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ABSTRACT OF THE DISSERTATION 

 

Lexical propensities in phonology: 

corpus and experimental evidence, grammar, and learning 

 

by 

 

Jesse Zymet 

Doctor of Philosophy in Linguistics 

University of California, Los Angeles, 2018 

Professor Bruce P Hayes, Co-Chair 

Professor Kie Ross Zuraw, Co-Chair 

 

Traditional theories of phonological variation propose that morphemes be encoded with 

descriptors such as [+/- Rule X], to capture which of them participate in a variable process. More 

recent theories predict that morphemes can have LEXICAL PROPENSITIES: idiosyncratic, gradient 

rates at which they participate in a process—e.g., [0.7 Rule X]. This dissertation argues that such 

propensities exist, and that a binary distinction is not rich enough to characterize participation in 

variable processes. Corpus investigations into Slovenian palatalization and French liaison reveal 

that individual morphemes pattern across an entire propensity spectrum, and that encoding 

individual morphemes with gradient status improves model performance. Furthermore, an 

experimental investigation into French speakers’ intuitions suggests that they internalize word-

specific propensities to undergo liaison.  



 iii 

 The dissertation turns to modeling language learners’ ability to acquire the idiosyncratic 

behavior of individual attested morphemes while frequency matching to statistical 

generalizations across the lexicon. A recent model based in Maximum Entropy Harmonic 

Grammar (MaxEnt) makes use of general constraints that putatively capture statistical 

generalizations across the lexicon, as well as lexical constraints governing the behavior of 

individual words. A series of learning simulations reveals that the approach fails to learn 

statistical generalizations across the lexicon: lexical constraints are so powerful that the learner 

comes to acquire the behavior of each attested form using only these constraints, at which point 

the general constraint is rendered ineffective. A GENERALITY BIAS is therefore attributed to 

learners, whereby they privilege general constraints over lexical ones. It is argued that MaxEnt 

fails to represent this property in its current formulation, and that it be replaced with the 

hierarchical MIXED-EFFECTS LOGISTIC REGRESSION MODEL (MIXED-EFFECTS MAXENT), which 

is shown to succeed in learning both a frequency-matching grammar and lexical propensities, by 

encoding general constraints as fixed effects and lexical constraints as a random effect. The 

learner treats the grammar and lexicon differently, in that vocabulary effects are subordinated to 

broad, grammatical effects in the learning process. 
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Chapter 1: 
 

Introduction 
 
 
Phonological variation—situations where a single morpheme can be realized with multiple 

phonetic forms in a single environment—has been the subject of great interest among 

phonologists in recent decades (Labov 1989; Kiparsky 1993b; Anttila 1997; Pater 2000; Zuraw 

2000; Bailey & Hahn 2001; Frisch & Zawaydeh 2001; Albright & Hayes 2003; Ernestus & 

Baayen 2003; Becker 2009; Coetzee & Pater 2011; Moore-Cantwell & Pater 2016; among many 

others). Some perennial questions that have emerged are the following: How is variation 

represented in the linguistic system? How is it learned? How does it arise in language and change 

throughout time?  

 Several theories of variation propose that encoded in morphemes is a binary scale        

([+/- Rule X]) that determines whether they trigger or undergo a phonological process (esp. 

Walther & Wiese 1999; Chomsky & Halle 1968, Kenstowicz & Kisseberth 1977, Anttila 1997, 

Pater 2000, Becker 2009, Jurgec 2016, among others). Other, more recent theories raise the 

possibility that encoded in morphemes are gradient parameters ([0.7 Rule X]), predicting that 

they should display LEXICAL PROPENSITIES—idiosyncratic, gradient rates at which they trigger 

or undergo a process (cf. Moore-Cantwell & Pater 2016, Zuraw 2016, Smolensky & Goldrick 

2016, Zuraw & Hayes 2017). If it turns out that individual morphemes display such propensities, 

and that speakers have knowledge of these propensities, then that would have significant 

ramifications for theories of morphophonological representation and learning. It would favor 

theories that are capable of encoding a morpheme’s status on an entire spectrum, and would 
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suggest that learners are capable of tracking morpheme-specific rates of allomorphy—a problem 

in the field yet to be fully addressed (cf. Moore-Cantwell & Pater 2016, Smolensky & Goldrick 

2016). Moreover, it would validate theories that allow encoding on a morpheme-by-morpheme 

basis, and suggests that variation cannot be explained by referring to idiosyncrasies of stored 

larger constituents alone (cf. Zuraw 2000, 2010; Bybee 2001, 2002). In this investigation, I argue 

that individual morphemes can display differing propensities to participate in a variable process, 

and that learners internalize these propensities. These propensities can be associated with both 

triggering and undergoing morphemes. The evidence for these claims comes from a series of 

corpus investigations into variable Slovenian palatalization and French liaison, and a nonce 

probe investigation into the intuitions of native French speakers.  

 Consider the case of variation in French liaison. Smolensky & Goldrick (2016) raise the 

question of whether lexical propensities are associated with this variable process, in which a 

consonant spelled at the end of a given word (Word1) is pronounced only if the following word 

(Word2) is vocoid-initial, as in the data below. While très, ‘very’ appears to undergo liaison 

categorically before vocoid-initial words, plus,  ‘more’ undergoes the process optionally before 

vocoid-initial words — it cannot be categorized categorically liaising or non-liaising. 

(1a) très beau, [trɛ bo]   (1b) plus beau, [ply bo]  
 ‘very beautiful’    ‘more beautiful’ 
 
 très intelligent, [trɛ z ɛ̃tɛliʒɑ]̃   plus intelligent, [ply z ɛ̃tɛliʒɑ]̃ ~[ply ɛ̃tɛliʒɑ]̃  
 ‘very intelligent’    ‘more intelligent’ 
 
 An investigation into French liaison obtains the following: in a corpus of spoken French, 

individual words display differing propensities to undergo liaison, and a model of the data is 

improved if Word1 identity is encoded, even after factors previously found to affect liaison are 

controlled for. The corpus data come from the Phonologie du Français Contemporain (Durand, 
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Laks & Lyche 2002, 2009; Durand & Lyche 2008), a database of spoken French containing 

around 54,000 Word1-Word2 pairs. A histogram of Word1s occurring 100 or more times in the 

corpus reveals that though most of them are clear liaisers and non-liaisers, a healthy minority of 

Word1’s undergo liaison at medial rates. 

 

 

Figure 1: Histogram showing number of common Word1’s with a particular liaison rate 

 

 Moreover, a nonce probe investigation into French speakers’ intuitions suggests that 

French learners internalize the liaison propensities of different Word1s. Prior corpus studies and 

my PFC corpus study of French liaison give different rates for the adverbs très (‘very’, 97%, 

Mallet 2008), plus (‘more’, 64%, Mallet 2008), bien (‘very’, 43%, Mallet 2008), moins (‘less’, 

26%, my PFC study) and pas (‘not’, 1%, Mallet 2008). In a nonce probe study, native speakers 

of French were presented with très, plus, bien, moins, and pas followed by nonce vowel-initial 

adjectives (e.g., “très arvant”, “bien agrivieux”) and were asked whether they preferred the 

liaised or non-liaised form. Overall, participants replicated the distinctions found in corpora. 
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These findings support theories that endow individual morphemes with gradient parameters, and 

theories that permit encoding on individual morphemes rather than exclusively on larger 

constituents, whole domains, or groups of morphemes.  

 In light of the fine-grained, quantitative nature of phonological variation, the dissertation 

turns to an investigation into theories that predict the existence of lexical propensities. These 

models aim to capture: the language learner’s behavior in nonce probe studies to frequency 

match to statistical generalizations found across the lexicon; the idiosyncratic behavior of 

individual attested morphemes to abide by or deviate from these generalizations. A recent model 

for learning a frequency-matching grammar together with lexical propensities based in 

Maximum Entropy Harmonic Grammar (MaxEnt) makes use of general constraints that 

putatively capture statistical generalizations across the lexicon, as well as lexical constraints 

governing the behavior of individual words (e.g., Moore-Cantwell & Pater 2016, Zuraw & Hayes 

2017, Tanaka 2017). MaxEnt treats general constraints and lexical constraints as equally viable 

explanatory variables for learning the dataset and its patterns. A series of learning simulations 

reveals that the approach fails to learn general, grammatical trends for this very reason, as it runs 

into a GRAMMAR-LEXICON BALANCING PROBLEM: lexical constraints are so powerful in 

explaining the dataset that that the learner comes to acquire the behavior of each form using only 

these constraints, at which point the general constraint is rendered ineffective. A GENERALITY 

BIAS is therefore attributed to learners, whereby they privilege general constraints over lexical 

constraints. It is argued that MaxEnt—essentially an simple logistic regression model—fails to 

represent this property, and that it be replaced with a mixed-effects logistic regression model, 

MIXED-EFFECTS MAXIMUM ENTROPY HARMONIC GRAMMAR, which is shown to succeed in 

learning both grammatical and item-specific behavior by encoding general constraints as fixed 
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effects and lexical constraints as a random effect. The learner treats the grammar and lexicon 

differently, in that granular effects of the vocabulary are subordinated in the learning process to 

broad effects in the grammar. Mixed models are used widely in linguistics experiments and 

across scientific fields, and have proven to be highly effective in modeling datasets displaying 

variation both within morphophonology and other fields of linguistics. Here I present an 

argument that adopting the mixed-effects logistic regression model as a theory of the language 

learner is a crucial step toward capturing the capabilities of language learners. 

 

1.1. Structure of the dissertation 

 This dissertation is structured as follows. Chapter 2 presents a literature review of major 

investigations into variation and lexical propensities, and models of how they are learned and 

represented in the linguistic system. It highlights a series of experiments that suggest that 

language learners frequency match to quantitative trends across the lexicon. Chapter 3 presents 

an investigation into Slovenian palatalization, showing that suffixes display distinct lexical 

propensities to trigger palatalization while stems display distinct propensities to undergo it, even 

after taking into account phonological factors previously found to condition the variation. 

Chapter 4 presents the corpus investigation into French liaison, also showing that individual 

Word1s display distinct lexical propensities to undergo liaison, even after a host of other factors 

previously found to condition the variation are taken into account. Chapter 5 presents a series of 

nonce probe studies into the intuitions of French speakers, with results suggesting that speakers 

internalize word-specific contrasts observed in corpus investigations into French liaison. Chapter 

6 compares models for learning a frequency-matching grammar together with lexical 

propensities. Though models couched in Maximum Entropy Harmonic Grammar are 
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characterized by overfitting lexical constraints to the data, the mixed-effects logistic regression 

model—which incorporates a generality bias by privileging general constraints over lexical 

constraints—surmounts the overfitting problem, succeeding to learn a frequency-matching 

grammar together with lexical propensities. Chapter 7 presents a series of previous investigations 

into an apparent learner bias to generalize constraints across morphosyntactic domains—some of 

which implicate the bias hypothesis, and others of which contradict it. I add another case 

suggesting that learners can acquire a highly morphosyntactically specific process: a backness 

dissimilation alternation in Malagasy that lacks a counterpart generalization in phonotactics. The 

section closes by raising a set of questions concerning how generality bias should be represented 

most broadly in the system, such that it can accommodate learner generalization while sustaining 

specificity at various levels of structure, whether it be morphemes, domains, or grammatical 

categories.  
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Chapter 2:  
 

Literature review:  
lexical idiosyncrasies and aggregate 

generalizations in phonological variation 
 
 

 The enterprise of incorporating variability into phonological theory dates back at least as 

far as Chomsky & Halle (1968), who used minor rules and exception features to capture 

variation across words. Variation received considerable attention within sociolinguistic research 

in generative phonology (Labov 1973, 1989, 1994, 2001; Wolfram 1969; Cedergren & Sankoff 

1974; Trudgill 1974; Guy 1980, 1991, 1997; et seq), but beyond seemingly only a handful of 

well-known works dating before the nineties (e.g., Chomsky & Halle 1968; Kenstowicz & 

Kisseberth 1977; Zonneveld 1978), variation has only received substantial attention from 

phonological theorists in the past twenty or so years (Anttila 1997, Boersma 1997, Boersma & 

Hayes 2001, Pater 2000, Zuraw 2000, Hayes & Londe 2006, Becker 2009, Coetzee & Kawahara 

2013, inter alia).  

 To set up the discussion on lexical propensities, this chapter provides a brief survey of a 

few of the leading works on phonological variation. We begin with empirical background on 

variable secondary stress in English, as well as Pater (2000)’s classic treatment of the 

phenomenon using lexically specific constraints in Optimality Theory. I then review a series of 

prior corpus and experimental investigations that reveal language learners’ ability to frequency 

match to aggregate trends in the lexicon. I review Zuraw (2000)’s frequency-matching model, 
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which learns and represents both idiosyncratic pronunciations of individual words as well as 

aggregate trends across the lexicon. Finally, I review a more recent set of works suggesting that 

individual words or morphemes can display idiosyncratic lexical propensities to participate in a 

variable process. I follow up with a discussion of the current state of models for the learning and 

representation of these propensities. 

 

2.1 Pater (2000): lexical variation in English secondary stress, and 
an early OT account 
 
 Pater (2000) addresses within Optimality Theory (Prince & Smolensky 1993/2004) a 

classic case of lexical variation, the assignment of English secondary stress. The following data 

illustrate the puzzle: 

 (2a) infórm  ìnformátion 
 (2b) impórt  ìmpòrtátion 
 
Pater’s approach to these data is to say that secondary stress on the second syllable is an 

idiosyncratic property of certain words (e.g., ìmpòrtátion). This arbitrariness is represented in the 

grammar using lexically indexed constraints, which target only a subset of the lexicon. 

 Primary stress occurs consistently on the rightmost nonfinal syllable, which Pater 

accounts for using constraints aligning heads to the right of the prosodic word as well as 

constraints against non-finality. Initial secondary stress also occurs consistently, accounted for 

by constraints that require non-final bimoraic syllables to be parsed into feet. The central 

challenge is accounting for lexical variation in the occurrence of pretonic secondary stress, in 

which stress is present in (2a) but absent in (2b). In a first pass, Pater posits the following 

constraints (definition in (3b) modified for purposes of readability; cf. Pater (2000), p. 252-254 

for further discussion):  



 9 

 

 (3a) CLASH-HEAD:  no stressed syllable can flank the head syllable of a   
     prosodic word. 
 
 (3b) IDENT-OO(stress):  if a syllable in base form x is stressed, then the   
     corresponding syllable in the derived form f(x) is stressed. 
 
CLASH-HEAD prefers destressing of the pretonic syllable to avoid clash, while IDENT-OO(stress) 

prefers stress preservation in (2a-b), as their base forms infórm and impórt have stress on the 

second syllable. Ranking CLASH-HEAD above IDENT-OO(stress) accounts for pretonic 

stresslessness in ìnformátion (see below), but fails to predict preservation in ìmpòrtátion. Pater 

thus posits the lexically-specific faithfulness constraint IDENT-OO(stress)-S, a version of IDENT-

OO(stress) that only targets words belonging to some set S. By specifying that the underlying 

form importation, but not information, is included in S, their two surface forms can be accounted 

for as follows: 

 

information 
base form: infórm IDENT-OO(stress)-S CLASH-HEAD IDENT-OO(stress) 

[ìn][fòr][má]tion  *!  
 → [ìnfor][má]tion   * 

importation-S 
base form: impórt IDENT-OO(stress)-S CLASH-HEAD IDENT-OO(stress) 

 → [ìm][pòr][tá]tion  *  
 [ìmpor][tá]tion *!  * 

 
Table 1: tableaux with lexically specific constraints (adapted from Pater 2000, p. 259) 

 
 
High-ranked IDENT-OO(stress)-S targets only *ìmportátion, since its underlying form is 

specified as belonging to S—thus, stress is preserved so that ìmpòrtátion surfaces. Otherwise, 

ìnformátion is simply the result of constraints on stress clash and faithfulness. Lexically variable 

alternation is thus represented as the conflict between lexically-specific constraints, or 
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constraints that target subsets of lexemes, and constraints motivated independently by the rest of 

the grammar. 

 

2.2 Frequency matching in experimental investigations into 
phonological variation 
 
Just what do speakers internalize when they internalize a system of phonological variation? A 

number of experiments dating from the early 2000’s suggest that when speakers learn such a 

system, they acquire not only the idiosyncratic pronunciations of each form (and, in particular, 

whether or not any given form will idiosyncratically alternate), but also frequency match to 

aggregate trends across the lexicon (Frisch, Broe, & Pierrehumbert 1996; Coleman & 

Pierrehumbert 1997; Eddington 1998, 2004; Berkley 2000; Zuraw 2000, 2010; Bailey & Hahn 

2001; Frisch & Zawaydeh 2001; Pierrehumbert 2002; Albright 2002; Albright & Hayes 2003; 

Ernestus & Baayen 2003; Hayes & Londe 2006; et seq). In particular, a number of experiments 

reveal that when speakers of a language with variation are tested on novel items eligible to 

undergo the variable process, their responses match lexical frequencies in the aggregate. We 

review a few case studies below, as well as approaches to modeling knowledge of lexical trends 

together with knowledge of lexical idiosyncrasy. 

 

2.2.1 Zuraw (2000, 2010): knowledge of lexical idiosyncrasy and 
lexical trends in Tagalog 
 
Zuraw (2000, 2010) presents a case study of frequency matching by Tagalog speakers to 

quantitative trends in the lexicon, and proposes a model that jointly represents listed information 

together with lexical trends. The central case study is variable nasal assimilation and nasal 

substitution in Tagalog. When a set of prefixes attach to stems with initial segments which lack 
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place, they surface as paŋ-, maŋ-, and naŋ- (e.g. hukbo ‘army’, paŋ-hukbo ‘military’); but when 

the initial segment has place, the prefix-final nasals either assimilate in place or the nasal and the 

subsequent segment fuse into a nasal whose place is identical to that of the segment. Data 

showing variation of outcome are provided below. 

(4) b: mag-bigaj, ‘to give’  ma-migaj, ‘to distribute’  Substitution 
  bigkas, ‘to pronounce’ mam-bi-bigkas, ‘reciter’  Assimilation 
 
 d: dalaːŋin, ‘prayer’  ʔi-pa-nalaʔin, ‘to pray’  Substitution 
  dinig, ‘audible’  pan-dinig, ‘sense of hearing’  Assimilation 
 
 g: gindaj, ‘unsteadiness on feet’ pa-ŋi-ŋindaj, ‘unsteadiness on feet’ Substitution 
  gaːwaj, ‘witchcraft’  maŋ-ga-gaːwaj, ‘witch’  Assimilation 
 
Note that forms like [mam-bi-bigkas] and [pa-ŋi-ŋinday] have a reduplicative morpheme; if the 

form undergoes substitution, then both the first segment of the reduplicative morpheme and the 

stem-initial segment are substituted.  

 Zuraw gathered a set of 1,736 words that had an obstruent-initial stem and 

substituting/assimilating prefixes, obtaining two trends: first, substitution is most likely with a 

front obstruent (p and b) and least likely with a back obstruent (k and g); second, substitution is 

more likely when the obstruent is voiceless rather than voiced. The bar chart below shows affix 

behavior of the two most common affixes, paŋ- and maŋ-, when they come before different 

stem-initial obstruents. The bars show both the place trend and the voicing trend. Zuraw 

performed a contingency table analysis, finding that both place of articulation and voicing were 

significant predictors of substitutability.  

 



 12 

 

Figure 2: trends in Tagalog nasal substitution (Zuraw 2000, p. 23) 
 
 

 Zuraw raises the question of whether speakers internalize these trends. She notes that, 

despite these trends, the behavior of individual words is unpredictable, and moreover even the 

behavior of derivatives of the same stem is unpredictable. She gives the following examples 

demonstrating the latter: 

(5) bigaj, ‘gift’  
 pam-bigaj, ‘gifts to be distributed’  
 pa-mi-migaj, ‘act of giving away’  
 maː-mi-migaj, ‘distributor’  
 ma-migaj, ‘to distribute (actor focus)’  
 
 bugbog, ‘wallop’  
 pa-mugbog, ‘wooden club used to pound clothes during washing’  
 pam-bu-bugbog, ‘act of clubbing or pounding; assault’  
 mam-bugbog, ‘to wallop’  
 
 bulos, ‘harpoon’  
 pa-mulos ‘harpoon’  
 mam-bu-bulos ‘harpooner’  
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 buʔoʔ, ‘whole’  
 pam-buʔoʔ, ‘something used to produce a whole’  
 pa-mu-muʔoʔ, ‘becoming whole; coagulation’  
 ma-muʔoʔ, ‘to solidify; to clot’  
 
In light of the above, it could very well be that speakers simply list each construction in the 

lexicon, without internalizing nasal substitution, or any kind of lexical trend associated 

therewith. 

 Hence she administered a nonce probe study to nine native speakers of Tagalog, testing 

for the following: (i) whether speakers internalized nasal substitution; (ii) whether speakers 

internalized the lexical trends within nasal substitution. In the acceptability task of her study, for 

example, Zuraw designed a set of sentences probing at whether speakers internalized these facts 

for maŋ-REDCV-STEM constructions—where maŋ- is a prefix that forms professional or habitual 

nouns (as in the English suffx –er). Speakers were presented with a series of sentence pairs. In 

both sentences, the speaker is first presented with a pag-REDCV-STEM construction, followed by a 

maŋ-REDCV-STEM construction, where the stem is novel. One sentence in the pair displays nasal 

substitution to the latter, while the other sentence displays only assimilation. Speakers were 

asked to rate each sentence of each pair on a scale from 1 (bad) to 10 (good). 

 The participants’ results mimicked the lexical frequencies found in her corpus, as 

illustrated in the table below (note that in the table below the y-axis is the difference between the 

acceptability scores for a stem substituted and the same stem unsubstituted—positive values 

mean that substituted was rated higher than unsubstituted, and lower values mean that substituted 

was rated lower than unsubstituted). Overall, speakers rated nasal substitution as a broadly 

applicable process to obstruent-initial nonce words, in that none of the acceptability scores 

approached -5. Furthermore, on average, speakers replicated the lexical trends observed in the 

corpus data on nasal substitution: they rated substitution of voiced obstruents as more acceptable 



 14 

than assimilation before them; and they generally rated the substitution of more front obstruents 

as more acceptable than that of more back obstruents (except for p, which was associated with 

lower acceptability ratings relative to coronals).  

 

   
 

Figure 3: acceptability rating differences across nine Tagalog speakers (Zuraw 2000, p. 43) 
 
 
 The grammar proposed aims to capture two both the idiosyncratic behavior of attested 

words together with the broad applicability of nasal substitution and the trends displayed across 

the lexicon—both the voicing effect and place effect. The approach reviewed below is adapted 

from Zuraw (2010), which is based upon the Zuraw (2000) dissertation. The grammar and the 

vocabulary are accounted for in Optimality-Theoretic system with stochastic constraint ranking 

(Hayes & MacEachern 1998, Boersma 1997, Boersma & Hayes 2001, Hayes 2000, among 

others). Zuraw notes a potential three-way distinction that must be captured: words lexicalized as 

undergoing nasal substitution (e.g., ma-ma-mahalaʔ, ‘responsibility’, with 81 tokens in her 

corpus, related to bahalaʔ, ‘manager’); words lexicalized as not undergoing nasal substitution 

(e.g., mam-babasa, ‘reader’, with 725 tokens in her corpus, related to basa, ‘reading’); and 
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words whose behavior is not lexicalized. The behavior of idiosyncratic, lexicalized words must 

be protected by lexical information, and not be subject to the broader grammar. Thus a certain set 

of whole words which behave idiosyncratically—that is, various {ma[+nas], 

pa[+nas]}(+REDCV)+STEM constructions (Zuraw assumes the triggering suffixes have final nasal 

features in her 2010 paper, rather than ŋ)—are stored in the lexicon, with IO-FAITH and OO-

FAITH governing their behavior. For example, [ma-migaj], ‘to distribute’, which originated from 

ma[+nas]- and the stem bigaj, is therefore stored as /mamigaj/, and is captured as in the table 

below. IO-FAITH ranks above OO-FAITH, such that stored /mamigaj/ surfaces faithfully, rather 

than as a form with nasal assimilation, which is faithful to the base of the related form 

[mag+bigaj], ‘to give’. 

