of the graph integration method.

Figure 2. Gene extraction process from biological pathways.

4 Journal of the American Medical Informatics Association, 2017, Vol. 0, No. 0



for constructing the pathway graphs. In approach 1, all the genes in

all the CORGs were listed and used as the final set of features. Note

that it is possible that some genes are repeated in various CORGs. In

such cases, just 1 of them is adopted. In approach 2, all the unique

genes in the CORGs are ordered in an ascending manner based on

their P-values. Then, genes with P-values larger than a threshold (s)
are filtered out. The threshold that we set in this paper for filtering

genes was 0.001. Finally, in approach 3, we make use of the number

of times that each gene has been repeated in the CORGs. The more

a gene is repeated, the stronger it is as a biomarker. Finally, a thresh-

old is applied and low-frequency genes are filtered. In this paper, we

set the threshold to be d¼0.01� (# pathways).

After constructing all the graphs with respect to each genomic

level and biological pathway, these graphs are integrated using the

graph-integration method described in the Graph integration sec-

tion. The resultant graph consists of the hidden knowledge extracted

from different genomic levels and biological pathways. In this

method, if 2 samples have a large correlation (are closer) with re-

spect to their labels in different levels, this will provide good synergy

and the weight of their connecting edge in the final integrated graph

will be large, to convey such a mutual relation. On the contrary, if

the weights of the connecting edges between 2 nodes in different

graphs are negligible, this will be projected onto the final integrated

graph, indicating that it is highly probable that these 2 samples be-

long to different classes.

DATASETS

We applied the proposed approach to normalized ovarian cancer

data downloaded from the Human Genome Atlas.36 We used clini-

cal information, gene expression data, and methylation data

(Table 1). Using the clinical outcomes, samples were divided into 2

classes: short survival of <3 years (group 1) and long survival of >3

years (group 2). After filtering the samples based on their clinical

outcome, we came up with 340 samples, 147 in group 1 and 193 in

group 2. Gene expression and methylation data contain around

28 000 and 65 000 probes, respectively.

For pathway information, we used the C2 curated gene sets from

MSigDB v5.0 containing 472 canonical and signaling pathways.

The pathways are pooled from 9 manually curated databases. In to-

tal, these sets contain 4725 genes.

EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the performance of the proposed approaches, first the

data was perturbed and then split into 2 groups: 80% for training

and 20% for validation. The cross-validation process is 2-fold: 5

and 10. During each round of cross-validation, the training data

were first perturbed and then 5- or 10-fold cross-validation was ap-

plied. The perturbation process was repeated 50 times.

We conducted a series of experiments to determine the behavior

of the proposed method compared to other state-of-the-art algo-

rithms. These experiments are listed below:

• Implement SSL on DNA methylation data.
• Implement SSL on gene expression data.
• Implement graph-based integrated model of DNA methylation

and gene expression.
• Implement graph-based integrated model of DNA methylation

data and pathways using the 3 feature selection approaches.

• Implement graph-based integrated model of gene expression data

and pathways using the 3 feature selection approaches.
• Implement graph-based integrated model of DNA methylation,

gene expression and pathways using the 3 feature selection

approaches.

For each experiment, area under the ROC curve (AUC) and error

rate (ER) have been measured. Additional metrics, including true

positive rate (TPR), false positive rate (FPR), true negative rate, and

false negative rate, are reported. Due to the high dimensionality of

the data being used, we applied an initial filtering before conducting

the experiments using the 2-sided t test and eliminated features hav-

ing P-values larger than 0.05. As a result, the DNA methylation and

gene expression data had around 4100 and 1000 features, respec-

tively. To have a better understanding of the effects of multiomics

data integration compared to other non–graph-based methods, we

also repeated the experiments using SVM with radial basis function

kernel and artificial neural network (ANN) having 2 hidden layers,

each layer with 10 neurons.

Figure 3 represents the computed AUC values for the defined ex-

periments, along with the standard deviation of the results based on

5-fold cross-validation. The experiments were repeated with 10-fold

cross-validation. The results are reported in Figure 4.

We expected to gain better AUCs by adding more layers of infor-

mation to the training process, and this expectation was met by the

computational results. Note that SVM and ANN were applied on

both gene expression and DNA methylation data, but only the gene

expression AUCs are reported, since they were larger. In both fig-

ures, it can be observed that simple implementation of graph-based

SSL on gene expression and methylation provides the lowest AUCs,

while integration of gene expression and methylation yields lower

performance than SVM and ANN. This can be interpreted as an in-

dication that each genomic level of data might not solely contribute

to development of cancer and that synergistic effects of epigenetic

and transcriptomic factors can be a better predictive tool.