 

/mamigaj/ 
related to [mag+bigaj] IO-FAITH OO-FAITH 

→ mamigaj  * 
mambigaj *!  

 
Table 2a: IO-FAITH trumps in OO-FAITH determining the output of stored constructions  

with substitution (Zuraw 2010, p. 444) 
 

On the other hand, the word [mam1b2abasa] is lexicalized as undergoing assimilation rather than 

substitution, and thus is stored as /mam1b2abasa/. High-ranking MAX-IO protects against 

deletion of the obstruent, while UNIFORMITY-IO protects against the fusing of m1 and b2; low-

ranking NOCODA, militating against codas, is violated, such that /mam1b2abasa/ surfaces 

faithfully. 
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/mam1b2abasa/ MAX-IO UNIFORMITY-IO NOCODA 
→ mam1b2abasa   * 

mam1abasa *!   
mam1,2abasa  *!  

 
Table 2b: High-ranking IO-FAITH trumps in NOCODA in determining the output of stored 

constructions with assimilation (Zuraw 2010, p. 445) 
 

Words with behaviors not yet established are not stored, and so IO-FAITH constraints are 

irrelevant. *ASSOCIATE, a constraint violated when the prefix-final nasal feature associating to 

the subsequent obstruent, militates against nasal substitution, and is therefore ranked variably 

with DEP-C, which is violated by forms displaying assimilation, where a full nasal segment is 

spelled out in the prefix. The two constraints, variably ranked, result in variable surfacing of 

substitution and assimilation in forms which are not yet stored, as in the table below: 

 

/ma[+nas]1+b2log/ *ASSOCIATE DEP-C 
→ ma-m1,2log *  

 → mam1-b2log  * 
 

Table 2c: variable ranking of *ASSOCIATE and DEP-C resulting in variable substitution and 
assimilation in forms not yet stored (adapted from Zuraw 2010, p. 445) 

 

High-ranking faithfulness constraints preserve lexical information, while the constraints 

determining the behavior of unstored forms are lower-ranked. To capture the voicing effect, 

Zuraw posits *NC̻, ranked variably with *ASSOCIATE to generate higher likelihood of 

substitution to forms with stem-initial voiced obstruents. To capture the place effect, Zuraw 

posits *[ŋ, *[n, and *[m, also variably ranked. In Optimality Theory with stochastic constraint 

ranking, constraints are assigned ranking values on a continuous scale. Via the Gradual Learning 

Algorithm (Boersma 1997), her system learns from whole, listed words the ranking values for 
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these constraints in such a way that *[ŋ has a stronger effect in the grammar than *[n, which in 

turn has a stronger effect than *[m, in preventing substitution from applying to unstored forms. 

This derives higher rates of substitution before labials, medial rates before coronals, and lower 

rates before velars. The system also learns a modestly high ranking value for *NC̻—higher than 

that of *ASSOCIATE—ensures that unstored forms with stems with initial voiceless obstruents 

undergo substitution more readily than forms with stems with initial voiced obstruents. Finally, 

the system also learns a very high ranking value for INTEGRITY-IO and UNIFORMITY-IO, thereby 

deriving idiosyncrasies in individual words—that is, it learns whether some word is stored as 

having undergone substitution or not. The figure below shows that the learner applies nasal 

substitution variably, and acquires the lexical trends associated therewith, having learned from 

the sample of stored forms. 

 

        

Figure 4: variable nasal substitution and the voicing and place effects 
learned from stored forms (Zuraw 2010, p. 450) 
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 Zuraw’s model thus captures the dualism of Tagalog speakers’ knowledge of 

phonological variability: both the idiosyncrasy of stored whole words, as well as the 

phonological trends observed in the aggregate, across the entire lexicon. High-ranking 

faithfulness constraints together with USELISTED ensure that lexical information is protected, 

whereas the lower-ranking constraints—applicable only when the learner encounters an unstored 

form—and their relative rankings derive the variable tendency towards substitution as well as the 

voicing and place effects. For another approach to modeling of idiosyncrasy together with lexical 

trend occurring around this time, see Becker (2009), on a model of lexical variation and trends in 

Turkish voicing alternations that builds on Pater (2000, 2007)’s concept of constraint cloning. 

 Before moving forward, I note that Zuraw’s (2000, 2010) model does not overcome the 

general problem of how to model learning of a frequency-matching grammar together with 

lexical idiosyncrasy. As we will see in Chapters 3, 4, and 5, individual morphemes can vary 

across a propensity spectrum to undergo a phonological process, rather than stored whole forms. 

Moreover, more recent works (Zuraw & Hayes 2017, Smith & Pater 2017) have found that 

stochastic OT captures only a proper subset of paradigms displaying variation relative to 

probabilistic Harmonic Grammar, which is based in weighted constraints. Hence a central task of 

the dissertation (in particular, Chapter 6) is to find a model that learns a frequency-matching 

grammar in the face of lexical idiosyncrasy down to the level of morpheme in a more 

encompassing, constraint weight-based framework. 

 

2.2.2 Other investigations into frequency matching to lexical trends  
 
Ernestus & Baayen (2003) present a simple case of frequency matching by speakers to 

alternation trends observed in the Dutch lexicon. The language features contrastive obstruent 
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voicing word-internally as well word-final obstruent devoicing. For example, the two infinitives 

verwijden [vɛrʋɛidən] ‘widen’-INF and verwijten [vɛrʋɛitən] ‘reproach’-INF form a minimal pair 

that establishes the voicing contrast, while the suffixless forms verwijd [vɛrʋɛit] ‘widen’ and 

verwijt [vɛrʋɛit] ‘reproach’ reveal word-final voicing neutralization. Interestingly, the lexicon 

displays a tendency that relates the likelihood of a voiced word-internal obstruent to its place and 

manner. In particular, as the table below illustrates, Ernestus & Baayen’s study of the CELEX 

corpus uncovers that stops are less likely to be voiced relative to fricatives, and fronter obstruents 

are less likely to be voiced relative to backer obstruents. Moreover, they find that when speakers 

are presented with a novel form with a word-final voiceless obstruent, speakers’ judgments about 

whether the same form coming before a vowel-initial suffix should have a voiced obstruent 

match fairly closely with the frequencies given in the lexicon. 

 

Obstruent #voiced/total in lexicon %voiced in lexicon  %voiced in experiment 
p/b    20/230     9%     4% 
t/d  177/719   25%     9% 
f/v  151/451   33%   23% 
s/z  116/166   70%   49% 
x/ɣ  127/131   97%   80% 
 

Table 3: CELEX statistics for intervocalic obstruent voicing 

 
The findings suggest that Dutch speakers not only possess knowledge about which words in their 

lexicon feature a voiced obstruent word-internally, but knowledge about the broad trends across 

the lexicon illustrated above. The investigators present a series of models, one being an 

analogical model and another being based in stochastic OT, all of which succeed in capturing the 

data. 
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 Hayes & Londe (2006) further uncover that Hungarian speakers frequency match to 

lexical trends in vowel harmony. The investigators show that, in a large corpus of data on 

Hungarian vowel harmony compiled by querying Google (see Hayes & Londe 2006 for 

specifics), whether a back vowel in the stem triggers backness harmony on the dative suffix 

vowel –nɛk depends on the height and number of intervening neutral vowels, with higher neutral 

vowels correlated with higher application rates and more neutral vowels correlated with lower 

application rates. The examples below illustrate the two trends; Figure 5 gives proportions in the 

corpus. 

  UR   Dative form  Gloss    
 
  Intervening i, iː 
(6a)  /ɔpoʃtoli+nɛk/   [ɔpostoli-nɔk]  ‘apostolic’ 
  /buli+nɛk/  [buli-nɔk]  ‘party’  
  /maːrtiːr+nɛk/  [maːrtiːr-nɔk]  ‘martyr’ 
 
  Intervening eː 
(6b)  /fɔseːn+nɛk/   [fɔseːn-nɛk]  ‘charcoal’ 
  /ɔdɔleːk+nɛk/  [ɔdɔleːk-nɔk]  ‘datum’ 
  /gɔlleːr+nɛk/  [gɔlleːr-nɔk]  ‘collar’ 
 
  Intervening ɛ 
(6c)  /komponɛns+nɛk/ [komponɛns-nɛk] ‘component’ 
  /hɔmburgɛr+nɛk/ [hɔmburgɛr-nɛk] ‘hamburger’ 
  /krɔpɛk+nɛk/  [krɔpɛk-nɔk]  ‘dude’ 
 
   
  UR   Dative form  Gloss    
 
  Zero neutral vowels 
(7a)  /ɔblɔk+nɛk/  [ɔblɔk-nɔk]  ‘window’ 
  /biroː+nɛk/  [biroː-nɔk]  ‘judge’ 
  /kommunizmus+nɛk/ [kommunizmus-nɔk] ‘Communism’ 
 
 
  One neutral vowel 
(7b)  /fɔseːn+nɛk/   [fɔseːn-nɛk]  ‘charcoal’ 
  /ɔpoʃtoli+nɛk/  [ɔpostoli-nɔk]  ‘apostolic’ 
  /maːrtiːr+nɛk/  [maːrtiːr-nɔk]  ‘martyr’ 
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  Two neutral vowels 
(7c)  /doktrineːr+nɛk/ [doktrineːr-nɛk] ‘doctrinaire’ 
  /kɔlibeːr+nɛk/  [kɔlibeːr-nɛk]  ‘caliber’ 
  /boriːteːk+nɛk/  [boriːteːk-nɔk]  ‘envelope’ 
 
 
The investigators furnish evidence that the count and height effects present in Hungarian vowel 

harmony are phonologically productive. When speakers were presented with novel stems in a 

written two-alternative forced choice task, in accumulation they replicated both effects: 

application of harmony to –nɛk depended on how distant the triggering back vowel was from the 

suffix, and on the height of the stem-final vowel. In particular, speakers matched to a significant 

extent the rates found in the corpus, as illustrated in Figure 5 below.  

 

 

Figure 5: frequency matching in wug test (B = back vowel; N = neutral vowel belonging to  
[i eː ɛ]; F = front rounded vowel) (Hayes, Zuraw et al. 2009, p. 832) 

 

The results suggest that Hungarian speakers are frequency matching to lexical trends in vowel 

harmony, and thus that these gradient effects need to be treated in the model of phonology. 

 Before moving forward, I mention here that not all experiments in the field have fully 

yielded the frequency matching result (Becker, Ketrez & Nevins 2011, Becker, Nevins & Levine 
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2012, Hayes, Zuraw et al. 2009, Hayes & White 2013, Jarosz 2017, Jarosz & Rysling 2017). In 

particular, Becker, Ketrez & Nevins (2011) found that while some regularities in subset of the 

Turkish lexicon displaying laryngeal alternations are productively extended in their nonce probe 

study, not all of them are. They attribute the incomplete learning of the lexicon to a deviation 

from frequency matching guided by Universal Grammar: though the phonologically well-

motivated generalizations were productively extended by speakers, those presumed to be 

accidental generalizations within the lexicon were not. Moreover, Becker, Nevins & Levine 

(2012) found that while a laryngeal alternation in the English plural (leaf ~ leaves) applies more 

regularly to attested monosyllables in the language than polysyllables, a wug test reveals no such 

preference (at least between monosyllables and disyllabic iambs, where final stress is held 

constant), while a series of artificial language learning studies of English speakers uncovers a 

universal bias towards protecting initial syllables. The results of the artificial language learning 

studies in particular suggest the presence of an initial syllable faithfulness bias in universal 

grammar, which thereby gives an explanation to the wug test results: frequency matching is 

inhibited in a case where the generalization runs counter to a universal bias. More generally, 

while frequency matching seems to be a general capability of language learners, these studies 

suggest that phonological generalizations running counter to formal or naturalness biases in 

learning occasionally go unlearned, or are learned relatively poorly.  

 
 
2.3 Token variation and lexical propensities 
 
 Zuraw (2009) covers a case of variation in Tagalog in which a tapping rule exhibits not 

only lexical variation, but token variation too. Consider the data below: 
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 Tapping: d � ɾ / V__V 
 
 (8a) Categorical application 
 
  [dunoŋ], ‘knowledge’   [ma-ɾunoŋ], ‘intelligent’ 
  [dinig], ‘heard’  [ma-ɾinig], ‘to hear’ 
  [dupok]   [ma-ɾupok], ‘fragile’ 
 
 (8b) Categorical non-application 
 
  [daɁig], ‘beaten’   [ma-daɁig], ‘beaten’ 
  [dulas], ‘slipperiness’?  [ma-dulas], ‘slippery’ 
  [daɁan] ‘road’   [ma-daɁan-an], ‘passable’ 
 
 (8c) Token variation 
 
  [duŋis], ‘dirt on face’  [ma-ɾuŋis ~ ma-duŋis], ‘dirty (face)’ 
  [dumi], ‘dirt’   [ma-ɾumi ~ ma-dumi], ‘dirty’ 
 
While tapping displays lexical variation across forms in (8a-b), it applies stochastically even 

across tokens of the same word in (8c). Zuraw (2009) plotted in a histogram counts of the 

different rates of the words in her corpus. The counts of application rates across words exhibit a 

U-shaped distribution: the great majority of words fall towards the poles (around 2,500 words 

that never tap, and 2,000 that always tap), but in fact over 400 words tap with rates between 2% 

and 98%. The following histogram excludes the ends of the scale: 
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Figure 6: histogram of medial tapping rates (Zuraw 2013, p. 9) 
 

 
If it were the case that token variation is encoded in the grammar as a rule applying at a fixed 

rate across words in the lexicon, then one might expect the distribution of tapping rates to 

resemble roughly a tall and thin bell curve, its mean centered around the fixed rate. For instance, 

if the rate of token variation were in proportion with the counts at the poles—2,500 untapped 

words and 2,000 tapped words—then one might expect the bell curve to be closely confined to 

and centered at a rate of 100*(2/4.5) = 45%. In fact, what is observed above is that words display 

lexical propensities: idiosyncratic rates that range fully between ends of the scale. 

 More recent research has likewise uncovered lexical propensities to participate in a 

phonological process. Linzen, Kasyanenko & Gouskova (2013), Gouskova & Linzen (2015) 

show that, in Russian prepositions showing a vowel-zero alternation, the identity of the root 

following preposition conditions the rate of application (and, even further, that some suffixes, 

when coming after these roots, regularize application rate—see Gouskova & Linzen 2015 in 

particular). Smith & Moore-Cantwell (2017) likewise find that in the English comparative 

paradigm, both phonological factors and the identity of the adjective play a part in determining 

whether that adjective takes –er as a suffix versus more in a paraphrastic construction (see 
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Section 2.3.1 below). Rosen (2016) shows that, in Japanese noun-noun compounds displaying 

variable rendaku, the identities of individual roots seem to influence the rate at which the process 

applies. In particular, both the identity of the first noun in the compound as well as that of the 

second play a part in determining the rate at which the compound as a whole undergoes the 

process (see also Rosen 2001, Irwin 2016). Tanaka (2017) similarly finds that the second root in 

compound surnames in Japanese influences the likelihood of rendaku in these names, in addition 

to phonological factors; moreover, the compound name as a whole can behave idiosyncratically, 

even after taking into consideration the phonological factors and the identity of the second root 

in such names.  

 Previous research into the modeling and learning of variation has focused on how 

speakers might come to learn lexical variation, in which a process applies stochastically across 

words, but categorically across tokens of the same word. But as the distribution shown above in 

Figures 6 suggests, the use of traditional phonological diacritics like [+Rule X] and [-Rule X], 

and their updated versions in OT, conceal large-scale stochastic systems in which individual 

morphemes are coded for specific levels on continuous probabilistic scales of propensity to 

trigger or undergo processes. The fact that these optionally tapped words in fact distribute across 

a spectrum to tap raises important questions: Do speakers have knowledge of idiosyncratic rates 

across morphemes? Provided they do, how is such knowledge acquired and represented? 

 

2.3.1 Modeling lexical propensities and trends in Maximum Entropy 
Harmonic Grammar   
 
 Though the first question remains open, Moore-Cantwell & Pater (2016) make strides in 

answering the second, and in particular address how token fixedness and variation can be 

represented in phonological theory. Though current models of gradient productivity in language 
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such as Maximum Entropy Grammar capture frequency matching in nonce word experiments, 

Moore-Cantwell and Pater observe that they fail to capture the fixed pronunciations of existing 

words in a language. Their MaxEnt-based approach captures fixed pronunciations in the lexicon 

but variable behavior and trend-matching in wug tests by including in the grammar lexically 

specific constraints along with analogous general constraints. This approach predicts an inverse 

correlation between the number of exceptions and the degree of productivity, which is borne in 

productivity studies and tendencies to regularization (Peperkamp et al 2010). 

 Suppose it were the case that English applied penultimate stress to half of its words, and 

antepenultimate stress otherwise. The authors first consider a MaxEnt approach to this pattern 

that lacks lexically specific constraints. Consider the tableaux below: 

 

/bætækæ/ P H ALIGN-R 
w = 2 

NONFIN 
w = 2 

bə(ˈtækə) 50% -2  -1 
(ˈbætə)kə 50% -2 -1  

 
Table 4a: Variable stress without lexical specificity (Moore-Cantwell & Pater, p. 56) 

 
 

This model predicts that all like words share the same rate of penultimate stress. /bætækæ/ is 

essentially in free variation, with penultimate stress surfacing half the time and antepenultimate 

stress surfacing otherwise. In reality, though the lexicon as a whole displays variation across 

words with respect to stress location, words like banána and Cánada are fixed with respect to 

stress location. Thus the model below is a more accurate characterization, in which words are 

moderated by lexically specific constraints that mirror general constraints on stress: 

 

 



 27 

 P H ALIGN-R-banana 
w = 5 

NONFIN-Canada 
w = 5 

ALIGN-R 
w = 2 

NONFIN 
w = 2 

bə(ˈnænə) 99% -2    -1 
(ˈbænə)kə 1% -7 -1  -1  
kə(ˈnædə) 1% -7  -1  -1 
(ˈkænə)də 99% -2   -1  

 
Table 4b: Variable stress with lexically specific constraints (Moore Cantwell & Pater, p. 57) 

 
 

Here stress in the above words is primarily determined by weighted lexically specific constraints, 

which can model individual idiosyncratic propensities of particular words. Nonetheless, general 

constraints still receive positive weight, fitting general tendency across the lexicon.  

 Given certain parameter settings of their MaxEnt model, their approach of using general 

constraints for trends and lexically indexed constraints for idiosyncrasies generally succeeds in 

capturing Ernestus & Baayen (2013)’s corpus data on variation in Dutch voicing alternations. 

The general constraints *VTV (forbidding intervocalic voiceless consonants) and *VDV 

(forbidding intervocalic voiced consonants) as well as *VbV, *VdV, *VfV, etc. were used to fit 

to overall lexical trends, while lexically specific versions of *VTV and *VDV were used to 

regulate idiosyncratic rates within words. Batch Gradient Descent was used to learn appropriate 

weights for these constraints. As the table below reveals, the learning simulation eventually 

arrived at weights for these constraints that predicted rates that, to a significant degree, mimic 

those observed in the lexicon and experiment—though they further note that their model predicts 

rates that are relatively exaggerated towards the poles. 
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Table 5: Moore-Cantwell & Pater (2016)’s modeling results (p. 60)  
when trained on Ernestus & Baayen (2013)’s corpus data 

 
 

 In sum, the general constraints cum lexically-indexed constraints approach has appeared 

to furnish a promising model of lexical trends and idiosyncrasy within MaxEnt. Moore-Cantwell 

and Pater themselves nevertheless note that changing the parameter settings, in particular those 

of the MaxEnt regularization term, can affect the outcome. Tanaka (2017), who also takes up 

Moore-Cantwell and Pater’s approach to model lexical variation in Japanese surnames, further 

finds that the approach overfits lexical constraints to his dataset without a sufficiently strong 

regularization bias—a concern that we will explore further in Chapter 6. For other recent 

approaches to lexical trends and gradient idiosyncrasy, see Rosen (2016) on a Gradient Symbolic 

Computation account of Japanese rendaku, and Linzen, Kasyanenko & Gouskova (2013), 

Gouskova & Linzen (2015) on an account of the variable vowel-zero alternation in Russian 

prepositions using lexical scaling factors. 

 Smith & Moore-Cantwell (2017) cover lexical trends and idiosyncrasy in the 

morphological/paraphrastic alternation in English comparatives, and propose a MaxEnt model 

that closely resembles Moore-Cantwell & Pater (2016)’s approach. In their data, adjectives can 

be modified with -er (happier) or more (more happy), depending on phonological, frequency-

related, and lexical factors.  They observe that individual adjectives are idiosyncratic in their 
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rates to take –er versus more—a striking example of lexical propensities. This is illustrated in the 

figure below: 

 

 

Figure 7: idiosyncratic propensities for adjectives to take –er in the Corpus of Contemporary 
American English (COCA: Davies 2008) (Smith & Moore-Cantwell 2017, p. 5) 

 
 

In a corpus study, they first compare the results of a fixed effects logistic regression model 

containing a variety of phonological and frequency-related factors to a mixed effects logistic 

regression model, which includes adjective identity as a random intercept—i.e., a coefficient for 

the identity of each adjective. They find that the latter obtains a much better fit to the corpus 

data—hence lexical identity appears to condition variation, even when other factors are 

controlled for (including frequency). The purpose of this comparison was to assess whether 

lexical idiosyncrasy plays a role in conditioning variation (but not to propose mixed-effects 

logistic regression as a new model of idiosyncrasy and trend knowledge, as far as I am aware). 

As for the modeling and the learning theory, they posit a MaxEnt-based model that uses UR 

constraints (see Pater, Staubs, Jesney & Smith 2012, Smith 2015) to represent lexical 
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idiosyncrasy, rather then lexically indexed constraints. UR constraints are situated within an 

online error-driven learner in which learning data are sampled according to lexical frequency, 

and UR constraints are induced only when needed, and decay when they are not used. The model 

predicts that high frequency lexical items are more likely to diverge from overall grammatical 

generalizations, reflecting findings that processing of novel expressions relies upon abstract 

knowledge, while reliance upon direct experience increases with increased exposure to an 

expression (Morgan & Levy 2016). 

 
 
2.4 Summary and prospectus 
 
We have seen that phonological processes can vary seemingly arbitrarily in whether or not they 

apply to individual words or morphemes. In addition to internalizing whether a variable process 

applies on a word-by-word basis, language learners can frequency match to trends observed over 

the entire lexicon, as has been observed and replicated repeatedly in nonce probe studies. Thus 

models of phonology and the lexicon must be able to learn and represent both lexical 

idiosyncrasy as well as gradient, probabilistic trends across the lexicon. A very recent spate of 

research finds that individual words or morphemes can even display distinct lexical 

propensities—idiosyncratic, gradient rates at which a word or morpheme participates in the 

variable process.  It is an open question how pervasive lexical propensities are in the world’s 

phonologies, and whether they are internalized by language learners. In the following sections, I 

take up these questions by investigating lexical variation in Slovenian palatalization and French 

liaison, building off of prior studies. It will be shown that models of the two processes are 

improved when factors encoding lexical propensities are included, even after controlling for 

other phonological and frequency-related factors (Chapters 3 and 4). Moreover, an experimental 
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investigation into the intuitions of French speakers suggests that they acquire these idiosyncratic 

propensities to undergo liaison (Chapter 5). Recent MaxEnt-based models of lexical variation 

appear to have promise in capturing of lexical propensities together with lexical trends, but 

recent investigators have found that they only succeed under particular parameter settings. This 

potential weakness is explored in Chapter 6: learning simulations reveal that the MaxEnt 

approach eventually overfits lexical constraints to idiosyncrasies in the course of learning—a 

result that in fact appears to be general across parameter settings. In turn, the MaxEnt approach 

fails to capture broad, grammatical trends under broad assumptions. We explore an approach to 

lexical variation couched in a similar model, mixed-effects logistic regression, which 

circumvents the overfitting problem by privileging general constraints over lexical constraints in 

a way that that current MaxEnt models cannot. The mixed-effects model is found to capture both 

lexical propensities as well as broad trends across the lexicon. 
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Chapter 3: 
 

Lexical propensities in Slovenian palatalization 
 
 
We first investigate lexical idiosyncrasy as it occurs in Slovenian velar palatalization, whereby 

stem-final velars palatalize before a certain set of suffixes.  

(9) oblak-a    ‘cloud’-GEN  oblatʃ-iʦa    ‘cloud’-DIM 
 dowg-a   ‘long’-GEN  dowʒ-ina  ‘length’ 
 
A large set of corpus data reveals that palatalization varies both on a morpheme-by-morpheme 

basis and on a token-by token basis (Jurgec 2016; cf. Bajec 2000, Toporišič 2001). Some suffixes 

essentially always trigger palatalization, while other suffixes never do. In (10a), for example, the 

stem /dowg/,  ‘long’ always palatalizes before the nominalizing suffix /-ina/, but it never does 

before the suffix /-in/, ‘tall’. A suffix’s status as a palatalization trigger cannot merely be reduced 

to whether it begins with a front vocoid, as suffixes like /-k/ and /-n/ can also trigger 

palatalization, while front vocoid-initial suffixes like /-in/ and /-i/ do not. 

(10a) Lexical variation 
 
 Some suffixes trigger palatalization, while others do not 
 

 Stem     Trigger s    Non-triggers   
 dowg-a   ‘long’-GEN  dowʒ-ina  ‘length’   dowg-in   ‘tall male’ 
 dux        ‘smell, ghost’  duʃ-k-a     ‘breath-DIM-GEN  dux-i        ‘smell’-PL 
 barok   ‘baroque’  barotʃ-n-i  ‘baroque’-ADJ-DEF  barok-ist  ‘baroque’-PER 
 
Certain suffixes trigger palatalization across only some eligible stems, but not others, as in (10b). 

For example, stems such as /oblak/, ‘cloud’ obligatorily palatalize before /-iʦa/, while stems such 

as /kokoʃk/, ‘hen’ obligatorily do not. 
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(10b) Lexical variation 
 
 Before suffixes that tend to trigger palat’n, some stems undergo it while others do not 
 

 Stem     Stem before diminutive -iʦa  Status   
 oblak-a    ‘cloud’-GEN  oblatʃ-iʦa    ‘cloud’-DIM  Undergoer 
 ʋrag-a      ‘devil’-GEN  ʋraʒ-iʦa       ‘devil’-DIM  Undergoer 
 peg-a                ‘spot’-GEN  peg-iʦa          ‘spot’-DIM  Non-undergoer 
 
Finally, particular stems can vary in whether or not they undergo palatalization before certain 

suffixes — that is, these stems vary on a token-by-token basis, as in (10c). For example, /nɔg/ 

‘leg’ can surface faithfully or as palatalized when it comes before /-iʦa/. 

(10c)  Token variation  
 

 Stem     Stem before suffixes tending to trigger palat’n  
 nɔg-a   ‘leg’-GEN  nɔg-iʦa ~ nɔʒ-iʦa ‘leg’-DIM 
 bɾeg-a   ‘river bank’-GEN  bɾeg-nat ~ bɾeʒ-nat ‘river bank’-ADJ 
 grax-a   ‘pea’-GEN  grax-k-a ~ gɾaʃ-k-a ‘pea’-DIM-GEN  
 
 This section investigates corpus data on Slovenian palatalization, reaching the following 

conclusions: (i) variable palatalization is conditioned phonologically, confirming Jurgec (2016)’s 

corpus investigation; (ii) nevertheless, we find that different morphemes gradiently participate in 

the process: a statistical model of corpus data that encode lexical propensities on suffixes (e.g.,  

[0.7 Palatalization]) outperforms one that encodes suffixes merely as ([+ Palatalization]) (cf. 

Jurgec 2016); (iii) further modeling investigation reveals that propensities are associated both 

with triggering suffixes and undergoing stems. 

 

3.1 Review of Jurgec (2016) 
 
Jurgec (2016) conducted a corpus study of Slovenian palatalization, finding that both lexical and 

phonological factors affect whether palatalization applies to a particular stem-suffix pair. He 

provides an analysis the data couched in Maximum Entropy Harmonic Grammar; the primary 
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objective was to capture the phonological factors conditioning variation, but, as I will argue, he 

does not adequately capture the degree to which lexical factors conditions variation.  

 Jurgec extracted data from the Dictionary of Standard Slovenian (Bajec 2000) and the 

Slovenian Orthographic Dictionary (Toporišič 2001), two online dictionaries that contain 

110,000 and 130,000 word types, respectively. In particular, he extracted stems ending in velars 

that were followed by any one of several suffixes noted by Toporišič (2001) to trigger 

palatalization. To obtain token rates of palatalization associated with the different words, he then 

looked each word up in the Gigafida (Logar-Berginc et al. 2012), a text corpus containing 1.2 

billion tokens from a variety of written sources, published between 1990–2011. Investigating 

variable palatalization in written data is possible because palatalization is reflected in 

orthography (e.g., [oblak-a], <oblaka>; [oblatʃ-iʦa], <oblačica>).  

 Jurgec primarily focused on 9 commonly occurring suffixes in the corpora, obtaining that 

each of them triggered palatalization to some degree. He provides the table below. Before the 

diminutive suffix /-ʦ/, for example, 32 out of 86 velar-final stems obtained from the dictionary 

underwent palatalization in more than 50% of the tokens extracted from the Gigafida; across all 

stems, there were roughly 7,500 tokens that underwent palatalization before /-ʦ/ out of roughly 

38,100. /-k/, on the other hand, triggered palatalization the majority of the time in 81 out of 91 

stems, and in 292,100 tokens out of 300,800 overall. 

 

    -/ʦ/ -/k/ -/n/  -/itʃ/ -/iʦa/ -/ina/ -/je/ -/nat/ -/oʋje/  
Number of stem types  86 92 169  20 107 36 59 17 26 
> 50% palatalized  32 81 151  20 49 34 58 12 10 
across stem tokens  
 
Number of tokens  38.1 300.8 3916.3  63.5 313.6 840.9 174.8 3.4 4.4 
 (in 1000s) palatalized  7.5 292.1 3233.9  63.4 242.2 840.1 174.8 2.2 0.8 
 

Table 6: Jurgec’s table showing suffix-specific rates of palatalization (Jurgec 2016, p. 7) 
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Jurgec addressed less thoroughly the role of the stem in conditioning variation. He provided a 

small handful of stems that appear to undergo palatalization at different token rates before the 

same suffix. Before the diminutive suffix /-iʦa/, for example, /sux/, ‘dry’ palatalized at a rate of 

65% across tokens; /smrek/, ‘spruce’ palatalized at a rate of 85%; and /oblak/, ‘cloud’ palatalized 

in all tokens. 

 Jurgec finds that phonological factors can affect whether a stem-suffix pair undergoes 

palatalization. For example, though some suffixes that do not begin with a front vocoid can 

trigger palatalization, its presence is associated with higher overall rates of palatalization. And 

though palatalization can apply to stem-final velars of all kinds, it targets the stops k and g more 

regularly than it does the fricative x. In addition, palatalization applies regularly if surfacing 

faithfully would otherwise produce a geminate: k/g-final stems palatalize nearly categorically 

before diminutive –k. Finally, palatalization is gradiently blocked by velars occurring earlier in 

the stem, and is categorically blocked by postalveolars occurring earlier in the stem.  

 Jurgec ran a linear mixed effects model on his corpus data, which included consonant 

identity and suffix as fixed factors, and stem identity as random intercept and slope. The model 

results reveal that a variety of suffixes trigger at rates distinct from –ʦ, even when consonant 

identity is controlled for; moreover, based on their t-values and estimates, it would seem that the 

suffixes are associated with distinct propensities to trigger palatalization.  

 Jurgec accounts for some of the variation within Maximum Entropy Harmonic Grammar 

(Smolensky 1986, Goldwater & Johnson 2003, Hayes & Wilson 2008), using the MaxEnt 

Grammar Tool (http://linguistics.ucla.edu/people/hayes/MaxentGrammarTool/; Wilson & 

George 2009). In particular, he accounts primarily for the phonological factors that affect 

palatalization. To account for the lexical factors conditioning variation, the nine suffixes 
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analyzed were merely encoded with as [+ Palatalization]. Such machinery separates the nine 

suffixes that can trigger palatalization whatsoever from those that never trigger it, but does not 

distinguish between idiosyncratic rates of any of the palatalizing suffixes (suggested by Table 6), 

and does not account for any potential stem-specific idiosyncrasies either (see Section 3.2.2). 

The precise account of lexical variation was left for future investigation. 

 The central constraint driving palatalization in Jurgec’s analysis is PAL/_{palatalizing 

suffixes}, with IDENT violated by palatalized forms. To account for the tendency for stems to 

palatalize before front vocoid-initial suffixes, PAL/_{i j} is also used. Geminate avoidance in 

palatalization is mediated by *CiCi, while the long-distance effects are mediated by *POSTALV 

… POSTALVstem, *VEL … POSTALVstem, and *POSTALV … ALVAFFRstem. The corpus frequencies 

and violation profiles were fed into the MaxEnt learning tool, which outputted constraint weights 

that maximized fit to the frequencies given the inputted constraints. 

 Some aspects of Jurgec’s model were successful: for example, the combined effect of 

PAL/_{palatalizing suffixes} and PAL/_{i j} resulted in the greater tendency for front vocoid-

initial suffixes to trigger greater rates of palatalization. In the tableau below, the faithful 

candidate violates both PAL/_{palatalizing suffixes} and PAL/_{i j}; their weights sum up to 5.0, 

and so the Harmony of the faithful candidate is -5.0. The palatalized candidate only violates 

IDENT, which has a weight of 0, and so its Harmony is -0.0. Since the Harmony of the palatalized 

candidate is much higher than that of the faithful candidate (- 0.0 > - 5.0), the model predicts that 

the palatalized candidate surfaces the vast majority of the time. 

/breg-ina/ Observed 
rate 

Predicted 
rate 

Harmony PAL/_{i j} 
w = 3.4 

PAL/_{palat. suffix} 
w = 1.6 

IDENT 
w = 0 

bregina 0% 0% -5.0 - 3.4 - 1.6  
breʒina 100% 100% -0.0   - 0 

 
Table 7a: tableau showing palatalization with –ina (Jurgec 2016, p. 23) 
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According to Jurgec, MaxEnt valued the weight of IDENT so low because palatalization generally 

obtains in the data, and environments where it does not are better explained by the other 

phonological factors (e.g., *POSTALV … POSTALVstem). Problematically, this results in a 

mediocre fit to forms with suffixes that do not begin with a front vocoid, i.e., those forms in 

which palatalization rate may be regulated by lexical factors such as stem or suffix identity. In 

the tableaux below, palatalization is predicted to take place to tokens of /breg-nat/ far more 

regularly than the observed rate.  

 

/breg-nat/ Observed 
rate 

Predicted 
rate 

Harmony PAL/_{i j} 
w = 3.4 

PAL/_{palat. suffix} 
w = 1.6 

IDENT 
w = 0 

bregnat 50% 17% -1.6  - 1.6  
breʒnat 50% 83% -0.0   - 0 

 
Table 7b: tableau showing palatalization with –nat (Jurgec 2016, p. 23) 

 
 
 Jurgec states that with these constraints alone the fit to the data is imperfect—presumably 

due to the lexical idiosyncrasies in the behavior of individual morphemes, which he leaves to 

further research. In this section, I expand upon Jurgec’s pioneering study of variation in 

Slovenian palatalization. The aim is to test whether the system would be accounted for more 

comprehensively by encoding the 9 suffixes on a spectrum to trigger palatalization (e.g., [0.7 

Palatalization])—rather than with [+Palatalization]—and by encoding individual stems on a 

spectrum as well.  
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3.2 Corpus investigation into Slovenian palatalization 
 
Following Jurgec, words consisting of velar-final stems and one of the nine palatalizing suffixes 

were extracted from the Dictionary of Standard Slovenian. Words were annotated for what suffix 

they ended in, and whether or not they underwent palatalization. Recall that Jurgec fed each 

word obtained from the dictionary into the Gigafida, the massive written text corpus, to obtain 

token palatalization rates for each word. I departed from Jurgec’s methods by not simply feeding 

each word from the dictionary into Gigafida; rather, I concatenated each stem extracted from the 

dictionary with each of the nine suffixes, creating hypothetical stem-suffix pairs that may or may 

not be attested in the Gigafida; then, to obtain token rates of palatalization for these pairs, I fed 

each of them into the Gigafida. This yielded a data set containing about 3,000,000 tokens of 

stem-suffix pairs that either did or did not undergo palatalization. 

 With these token rates, I calculated the average palatalization rates for each suffix—for 

any given suffix -x, I calculated for each stem s the token palatalization rate of s-x (obtained from 

the Gigafida), and then averaged over these rates. For example, the stem /ag/ palatalizes before 

suffix /-je/ 22% of the time in my data, but /kak/ palatalizes before it 99% of the time; averaging 

over stems, the average palatalization rate of /-je/ is 85%. The rates are given in the table below. 

We see that suffixes pattern along an entire palatalization propensity spectrum: /-ʦ/, for 

example, triggers palatalization across 42% of the stems that precede it; /-iʦa/ triggers the 

process after about 70% of them stems; and /-k/ triggers it after about 95% of the stems. The 

rates in the figure below resemble those obtained by Jurgec. 
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Freq:  (4K)        (60K)        (3K)       (159K)    (781K)    (295K)      (99K)     (932K)     (606K) 
 

Figure 8a: palatalization rates for different suffixes, averaged across stems 
 
 
 Here I show that the stems in my data distribute across the propensity spectrum too. I 

extracted 260 stems that had an allomorph occurring before at least four suffixes, and calculated 

their average palatalization rate: for any given stem s, I calculated for each suffix -x the token 

palatalization rate of s-x, and then averaged over these rates. Provided in the histogram below is 

the number of stems associated with a particular average palatalization rate. 113 stems are clear 

palatalizers, having palatalized in the vast majority of tokens. 19 stems were non-palatalizers, 

having palatalized in nearly none of the tokens. Finally, a healthy minority of stems—128 in 

total—fall between extreme rates. This suggests that stems are coded on an entire spectrum to 

palatalize, just as suffixes are. 
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Figure 8b: Histogram of stem palatalization rate frequencies 
 
 
 The investigation so far suggests that variation in Slovenian palatalization must be 

accounted for by coding individual morphemes on an entire propensity spectrum. We now 

compare a series of mixed logistic regression models to further demonstrate the value of lexical 

propensities for modeling phonological variation. 

 

3.2.1 Binary versus gradient palatalization triggers: a comparison of 
logistic regression models 
 
 The glmer function of the lme4 package (Bates & Maechler 2011) in R (R Core 

Development Team 2014) was used to fit various logistic regression models to the palatalization 

data. We first compare models of the palatalization triggers—namely, the nine suffixes studied in 

Jurgec (2016). We run a Baseline Model, which incorporates Jurgec’s phonological factors as 

well as whole word (stem + suffix) as random intercept, but treats the nine suffixes as having the 

same triggering status ([+ Palatalization]). We compare the Baseline Model to a second model, 

(113) 
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the Suffix Propensity Model, which contains Jurgec’s phonological factors but which also allows 

the different suffixes to take on different propensities to trigger palatalization 

([0.7 Palatalization]). In particular, the Baseline Model includes the following factors proposed 

in Jurgec (2016): stem-final consonant identity, whether the suffix begins with a front vocoid, 

whether the stem contains a post-alveolar distant from the target, whether the suffix contains a 

post-alveolar affricate; I also add to this a factor for log word frequency. The Baseline Model 

lacked the distant velar factor since had a rather small effect in Jurgec’s study; moreover, an 

examination of my corpus revealed that palatalization rates were no lower with distant velars 

than without. Moreover, investigation of consonant identities in my data reveals that g undergoes 

palatalization less overall than k—70% versus 85%, respectively; x undergoes palatalization at 

an 80% rate, but x-final stems constituted a small minority of the stems overall. As Jurgec points 

out, the distinction between k and g is not surprising, considering that while k changes only in 

place, g changes in both place and continuancy: 

 

 

Figure 9: Graph of mappings (Jurgec 2016, p. 13) 
 
 

 The Baseline Model serves as a null hypothesis regarding whether different suffixes 

condition palatalization at different rates: the model regresses only over suffixes noted by 

Toporišič (2001) and Jurgec (2016) to condition palatalization, and so if a model that can encode 

suffix-specific rates performs better than the baseline, then that suggests that these palatalization-

triggering suffixes in fact trigger the process at different rates. A now standard way to encode 
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item-specific idiosyncrasies in statistical models is to use mixed effects logistic regression 

(Fruehwald 2012, Shih & Inkelas 2016, Zuraw & Hayes 2017, Smith & Moore-Cantwell 2017, 

Shih 2018). Broad statistical generalizations can be captured together with item-specific 

idiosyncrasies through encoding general constraints as fixed effects and item-specific 

idiosyncrasies as a random intercept. As we will see in Chapter 6, this model of will be of great 

significance to the theory of lexical variation and its learning. For now we simply use the mixed 

model to assess whether lexically specific effects are present in the system (Zuraw & Hayes 

2017, Smith & Moore-Cantwell 2017). The Suffix Propensity Model contains all factors in the 

Baseline Model, plus an additional factor for suffix identity, coded as a random intercept—that is 

to say, every individual suffix (9 in total) is allowed to be associated with an idiosyncratic 

propensity to trigger palatalization. If the Suffix Propensity Model outperforms the baseline, then 

that would suggest that suffixes trigger palatalization at distinct rates, even after other 

phonological factors proposed to condition palatalization are controlled for.  

 Any row in the dataset consisted of: a token of a stem+suffix pair; whether the token 

underwent palatalization; the natural logarithm of word frequency; the identity of the stem; the 

identity of the suffix; the identity of the stem-final consonant (k, g, x); whether suffix begins with 

a front vocoid; whether the input contained a velar geminate1; whether the output contained a 

palatalized geminate; whether stem contains a post-alveolar distant from the target; and whether 

the suffix contains a post-alveolar affricate. 

 The Baseline Model contained six factors, all coded as main effects: logwf, cons, gem, 

frontvocoid, S...S], and k...S], and [...ts, defined below:  

                                                
1 None of the outputs contained a {k, g}+k geminate, as –k always undergoes yer-insertion 
(Jurgec 2016). The insensitivity of the geminate constraint to yers in Slovenian is a topic I leave 
for further research. 
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(11) logwf:  log of the frequency of stem+suffix pair  
 
 cons:   identity of the stem-final consonant (k, g, x) 
 
 kk:   1 if the stem ended in k or g and the suffix was –k; 0 otherwise. 
 
 tStS:   1 if the stem ended in tʃ{k, g}; 0 otherwise. 
 
 frontvocoid: 1 if the suffix begins with a front vocoid (i, j); 0 otherwise. 
 
 S...S]:  1 if the stem contains a postalveolar that is not adjacent to the  
    target; 0 otherwise.  
 
 [...ts:  1 if the suffix contains an alveolar affricate (–/iʦa/, –/ʦ/);  
    0 otherwise.  
  
The dataset consists of stem+suffix tokens, yet we wish for the model to treat each whole word 

as an observation, rather than word tokens themselves. Hence we also encode in the Baseline 

Model, as well as in all subsequent models tested, whole word as a random intercept. 

 The results of the Baseline Model are given below. The factors were compared against a 

reference intercept group of whole words that had a g as stem-final consonant, had a log(word 

frequency) of 0, lacked an input geminate, had a suffix that did not begin with a front vocoid or 

contain an alveolar affricate, and had a stem that did not contain an earlier postalveolar. The 

results given below indicate that the factors given above are mostly significant predictors of 

palatalization, in line with Jurgec (2016), with the exception of frontvocoid.  Consonant 

identity significantly influences palatalization rate, with consk receiving a positive coefficient 

relative to baseline consg. The coefficients for the geminate constraints, S...S] and [...ts 

were all in the direction predicted by Jurgec: we find higher palatalization rates before –k, 

suggesting that the process assists in geminate avoidance; distant sequences of postalveolar 

sequences are also avoided; and morphemes with ʦ trigger at lower rates. Moreover, word 

frequency exerts a small, negative effect, though significant.  
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Random effects: 
 Groups Name        Variance Std.Dev. 
 word   (Intercept) 101.9    10.1     
Number of obs: 2940918, groups:  word, 4822 
 
Fixed effects: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept:    3.95       0.47      8.29  <0.001   *** 
 consg) 
 
logwf         -0.08       0.03     -2.67   0.007   **  
 
consx          1.59       0.66      2.41   0.015   *   
consk          1.96       0.47      4.11  <0.001   *** 
 
kk             4.94       0.80      6.12  <0.001   *** 
tStS          -4.53       1.96     -2.31   0.020   *   
 
frontvocoid   -0.52       0.39     -1.32   0.183   
   
S...S         -1.67       0.78     -2.12   0.033   *   
 
[...ts      -3.53       0.46     -7.55  <0.001   *** 
 

Table 8: Baseline Model results for Slovenian palatalization 
 
 
The Akaike Information Criterion (AIC; Akaike 1973; cf. Kullback-Leibler 1951) scores models 

based on fit to the data and number of parameters, with a lower score being better. See Bolker et 

al. (2009) for discussion on and justification for using the AIC to compare mixed logistic 

regression models to assess whether a random intercept is to be included. The Baseline Model’s 

AIC value is 8767.8. 

 The Baseline Model assumes that the nine different suffixes are equal in their propensity 

to trigger palatalization—that is to say, they are all simply [+Palatalization]. We thus compare its 

performance to that of the Suffix Propensity Model, which contains suffix identity as a random 

intercept. The results are presented in output below. The results are similar to those of the 

Baseline Model, except for the following: S...S] is now a weak trend, and [...ts is no 

longer a significant predictor—probably because the random intercept encoding suffix identity 
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subsumes this factor. The variance of the suffix intercept is far from zero, suggesting that much 

of the variation not explained by the main effects or the random intercept for whole word can be 

explained by the suffix identities. 

 

Random effects: 
 Groups Name        Variance Std.Dev. 
 word   (Intercept) 95.55    9.77    
 suffix (Intercept) 35.69    5.97    
Number of obs: 2940918, groups:  word, 4822; suffix, 9 
 
Fixed effects: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept:    0.11       2.92      0.03   0.969    
 consg) 
 
logwf         -0.10       0.03     -3.09   0.001   **  
 
consx          2.15       0.70      3.05   0.002   **  
consk          1.92       0.48      3.99  <0.001   *** 
 
kk             7.53       1.47      5.08  <0.001   *** 
tStS          -4.51       2.01     -2.24   0.024   *   
 
frontvocoid    2.98       4.05      0.73   0.462     
 
S...S]        -1.43       0.79     -1.80   0.070   .   
 
[...ts      -1.90       4.82     -0.39   0.692   
   

Table 9: Suffix Propensity Model results for Slovenian palatalization 
 
 

While the Baseline Model’s AIC is 8767.8, the Suffix Propensity Model’s AIC value is 8283.7—

a substantial reduction of about 500 points. Between any two models A and B of the same 

dataset, B outperforms A if its AIC is lower by at least 10 points (Burnham & Anderson 2004). 