This synergy yields more boosted AUCs as we incorporate path-

way information. For instance, in Figures 3 and 4, SSL implementa-

tion on gene expression data gives a higher AUC than on

methylation data; nevertheless, integration of methylation data and

pathway information based on approaches 2 and 3 produces better

classification results than the combination of gene expression and

pathway information. This difference implies that in the context of

graph-based SSL, integration of methylation and pathway data can

result in a higher level of synergy compared to integration of gene

expression and pathway information, and can radically boost the

predictive power of methylation in classifying samples from ovarian

cancer. Therefore, it can be concluded that only a portion of features

belonging to the pathway sets are capable of enhancing the discrimi-

nation of samples, and the remaining features that were used in ap-

proach 1 can have a negative impact on the predictive power of the

model. That is why integration of gene expression and pathway in-

formation yields better AUCs than its counterpart using DNA

Table 1. Data description

Data Platform # Features

Gene expression Affymetrix HT Human Genome

U133 Array Plate Set

28 000

DNA methylation Infinium HumanMethylation27

Beadchip

65 000

Journal of the American Medical Informatics Association, 2017, Vol. 0, No. 0 5



methylation, as demonstrated in Figure 3 (approach 1) and Figure 4

(approach 1).

The highest AUC is achieved by integration of gene expression,

methylation, and pathway information datasets, which is around

0.80. The ascending trend in AUCs can be perceived as positive ef-

fects of data integration on phenotype classification. We also con-

ducted an experiment on the method proposed by Kim et al.28 and

showed that the result of this method is no better than integration of

all of the data levels using our proposed approaches; however, it still

gives significantly large AUCs compared to ANN, SVM, or graph-

based SSL implemented independently on gene expression and DNA

methylation data. In,28 the integration process is the same as ours,

and the main difference is in the construction of graphs correspond-

ing to biological pathways. In,28 genes belonging to each pathway

are first extracted, and then their average is used as a new feature.

The remaining genes that do not belong to any of the pathways are

directly used in the process of graph construction. By averaging the

genes, those genes that are not differentially expressed individually

might reduce the meaningfulness of the differential expression of the

average of genes belonging to a pathway. Indeed, this method yields

lower AUCs compared to the 3 approaches presented in this paper,

where no averaging on the genes was carried out.

To make a comparison between the 3 proposed approaches, it

can be observed that approach 1 gives larger AUCs compared to the

other approaches. Also, approach 3 yields slightly better results than

approach 2. We can conclude that taking all the computed genes in

all the CORGs has more predictive power than selecting a subset of

the genes. Nevertheless, high-frequency genes, ie, genes that are re-

peated more in all the CORGs compared to the other genes present

in all the CORGs, in approach 3 still demonstrate better perfor-

mance than filtering the CORGs based on their P-values.

To get better insight into other classification criteria in addition

to AUC, the following measurements were carried out: ER, TPR,

FPR, positive predictive value (PPV), and negative predictive value

(NPV). The measurements will be presented for both cross-

validation and validation sets. According to Figures 3 and 4, our

approach 1 led to the best results, so here we will only report the

measurements performed in this approach. These results are

Figure 3. AUC measurements based on 5-fold cross-validation. Different methods were evaluated: (A) artificial neural network (ANN), (B) support vector ma-

chines (SVMs), (C) graph-based SSL on methylation data, (D) graph-based SSL on gene expression data, (E) graph-based SSL on integration of gene expression

and methylation data, (F) graph-based integration of methylation data and biological knowledge using the proposed approaches, (G) graph-based integration of

gene expression data and biological knowledge using the proposed approaches, (H) graph-based integration of methylation data, gene expression data, and bio-

logical knowledge using the proposed approaches, and (I) graph-based method presented in.28

6 Journal of the American Medical Informatics Association, 2017, Vol. 0, No. 0



represented in Tables 2–5. We will refer to our approach as graph-

based SSL with pathway information (GSSLPI).

We should note that in Tables 2–5, ANN, SVM, and SSL were

individually implemented on each data type. In Tables 2 and 4, we

used gene expression data and pathway information together, in our

approach and Kim’s method.28 Similarly, in Tables 3 and 5, we used

DNA methylation data and pathway information together in our ap-

proach and Kim’s method.28

According to Table 2, our approach ranks first in 4 metrics out

of 6. The cross-validation AUC on gene expression data is roughly

0.79, but variation of the AUCs during each iteration in the process

of cross-validation is higher than for ANN and SSL. Here, SVM pro-

duces the lowest ER along with the smallest standard deviation.