Moreover, a likelihood ratio test between the two models suggests that the Suffix Propensity 

Model substantially outperforms the Baseline Model (p < 0.001). The results suggest that these 

suffixes indeed trigger palatalization at different rates—even after controlling for all of Jurgec’s 
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factors—thereby corroborating Jurgec’s observations about suffix behavior. These results 

suggest that individual morphemes are encoded on a spectrum—that is, with lexical 

propensities—rather than on a binary scale. 

 

3.2.2 Extending the model: gradient palatalization undergoers 
 
Does encoding undergoing stems improve model performance relative to the baseline? We first 

compare the performances the Baseline Model against the Stem Propensity Model, which 

encodes stem identity as a random intercept, allowing for each stem (2,720 in total) to be 

associated with different propensities. 

 Given below are the results for the Stem Propensity Model. The results are similar to the 

Suffix Propensity Model, except now S...S] is no longer a significant predictor contra Jurgec 

(2016)—this is to say, distant postalveolars do not appear to condition rate once we take into 

consideration lexical idiosyncrasies of both stems and suffixes. Furthermore, [...ts is 

significant, in particular because this model does not encode suffix propensities, the random 

effect that subsumed this main effect in the Suffix Propensity Model. 
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Random effects: 
 Groups Name        Variance Std.Dev. 
 word   (Intercept) 48.22    6.94    
 stem   (Intercept) 78.24    8.84    
Number of obs: 2940918, groups:  word, 4822; stem, 2720 
 
Fixed effects: 
              Estimate  Std. Error z value Pr(>|z|)     
(Intercept:     4.08       0.65      6.27  <0.001   *** 
 consg) 
 
logwf          -0.09       0.03     -2.84   0.004   **  
 
consx           2.00       1.00      2.00   0.045   *   
consk           2.63       0.70      3.73  <0.001   *** 
 
kk              6.09       0.77      7.86  <0.001   *** 
tStS           -4.49       2.19     -2.05   0.040   *  
  
frontvocoid     0.40       0.37      1.08   0.280 
   
S...S]         -1.40       1.14     -1.23   0.217 
   
[...ts   -2.82       0.41     -6.82  <0.001   *** 

 
Table 10: Stem Model results for Slovenian palatalization 

 

The Stem Propensity Model’s AIC value is 8128.9. This is a substantial improvement over the 

Baseline Model, whose AIC value is 8767.8—a drop of about 640 points. A likelihood ratio test 

confirms that the Stem Propensity Model is superior (p < 0.001). 

 Does encoding undergoing stems as well as triggering suffixes with propensities improve 

model performance beyond the three prior models? We compare the performances the Suffix 

Propensity Model the Stem and Suffix Propensity Model, which encodes stem identity and suffix 

identity as distinct random intercepts, allowing for each stem and suffix to be associated with 

different propensities. In particular, the Stem and Suffix Propensity Model contains all factors in 

the Baseline Model—in particular, Jurgec’s phonological factors—plus two factors for stem 

identity and suffix identity, both coded as random intercepts. Here, every suffix and every stem 
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can be associated with idiosyncratic propensities to trigger and undergo palatalization, 

respectively.  

 Given below are the results for the Stem and Suffix Propensity Model. The results are 

similar to the Suffix Propensity Model, except now S...S] is no longer a significant predictor 

contra Jurgec (2016)—this is to say, distant postalveolars do not appear to condition rate once we 

take into consideration lexical idiosyncrasies of both stems and suffixes. Moreover, the intercept 

is not significant—under the conditions defined by the reference level, the baseline rate does not 

depart substantially from chance rate. This presumably would not be the case if we were to 

regress over a broader dataset that, for example, also included suffixes that never trigger 

palatalization—inclusion of such suffixes would reduce the baseline rate of palatalization across 

the data. 

Random effects: 
 Groups Name        Variance Std.Dev. 
 word   (Intercept) 49.40    7.02  
 stem   (Intercept) 68.06    8.25    
 suffix (Intercept) 19.54    4.42   
Number obs: 2940918, groups:  word, 4822; stem, 2720; suffix, 9 
 
Fixed effects: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept:     1.15       2.24      0.51   0.608     
 consg) 
 
logwf          -0.10       0.03     -3.22   0.001    **  
 
consx           2.36       1.00      2.35   0.018    *   
consk           2.59       0.69      3.75  <0.001    *** 
 
kk              7.94       1.32      6.01  <0.001    *** 
tStS           -4.58       2.16     -2.11   0.034    *  
  
frontvocoid     2.72       3.01      0.90   0.366    
S...S          -1.20       1.12     -1.06   0.284    
morph.with.ts  -1.88663    3.58     -0.52   0.598  
 

Table 11: Stem+Suffix Model results for Slovenian palatalization 
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The Stem and Suffix Propensity Model’s AIC value is 7801.5. We can compare the AIC’s of all 

three models measured thus far: 

(12) Baseline Model AIC:       8767.8 
 Suffix Propensity Model AIC:     8283.7 
 Stem Propensity Model AIC:     8128.9 
 Stem and Suffix Propensity Model AIC:    7801.5 
 
The Stem and Suffix Propensity Model substantially outperforms both the Baseline Model, the 

Suffix Propensity Model, and the Stem Propensity Model—a series of likelihood ratio tests 

confirms these facts (all yielding p < 0.001)—which strikingly suggests that both triggering 

suffixes and undergoing stems are associated with idiosyncratic lexical propensities to 

participate in palatalization. The coefficients of the levels of the random intercepts for suffix and 

stem further reveal morphemic gradience, as the tables below illustrate: 

 

Suffix Rate  Stems (sample) Rate 
-ovje  -4.05 trak-                   -5.34 
-ina   -1.27 tramik-                  0.00 
-nat  -0.40 transcendenk-            0.05 
-itʃ -0.38 tradicionalistik-               0.55 
-ts -0.16 tragikomik-               1.14 
-itsa 0.16 travmatik-              1.30 
-k 0.58 tragik-        2.31 
-je 1.48  
-n 4.03 

 
Table 12: coefficients for stems and suffixes in Slovenian 

 
 

 Note that the Stem Propensity Model’s AIC value is lower than the Suffix Propensity 

Model’s AIC value; moreover, in the Stem and Suffix Propensity Model, the variance of the 

random intercept for stem (σ2 = 68.06) is greater than that of the random intercept for suffix  
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(σ2 = 19.54). This indicates that undergoing stems explain more variance in the dataset than 

triggering suffixes do—over three times as much. Though further crosslinguistic investigation 

must be undertaken to confirm whether the following hypothesis is plausible, there may exist a 

bias such that undergoing morphemes across languages explain more lexical variation in the 

relevant paradigms than triggering morphemes do. How this bias should be implemented if it 

does exist, and what the implications of this bias are for the perceiver-learner, are left to further 

research. 

 To ensure that our model is making reasonable predictions, we assess whether the Stem 

and Suffix Propensity Model is in fact predicting the rates of significant phonological 

conditioners of palatalization as well as the propensities at which different morphemes trigger or 

undergo palatalization. Below, I show that the rates of the two significant phonological trends—

consonant identity and geminate avoidance—are predicted by the model. I used the predict 

function in the lme4 package in R to obtain rates under different phonological conditions. For the 

consonant identity trend, the model predicts that k-final stems palatalize at nearly a 95% rate in 

words with mean frequency (log(word frequency) = 9.5), other phonological factors 

notwithstanding; on the other hand, the model predicts that g-final stems palatalize at roughly a 

50% rate under those same conditions. The corpus gives a 99% rate of palatalization to words 

with k-final stems and with log(word frequency) between 9 and 10, other phonological factors 

notwithstanding; moreover, the corpus gives a 52% palatalization rate to words with g-final 

stems that otherwise satisfy the same conditions. In addition, the model-predicted rates of 

geminate avoidance in words of mean frequency also the analogous rates in the corpus. 
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Figure 10a: model succeeds in predicting phonological trends 
 

Finally, the model makes good predictions about the propensities of the nine different suffixes, 

generally fitting to the average palatalization rates for each suffix given in the corpus, as 

illustrated in the table and figure below: 

 

Suffix: -ovje -ʦ -nat -iʦa -ina -itʃ -je -n -k 
Average rate 
across stems: 18% 41% 42% 70% 71% 78% 88% 94% 96% 

Predicted rate: 1% 7% 30% 63% 72% 86% 97% 97% 80% 
 

Table 13: model-predicted suffix rates generally match corpus rates 
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Freq:     (4K)       (60K)        (3K)        (159K)     (781K)    (295K)    (99K)     (932K)     (606K) 
 

Figure 10b: model-predicted suffix rates generally match corpus rates 
 
 
 

3.3. Discussion and summary 

Overall, these findings strongly favor theories that encode morphemes’ participation on a 

spectrum (e.g., [0.7 Rule X]; cf. Moore-Cantwell & Pater 2016, Smolensky & Goldrick 2016, 

Zuraw 2016, Zuraw & Hayes 2017), and disfavor theories that encode a morpheme’s status on 

merely a binary scale ([+/- Rule X]; esp. Walther & Wiese 1999; Anttila 1997, Pater 2000, 

Becker 2009, Jurgec 2016, inter alia). These results would challenge any claims that propose to 

merely group morphemes together arbitrarily or based on semantic profile, or to refer to stored 

whole words or phrases to capture the bulk of variation (Zuraw 2000, 2010; Bybee 2001, 2002). 
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Morphemes—both the undergoing stems and triggering suffixes in Slovenian—distribute across 

a spectrum, and so at the very least we need a theory that is capable of referring to idiosyncrasies 

of individual morphemes, whether it be through lexical indexation, UR constraints, or 

partitioning into very fine sublexica or cophonologies (Indexation/UR constraints: Pater 2000, 

Pater 2010, Pater, Staubs, Jesney, Smith 2012, Smith 2015, inter alia; Sublexical Phonology: 

Becker & Gouskova 2016 et seq; Cophonology Theory: Anttila 2002; Inkelas & Zoll 2005; inter 

alia). 
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Chapter 4: 
 

Lexical propensities in French liaison 
 
 
This section aims to show that lexical propensities significantly improve model performance on a 

phenomenon that has constituted a long-standing puzzle in phonology: variation in French 

liaison.   

 

4.1 Some previous results for French liaison 
 
4.1.1 Côté (2011) 
 
French liaison has been investigated extensively in prior research (Delattre 1951, 1966; Schane 

1968; Dell 1973/1985; Ågren 1973; Selkirk 1974; Klausenburger 1978; Morin & Kaye 1982; 

Morin 1986; de Jong 1994; Tranel 1981, 1996; Fougeron 2001a, b; Walker 2001; Boula de 

Mareüil et al. 2003; Durand & Lyche 2008; Mallet 2008; Côté 2011; Barreca & Christodoulides 

2017; Kilbourn-Ceron 2017; Zuraw & Hayes 2017; inter alia). This section summarizes some 

major highlights from Côté (2011), who provides a review of prior literature concerning French 

liaison, variation in its application, and the factors that influence this variation. French liaison is 

the pronunciation of a consonant between two words (below categorized as Word1 and Word2), 

the latter being vowel- or glide- initial, in a variety of triggering contexts: 

(13) un cordeau [œ̃ kɔʁdo]  un homme [œ̃ n ɔm] 
 ‘a line’     ‘a man’ 
 
 vous voulez [vu vule]  vous allez [vu z ale] 
 ‘you want’    ‘you go’ 
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 grand prix [gʁɑ̃ pʁi]  grand oiseau [gʁɑ̃ t wazo] 
 ‘grand prize’    ‘great bird’ 
 
 très facile [tʁɛ fasil]  très actif [tʁɛ z aktif] 
 ‘very easy’    ‘very active’ 
 
The majority of liaison consonants originated as word-final consonants, but between the twelfth 

and sixteenth century most of them progressively eroded away, but were retained in a prevocalic 

environment between two words exhibiting a high degree of cohesion (Morin 1986). A 

simplified, schematic account for the data in (13) would state that the final consonant emerges to 

prevent hiatus: the consonant-final allomorph of Word1 arises to prevent two adjacent vowels 

from occurring in the output.  

 Liaison consonants are, for the most part, restricted to a small subset of regularly 

occurring consonants in French, namely [z n t]. The consonants [ʁ p] occasionally surface in 

context, but [ʁ] occurs typically only after a small number of pronominal adjectives (e.g., 

premier ‘first’), and [p] only after the adverbs trop, ‘too much’ and beaucoup, ‘a lot’. 

 Whether liaison applies nearly categorically, optionally, or is blocked altogether is 

conditioned by morphosyntactic environment (Schane 1968; Selkirk 1974; Klausenburger 1978; 

Morin & Kaye 1982; Boula de Mareüil et al. 2003; Durand & Lyche 2008). Given below are 

environments previously found to be associated with categorical application (data from Côté 

2011): 

(14) a. Determiner + adjective/noun  c. Verb/enclitic + enclitic  
  
 les enfants  [le z ɑ̃fɑ]̃  allez-y   [ale z i] 
 ‘children’     ‘go ahead’ 
 
 un autre enfant [œ̃ n otʁ ɑ̃fɑ̃]  allez-vous-en  [ale vu z ɑ̃] 
 ‘another child’     ‘go away’ 
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 b. Proclitic + proclitic/verb   d. Compounds and fixed phrases 
 
 vous en avez  [vu z ɑ̃ n ave]  mesdames et messieurs [medam z e mesjø] 
 ‘you have some’    ‘ladies and gentlemen’ 
 
 on arrive  [ɔ ̃n aʁiv]  comment-allez-vous  [kɔmɑ̃ t ale vu] 
 ‘we arrive’     ‘how are you’ 
 
In contrast, application apparently never applies between subject and verb, singular noun and 

adjective, or after conjunctive et. The following asterisked forms are purely hypothetical, but 

they would look as follows if they were to undergo liaison: 

(15) l’enfant a réussi [l ɑ̃fɑ̃ a ʁeysi], *[l ɑ̃fɑ̃ t a ʁeysi]  Côté (2011) 
 ‘the child has succeeded’ 
 
 un repas italien [œ̃ rœpa italjɛ̃], *[œ̃ rœpa z italjɛ̃] 
 ‘an Italian meal’ 
 
 lui et elle  [lɥi e ɛl], *[lɥi e t ɛl] 
 ‘him and her’ 
 
Furthermore, the following environments were found to condition only optional application: 

(16) a. Adjective-PL + noun   d. Adverb + X  Côté (2011) 
  
 beaux outils  [bo z uti] ~ [bo uti] mieux intégré  [mjø z ɛ̃ntegʁe] 
 ‘beautiful tools’    ‘better integrated’ ~ [mjø ɛ̃ntegʁe] 
 
 b. Adjective-SG.MASC + noun   e. Verb + X 
 
 gros effort  [gro z ɛfɔʁ]   il est arrivé  [il ɛ t aʁive] 
 ‘big effort’  ~ [gro ɛfɔʁ]  ‘he arrived’  ~ [il ɛ aʁive] 
 
 c. Preposition/conjunction + X  f. Noun-PL + adjective 
 
 quand elle arrive [kɑ̃ t ɛl aʁiv]   soldats italiens  [sɔlda z italjɛ̃] 
 ‘when she arrives’ ~ [kɑ̃ ɛl aʁiv]  ‘Italian soldiers’ ~ [sɔlda italjɛ̃] 
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Notice here that the data exhibit free variation within the same sequence, rather than simply 

variation over different sequences.  

 Applicability of liaison is also affected by phonological factors. A corpus study given in 

Mallet (2008) reveals that liaison applies more readily if the liaison consonant is n rather than t 

or z, or if Word1 is monosyllabic rather than polysyllabic. Previous research also argues that 

length of the sequence following Word1 is a significant factor, with shorter sequences triggering 

liaison more regularly. Morin & Kaye (1982) offer the following contrast: 

 (17a) Ils travaillent d’abord et mangen[t] après.   Côté (2011) 
  ‘They work first and eat after’ 
 
 (17b) ?Ils mangen[t] après qu’ils aient fini leur travail. 
  ‘They eat after that they have-SUBJ finished their work.’ 
 
In particular, liaison was suggested to be more natural in the former context than the latter, where 

the sequence following Word2 is longer. 

 Finally, some researchers have suggested that corpus-based propensities might fluctuate 

based purely on lexical factors (Ågren 1973, de Jong 1994, Boula de Mareüil et al. 2003, Mallet 

2008, Barreca & Christodoulides 2017). Consider the proportion of realized liaison after four 

monosyllabic adverbs in the two corpora provided below (rates reported from Côté 2011): 

(18)    très, ‘very’ plus, ‘more’ bien, ‘well’ pas, ‘not’ 
 Mallet (2008)  97%  64%  43%  1% 
 de Jong (1994)  99%  96%  82%  7% 
 
The data above suggest that liaison is in part conditioned by individual lexemes, and cannot be 

reduced to independent structural factors. Moreover, liaison has been found to be positively 

correlated with Word1 frequency (de Jong 1994; Fougeron 2001a, b; Kilbourn-Ceron 2017). 

Liaison has been evolving for nearly a millennium (Morin 1986), and overall it appears that 

synchronic knowledge of the variation constitutes knowledge of segmental, prosodic, 
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morphosyntactic, lexical, and stylistic conditioning. I now turn to Zuraw & Hayes (2017), which 

focuses in particular on variation in a co-conspirator process of French liaison, namely élision. 

 

4.1.2 Zuraw & Hayes (2017): Variation in French liaison/élision 
 
Zuraw & Hayes (2017) investigate a related kind of allomorphy occurring in French, which 

seemingly too militates against hiatus. A variety of function words and adjectives in the language 

have two allomorphs, and which one gets chosen is determined both phonologically and 

lexically—we refer to this below as liaison/élision (though note that some authors reserve the 

term liaison for words with a single spelled form, as we have seen above). Consider the 

following data from Zuraw & Hayes (2017) on function word allomorphy: 

 

Word 
Example of 

CV allomorph Gloss 
Example of 

C/CVC allomorph Gloss 
‘the-fem’: la courgette 

[la kuʁʒɛt] 
‘the zucchini’ l’aubergine 

[l obɛʁʒin] 
‘the eggplant’ 

‘of’: de jonquilles  
[də ʒɔ̃kij] 

‘of daffodils’ d’iris 
[d iʁis] 

‘of irises’ 

‘of the-masc’: du petit 
[dy pətit] 

‘of the small one’ de l’enfant 
[də l ãfã] 

‘of the child’ 

‘at/to the-masc’: au lac 
[o lak] 

‘at the lake’ à l’étang 
[a l etã] 

‘at the pond’ 

 
Table 14: French liaison/élision (Zuraw & Hayes 2017, p. 519) 

 
 
In this case, the consonant-final allomorph is employed when the following word is vowel-

initial; otherwise, the vowel-final allomorph surfaces.  

 Some vowel-initial Word2s fail to trigger liaison/élision. Many of these are called h-

aspiré words, owing to the fact that they are spelled with an initial <h>: 

 



 59 

 (19) Vowel-initial Word2s that behave as though they are consonant-initial 
 
 la hache [la aʃ], *[l aʃ]   ‘the axe’ 
 du haricot [dy aʁiko], *[də laʁiko] ‘of the bean’ 
 un homard [œ̃ omaʁ], *[œ̃ n  omaʁ] ‘a lobster’ 
 un héros [œ̃ eʁo], *[œ̃ n  eʁo]  ‘a hero’ 
 

These words take the CV allomorph despite the resulting hiatus. h-aspiré words’ behavior is a 

vestige of an earlier stage of the French language in which they bore an initial consonant (Zuraw 

& Hayes 2017, p. 520).  Nevertheless, blocking by <h>-initial words is variable: some <h>-

initial words are non-h-aspiré words in the sense that they fail to block liaison (e.g., u[n] 

homme). In addition to h-aspiré words, words with initial glides also display variable blocking 

behavior, as the data below illustrate: 

 

Non-elided allomorphs Elided allomorphs 
le yodle         [lə jɔdl] 
le yaourt       [lə jauʁt] 
la hiérachie  [la jeʁaʁʃi] 

‘yodels it’ 
‘the yogurt’ 
‘the hierarchy’ 

l’iode       [l jɔd] 
l’yeuse     [l jøz] 
l’hiatus     [l jatys] 

‘the iodine’ 
‘the oak’ 
‘the hiatus’ 

la huée          [la ɥe] 
le huitième    [lə ɥitjɛm] 

‘the booing’ 
‘the eighth’ 

l’huître     [l ɥitʁ] 
l’huile      [l ɥil] 
l’huissier  [l ɥisje] 

‘the oyster’ 
‘the oil’ 
‘the bailiff’ 

le ouistiti      [lə wistiti] ‘the marmoset’ l’ouest      [l wɛst] ‘the west’ 
 

Table 15: Variation in French élision before glide-initial words (Walker 2001, p. 105-106) 
 
 

A pattern of variation thus arises: some, but not all, vowel-initial words block liaison/élision, 

regardless of whether or not the word is <h>-initial. Zuraw & Hayes (2017) analyze variable 

blocking of liaison/élision in a set of 358 Word1-Word2 sequences in which Word2 is glide-

initial or spelled with an initial <h>. The data were extracted from the Google Ngrams corpus for 

French (https://books.google.com/ngrams).  
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 Consider the table below, which features different Word2s and their propensity to trigger 

liaison across Word1s in the corpus: 

 

Word2 liaison rate gloss 
habituel 96.9% ‘habitual-masc’ 
habituelle 99.0% ‘habitual-fem’ 
habitus 97.1% ‘habitus’ 
hache  0.1% ‘axe’ 
hachette  0.0% ‘hatchet; moth sp.’ 
hacienda 78.6% ‘hacienda’ 
haddock  0.0% ‘haddock’ 
Hadès 85.3% ‘Hades’ 
hadji  0.0% ‘haji’ 
Hadrien 98.6% ‘Hadrian’ 

 
Table 16: Individual liaison rates across h-aspiré words (Zuraw & Hayes 2017, p. 525) 

 
 
The analyst might conclude from these data that liaison exhibits both lexical and free variation: 

lexical in the sense that cases like habituelle trigger liaison the great majority of the time, but 

cases like hadji wholly block it; and free in the sense that the majority of words do not feature a 

strictly categorical effect, but rather display propensities only biased towards the extremes — 

and, as can be observed above, items like hacienda are associated with strikingly medial rates. 

Zuraw & Hayes plotted in a histogram, shown below, the different triggering propensities of the 

various Word2s, where the propensity of a particular Word2 was taken to be the average over all 

Word1s it cooccurs with: 
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Figure 11: Zuraw & Hayes’s histogram showing number of Word2’s with particular rate  
(Zuraw & Hayes 2017, p. 524) 

 
 
The different rates form a U-shaped distribution: though most propensities associated to Word2 

cluster around the poles, quite a few Word2s exhibit medial propensity to trigger liaison. These 

data suggest that the allomorphy here is not encoded as categorically applying across words, or 

even as stochastically applying across words at a fixed rate. Rather, the allomorphy occurs across 

words at idiosyncratic rates.  

 In light of the above, we now turn to a corpus investigation of French liaison. This is 

different from Zuraw & Hayes’s study in that the phenomenon they investigate is written (la 

courgette ~ l’aubergine), and they rely on a corpus of written forms; my study, on the other 

hand, draws upon a corpus of spoken liaison, which in what follows should be understood to be 

the phenomenon whereby one spelled form can be pronounced two ways depending on whether 

the following form begins with a vowel (très facile [tʁɛ fasil] ~ très actif [tʁɛ z aktif]). The 
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corpus study is conducted to assess whether words in French are associated with idiosyncratic 

liaison rates. As I will show below, at least the identities of a variety of different Word1s are 

significant predictors of liaison—that is to say, various Word1s undergo liaison at different rates. 

 

4.2 Variation in a corpus of French liaison 
 
I give in this section a brief description of the Phonologie du Français Contemporain database, 

the corpus from which I drew. Additionally, I compare a series of logistic regression models 

fitted to the data, revealing that individual words play a role in predicting rates of liaison, even 

after other factors previously found to affect liaison are controlled for. 