GSSLPI exhibits superior accuracy in terms of PPV, NPV, and FPR,

with a reasonable standard deviation compared to the other meth-

ods. In general, SSL yields the weakest performance across all met-

rics, while Kim’s method results in relatively similar measures to our

approach.

The situation for validation measurements is different. On both

gene expression and DNA methylation data, our approach yields the

best AUC and FPR, and SVM gives the best ER and TPR. For gene

expression data, our method leads to the highest PPV, and SVM

yields the highest NPV, while this situation is reversed for the DNA

methylation data. In general, in our approach, SVM and Kim’s algo-

rithm produce roughly similar results, while SSL in both datasets

gives the worst classification performance. On the other hand, per-

formance of ANN and SSL in both datasets exhibits less variation in

cross-validation and validation experiments. In order to gain better

intuition for the ranking of each method with respect to each metric,

in Figure 5 we provide the average of rankings of each algorithm

with regard to the results presented in Tables 2–5. The process of

computing the rankings is as follows. Consider Table 2. For the

AUC metric, GSSLPI ranking is 1, SVM is 2, Kim’s method is 3, and

so on. These ranks are computed for the other 5 metrics across all

methods. The obtained ranks are then averaged with respect to each

method. This process was repeated for Tables 3–5. Obviously, the

smaller the ranking of a method, the better its performance com-

pared to the other methods. It is observed that GSSLPI holds the

lowest average ranking across the 6 measurements: AUC, ER, PPV,

NPV, TPR, and FPR. In addition to the mentioned method, we re-

peated the same experiments using the R-NMTF39 and observed

roughly identical results. For example, on the validation side,

R-NMTF led to AUCs of 0.710 and 0.7075 for the gene expression

and methylation datasets, respectively. Both of these numbers are

Figure 4. AUC measurements based on 10-fold cross-validation.
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smaller than the obtained AUCs reported in Tables 4 and 5. The

same situation can be observed in the 10-fold cross-validation num-

bers, where R-NMTF shows AUCs about 0.7735 and 0.7655 for

gene expression and methylation, respectively. It can be observed

that GSSLPI outperforms R-NMTF, though the difference is not sig-

nificant. One reason for this can be the latent biological knowledge

that these 2 methods share, and that has significant positive effects

on boosting the computational accuracy.

Despite employing a single data type, our experiments show that

SVM and ANN are still powerful in dealing with the task of pheno-

type classification using high-throughput data. These methods are

easier to implement, and there are plenty of readily available plat-

forms providing versions of these algorithms. When it comes to tak-

ing into account molecular interactions in different layers, SVM and

ANN by nature are not able to handle multiple data sets. Among

multiomics methods, our focus in this research is on graph-based

SSL algorithms, and we tried to increase the accuracy of some of the

well-known graph-based methods in the literature. According to our

numerical experiments, this has been achieved under various cir-

cumstances. On the other hand, our proposed feature selection

mechanisms from biological knowledge can also be used as means

for independent feature selection algorithms. However, multiomics

approaches are harder to implement and less public software is

available on them. They also produce marginally better classifica-

tion results compared to single-omics approaches such as SVM. So,

if accuracy and readiness are the main priority, then SVM, ANN, or

other similar methods can be used, but if one intends to consider in-

teractions among transcriptome, epigenome, genome, etc., while

having latent biological knowledge and employ them to make a

more accurate prediction, then our proposed approaches can be

chosen.

In order to look at the identified driver genes from a biological

perspective, we used the obtained genes during the process of model

learning and graph construction and performed pathway enrichment

analysis. The following top pathways were observed: Wnt signaling

pathway (P¼2�10e7), p53 signaling pathway (P¼3�10e7), cell

cycle (P¼4�10e7), apoptosis (P¼ .0000032), mitogen-activated

protein kinase signaling pathway (P¼ .000064), and cell prolifera-

tion (P¼ .000000066). The observed pathways are among the most

common pathways underlying a large spectrum of cancers. This

finding verifies that the proposed approach is capable of not only

providing high-quality classification performance, but also yielding

biologically meaningful and related results to the phenotype of

interest.

One of the points that can be taken for future extensions of our

work is the distance measure being employed for graph construc-

tion. In this paper, we used Euclidean distance to measure how far

the features were to compute the graph weights. Other measures,

from statistical correlation to manifold distances, also are of interest

and might be able to enhance the performance of the proposed

approaches.