 

4.2.1 Extracting from the PFC corpus 
 
The Phonologie du Français Contemporain (PFC; Durand, Laks & Lyche 2002, 2009; Durand & 

Lyche 2008; http://www.projet-pfc.net/) is a large online database of spoken French which 

contains a sub-database of around 54,000 Word1-Word2 sequences having the graphical form 

<...C#V...>, categorized for whether they undergo liaison. Sequences are also classified for 

whether Word1 was monosyllabic or polysyllabic, for whether the juncture exhibits a pause or 

glottal stop in speech, and, provided the sequence does undergo liaison, for the particular liaison 

consonant. Potential liaison contexts were defined as those that Delattre (1951, 1966) defined as 

potential contexts—Durand and Lyche exclude cases where Word1 is a singular noun, or et, 

following Delattre (1951, 1966)’s findings that for such words liaison is categorically forbidden. 

See Durand & Lyche (2008) for further discussion of the PFC protocol.  

 I extracted all of these sequences from the PFC database, excluding the very few cases  
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(< 1% of the data) marked in the PFC as liaison non-enchainée, uncertain liaison, and epenthetic 

liaison. The extracted PFC data were already classified for factors previously found to 

significantly affect application of liaison, including the identity of the liaison consonant and 

whether the word was mono- or polysyllabic. I further classified the data for parts of speech of 

Word1 and Word2,2 and log frequencies of Word1 and Word2. Log frequencies were further 

scaled for purposes of achieving model convergence: each value for a Word1 was divided by the 

maximal log frequency for Word1 in the corpus; Word2 received the same treatment. This 

brought frequency values for each word into a range between 0 and 1.  

 Following Zuraw and Hayes, I calculated for each of the 184 Word1s occurring 100 or 

more times in the corpus its mean liaison rate, averaging over the Word2s they cooccur with. A 

histogram of the resulting propensities is shown below. 85 Word1’s are categorical undergoers 

and 30 Word1’s are categorical nonundergoers, while 69 Word1’s undergo liaison at medial 

rates.  

 

                                                
2 Part of speech was annotated by retrieving part of speech information of each word from the 
Lexique database (New et al. 2001). In words where the part of speech was ambiguous, the most 
commonly reported part of speech was taken. Words with 20 and more tokens were hand-
checked to verify that that they had the correct part of speech given the construction that they 
were situated in. 
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Figure 12a: Histogram of Word1 rate frequencies 
 
Analogous calculations were made for the 115 Word2s occurring 100 or more times in the 

corpus, plotted in the histogram below:  

 
  

Figure 12b: Histogram showing number of Word2s with particular rate 
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As can be observed in the tables above, my findings replicate Zuraw (2016) and Zuraw & Hayes 

(2017)’s findings, in that the morpheme-specific propensities exhibit an apparent U-shaped 

distribution. The majority of the rates occur at the polls of the scale, though a healthy minority of 

words occur between 10% and 90% on the scale of liaison rates. 

 

4.2.2 A baseline logistic regression model of corpus data on French 
liaison 
 
This section presents a statistical analysis of the factors that condition liaison, with the aim of 

showing that models of liaison are significantly improved by encoding distinct Word1’s with 

different propensities to participate in liaison. I used the glmer function of the lme4 package 

(Bates & Maechler 2011) in R (R Core Development Team 2014) to fit two logistic regression 

models to the liaison data extracted from the PFC corpus: a Baseline Model, which lacked factors 

referring to word identity, but which contains the aforementioned factors previously found to 

condition liaison, including grammatical context, liaison consonant, Word1 syllable count, and 

Word1 frequency; and a Word1 Propensity Model, where Word1 identity is coded as a random 

intercept, i.e., where individual Word1’s (3,462 in total) can be associated with idiosyncratic 

propensities. As I will show, the propensity model performs substantially better according to 

well-established modeling metrics. 

 The logistic regression models here regress over bigram types. Each row of the data set 

includes a unique bigram, its liaison rate calculated as the number of liaised tokens of that 

bigram divided by the total number of tokens of that bigram in the corpus. In all models, the 

dependent variable is the liaison rate of the bigram. Each row also contains information about the 

identity of the liaison consonant, whether Word1 is mono- or polysyllabic, part of speech of 
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Word1, part of speech of Word2, frequency information about Word1, frequency information 

about Word2, the identity of Word1, and the identity of Word2.  

 The Baseline Model contained six factors, all coded as main effects: cons, syls, 

W1POS, W2POS, W1freq, and W2freq. cons takes on the five possible values for the identity 

of the liaison consonant given in the corpus: n, p, r, t, z. syls takes 0 or 1 depending on whether 

Word1 is mono- or polysyllabic, respectively. W1POS and W2POS takes on the following values: 

(20a) W1POS: ADV: adverb 
   CON: conjunction 
   DET: determiner 
   NOM: noun 
   NUM: number 
   PRE: preposition 
   PRO: pronoun 
   VER: verb 
 
(20b) W2POS: ADV: adverb 
   CON: conjunction 
   DET: determiner 
   NOM: noun 
   NUM: number 
   ONO: name (person or location) 
   PRE: preposition 
   PRO: pronoun 
   UTT: utterance (coded “euh”, “oe” in the PFC) 
   VER: verb 
 
The factors in the Baseline Model are thus defined as follows: 

(21) cons:   identity of the liaison consonant  
 
 syls:   0 if Word1 is monosyllabic, else 1 
 
 W1POS:  part of speech of Word1 
 
 W2POS:  part of speech of Word2 
 
 W1freq:  log of Word1 token frequency across the corpus, divided by the  
    maximum log value of token frequency ranging over all Word1’s  
    in the corpus  
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 W2freq:  log of Word2 token frequency in the corpus, divided by the   
    maximum log value of token frequency ranging over all Word2’s  
    in the corpus 
  
 The results of the Baseline Model are given below. The factors were compared against a 

baseline (intercept) of Word1-Word2 pairs that had liaison consonant n, were monosyllabic, had 

Word1 and Word2 as adjective part of speech, and had a scaled log-frequency of 0. The results 

given below indicate that the factors given above are significant predictors of liaison rate, in line 

with prior research that found significant effects for these factors (de Jong 1994, Mallet 2008), 

with the exception of W2freq—see below for further discussion.  

 The graph below suggests a substantial effect of liaison consonant identity on liaison. We 

include t, z, n, and r, each of which occurs across more than 100 bigram types in the dataset. The 

x-axis gives consonant and, in parenthesis, number of bigram types with Word1 ending in that 

consonant.  

 

  

Figure 13a: different liaison rates based on final consonant of Word1 
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The effect of consonant identity is significant in the Baseline Model: const and consz, for 

example, receive negative coefficients relative to baseline consn, confirming that liaison rates 

associated with [t] and [z] are associated with overall lower rates than [n] (Mallet 2008). 

 

Coefficients: 
 
            Estimate Std. Error z value Pr(>|z|)    
(Intercept:    3.64     0.29     12.36   <0.001   *** 
consn) 
 
consr         -0.73     0.34     -2.10    0.035   *   
const         -1.11     0.17     -6.50   <0.001   *** 
consp         -1.23     0.40     -3.04    0.002   **  
consz         -1.27     0.13     -9.49   <0.001   *** 
 
 

Table 17a: Baseline Model results: consonant identity factor 
 
 

 Word1 syllable count also substantially affects liaison rate in my data, as the graph below 

reveals—monosyllabic Word1s are associated with higher liaison rates than polysyllabic 

Word1s. 

 

   

Table 13b: different liaison rates based on Word1 syllable count 
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In the Baseline Model, syls receives a negative coefficient, confirming Mallet (2008)’s finding 

that polysyllabic words are associated with lower levels of liaison. 

 

Coefficients: 
 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept:    3.64     0.29     12.36   <0.001   *** 
syls0) 
 
syls1         -1.67     0.11    -14.68   <0.001   *** 
 
 

Table 17b: Baseline Model results: Word1 syllable count factor 
 
 

 Word1 and Word2 part of speech are significant predictors of liaison, in line with prior 

research as well (Durand & Lyche 2008). Table Xa gives PFC rates for grammatical contexts 

stated by Durand & Lyche (2008) to be associated with categorical liaison—liaison rates are high 

in these contexts, but nevertheless not at ceiling (see Mallet (2008), who also finds variable 

liaison in contexts traditionally considered to be associated with categorical application). Table 

Xb gives PFC rates for grammatical contexts stated by Durand & Lyche (2008) to be associated 

with variable liaison, confirming their findings. 
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Figure 13c: PFC rates for grammatical contexts stated to be associated with categorical 
application in Durand & Lyche (2008) 

 

 

Figure 13d: PFC rates for grammatical contexts stated to be associated with variable 
application in Durand & Lyche (2008) 

 

In the Baseline Model, for example, we find that determiner status, relative to adjective status, 

significantly increases liaison rate by observing the positive coefficient, 1.1529, of the 

significant factor W1POSDET; on the other hand, we find that conjunction status significantly 

decreases liaison rate by observing the negative coefficient, -2.9465, of the significant factor 

W2POSCON. The coefficients span a range of values, suggesting that different grammatical 
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categories are associated with different liaison rates distribute across a spectrum. This can be 

observed below (see (20) above for codes for the different levels): 

 

Coefficients: 
 
            Estimate Std. Error z value Pr(>|z|)      
(Intercept:   3.64      0.29     12.36   <0.001   *** 
W1POSADJ, 
W2POSADJ) 
 
W1POSPRO      1.19      0.19      6.05   <0.001   *** 
W1POSDET      1.15      0.19      5.94   <0.001   *** 
W1POSNUM      0.73      0.25      2.85    0.004   **  
W1POSPRE      0.40      0.24      1.66    0.095   .   
W1POSCON     -1.52      0.29     -5.16   <0.001   *** 
W1POSADV     -1.70      0.17     -9.53   <0.001   *** 
W1POSNOM     -2.00      0.17    -11.22   <0.001   *** 
W1POSVER     -2.59      0.18    -14.11   <0.001   *** 
 
W2POSNOM      0.75      0.13      5.55   <0.001   *** 
W2POSVER     -0.47      0.12     -3.83   <0.001   *** 
W2POSNUM     -1.55      0.66     -2.34    0.019   *   
W2POSONO     -2.05      0.42     -4.84   <0.001   *** 
W2POSPRE     -2.35      0.22    -10.37   <0.001   *** 
W2POSUTT     -2.41      0.35     -6.74   <0.001   *** 
W2POSDET     -2.46      0.33     -7.31   <0.001   *** 
W2POSCON     -2.94      0.33     -8.89   <0.001   *** 
W2POSADV     -3.01      0.24    -12.36   <0.001   *** 
W2POSPRO     -3.40      0.31    -10.67   <0.001   *** 
 

Table 17c: Baseline Model results: part of speech factors for Word1 and Word2 
 
 

 Lastly, W1freq is a significant predictor of liaison, at least in the Baseline Model. The 

graph below shows a trend toward higher liaison rates when Word1 is more commonly occurring 

in the corpus. Values of the x-axis in the table consist of intervals: 0.1, for example, represents 

liaison rate across Word1’s with a scaled log frequency between 0 and 0.1; 0.2 represents the rate 

across Word1’s with a scaled log frequency between 0.1 and 0.2; and so on. 
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Figure 13e: liaison rate based on Word1’s scaled log frequency 
 
 

In the Baseline model, we observe from the positive coefficient for W1freq (0.7322) that 

higher frequencies of Word1 encourage liaison, confirming prior findings (de Jong 1994; 

Fougeron 2001a, b; Kilbourn-Ceron 2017); W2freq, on the other hand, is not a significant 

predictor according to the complete corpus and the model.3 

 

 

 

 

 
                                                
3 Though Kilbourn-Ceron (2017) finds that higher Word2 frequencies are associated with higher 
rates of liaison in the plural noun-adjective and adjective-noun contexts, we do not find a Word2 
frequency trend across the PFC dataset overall (at least when we consider frequency of Word2 
occurring within the PFC specifically). This should not suggest that the former results are 
invalid—though I do not take up this work here, more research should be conducted to assess 
whether Word2 frequency conditions variation within particular grammatical contexts. 
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Coefficients: 
 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept:   3.64     0.29      12.36   <0.001    *** 
W1freq0, 
W2freq0) 
 
W1freq        0.73     0.19       3.80   <0.001    *** 
W2freq       -0.20     0.20      -1.00    0.317  
 

Table 17d: Baseline Model results: factors for scaled log frequency 
 
 

 Recall from Section 3.2 that the Akaike Information Criterion scores models based on fit 

to the data and number of parameters, with a lower score being better. The current model’s AIC 

score is 4119.3. 

 Taking stock, we have constructed a logistic regression model of liaison that incorporates 

both phonological and frequency-based conditioning factors previously found to condition 

liaison, finding that almost all of them are highly significant predictors. We now turn to fitting a 

mixed-effects logistic regression model with Word1 as a random intercept. If the following 

model were to substantially outperform the Baseline Model—the latter of which already contains 

a variety of factors that significantly condition liaison—then this would lends strong support to 

the hypothesis that variation in liaison is at least in part lexically conditioned, even after taking 

into account other potential conditioning factors. 

 

4.2.3 A mixed-effects logistic regression model of French liaison with 
lexical propensities 
 
 The Word1 Propensity Model contains the factors in the Baseline Model as fixed 

effects—namely, cons, syls, W1POS, W2POS, W1freq, and W2freq—and Word1 identity, 

coded as a random intercepts for the different Word1s in the corpus (e.g., Word1=très). The 
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results for Word1 Propensity Model indicate that various levels of most of the main effects are 

significant predictors of liaison rate, in line with prior findings. The effect of consonant identity 

survives even when Word1 is taken to be a random effect: r, t, and z are found to significantly 

decrease liaison rate relative to n, the consonant identity in the intercept condition. 

 

Random effects: 
 Groups Name        Variance Std.Dev. 
 W1     (Intercept) 3.618    1.902    
Number of obs: 11398, groups:  W1, 3158 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept:     4.02     0.55     7.20    <0.001   *** 
consn)  
  
consp          -1.06     1.34    -0.78     0.431 
consz          -2.12     0.34    -6.15    <0.001   ***     
consr          -2.13     0.71    -2.99     0.002   **  
const          -2.16     0.42    -5.12    <0.001   *** 
 

Table 18a: Word1 Propensity Model results: consonant identity factor 
 
 

Syllable count for Word1 was also a significant predictor, with polysyllabicity being associated 

with lower rates of liaison: 

 

Random effects: 
 Groups Name        Variance Std.Dev. 
 W1     (Intercept) 3.61     1.90    
Number of obs: 11398, groups:  W1, 3158 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept:     4.02     0.55       7.20  <0.001   *** 
syls0)  
  
syls           -1.82     0.20      -8.87  <0.001   *** 
 

Table 18b: Word1 Propensity Model results: Word1 syllable count factor 
 



 75 

Various parts of speech of Word1 and Word2 were also significant predictors of liaison: 

 

Random effects: 
 Groups Name        Variance Std.Dev. 
 W1     (Intercept) 3.61     1.90    
Number of obs: 11398, groups:  W1, 3158 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept:    4.02     0.55       7.20  <0.001   *** 
POS1ADJ, 
POS2ADJ)  
 
POS1NUM        2.26     0.57       3.92  <0.001   *** 
POS1PRO        1.27     0.50       2.52   0.011   *   
POS1DET        0.17     0.51       0.33   0.736     
POS1PRE        0.14     0.60       0.24   0.806     
POS1CON       -0.71     0.91      -0.77   0.438     
POS1ADV       -2.54     0.48      -5.30  <0.001   *** 
POS1NOM       -2.67     0.31      -8.48  <0.001   *** 
POS1VER       -3.19     0.36      -8.71  <0.001   *** 
 
POS2NOM        1.03     0.17       5.97  <0.001   *** 
POS2VER       -0.00     0.16      -0.05   0.954     
POS2NUM       -1.19     0.88      -1.35   0.175   
POS2UTT       -2.38     0.42      -5.56  <0.001   *** 
POS2PRE       -2.42     0.28      -8.57  <0.001   *** 
POS2ONO       -2.53     0.52      -4.84  <0.001   *** 
POS2DET       -2.65     0.43      -6.11  <0.001   *** 
POS2ADV       -2.79     0.29      -9.59  <0.001   *** 
POS2CON       -3.19     0.41      -7.75  <0.001   *** 
POS2PRO       -3.46     0.38      -9.08  <0.001   *** 
 

Table 18c: Word1 Propensity Model results: part of speech factors for Word1 and Word2 
 
 

Finally, the Word1 frequency measure from the Baseline Model is not a significant predictor of 

liaison when Word1 identity is taken as a random effect. As in the Baseline Model, Word2 

frequency does not have a significant effect either: 
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Random effects: 
 Groups Name        Variance Std.Dev. 
 W1     (Intercept) 3.618    1.902    
Number of obs: 11398, groups:  W1, 3158 
 
Fixed effects: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept:    4.02       0.55     7.20   <0.001   *** 
W1freq0, 
W2freq0)  
  
W1freq         0.28       0.41     0.67    0.500   
W2freq        -0.23       0.24    -0.94    0.343  
 

Table 18d: Word1 Propensity Model results: factors for scaled log frequency 
 
 

 The Word1 Propensity Model explains a good deal of the variation found in liaison: its 

AIC is 3566.7. On the other hand, the Baseline Model had an AIC of 4119.3. Recall that, in 

comparing two models A and B of the same data set, B outperforms A if B receives an AIC that is 

at least ten points lower than A’s (Burnham & Anderson 2004). The Word1 Propensity Model 

scored over 550 points lower than the Baseline Model. Thus the propensity model performs 

vastly better than both the Baseline Model and the binary-scale model. This suggest that lexical 

factors do indeed play a role in conditioning variation (Ågren 1973, de Jong 1994, Mallet 2008) 

even after other phonological factors previously proposed to condition liaison has been taken 

into account. Moreover, it validates the usage of lexical propensities to account for lexical 

idiosyncrasies in French liaison.  

 Corpus investigations conducted thus far have not uncovered an effect of Word2 identity 

on liaison, at least for the PFC data. I conjecture that the null result is merely an artifact of the 

smalls size of the corpus—after all, Zuraw & Hayes (2017) found in their data a gradient effect 

of the identities of glide-initial and <h>-initial words on the likelihood of liaison/élision. Further 
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investigation should be conducted to assess whether the null result is general across a broader set 

of data. 

 

4.3 Summary 

 Here we have not only confirmed prior findings that liaison is conditioned 

phonologically, but have obtained corpus-based evidence that it is also conditioned lexically. In 

particular, our PFC investigation uncovered that different Word1s idiosyncratically condition the 

rate at which a bigram undergoes liaison—even after controlling for other phonological and 

frequency-based factors previously found to condition liaison—with rates spanning across a 

liaison propensity spectrum. While Zuraw & Hayes (2017) show that liaison/élision allomorphy 

is conditioned by the identities of different Word2s in their written data, I have shown that 

Word1 conditions liaison in a liaison corpus spoken by French adults, strengthening the case for 

morpheme-specific propensities. In light of these findings, a number of questions arise. Do 

speakers internalize these idiosyncratic rates? Moreover, are they capable of internalizing rates 

associated with particular Word1s, or do they internalize rates solely on a bigram-by-bigram 

basis? We now turn to a nonce probe experiment to address these questions. 
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Chapter 5: 

Experimental evidence for  
speaker internalization of lexical propensities 

 
 

 Typically a variable process is said to vary freely in some set of words—that is, apply 

optionally to those words—or vary lexically: whether the process applies or not differs word-by-

word, but any given word has a fixed pronunciation. This picture differs from what we observe 

in French liaison. Recall from the PFC corpus investigation that a healthy variety of words 

display gradient lexical propensities to undergo French liaison, patterning along an entire 

spectrum ranging from complete non-undergoers to complete undergoers. The effect seemingly 

cannot be chalked up to factors previously found to affect liaison, considering that a large effect 

of word identity was found in the corpus study even when these factors were controlled for. 

Hence, one can ask: do learners internalize the gradient effect of word identity? That is, do 

speakers internalize word-specific rates of liaison? The answer would have significant 

ramifications for phonological theory: it would challenge theories in which individual 

morphemes are coded with values on a binary scale (e.g., [+/- Rule]; Walther & Wiese 1999; 

Anttila 1997, Pater 2000, Becker 2009, Jurgec 2016, among others); but it would support 

theories in which the triggering or undergoing status of individual morphemes are implemented 

on an entire spectrum (e.g., [0.7 Rule]; Moore-Cantwell & Pater 2016, Smolensky & Goldrick 

2016, Zuraw 2016, Zuraw & Hayes 2017). Furthermore, while speakers may very well possess 

knowledge about the behavior of whole, listed bigrams, evidence that French speakers track 

liaison on a word-by-word basis would suggest that they acquire lexical idiosyncrasies on a 
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word-by-word basis, and not only as a set of whole, listed bigrams (Zuraw 2000, 2010; Bybee 

2001, 2002; cf. Steriade 1994, 1999 et seq). 

 The present study assesses whether speakers can internalize word-specific rates of 

variable liaison. Consider the idiosyncratic behavior of various adverbs when they come before 

vowel-initial adjectives. de Jong (1994) conducted a corpus study of liaison using the Orléans 

corpus (Lonergan et al. 1974, Blanc & Biggs 1971, Bergounioux et al. 1992, Baude & Dugua 

2011, inter alia), with data coming from speakers located in Orléans, France. According to 

Lonergan et al.’s catalog, there are 487 recordings of interviews, conferences, spontaneous 

speech from the street, and more, totaling to 315 hours of recorded speech. From this corpus, de 

Jong lists the following rates for très, plus, bien, and pas, which appear to pattern across a 

spectrum of propensity to undergo liaison: 

 

Word1 Gloss Rate 
très ‘very’ 0.99 
plus ‘more’ 0.96 
bien ‘very’ 0.82 
pas ‘not’ 0.07 

 
Table 19a: Liaison rates for four different adverbs as reported in de Jong (1994) 

 
 

Mallet (2008), drawing from PFC liaison data in or before 2008, list the following rates for très, 

plus, bien, and pas in his study: 

 
 

Word1 Gloss Rate 
très ‘very’ 0.97 
plus ‘more’ 0.64 
bien ‘very’ 0.43 
pas ‘not’ 0.01 

 
Table 19b: Liaison rates for four different adverbs as reported in Mallet (2008) 
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Furthermore, Côté (2013), drawing from a subset of annotated liaison data in the PFC in or 

before 2013, lists the following rates for six adverbs:4 

 

Word1 Gloss Tokens Rate 
très ‘very’ 25 0.84 
plus ‘more’ 22 0.59 
trop ‘too’ 7 0.14 
pas ‘not’ 163 0.01 
mieux ‘better’ 10 0.00 
moins ‘less’ 19 0.00 

 
Table 19c: Liaison rates for six different adverbs as reported in Côté (2013) 

 
 

These tables illustrate that words with very similar profiles—all of them monosyllabic adverbs, 

most of them with liaison consonant z—can bear very different liaison rates. Bien and trop have 

different liaison consonants—n and p, respectively—but their rates could not differ from the 

others based on consonant identity alone: n is associated with liaison rates higher than z (Mallet 

2008), and yet très and plus liaise more than bien in both de Jong (1999) and Mallet (2008)’s 

investigations; and p rarely liaises, but of the seven tokens of trop given in Côté (2013), one of 

them liaises, yet mieux and moins, with even more tokens, never liaise in her investigation. 