CONCLUSIONS

In this paper we proposed a novel method to incorporate pathway

information for constructing graphs in the context of SSL. We made

use of an existing graph integration approach to boost the

Table 2. Cross-validation measurements on gene expression data (10-fold)

Measure ANN SVM SSL GSSLPI Kim et al.28

AUC 0.7436 6 0.0541 0.7852 6 0.1311 0.6746 6 0.1115 0.7922 6 0.122 0.7822 6 0.128

ER 0.1930 6 0.0798 0.1692 6 0.0728 0.2439 6 0.0745 0.1847 6 0.0960 0.1819 6 0.1003

PPV 0.7340 6 0.2026 0.75316 6 0.1732 0.5340 6 0.1602 0.7998 6 0.1383 0.7872 6 0.1682

NPV 0.6152 6 0.0847 0.7626 6 0.1185 0.6061 6 0.0745 0.7820 6 0.0934 0.7731 6 0.0911

TPR 0.6677 6 0.0916 0.7684 6 0.1423 0.65733 6 0.1016 0.6971 6 0.1978 0.6931 6 0.1900

FPR 0.1395 6 0.0424 0.1330 6 0.0891 0.1481 6 0.0363 0.1328 6 0.1267 0.1376 6 0.1217

Table 3. Cross-validation measurements on DNA methylation data (10-fold)

Measure ANN SVM SSL GSSLPI Kim et al.28

AUC 0.6746 6 0.1115 0.7608 6 0.0895 0.5276 6 0.1228 0.7821 6 0.1124 0.7722 6 0.1124

ER 0.1939 6 0.0745 0.1591 6 0.0689 0.2243 6 0.0735 0.1800 6 0.0929 0.2170 6 0.0944

PPV 0.7723 6 0.1250 0.79031 6 0.0556 0.7324 6 0.1349 0.7964 6 0.1768 0.7904 6 0.0958

NPV 0.6861 6 0.0745 0.7221 6 0.0886 0.6262 6 0.1035 0.7474 6 0.1182 0.7034 6 0.0802

TPR 0.6926 6 0.1350 0.7025 6 0.1429 0.6014 6 0.0101 0.7062 6 0.1990 0.6962 6 0.1154

FPR 0.1381 6 0.0363 0.1939 6 0.07774 0.1203 6 0.0057 0.1100 6 0.1241 0.1700 6 0.1341

Table 4. Validation measurements on gene expression data

Measure ANN SVM SSL GSSLPI Kim et al.28

AUC 0.66924 0.70668 0.60714 0.71298 0.70398

ER 0.253 0.2297 0.2939 0.2447 0.2711

PPV 0.504 0.6239 0.5003 0.7048 0.6802

NPV 0.6142 0.7023 0.6061 0.7022 0.7020

TPR 0.63716 0.7175 0.6032 0.6855 0.6704

FPR 0.1795 0.1883 0.1901 0.1775 0.1939

Table 5. Validation measurements on DNA methylation data

Measure ANN SVM SSL GSSLPI Kim et al.28

AUC 0.6346 0.7133 0.5066 0.7232 0.721

ER 0.2239 0.1801 0.3043 0.21 0.227

PPV 0.70263 0.78031 0.6931 0.7724 0.7414

NPV 0.6001 0.6944 0.6062 0.7014 0.6634

TPR 0.6126 0.6525 0.6014 0.6462 0.6162

FPR 0.1573 0.2139 0.1523 0.131 0.206
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classification performance of graph-based SSL by integrating differ-

ent layers of genomic information including gene expression, DNA

methylation, and their corresponding pathway information. With

respect to extracting knowledge from biological pathways, 3

approaches were developed based on the concept of CORGs, where

each CORG represents a set of genes belonging to a pathway. These

3 approaches take: (1) all genes in all the CORGs, (2) genes in all

the CORGs based on their P-values, and (3) genes in all the CORGs

having the highest frequency. Several numerical experiments were

conducted on the ovarian cancer dataset downloaded from the

Human Genome Atlas data portal. We demonstrated that the pro-

posed approaches outperform other graph-based SSL algorithms

and yield high-quality results compared to well-known methods

with high-quality performance such as SVM and ANN. We showed

that, in contrast, taking into account individual levels of genomic in-

formation may not lead to highly accurate phenotype classification.

We demonstrated that integrating epigenetic, transcriptomic, and bi-

ological knowledge can dramatically boost the discriminatory power

of graph-based SSL algorithms.
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