Finally, in my investigation of the PFC corpus, five adverbs show different rates when they come 

before adjectives:  

 

 

 

                                                
4 In particular, Côté draws from liaison data that were at the time of the study not only 
transcribed, but annotated for various phonological, morphosyntactic, and sociolinguistic 
properties by the PFC creators themselves. 
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Word1 Tokens Rate (%) 
très 2825 0.90 
bien 129 0.85 
plus 117 0.79 
moins 19 0.26 
pas 246 0.00 

 
Table 19d: PFC liaison rates for five different adverbs 

 

The rates from the PFC corpus are overall similar to those found in other corpora, with a couple 

exceptions: though in my investigation bien liaises somewhat more than plus, in de Jong (1994) 

and Mallet (2008)’s studies plus liaises more than bien, and in fact liaises nearly as much as très 

in de Jong (1994); in my investigation moins liaises more than pas, but rates for moins are near 

zero in the other studies. 

 Considering how similar the rates are across corpora, it seems eminently plausible that 

speakers internalize the idiosyncratic rates of the different adverbial words discussed above. We 

thus investigate the psychological reality of liaison rates for the five words in Table 19d. 

Native speakers of French living in Paris were targeted to participate in a nonce probe task 

(Berko 1958) to assess whether speakers internalize these rates. 

 

5.1 Experiment 1: Testing for the internalization of lexical 
propensities associated with très, plus, and pas 
 
5.1.1 Task 

Critical experiment trials consisted of adverb-adjective bigrams, where the adverb was taken 

from one of très (‘very’), plus (‘more’), and pas (‘not’), and the adjective was a vowel-initial 
                                                
5 Another 1,960 of tokens with très were followed by the same Word2, inquiet, as in the bigram 
très inquiet, ‘very worried’. (1,875 of these tokens liaised, for a bigram rate of roughly 0.95.) If 
we exclude cases of très inquiet from the token count for très, then we get 262 tokens total, 
roughly the same as pas. 
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nonce form. During each trial, participants read two carrier sentences, the first one introducing 

the nonce adjective and the second one introducing the whole bigram. They were then exposed 

two recordings of the bigram: one with the liaison form of the adverb, and one with the non-

liaison form. The participant was then asked if they preferred the liaison form or the non-liaison 

form of the adverb, and then was asked to rate the two recordings on a scale from 1 to 5 (Scholes 

1966; see also Zuraw 2000 for a similar design). The order in which the two pronunciations were 

given was randomized across trials. A snapshot of a single trial is given below, both in English 

and French: 

 

  The young man who just moved in is éxassible. He is even très éxassible.  
  
   [⊳]!      [⊳]!  
 
 Which option sounds better? Please keep in mind that this isn’t a French competence exam!  

 Don’t think too hard. Simply answer what you feel you would do in each case —  

 there’s no right answer. 

   [A]      [B]  

 How would you rate these options on a scale? 

 Definitely [A]               Unsure    Definitely [B] 

  [1]  [2]  [3]  [4]  [5] 

 

Figure 14a: trial snapshot (English translation) 
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  Le jeune homme qui vient d’emménager est éxassible. Il est même très éxassible.  
  
   [⊳]!      [⊳]!  
 
 Quel enregistrement préférez-vous ? Rappelez-vous que ceci n’est pas un test de maîtrise du français !  

 N’y réfléchissez pas trop. Répondez simplement en fonction de ce que vous diriez dans ce cas –  

 il n’y a pas de bonne ou mauvaise réponse ! 

   [A]      [B]  

 Et sur une échelle ? 

 Definitely [A]               Unsure    Definitely [B] 

  [1]  [2]  [3]  [4]  [5] 

 

Figure 14b: trial snapshot (French translation) 

 
If participants replicated in their assessments the distinctions found in the corpus rates, then this 

would suggest that speakers internalize word-specific rates of French liaison; that is, they acquire 

knowledge of individual lexical propensities to undergo a variable phonological process. 

 

5.1.2 Stimuli 

The experiment tests for whether speakers internalize the effect of word identity across five 

adjective modifiers, when they precede nonce adjectives. All stimuli were recorded by a native 

French speaker in her late twenties who lived in Paris for several years. The three items tested 

were très (‘very’), plus (‘more’), and pas (‘not’), which yield different rates in the corpus 

studies, as shown in the table and graph below: 
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     très, ‘very’ plus, ‘more’ pas, ‘not’ 
  de Jong (1994)  99%  96%  7% 
  Mallet (2008)  97%  64%  1% 
  My study, PFC 95%  79%  0%   
  AVERAGE:  97%  80%  3% 
 

Table 20: corpus liaison rates for très, plus, and pas 
 

The literature categorizes each of these words as adverbs (cf. Côté 2011, 2013). All three words 

are monosyllabic and end in the same liaison consonant, ruling out syllable count and consonant 

identity as explanations for the difference in rate. Word1 frequency and liaison rate cannot alone 

explain the three different rates: though plus is much less frequent than très, pas is much more 

frequent than plus, and yet has a much lower liaison rate. This leaves word identity as a viable 

hypothesis for differences in rate. 

 Participants heard each of these words before eighteen nonce adjectives, each of which 

had an adjectival suffix. Two of these nonce adjectives were consonant-initial, and were used 

only to assess whether the participant internalized the correct environment of liaison. The other 

sixteen were vowel-initial — four groups of four words with the same initial vowel. Each trial 

consisted of an adverb-nonce adjective bigram, totaling to 3 × 18 = 54 bigrams/trials. The stimuli 

are presented below. 

 

 

 

 

 

 

 



 85 

 

 
Table 21: Experiment 1 stimuli 

 

5.1.3 Participants 

51 participants were recruited from Amazon’s Mechanical Turk (cf. Schnoebelen & Kuperman 

2010, Sprouse 2011, Gibson, Piantadosi & Fedorenko 2011), a web application that provides 

access to survey-based experiments to participants located around the globe. The study was 

advertised as a French language survey, targeting speakers located exclusively in Paris, France. 

Each participant was directed to the survey, which was conducted over Experigen (Becker & 

Levine 2013), an online platform for survey-based experiments. Speakers were paid €2.75 for 

their participation. The average participant took about ten minutes to finish the survey. Other 

Adv. IPA  Nonce adj. IPA Status 
très tʁɛ/tʁɛz arvant aʁvɑ ̃

V-initial 
(critical) 

plus ply/plyz agrivieux agʁivjø 
pas pa/paz amagné amaɲe 
  altimable altimabl 
  énantant enɑ̃tɑ ̃
   éprieux epʁijø 
   émoivré emwavʁe 
   écastable ekastabl 
   impergeant ɛ̃pɛʁʒɑ ̃
  invinieux ɛ̃vinjø 
   introché ɛ̃tʁɔʃe 
   ingroutable ɛ̃grutabl 
   autrillant otʁijɑ ̃
   auquieux okijø 
   aupristé opriste 
   auvissable ovisabl 
   carvassant kaʁvasɑ ̃

C-initial    persénible pɛʁsenibl 
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than location, no prerequisites were put in place to exclude Mechanical Turkers from 

participating. After taking the survey, speakers were asked for their age, gender, whether they 

have hearing or any other language-related impairments, and whether they were a native speaker 

of French. Post hoc criteria for exclusion were as follows: the participant indicated non-native 

speaker status; the data reveal that the participant chose the liaison form before consonant-initial 

nonces on more than one trial; the participant chose the liaison form before the great majority of 

vowel-initial nonces — in particular, they chose the non-liaison form before at most two vowel-

initial nonces. After applying these criteria, 2 participants were excluded for indicating non-

native speaker status, 5 for indicating an impairment, 6 for choosing a liaison form before a 

consonant-initial nonce more than once, and 10 for choosing a liaison form in the vast majority 

of trials with vowel-initial nonces (≤ 2 exceptions out of 48). This left 28 participants who 

displayed evidence for variable liaison. 

 

5.1.4 Results 

We first give the different corpus rates given in three studies—de Jong (1994)’s study, Mallet 

(2008)’s study, and mine, covering the PFC corpus—followed by the results of forced-choice 

part of the experiment. We find that the speakers overall replicated the distinctions found in the 

corpora: 

    très, ‘very’        plus, ‘more’     pas, ‘not’ 
de Jong (1994)   99%         96%      7% 
Mallet (2008)   97%         64%      1% 
My study, PFC  95%         79%      0%   
AVERAGE:   97%         80%      3% 
 

Table 22: corpus liaison rates for très, plus, and pas 
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Figure 15: Forced-choice Experiment 1 liaison rates for très, plus, and pas 

 
 However, experiment rates were much higher than corpus rates overall. In particular, the 

experiment results reveal a gradient tendency for pas to liaise — a 69% liaison rate in the binary 

choice task — even though its corpus rates in the de Jong and Mallet studies and in the PFC 

stand between 0% and 7%.Why might this have occurred? There are a number of possibilities. I 

conjecture that this is due to the prescriptive pressure to maintain liaison in formal environments 

(e.g., Moisset 2000, Armstrong 2001 on style/register as a conditioner), because the stimuli were 

read by participants before any judgments were made6, and because speakers knew that this 

experiment was targeting their knowledge of liaison. Moreover, the contrast between très, plus, 

and pas is more compressed in the experimental results than in the corpus. I conjecture that the 

compression effect here is due to the same reasons given in Hayes, Zuraw et al. (2009), who also 

obtained the this effect in their experiment. Hayes & Londe (2006) present results of a nonce 

probe study into Hungarian vowel harmony, showing that speakers closely frequency match to 
                                                
6 Thanks to Myriam Lapierre for raising this possibility. 
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statistical regularities found within the lexicon (see Section 2.2.2). In this experiment, speakers 

were asked to volunteer responses on their own. Hayes, Zuraw et al. (2009) reconduct the nonce 

probe experiment, and largely replicate Hayes & Londe (2006)’s findings, but obtain nonce rates 

that are compressed relative to the corpus rates and to the rates of the prior experiment. In Hayes, 

Zuraw et al.’s experiment, speakers were offered potential responses, and the investigators 

surmise that the compression effect is due to speakers being more likely to accept an unusual 

form when being presented with it, but less likely to volunteer it. 

 Are the differences statistically significant? To check this, a mixed-effects logistic 

regression model was fit to the results using the glmer function of the lme4 package in R, 

containing Word1 coded as a fixed effect (plus as reference level), and random intercepts for 

nonce adjective and participant, and a random slope relating participant to Word1. Model output 

is given in the table below. Relative to reference level plus—which undergoes liaison 

significantly more than chance—très undergoes liaison only slightly more, while pas undergoes 

liaison significantly less. Though the contrast between très and plus are not significant in this 

experiment, the results nevertheless mirror the distinctions obtained in the corpus studies: liaison 

was preferred more with très (85%) than plus (81%), and more with plus than pas (69%). The 

variance of the random intercept for nonce was very close to zero, suggesting that nonce 

adjectives did not differ substantially in their propensity to trigger liaison. The variances of the 

random slope for participant were nonzero, suggesting variation in individual participants’ 

contrasts between the five Word1’s, as well as participant-specific variation in the results overall.  
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 Random effects Variance 
 Nonce   0.01 
 Participant: plus 2.84 
 Participant: très 2.66 
 Participant: pas 1.02 
 
 Fixed effects  Coef.  S.E.  z  p   
 plus (ref.)  2.07  0.37  5.58  < 0.001 
 
 très   0.06  0.32  0.20  0.84 
 pas   -1.13  0.38  -2.93  0.003 
 

Table 23: output of a mixed-effects logistic regression model of  
Experiment 1 forced-choice task results 

 
 

 The results of the five-point scale, given below, also generally confirm that speakers 

track lexical propensities for liaison: 

 

 

Figure 16: Five-point scale Experiment 1 liaison scores for très, plus, and pas 
 
 

In particular, très and plus group together above pas. A mixed-effects linear regression model 

was fit to the results using the lmer function of the lme4 package in R, containing Word1 coded 

as a fixed effect (with plus as reference level, to assess whether contrasts with neighboring words 
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are significant), and random intercepts for nonce adjective and participant, and a random slope 

relating participant to Word1. Model output is given in the table below. Relative to reference 

level plus—whose liaison form is rated significantly higher than chance—très undergoes liaison 

only slightly more, while pas undergoes liaison significantly less. Note that t-values with 

absolute magnitude greater than 2 indicate significance of a predictor. The variance of the 

random intercept for nonce was, again, very close to zero, suggesting that nonce adjectives did 

not differ substantially in their propensity to trigger liaison. The variances of the random 

intercept and slope for participant were nonzero, again suggesting variation in individual 

participants’ contrasts between the five Word1’s, as well as participant-specific variation in the 

results overall. 

 

 Random effects Variance 
 Nonce   0.01 
 Participant: plus 0.48 
 Participant: très 0.41 
 Participant: pas 0.13 
 
 Fixed effects  Coef.  S.E.  t    
 plus (ref.)  3.75  0.14  26.39  
 
 très   0.03  0.10  0.32   
 pas   -0.31  0.14  -2.16   
 

Table 24: output of a mixed-effects linear regression model of  
Experiment 1 ratings study results 

 
  
 Overall, these results suggest that learners do not merely internalize fixed pronunciations 

together with general trends across the lexicon; rather, they also track rates in words with 

vacillating pronunciations. It is not particularly surprising that très and plus lack a significant 

contrast, considering that de Jong’s (1994) study finds close corpus rates between the two words. 
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What is more surprising is the experimental result for pas— a 69% liaison rate in the binary 

choice task — even though corpus rates are very low. This further substantiates that speakers’ 

knowledge of liaison applicability to different words is quantitative in nature (cf. Zuraw & Hayes 

2017), despite the binary patterning of spoken language data across a subset of words (e.g., pas). 

We now probe further into French speakers’ knowledge of lexical gradience, assessing whether 

they internalize the distinct propensities of five different adverbs: très, plus, bien, moins, and 

pas. 

 

5.2 Experiment 2: Testing for the internalization of lexical 
propensities associated with très, plus, bien, moins, and pas 
 
5.2.1 Task 

The task was identical to that of the previous experiment. 

  

5.2.2 Stimuli 

The experiment tests for whether speakers internalize the effect of word identity, now across five 

different adjective modifiers when they precede nonce adjectives. The stimuli were recorded by 

the same speaker who recorded for Experiment 1. The three items tested were très (‘very’), plus 

(‘more’), and pas (‘not’), which yield different rates in the corpus studies:  

 

   très, ‘very’ plus, ‘more’ bien, ‘well’ moins, ‘less’ pas, ‘not’ 
Mallet (2008)  97%  64%  43%  —  1% 
de Jong (1994)  99%  96%  82%  —  7% 
My study, PFC 95%  79%  85%  26%  0%   
AVERAGE:  97%  80%  70%  26%  3% 
 

Table 25: corpus liaison rates for très, plus, bien, moins, and pas 
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Figure 17: corpus liaison rates for très, plus, bien, moins, and pas 
 
 

The literature categorizes each of these words as adverbs (cf. Côté 2011, 2013). All three words 

are monosyllabic and end in the same liaison consonant, ruling out syllable count and consonant 

identity as explanations for the difference in rate.  Finally, the direct but nonetheless weak 

relationship between Word1 frequency and liaison rate cannot alone explain the three different 

rates: though plus is much less frequent than très, pas is much more frequent than plus, and yet 

has a much lower liaison rate. This leaves word identity as a viable hypothesis for differences in 

rate. 

 Participants heard each of these words before eighteen nonce adjectives, each of which 

had adjectival suffixes. Two of these nonce adjectives were consonant-initial, and were used 

only to assess whether the participant internalized the correct environment of liaison. The other 

sixteen were vowel-initial — four groups of four words with the same initial vowel. Each trial 

consisted of an adverb-nonce adjective bigram, totaling to 3 × 18 = 54 bigrams/trials. The stimuli 
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are presented below: we have the five attested Word1s, plus the same stimuli for Word2 used in 

Experiment 1. 

 

 

 
Table 26: Experiment 2 stimuli 

 

5.2.3 Participants 

72 participants located in Paris, France were recruited from Amazon’s Mechanical Turk, and 

directed to the Experigen survey. Speakers were paid €3.25 for their participation. The average 

participant took about fifteen minutes to finish the survey. Again, other than location, no 

Adv. IPA  Nonce adj. IPA Status 
très tʁɛ/tʁɛz arvant aʁvɑ ̃

V-initial 
(critical) 

plus ply/plyz agrivieux agʁivjø 
bien bjɛ̃/bjɛn amagné amaɲe 
moins mwɛ̃/mwɛ̃z  altimable altimabl 
pas pa/paz  énantant enɑ̃tɑ ̃
   éprieux epʁijø 
   émoivré emwavʁe 
   écastable ekastabl 
   impergeant ɛ̃pɛʁʒɑ ̃
   invinieux ɛ̃vinjø 
   introché ɛ̃tʁɔʃe 
   ingroutable ɛ̃grutabl 
   autrillant otʁijɑ ̃
   auquieux okijø 
   aupristé opriste 
   auvissable ovisabl 
   carvassant kaʁvasɑ ̃

C-initial    persénible pɛʁsenibl 
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prerequisites were put in place to exclude Mechanical Turkers from participating, and after they 

took the survey, they were asked for their age, gender, whether they have hearing or any other 

language-related impairments, and whether they were a native speaker of French. Post hoc 

criteria for exclusion were as in the first experiment. 6 participants were excluded for indicating 

non-native speaker status, 1 for indicating an impairment, 9 for choosing a liaison form before a 

consonant-initial nonce more than once, and 14 for choosing a liaison form in the vast majority 

of trials with vowel-initial nonces (≤ 2 exceptions out of 80). This left 42 participants who 

displayed evidence for variable liaison. For one participant, judgments were recorded in all but 

one frame, for unknown reasons; the rest of this participant’s data were included in the analysis.  

 

5.2.4 Results 

We first give the different corpus rates given in three studies—de Jong (1994)’s study, Mallet 

(2008)’s study, and mine, covering the PFC corpus—followed by the results of forced-choice 

part of the experiment. We find, once again, that the speakers overall replicated the distinctions 

found in the corpora: 

 

   très, ‘very’ plus, ‘more’ bien, ‘well’ moins, ‘less’ pas, ‘not’ 
Mallet (2008)  97%  64%  43%  —  1% 
de Jong (1994)  99%  96%  82%  —  7% 
My study, PFC 95%  79%  85%  26%  0%   
AVERAGE:  97%  80%  70%  26%  3% 
 

Table 27: corpus liaison rates for très, plus, bien, moins, and pas 
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Figure 18: Forced-choice Experiment 2 liaison rates for très, plus, bien, moins, and pas 
 
 

Again, experiment rates were overall higher and more compressed than corpus rates (see Section 

5.1.4 for discussion as to why this might be the case). A mixed-effects logistic regression model 

was fit to the results using the glmer function of the lme4 package in R, containing Word1 

coded as a fixed effect, and random intercepts for nonce adjective and participant, and a random 

slope relating participant to Word1. I present results first with plus coded as reference level, and 

then with moins coded as reference level, to assess whether plus and moins differ significantly in 

their results relative to their neighboring words. Model output is presented in the tables below. 

Relative to plus—which undergoes liaison significantly more than chance—très undergoes 

liaison only slightly more, while bien undergoes liaison significantly less. The non-neighboring 

words moins and pas also undergo liaison significantly less than plus.  
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 (Random effects: see Table 28b) 
 
 Fixed effects  Coef.  S.E.  z  p   
 plus (ref.)  2.16  0.27  7.94  < 0.001 
 
 très   0.17  0.25  0.70       0.49 
 bien   -0.76  0.20  -3.76  < 0.001 
 moins   -1.15   0.21  -5.53  < 0.001  
 pas   -1.59  0.22  -7.25  < 0.001 
 

Table 28a: output 1 of a mixed-effects logistic regression model of  
Experiment 2 forced-choice task results 

 

Relative to moins—which undergoes liaison significantly more than chance—bien undergoes 

liaison significantly more, while pas undergoes liaison significantly less. The non-neighboring 

words très and plus undergo liaison significantly more than moins. The results nevertheless 

mirror the distinctions from de Jong’s, Mallet’s, and my corpus investigations: liaison was 

preferred more with très (85%) than plus (83%), more with plus than bien (73%), more with bien 

than moins (68%), and more with moins than pas (61%). The variance of the random intercept 

for nonce was close to zero, suggesting that nonce adjectives did not differ substantially in their 

propensity to trigger liaison. The variances of the random slope for participant were nonzero, 

suggesting variation in individual participants’ contrasts between the five Word1’s, as well as 

participant-specific variation in the results overall.  
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 Random effects Variance 
 Nonce   0.05 
 Participant: très 0.93 
 Participant: plus 0.40 
 Participant: bien 0.29 
 Participant: moins 1.47 
 Participant: pas 0.15 
 
 Fixed effects  Coef.  S.E.  z  p   
 moins (ref.)   1.02  0.22   4.61  < 0.001 
 
 très    1.32  0.25   5.35  < 0.001 
 plus     1.14  0.21  -5.53  < 0.001 
 bien    0.38  0.18   2.29     0.028  
 pas   -0.44  0.15  -2.98     0.003 
 

Table 28b: output 2 of a mixed-effects logistic regression model of  
Experiment 2 forced-choice task results 

 

 Finally, the results of the five-point scale, given below, also generally confirm that 

speakers track lexical propensities for liaison. Très and plus group together above bien and 

moins, and bien and moins group together above pas. Dashed horizontal lines are illustrated 

below to indicate these groupings. 
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Figure 19: Five-point scale experiment liaison scores for très, plus, bien, moins, and pas 
 
 

Once again, I present results first with plus coded as reference level, and then with moins coded 

as reference level, to assess whether plus and moins differ significantly in their results relative to 

their neighboring words. Relative to plus—whose liaison form is rated significantly higher than 

chance—très has an essentially identical liaison rating, while bien has a significantly lower 

liaison rating. The non-neighboring words moins and pas have liaison ratings significantly lower 

than plus. 

 (Random effects: see Table 29b) 
 
 Fixed effects  Coef.  S.E.  t   
 plus (ref.)   3.93  0.10   40.50 
 
 très    0.00  0.08  -0.02 
 bien   -0.26  0.08  -3.14 
 moins   -0.33  0.08  -4.26  
 pas   -0.54  0.11  -5.00 
 

Table 29a: output 1 of a mixed-effects linear regression model of  
Experiment 2 ratings study results 
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Relative to moins—whose liaison form is rated significantly higher than chance—bien has a non-

significantly higher liaison rating, while pas has a significantly lower liaison rating. The non-

neighboring words très and plus have liaison ratings significantly higher than moins. Once again, 

the variance of the random intercept for nonce was close to zero, suggesting that nonce 

adjectives did not differ substantially in their propensity to trigger liaison. The variances of the 

random slope for participant were nonzero, suggesting that variation emerges in individual 

participants’ contrasts between the five Word1’s. 

 

 Random effects Variance 
 Nonce   0.01 
 Participant: très 0.27 
 Participant: plus 0.12 
 Participant: bien 0.05 
 Participant: moins 0.37 
 Participant: pas 0.17 
 
 Fixed effects  Coef.  S.E.  t   
 moins (ref.)  3.59  0.10  34.48 
 
 très   0.33  0.09  3.37 
 plus    0.33  0.08  4.26 
 bien   0.07  0.07  1.07  
 pas   -0.21  0.09  -2.45 
 

Table 29b: output 2 of a mixed-effects linear regression model of  
Experiment 2 ratings study results 

 
 

 One might ask whether the gradience observed between words is simply the result of 

more participants choosing the liaison form categorically for one word over another. That is to 

say, it is in theory possible that the participants chose the liaison or non-liaison form of a word in 

a categorical manner—displaying no within-word variation—and that the gradience above (e.g., 

très receiving a higher rate than bien) is simply the result of more participants categorically 
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choosing liaison form of one word over another. To assess whether this was the case, I composed 

histograms plotting liaison form selection rate in the binary choice task for a given word against 

the number of participants that selected the liaison form at that rate. Five histograms are given 

below for très, plus, bien, moins, and pas. We observe the following: 1) participants displayed 

considerable within-word variation, and did not merely choose the liaised or non-liaised form of 

a given word categorically; and 2) très and plus were associated with greater numbers of 

participants selecting liaison consistently, followed by bien, then moins, and finally pas. In 

particular, as we move from très and plus to pas, we find that participants preferred liaison with 

decreasing consistency.  
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Figure 20: histograms plotting rate against number of participants 

 
These observations suggest that the word-specific gradience observed in the overall experimental 

rates are not exclusively the result of categorical preferences—i.e., more participants 

categorically choosing liaison for one word over another. Rather, they display structured 

variation in the degree to which they prefer liaison, tending to prefer it more after très and plus, 

less so after bien, even less so after moins, and still even less so after pas. 

 

5.3 Summary and implications 

To review, we find that the results mirror the distinctions obtained in de Jong’s, Mallet’s, and my 

corpus investigations: liaison was preferred more with très and plus than with bien, more with 

bien than moins, and more with moins than pas. Overall these results suggest that learners do not 
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merely internalize fixed pronunciations together with overall rates in the lexicon; rather, they 

also track rates in words with vacillating pronunciations. The results support theories in which 

the triggering or undergoing status of individual morphemes is implemented on an entire 

spectrum (Moore-Cantwell & Pater 2016, Smolensky & Goldrick 2016, Zuraw & Hayes 2017, 

Tanaka 2017). Ultimately, the theory of the grammar and lexicon must elucidate how lexical 

propensities are represented and learned.  

 The results also have implications for lexical indexation. Prior research suggests that 

speakers of any given language memorize a great number of word pairs and access the pairs 

wholesale in online production (Zuraw 2000, 2010; Bybee 2001, 2002). But the nonce probe task 

results show that rate tracking can occur on the level of a single morpheme (here, word)—it 

cannot be that all the variation acquired by speakers can be chalked up to memorizing a large set 

of word pairs. Recent literature on liaison has referred to frequent Word1-Word2 pairs in their 

account of variation in French liaison (cf. Bybee 2001, 2002), and while factors for word pairs 

may improve fit to the data, my experiment results suggest that speakers do indeed acquire 

propensities associated with individual words. Thus morphophonological theory must be able to 

refer to propensities of individual morphemes. If it were not capable of doing so, then we would 

not be able to predict that speakers replicate corpus distinctions for très, plus, bien, moins and 

pas when they come before novel adjectives.  
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Chapter 6: 

Modeling the learning of  
a frequency-matching grammar  
together with lexical propensities 

 

This section investigates how to model the learning and representation of lexical variation. How 

can we model the language learner who frequency matches to trends across the lexicon while 

acquiring lexical idiosyncrasy—lexical propensities in particular? As discussed in Section 2.2.1, 

Zuraw (2000, 2010) adopts OT with stochastic ranking and the Gradual Learning Algorithm to 

model the learning of lexical trends together with idiosyncrasies, using general constraints to 

capture trends, and constraints enforcing listedness together with high-ranking faithfulness 

constraints to capture idiosyncrasies.7 But recent research (Zuraw & Hayes 2017, Smith & Pater 

2017) has challenged stochastic OT as a framework for capturing variation, obtaining that 

probabilistic Harmonic Grammar is capable of handling a broader range of paradigms.  

 A recent popular approach aims to capture trends with idiosyncrasy in Maximum Entropy 

Harmonic Grammar, which generates patterns of gradience through constraint weighting rather 

than ranking. The strategy has been to recruit general, grammatical constraints to model 

frequency-matching behavior in nonce probe studies, together with lexical(ly indexed) 

constraints to model lexical idiosyncrasies in the dataset (Moore-Cantwell & Pater 2016, Zuraw 

& Hayes 2017, Tanaka 2017). Though this approach is capable of representing lexical 

propensities, this section shows with a series of learning simulations that it encounters a 
                                                
7 See also Nazarov (2018) for implementation and some early results of a new model of lexical 
variation couched in stochastic OT. 
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GRAMMAR-LEXICON BALANCING PROBLEM: lexical constraints are so powerful in explaining the 

dataset that that the learner comes to acquire the behavior of each form using only these 

constraints, at which point the general constraint is rendered ineffective.  

 In particular, as learning proceeds, the grammatical constraint explains an infinitesimal 

portion of the dataset; at this point, its weight begins to vacillate, as a wide range of values for its 

weight fit the dataset well. Once the dataset is learned perfectly using lexical constraints, the 

weight of the grammatical constraint plummets to zero. I claim that the choice to embed both 

grammatical and lexical constraints in Maximum Entropy Harmonic Grammar in particular is 

what leads to the imbalance. In MaxEnt, the grammatical constraint and lexical constraints are 

treated as equally viable explanatory devices for learning the dataset and its patterns, with the 

learner favoring neither variety of constraint in particular during the learning process. The 

weights of the lexical constraints therefore rise rapidly in magnitude to explain the dataset, with 

the grammatical constraint coming to explain less and less of the data, eventually leading to the 

convergence problem.  

 I attribute these results, as well the findings that real language learners are nonetheless 

capable of generalizing across idiosyncratic variation, to them possessing a GENERALITY BIAS: 

they privilege general, grammatical constraints over the more granular lexical constraints when 

they acquire variable datasets. It is argued that MaxEnt in its current formulation—essentially a 

canonical logistic regression model—fails to appropriately represent this property, even after 

taking into consideration a prior penalty term. This section provides a solution to the grammar-

lexicon balancing problem by replacing MaxEnt with a hierarchical and similarly logistic model, 

the mixed-effects logistic regression model—i.e., MIXED-EFFECTS MAXIMUM ENTROPY 

HARMONIC GRAMMAR. Mixed-Effects MaxEnt is shown to succeed in learning both general and 
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item-specific behavior by encoding general constraints as main effects, and lexical constraints as 

random effects. Generality bias is rooted in the fixed effect-random effect distinction: though 

coefficients of the general constraints are fit to the data directly to match overall rates, the 

coefficients of the levels of the random intercept are determined by a weighted average of the 

word-specific rate and the overall rate in the dataset. The learner treats the grammar and lexicon 

differently upon positing the distinction between main effect and random effect, such that 

idiosyncratic effects of the vocabulary are subordinated to broad, grammatical effects in the 

learning process.  

 Hierarchical mixed models are used widely across scientific fields, and a growing family 

of research has employed random intercepts to measure the degree of by-word or by-lexical class 

idiosyncrasy in datasets displaying morphophonological variation (Fruehwald 2012, Shih & 

Inkelas 2016, Zuraw & Hayes 2017, Smith & Moore-Cantwell 2017, Shih 2018); Shih & Inkelas 

(2016) and Shih (2018) even adopt the hierarchical mixed model as a theory of the language 

learner. Here I present an argument that adopting as a theory of the language learner the mixed-

effects logistic regression model in particular is a crucial step toward capturing the capabilities 

of language learners: it can learn and represent lexical trends together with idiosyncrasies, while 

models couched in simple logistic regression, such as the current formulation of MaxEnt, 

seemingly cannot. 

 

6.1 Statistical generalizations over idiosyncratic forms and 
frequency matching by language learners 
 
Any account of variation would have to capture: (i) the idiosyncratic behavior of different 

morphemes; (ii) statistical generalizations over these morphemes. As it pertains to the latter, we 

seek to predict the frequency matching behavior of language learners using the real language 
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data to which they are exposed (Eddington 1996, 1998, 2004; Frisch, Broe, & Pierrehumbert 

1996; Coleman & Pierrehumbert 1997; Berkley 2000; Zuraw 2000, 2010; Bailey & Hahn 2001; 

Frisch & Zawaydeh 2001; Pierrehumbert 2002; Albright 2002; Albright & Hayes 2003; Ernestus 

& Baayen 2003; Hayes & Londe 2006; et seq).  

 Recent research adopts a model for learning a frequency matching grammar together with 

lexical idiosyncrasy using Maximum Entropy Harmonic Grammar (Moore-Cantwell & Pater 

2016, Zuraw & Hayes 2017, Tanaka 2017). Taking a toy example from Moore-Cantwell & Pater 

(2016), if we suppose that ALIGN-R and NONFIN have weights of 4 and 1 respectively, the 

mathematics behind MaxEnt would yield penultimate stress around 95% of the time: 

 

 

 
Table 30a: A grammar choosing penultimate stress 95% of the time  

(Pater & Moore-Cantwell, p. 56) 
 

 
Moreover, setting the weights of ALIGN-R and NONFIN to be equal—e.g., at 2 and 2—yields 50-

50 variation between penultimate and antepenultimate stress: 

 

/bætækæ/ P H ALIGN-R 
w = 2 

NONFIN 
w = 2 

bə(ˈtækə) 50% -2  -1 
(ˈbætə)kə 50% -2 -1  

 
Table 30b: A grammar choosing penultimate stress 50% of the time 

(Pater & Moore-Cantwell, p. 56) 
 

 

/bætækæ/ p H ALIGN-R 
4 

NONFIN 
1 

bə(ˈtækə) 95% -1  -1 
(ˈbætə)kə 5% -4 -1  
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But as Moore-Cantwell & Pater (2016) note, the tableaux above would only be appropriate if the 

two competing forms occurred in free variation. As we have already seen (see Chapters 2, 3, and 

4), statistical generalizations are found only across the lexicon as a whole, with individual words 

primarily displaying fixed pronunciations. This, for example, holds true for French liaison and 

Slovenian palatalization—the cases surveyed in this dissertation—which display a U-shaped 

distribution. If we consider all words in the data set, most words are either clear 

liaisers/palatalizers or non-liaisers/non-palatalizers, and only a minority of words vary in their 

pronunciation. This is visible in the tables below. 

 

Slovenian palatalization (Dict. Standard Slovenian & Gigafida) 
 Number of words % whole data set 
Words with rate greater than 95%: 3735 77% 
Words with rate between 5% and 95%: 405 8% 
Words with rate less than 5%: 701 15% 

 
Table 31a: Extreme word-level palatalization rates in Slovenian 

 
 

French liaison (PFC) 
 Number of words % whole data set 
Bigrams with rate greater than 95%: 2803 25% 
Bigrams with rate between 5% and 95%: 325 3% 
Bigrams with rate less than 5%: 8272 72% 

 
Table 31b: Extreme bigram-level liaison rates in French 

 
 
Of course, the counts in the table above include many words with frequency count 1, 

exaggerating the end points. But even if we consider Slovenian words and French bigrams 

occurring only ten or more times in the corpus, we still find that most of them have fixed 

pronunciations: 
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Slovenian palatalization (Dict. Standard Slovenian & Gigafida) 
 Number of words % whole data set 
Words with rate greater than 95%: 1960 81% 
Words with rate between 5% and 95%: 162 7% 
Words with rate less than 5%: 284 12% 

 
Table 32a: Extreme word-level palatalization rates in Slovenian, word frequency ≥ 10 

 
 

French liaison (PFC) 
 Number of words % whole data set 
Bigrams with rate greater than 95%: 171 34% 
Bigrams with rate between 5% and 95%: 127 25% 
Bigrams with rate less than 5%: 209 41% 

 
Table 32b: Extreme bigram-level liaison rates in French, word frequency ≥ 10 

 
 
To illustrate the problem, consider the Slovenian palatalization data in Table 31a. We find that 

approximately 75% of words regularly palatalize, while 25% fail to regularly palatalize. 

Classifying variable palatalizers as non-palatalizers (for simplicity purposes), we might conclude 

that the grammar palatalizes across roughly 75% of the lexicon. Thus if a Slovenian speaker 

were to serve as participant in a nonce probe study which takes the form of a two-alternative 

forced choice task and which tests knowledge of variable palatalization, we would expect her to 

select palatalized nonce forms roughly 75% of the time, per the law of frequency matching. The 

analyst might conclude that the participant has set the weight a constraint driving 

palatalization—PAL in the tableau below (following Jurgec 2016)—to 2, and the counteracting 

faithfulness constraint to 1, yielding the trend. 

 

 
Table 33: Nonce probe data  

 

Nonce form with 
subsequence 
/...k+i .../ 

p H PAL 
2 

IDENT 
1 

ki 25% -2 -1  
ci 75% -1  -1 
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As for attested words with fixed pronunciation—e.g., (/nag+ʦ/, [nag-əʦ], ‘naked’-DIM) and 

(/dvonog+ʦ/, [dvonoʒ-əʦ], ‘biped’-DIM) —the account makes incorrect predictions, at least 

without further intervention. It fails to predict the idiosyncratic, categorical behavior of either 

word—that is to say, the fact that each of their pronunciations are fixed: the model selects 

palatalization for each of these forms merely 70% of the time, rather than 100% and 0% of the 

time respectively, resulting in severe analytical error at the level of word: 

 

 

 
Table 34a: Failure to predict categorical non-palatalization in [nag-əʦ] 

 
 

 

 
Table 34b: Failure to predict categorical palatalization in [peʃ-əʦ]  

 
 
Moore-Cantwell & Pater (2016) respond to this problem by proposing that the grammar contains 

general constraints that regulate whole sets of forms, as well as form-specific constraints—called 

lexically indexed constraints—that regulate the idiosyncratic behavior of some attested form in 

particular (also Kraska-Szlenk 1995, Pater 2000, et seq; and relatedly, Pater, Staubs, Smith & 

Jesney 2012, Smith 2015, Zuraw & Hayes 2017; inter alia). For example, on top of the general 

constraints PAL and IDENT, we might posit highly weighted constraints PAL-/dvonog+ʦ/, and 

IDENT-/nag+ʦ/ to derive the idiosyncratic behavior of (/nag+ʦ/, [nag-əʦ]) and (/dvonog+ʦ/, 

[dvonoʒ-əʦ]) in particular, much as Moore-Cantwell & Pater (2016) posit lexically-specific 

/nag+ʦ/ 
Observed 

rate p H PAL 
2 

IDENT 
1 

nag-əʦ 100% 25% -2 -1  
naʒ-əʦ 0% 75% -1  -1 

/dvonog+ʦ/ 
Observed 

rate p H PAL 
2 

IDENT 
1 

dvonog-əʦ 0% 25% -2 -1  
dvonoʒ-əʦ 100% 75% -1  -1 
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ALIGN-R and NONFIN constraints to get idiosyncratic stress placement (see Section 2.3.1). Their 

activity is shown in the tableaux below: 

 

 
Table 35a: Prediction of categorical non-palatalization in [nag-əʦ]  

using lexical constraints 
 
 

 
Table 35b: Prediction of categorical palatalization in [peʃ-əʦ]  

using lexical constraints 
 
 
Under this approach, it would appear that we are able to capture both the frequency-matching 

behavior of speakers in nonce probe studies—for example, by using the general constraint PAL to 

match to the overall palatalization rate—and idiosyncrasies of the lexicon, using lexically 

specific constraints. Yet questions remain: what weights does the model obtain for general 

constraints and lexically specific constraints when we leave it to learn a dataset displaying 

statistical generalizations together with lexical propensities? Are both the grammar and the 

lexical knowledge sustained throughout model learning? 

 

 

 

/nag+ʦ/ 
Observed 

rate p H PAL 
2 

PAL-/dvonog+ʦ/ 
5 

IDENT 
1 

IDENT-/nag+ʦ/ 
6 

nag-əʦ 100% 100% -2 -1    
naʒ-əʦ 0% 0% -7   -1 -1 

/dvonog+ʦ/ 
Observed 

rate p H PAL 
2 

PAL-/dvonog+ʦ/ 
4 

IDENT 
1 

IDENT-/nag+ʦ/ 
6 

dvonog-əʦ 0% 0% -6 -1 -1   
dvonoʒ-əʦ 100% 100% -1   -1  
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6.2 MaxEnt fails to learn statistical generalizations together with 
idiosyncrasy: the grammar-lexicon balancing problem  
 
We have reviewed a recent popular MaxEnt-based model for learning statistical generalizations 

together with lexical propensities: use general constraints to mimic language learners’ behavior 

to frequency match to statistical generalizations, and lexical constraints to capture idiosyncrasy. 

The following investigation scrutinizes this approach to assess whether it in fact succeeds in 

learning generalizations together with idiosyncrasies. In a footnote, Moore-Cantwell & Pater 

(2016) mention that “the parameter settings can affect the outcome, especially the setting of the 

regularization term. The need to tune the parameters to match the experimental data is a potential 

weakness of this approach” (p. 62). Tanaka (2017) further surmises that their approach may lead 

to overfitting of lexical constraints to the idiosyncratic data—and to underfitting of grammatical 

constraints to lexical trends—if learners are not properly biased to favor grammatical constraints 

over lexical constraints. We find in what follows is that the concern is indeed well-founded: a 

series of learning simulations reveal that the model fails to learn a frequency matching grammar 

in the face of lexical idiosyncrasy. Under the MaxEnt-based approach, lexical constraints are so 

powerful that they come to explain the entire dataset, to the point where general constraints are 

rendered ineffective. 

 
6.2.1 MaxEnt fails to learn statistical generalizations with strict 
exceptionality 
 
Suppose we wanted to model a variable phonological system in which 5,000 forms behave 

regularly with respect to the grammar, and 100 forms behave irregularly. This sort of dataset 

resembles English plural or past-tense formation, in which the majority of forms behave 

regularly, but a small set of forms are exceptional, undergoing a different rule (e.g., beep, beeps; 
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jeep, jeeps; creep, creeps; but sheep, sheep). This dataset also corresponds quite well with the so-

called hi:d stem paradigm in Hungarian (Hayes & Londe 2006): although stems containing a 

single front unrounded vowel usually take the harmonic –nɛk suffix in dative constructions, 

roughly 8% of them in a corpus take the disharmonic form of the suffix, –nɔk (so-called hi:d 

stems, as in [hi:d-nɔk], ‘bridge’-DAT; Hayes & Londe 2006; p. 63, 66); moreover, speakers 

closely match the 8% irregularity rate in Hayes & Londe’s nonce probe study, accepting –nɔk 

7% of the time overall (p. 72). The goals are as follows: we want the model to predict accurately 

the fixed pronunciation of each word; and we want the model to mimic frequency-matching 

behavior in nonce probe studies—that is to say, the model should select an irregular nonce form 

100/(100+5000) ≈ 2% of the time.  

 We adopt Maximum Entropy Harmonic Grammar as the analytical framework. For 

illustrative purposes, we use three schematic constraints to satisfy our goals— BEREGULAR, and 

BELEXICAL(regulars) and BELEXICAL(irregulars) —with the definitions given below. Note that 

the usage of BELEXICAL below requires us to assume that SRs are listed in the lexicon together 

with URs. 

(22a) BEREGULAR:   assess 1 violation to any irregular form in the language. 
 
(22b) BELEXICAL(regulars): for each member (xi, yi) in a set of n attested UR-SR pairs 
     labeled as regular in the language, assess 1 violation to any  
     form zi such that zi �yi.  
 
(22c) BELEXICAL(irregulars):  for each member (xi, yi) in a set of n attested UR-SR pairs 
     labeled as irregular in the language, assess 1 violation to  
     any form zi such that zi �yi.  
 
BEREGULAR is a general, grammatical constraint that regulates the overall rate of regularity 

across words. The BELEXICAL constraints govern the behavior of individual UR-SR pairs. The 
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violation profiles are as in the table below. The weights of the three constraints are initialized to 

be 0. 

 
 

   BEREGULAR 
0 

BELEX(reg) 
0 

BELEX(irreg) 
0 

Regular forms Correct: 5000    
Incorrect: 0 -1 -1  

Irregular forms Correct: 100 -1   
Incorrect: 0   -1 

 
Table 36: MaxEnt strict exceptionality toy input 

 
 
One might expect the learner to eventually arrive at constraint weights that yield the following 

results: the model, when presented with nonce forms that must be classified as regular or 

irregular, would favor the irregular form roughly 2% of the time; and the model would get actual 

words pronunciations correct 100% of the time. The learner ideally would arrive at a high weight 

for the BELEXICAL constraints, so that she gets the right the fixed pronunciation for each word. 

Moreover, the learner ideally would arrive at a weight for BEREGULAR that frequency matches 

the nonce irregularity rate of the lexicon—roughly 2%—when confronted with a set of nonce 

forms. For example, if the learner converges at the set of weights wBEREGULAR = 4 and  

wBELEXICAL = 10 (for both regulars and irregulars), then it achieves the roughly desired rates: 

regulars are acquired as regular 99% of the time, and irregulars are acquired as irregular 99% of 

the time; moreover, the weight of BEREGULAR would result in the learner selecting a nonce 

irregular at around a 1.8% rate. 

 Let us look at a learning simulation. Recall that learning in MaxEnt proceeds as follows. 

Pick the constraint weights that maximize the log-probability of the data set, minus a penalty 

term to avoid overfitting. Suppose a dataset {(!! ,!!)}!!!!  of n UR-SR pairs (!! ,!!). The formula 
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is given below in Figure 1. The smaller the !, the less ! will move away from its expected value 

(typically set to 0) to fit to input rates.  

(23) 

log ! !! !!!
!!!    −    !!!!!

!

!!!!
!
!!!  

  
        log probability of the dataset             penalty term 
 
 Microsoft Excel’s Solver (Fylstra et al. 1998; cf. Walsh & Diamond 1995, Harris 1998), 

which recruits Newton’s method (Tay, Kek & Abdul-Kahar 2009) to find optimal parameter 

values for non-linear models (i.e., parameter values that occur at the maximum of the equation in 

(23)). The Solver was used simulate MaxEnt’s learning of frequencies proportionate to those 

given in Table 36. We assess if the model is able to acquire both the 2% nonce irregularity rate, 

governed by of BEREGULAR, together with the behaviors of individual items, governed by the 

BELEXICAL constraints. We track learning by varying the frequencies of the various forms in the 

dataset, keeping constant the ratio of irregular forms to regular forms —that is, 1 irregular form 

for every 50 regular forms. In other words, we vary number of times the learner is re-presented 

with the dataset. In an earlier trial, for example, we multiply the frequencies in the dataset by 1, 

resulting in a dataset with 50 regulars and 1 irregular form; Solver then finds optimal weights for 

the constraints given that dataset, starting from weights initialized at 0. In one of the later trials, 

we would multiply the frequencies in the dataset by 100, resulting in a dataset with 5000 regulars 

and 100 irregular forms; Solver then finds optimal weights for the constraints given that dataset, 

starting from weights initialized at 0. In an even later trial, we multiply the frequencies in the 

dataset by 10,000, resulting in a dataset with 500,000 regulars and 10,000 irregular forms; Solver 

again finds optimal weights for the constraints given that dataset, starting from weights 
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initialized at 0. (As will be shown below, running a learning simulation in this way yields the 

same learning outcomes as holding frequencies constant but varying σ in the penalty term.) 

 We give a learning simulation with the MaxEnt penalty setting µ = 0, σ = 1,000 for each 

constraint. We begin with very small frequency multipliers in the childhood phase—the results 

of which are given in the table below. She learns regulars quickly—getting 98% of them correct 

after the first trial of learning—but she learns the irregulars less rapidly, only getting 53% of 

them right. By the time she reaches the 0.01 multiplier, she already acquired most of the attested 

lexicon, classifying the vast majority of regulars and irregulars correctly—this is not surprising, 

considering that the lexical constraints are completely undominated, preferring only winners. 

Such is not the case for the general constraint, and as such the learner selects nonce irregulars at 

a rate of roughly 19% around this point in learning rather than the desired 2%. 

 

Freq. 
multiplier 

Be 
Reg 

BeLex 
(regs) 

BeLex 
(irregs) 

Regular 
correct 

Irreg. 
correct 

Nonce 
irreg. rate 

0 0 0 0 0.5000 0.5000 0.5000 
0.00001 1.64 2.79 1.76 0.9883 0.5319 0.1622 
0.0001 1.43 4.75 3.71 0.9979 0.9071 0.1917 
0.001 1.39 6.73 5.66 0.9997 0.9861 0.1986 
0.01 1.35 8.80 7.64 0.9999 0.9981 0.2049 

 
Table 37a: learning simulation in MaxEnt: “childhood” phase 

 

 At adolescence, we begin observe to observe overfitting, with the learner vacillating in 

the weight of BEREGULAR and the nonce irregularity rate. She learned the lexicon nearly 

perfectly at this point, before BEREGULAR could be weighted high enough to result in a nonce 

irregularity rate of around 2%—with no period of frequency matching to the lexical trend. 

BELEXICAL soars in weight and takes over all of the explanatory opportunity in the dataset, 
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while BEREGULAR vacillates, taking on a spectrum of weight between 0 and 3.5 throughout 

these learning trials.  

 

Freq. 
multiplier 

Be 
Reg 

BeLex 
(regs) 

BeLex 
(irregs) 

Regular 
correct 

Irreg. 
correct 

Nonce 
irreg. rate 

0.1 3.32 8.83 11.55 0.9999 0.9997 0.0349 
1 0.73 13.41 11.64 0.9999 0.9999 0.3256 

10 3.45 11.09 15.87 0.9999 0.9999 0.0306 
100 2.35 16.24 15.15 0.9999 0.9999 0.0868 

1000 0.00 22.31 17.16 1 0.9999 0.5000 
10000 1.89 20.57 67.91 1 1 0.1311 

 
Table 37b: learning simulation in MaxEnt: “adolescent” phase 

 
 

At adulthood, the learner acquires the attested regulars and irregulars with essentially perfect 

accuracy, at which point the weight of BEREGULAR plummets to and remains at zero, such that 

she begins selecting nonce irregulars at a fifty-fifty rate. BELEXICAL constraints continue to soar 

into the firmament, while the grammatical constraint BEREGULAR remains lifeless at 0, in 

perpetuity. This is visible in the table below. 

 

Freq. 
multiplier 

Be 
Reg 

BeLex 
(regs) 

BeLex 
(irregs) 

Regular 
correct 

Irreg. 
correct 

Nonce 
irreg. rate 

100000 0.00 34.96 21.72 1 1 0.5000 
1000000 0.00 27.95 26.83 1 1 0.5000 

10000000 0.00 27.98 59.57 1 1 0.5000 
 

Table 37c: learning simulation in MaxEnt: “adulthood” phase  
 
 
 Even before the learner comes to vacillate and eventually “forget” her grammar, the 19% 

rate that the learner stalls at in the childhood phases is not particularly close to the desired 2% 

nonce irregularity rate. The BELEXICAL constraints exert too powerful an effect, being 

undominated in the input, and come to explain the entire data set before BEREGULAR arrives at a 



 117 

weight that results in the learner frequency matching to the lexical trend. If we take the weights 

of the BELEXICAL constraints found when we take a frequency multiplier of 100,000—that is to 

say, 34.96 and 21.72, respectively—and set the weight of BEREGULAR to 0, we still get a near 

perfect match to the observed data. BEREGULAR is therefore explaining none of the dataset by 

this point in the development of learning, and is entirely redundant.  

 The complete learning simulation—showing the learner’s success in learning the entire 

dataset via BELEXICAL constraints, and its failure to frequency match to the lexical trend as a 

whole by BEREGULAR—is summarized in the table and figure below.  

 

Developmental 
phase 

Freq. 
multiplier 

Be 
Reg 

BeLex 
(regs) 

BeLex 
(irregs) 

Regular 
correct 

Irreg. 
correct 

Nonce 
irreg. rate 

“Childhood” 

0 0 0 0 0.5000 0.5000 0.5000 
0.00001 1.64 2.79 1.76 0.9883 0.5319 0.1622 
0.0001 1.43 4.75 3.71 0.9979 0.9071 0.1917 
0.001 1.39 6.73 5.66 0.9997 0.9861 0.1986 
0.01 1.35 8.80 7.64 0.9999 0.9981 0.2049 

“Adolescence” 

0.1 3.32 8.83 11.55 0.9999 0.9997 0.0349 
1 0.73 13.41 11.64 0.9999 0.9999 0.3256 

10 3.45 11.09 15.87 0.9999 0.9999 0.0306 
100 2.35 16.24 15.15 0.9999 0.9999 0.0868 

1000 0.00 22.31 17.16 1 0.9999 0.5000 
10000 1.89 20.57 67.91 1 1 0.1311 

“Adulthood” 
100000 0.00 34.96 21.72 1 1 0.5000 

1000000 0.00 27.95 26.83 1 1 0.5000 
10000000 0.00 27.98 59.57 1 1 0.5000 

 
Table 37d: full learning simulation in MaxEnt 
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Figure 21: ineffectiveness of the broader grammar to frequency match  
to statistical generalization, due to overfitting of lexical constraints 

 
 

Given below is a graph of the weights of BEREGULAR and BELEXICAL constraints across 

learning trials. The weight of the BELEXICAL constraints soar, while BEREGULAR reaches 

around 1.4 before it begins to vacillate. Once the weights of the BELEXICAL constraints reach a 

high enough value, the weight of BEREGULAR drops to and remains at zero.  
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Figure 22: soaring weights for BELEXICAL constraints, stalling and zeroing out of weights for 
BEREGULAR 

 
 

In fact, both the weights of BEREGULAR  and the two BELEXICAL constraints come to vacillate 

throughout the learning process given above. This is because the BELEXICAL constraints are 

undominated—coming to fit to the data with near-perfect accuracy—and so their ideal weight is 

infinite. As such, many values for their weight work well to provide the near-perfect fit.  

 The model fails to learn an adequate, frequency-matching weight for BEREGULAR for the 

very reason that the BELEXICAL constraints alone are enough to fit to the data perfectly. 

BEREGULAR is imperfect for the purposes of replicating the training data, as it is violated by the 

irregulars in the dataset, whereas the two BELEXICAL constraints are enough to replicate the data 

nearly perfectly. BEREGULAR is thus treated as a superfluous constraint for learning the dataset. 
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 The overfitting result is general across values of σ. According to (23), multiplying σ by a 

factor of k (e.g., k = 10) has the same effect on learning as dividing the frequencies of the dataset 

by a factor of k2 (k2 = 100). Likewise, dividing σ by k (k = 10) has the same effect on learning as 

multiplying the frequencies by k2 (k2 = 100). This is evident in the table below, which presents 

the results of a series of learning simulations of the dataset from above (but only fitting the 

weight of BEREGULAR to it). For example, setting σ = 1 and frequency multiplier m = 100 yields 

the same learning outcome as setting σ = 10 and m = 1. 

 

 σ = 1 σ = 10 σ = 100 
irreg. rate weight irreg. rate weight irreg. rate weight 

m = 0.01 0.4748 0.1008 0.1127 2.0629 0.0213 3.8258 
m = 1 0.1127 2.0629 0.0213 3.8258 

 m = 100 0.0213 3.8258  
 

Table 38: identical learning outcomes across different values of m and σ 
 
 
Hence decreasing σ across constraints merely extends the time at which the learner begins to stall 

and forget her grammar—that is to say, decreasing σ merely has the effect of delaying the stages 

of learner overfitting.8 

 One might imagine that setting a high value of σ for the general constraint and a low 

value of σ for the lexical constraints would solve the overfitting problem. My investigation into 

this approach has yielded negative results: setting σ = 1,000 for BEREGULAR and σ = 10 for the 

lexical constraints, for example, still yields poor frequency-matching predictions for the nonce 

irregularity rate, especially around the period where the learner achieves a near-perfect fit to the 

lexicon: 

                                                
8 Manipulating values of µ in the penalty also has no effect in surmounting the overfitting 
problem: in trials with positive frequency multiplier, the learner simply adjusts the constraint 
weights to the values found above, regardless of whether they start at 0.  
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Freq. 
multiplier 

Be 
Reg 

BeLex 
(reg) 

BeLex 
(irreg) 

Regular 
correct 

Irreg. 
correct 

Nonce 
irreg. rate 

1 2.00 4.23 4.23 0.9980 0.9025 0.118543281 
10 1.96 6.19 6.19 0.9997 0.9857 0.123141569 

100 1.95 8.22 8.22 0.9999 0.9981 0.123982297 
1000 1.90 10.38 10.26 0.9999 0.9999 0.353377945 

10000 0.38 13.87 10.85 0.9999 0.9999 0.404501717 
100000 0.27 16.13 12.76 0.9999 0.9999 0.431732639 

1000000 0.41 18.58 15.23 0.9999 0.9999 0.397693575 
 

Table 39: learning simulation in MaxEnt, σ(BEREGULAR) = 1,000, σ(lexical constraints) = 10 
 
 

Even with this σ-based bias towards general constraints, the weights of the two lexical 

constraints still soar, while grammatical weight vacillates and remains too low across the 

learning simulation to be effective.  

 

6.2.2 MaxEnt fails to learn statistical generalizations with lexical 
propensities 
 
 One might ask whether the model would fare better with a different dataset—for 

example, one with lexical propensities. Suppose we have twelve words in the dataset with equal 

numbers of tokens, each with a different propensity across tokens to undergo some phonological 

process. Such a dataset is reminiscent of those observed in variable phonology in which words 

undergo a variable process at different rates, including cases discussed in prior sections, and in 

other works (Hayes & Londe 2006; Zuraw 2009, 2016; Smith & Moore-Cantwell 2017; Tanaka 

2017). In the aforementioned MaxEnt-based approach to lexical variation, the general constraint 

should enforce language learners’ ability to frequency match to lexical trends in nonce probe 

studies, and so its weight should eventually reach a value that results in frequency matching to 

the overall average rate across the twelve words. The weights of the lexically specific constraints 
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should, in tandem with the weight of the general constraint, govern the individual behaviors of 

each word in the dataset, matching their rates.  

 Consider the dataset below consisting of twelve words, with propensities distributing 

across a spectrum. We pick these rates in particular so that the overall average rate across all 

forms, roughly 61%, is not close to any one of the word-specific rates—hence there would be 

reason to allocate positive weight to a lexical constraint for each word, rather than adjusting the 

general constraint weight to fit to any one of the words with a propensity that happens to match 

to the overall rate. 

 

Word Rate Word Rate Word Rate 
1 0.00 5 0.30 9 1.00 
2 0.00 6 0.80 10 1.00 
3 0.10 7 0.90 11 1.00 
4 0.20 8 1.00 12 1.00 

   Average over all rates: 0.61 
 

Table 40: dataset consisting of twelve words with differing propensities 
 

 
 For any Wordi, the predicted probability of the candidate Wordi surfacing is one minus 

the probability that Wordi-alt surfaces. Hence we get the following input to be fed into Solver 

after assigning each word’s frequency their respective probability in Table 40 and resetting the 

weights to 0 (and thus the predicted probabilities back to 0.5). We use the general constraint 

APPLY, whose weight should result in frequency matching to the 60% rate of application across 

the dataset, and FAITH1, FAITH2, ..., FAITH5, APPLY6, APPLY7, ..., APPLY12 as the twelve lexical 

constraints, which in tandem with APPLY should result in frequency matching to word-specific 

rates. Note that we use FAITH1, FAITH2, ..., FAITH5 to enforce lower-than-chance rates of 
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application in the first five words, and APPLY6, APPLY7, ..., APPLY12 to enforce higher-than-

chance rates in the last seven words. 

 

UR SR Freq. Pred. 
P H APPLY 

0 
FAITH1 

0 ... FAITH5 
0 

APPLY6 
0 ... APPLY12 

0 

Word1 Word1-alt’n 0.00 0.5 0  1      
Word1-faith 1.00 0.5 0 1       

... ... ... ... ... ... ... ...  ... ...  

Word5 Word5-alt’n 0.30 0.5 0    1    
Word5-faith 0.70 0.5 0 1       

Word6 Word6-alt’n 0.80 0.5 0        
Word6-faith 0.20 0.5 0 1    1   

... ... ... ... ... ... ... ...  ... ...  

Word12 Word12-alt’n 1.00 0.5 0        
Word12-faith 0.00 0.5 0 1      1 

Nonce Nonce-alt’n 0.00 0.5 0        
Nonce-faith 0.00 0.5 0 1       

 
Table 41: propensity toy dataset input to Excel Solver 

 

Notice that the only candidate pair assigned zero frequency are the nonce candidates. Since 

Nonce is a nonce form, its candidates receive zero frequencies; rather, its frequencies are 

predicted by the weight of APPLY alone—which should frequency match to the overall average 

rate of 61%—after the learner has found optimal weights for all thirteen constraints. We can say 

that this learning model succeeds if it learns weights for the general constraint and twelve 

lexically indexed constraints such that: 1) the predicted probabilities for the alternated forms of 

each attested word match the word-specific alternation rates; and 2) the predicted probability of 

the alternated nonce form—the nonce regularity rate—frequency matches to the average over all 

of the rates of alternated words in the data set—the desired, overall regularity rate—i.e., 0.61. 

The following set of weights results in frequency matching to both word-specific rates and the 

lexical trend overall: 
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Constraint weight 
should match: Constraint Weight Observed 

rate 
Predicted 

rate 
Overall rate APPLY 0.40 0.61 0.61 
Word1 rate FAITH1 10.00 0.00 0.00 
Word2 rate FAITH2 10.00 0.00 0.00 
Word3 rate FAITH3 2.65 0.10 0.10 
Word4 rate FAITH4 1.85 0.20 0.20 
Word5 rate FAITH5 1.28 0.30 0.30 
Word6 rate APPLY6 0.95 0.80 0.80 
Word7 rate APPLY7 1.75 0.90 0.90 
Word8 rate APPLY8 10.00 1.00 1.00 
Word9 rate APPLY9 10.00 1.00 1.00 
Word10 rate APPLY10 10.00 1.00 1.00 
Word11 rate APPLY11 10.00 1.00 1.00 
Word12 rate APPLY12 10.00 1.00 1.00 

 
Table 42: set of successful weights for propensity dataset 

 
 
 We set forth with learning simulations. We begin with a learning simulation under which 

the learner takes the settings µ = 0 and σ = 1,000 for the penalty term. As we did before, we 

multiply each of the word frequencies by a small factor, learn the weights, and record the results; 

then, we start over with weights set to 0, multiply each of the word frequencies by a larger factor, 

re-learn the weights, and record the results; and so on.  

 The results of the full learning simulation are given in the table and graph below, which 

include information on the predicted nonce regularity rate along with the predicted rates for 

Word5, Word6, and Word12. Though the predicted rates for the twelve words accurately match 

the desired rates, the learner never experiences a sustained period of frequency matching to the 

overall rate. The learner’s predicted nonce regularity rate vacillates primarily between 0.50 and 

0.80—in the latter case because it occasionally recruits APPLY to fit to the rate of Word6, whose 

rate is closest to the overall average rate relative to the other words in the dataset. Only for one 

setting of the frequency multiplier—100—does the learner achieve a roughly frequency 

matching rate. And past a multiplier of 10,000, the weight of APPLY drops to and remains at 
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zero. Once again, the entirely undominated lexical constraints are so powerful that they come to 

rapidly explain the entire dataset, such that the general constraint APPLY is ineffective as a 

device for frequency matching nonce rate to the overall rate in the dataset. 

 

Freq. 
multiplier APPLY FAITH5 APPLY6 APPLY12 

Pred. 
nonce 
rate 

Pred. 
Word5 

rate 

Pred. 
Word6 

rate 

Pred. 
Word12 

rate 
0 0.00 0.00 0.00 0.00 0.50 0.50 0.50 0.50 

0.001 0.00 0.84 1.39 11.19 0.50 0.30 0.80 1.00 
0.01 0.00 0.85 1.39 10.64 0.50 0.30 0.80 1.00 
0.1 1.39 2.23 0.00 8.77 0.80 0.30 0.80 1.00 

1 1.40 2.25 0.00 11.85 0.80 0.30 0.80 1.00 
10 1.37 2.22 0.02 16.17 0.80 0.30 0.80 1.00 

100 0.50 1.34 0.89 8.25 0.62 0.30 0.80 1.00 
1000 1.41 2.27 0.00 6.16 0.80 0.30 0.80 1.00 

10000 0.00 0.85 1.39 12.60 0.50 0.30 0.80 1.00 
100000 0.00 0.85 1.39 11.84 0.50 0.30 0.80 1.00 

1000000 0.00 0.85 1.39 11.84 0.50 0.30 0.80 1.00 
 

Table 43: propensity learning simulation in MaxEnt 
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Figure 23: correct learning of word-specific rates, incorrect learning of overall application rate 
 

 The model fails. Very reasonable assumptions have led to a GRAMMAR-LEXICON 

BALANCING PROBLEM: in MaxEnt Harmonic Grammar—essentially a canonical logistic 

regression model—given that the learner makes use of both general and lexically indexed 

constraints, the learner merely acquires the lexicon, but not the grammar. Under our simulations 

with the first dataset, the weight of BEREGULAR: 

• begins to stall and vacillate around the incorrect nonce irregularity rate once the weights 

of the BELEXICAL constraints grow high enough such that the learner acquires near-

perfect knowledge of the dataset; 
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• eventually zeroes out, when the weights of the BELEXICAL constraints grow high enough 

such that the learner acquires perfect knowledge of the dataset. 

In the second dataset with word-specific propensities, the lexical constraints quickly frequency 

match to the desired word-specific rates, while the general constraint is again rendered 

ineffective throughout the learning process. We want statistical models of variable phonology to 

frequency match rates across the lexicon. Moreover, we want the learner’s knowledge of the 

grammar that she acquired from the distribution of the input to remain in the adult system, even 

after mastering the lexicon. Our learning theory should not predict that at some age, the learner 

would suddenly come to fail nonce probe studies into general statistical knowledge of a variable 

phonological system. Rather, it is natural and desirable to assume that the learned adult will pass 

such a test, no matter their age (see Shademan 2007 for results suggesting that healthy elderly 

speakers, though they display greater analogical effects relative to younger speakers, 

nevertheless still display grammatical generalizations in experiments). We must respect our 

elders, and thus we seek to identify a solution to the grammar-lexicon balancing problem. 

 

6.3 Mixed-effects logistic regression as a model of the grammar and 
lexicon 
 
Let us return to the toy dataset on word propensities that we were working with in the prior 

section. 

Word Rate Word Rate Word Rate 
1 0.00 5 0.30 9 1.00 
2 0.00 6 0.80 10 1.00 
3 0.10 7 0.90 11 1.00 
4 0.20 8 1.00 12 1.00 

   Average over all rates: 0.61 
 

Table 44: dataset consisting of twelve words with differing propensities 
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Assuming there are two candidates for /Word-i/ in this dataset—the faithful candidate and the 

alternated candidate—the MaxEnt model is essentially a simple BINOMIAL LOGISTIC 

REGRESSION MODEL. In this model, the general constraint APPLY and the set of lexical 

constraints FAITH1, FAITH2, ..., FAITH5, APPLY6, ..., APPLY12 are treated as equally viable 

explanatory variables for learning the dataset and its patterns. As such, the general constraint and 

the set of lexical constraints compete to explain the dataset, with lexical constraints—which are 

completely undominated—coming to explain its entirety, such that the general constraint fails to 

mimic the frequency matching behavior of language learners in nonce probe experiments. 

 We therefore seek a model that possesses a strong GENERALITY BIAS: one in which 

general, grammatical constraints are privileged to lexical constraints. Such a model would adopt 

lexical constraints to the extent that they can explain lexical idiosyncrasies in the data, but in 

such a way that they would not constitute the only explanation of the dataset. That is to say, the 

model would be posed such that the dataset would be primarily explained by the general 

constraint, with deviations from the trend obtained by the general constraint being explained by 

subsidiary, lexical constraints.  

 A similar model to the logistic regression model is the MIXED-EFFECTS LOGISTIC 

REGRESSION MODEL. We might call an analytical framework based on this model MIXED-

EFFECTS MAXENT HARMONIC GRAMMAR. For our purposes, the relevant difference between a 

simple logistic regression model and a mixed-effects logistic regression model is that the latter 

model posits a distinction between FIXED EFFECTS and RANDOM EFFECTS. Constraints that 

constitute fixed effects are those that concern the population of words as a whole—that is to say, 

we would not have to change our constraints if we substituted out the dataset at hand for another 

one; i.e., general, grammatical constraints. Constraints constituting a random effect are those that 
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capture the idiosyncrasies in the dataset itself, such as lexically indexed constraints, without 

threatening the general constraint to capture the broader trend. Mixed effects logistic regression 

models, as a subset of mixed models (linear, logistic, Poisson, etc.) are used widely across 

scientific fields, with fixed effects being used to capture broad trends across a dataset, and with 

random effects used to account for idiosyncrasies particular to the dataset at hand. Moreover, the 

mixed model has been argued to carry various advantages relative to other models in capturing 

various insights within the field of linguistics (Baayen 2004, 2008; Baayen et al. 2008; Jaeger 

2008; Quené & van den Bergh 2008; Levy 2010; Fruehwald 2012; Shih & Inkelas 2016; Zuraw 

& Hayes 2017; Smith & Moore-Cantwell 2017; Shih 2018). A growing family of research has 

recruited the random intercept to measure the degree of by-word or by-lexical class idiosyncrasy 

in datasets displaying morphophonological variation (Fruehwald 2012, Shih & Inkelas 2016, 

Zuraw & Hayes 2017, Smith & Moore-Cantwell 2017, Shih 2018); Shih & Inkelas (2016) and 

Shih (2018) even adopts the hierarchical mixed model as a theory of the language learner. 

 MaxEnt is equivalent to the simple logistic regression model (Smolensky 1986, 

Goldwater & Johnson 2003, Smolensky & Legendre 2006) when the candidate set is restricted to 

two outcomes. Here we restrict attention to the binomial version of MaxEnt—those which model 

the conditioning of the relative probabilities of two candidates: a candidate x in which some 

phonological process has applied, and a faithful candidate y. The equation in (24a) is x’s 

harmony (Hayes & Wilson 2008), and the probability that x surfaces, !(!), is as in (24b) below. 

Here we denote any constraint k over the set of K constraints as !!, and its weight as !!. 

(24a) 

!(!) = !! ∗ !!(!)
!

!!!
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(24b) 

! ! =  !!!(!)
!!!(!) + !!!(!) 

 
!(!) is the probability of candidate x, and, since this is a binomial regression, ! ! =  1− !(!). 

The objective function to be maximized by finding optimal weights is the probability of the 

observed dataset, i.e., the product of all probabilities !(!) of every candidate ! in the input. 

 In the lexical indexation approach to lexical variation, a lexically indexed constraint is 

treated as any other constraint in CON, its weight estimated in the same way that any general, 

grammatical constraint’s weight is estimated. In mixed effects logistic regression models, which 

feature the distinction between fixed effects and random effects, we code general, grammatical 

constraints as fixed effects—constraints that target populations (in our case, any morpheme that 

contains a particular phonological configuration)—and the weights of lexical constraints as 

coefficients of levels of a random intercept—constraints that target particular data in the sample 

dataset at hand; i.e., constraints over particular morphemes. Here we regard CON as the union 

between two kinds of constraints: K general, grammatical constraints which constitute main 

effects, and L lexically indexed constraints which constitute a random intercept. We denote any 

fixed effect constraint k as !! and its weight as !!, and we denote any constraint that is part of a 

random intercept, l, as !!, and its weight as !!. The harmony of candidate x surfacing is as in 

(25).  

(25) 

!(!) = !! ∗ !! ! + !! ∗ !!
!

!!!

!

!!!
(!) 

 
The constraints !! might be lexically indexed constraints (Pater 2000, Moore-Cantwell & Pater 

2016, inter alia), UR-constraints (Pater, Staubs, Jesney & Smith 2012, Smith 2015), or USE 

constraints (Zuraw & Hayes 2017), etc. Notice that the formula in (25) above is nearly the same 
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as that in (24a), except now we are distinguishing between constraints regarded as fixed effects 

and those regarded as part of a random intercept.  

 The mixed effects logistic regression model is hierarchical, in that random effects are 

“depreciated” relative to fixed effects in explaining the dataset. What does this mean? In the 

dataset in Table 44, we have twelve Words—twelve groups of tokens. The central distinction 

between constraints that constitute fixed effects and constraints that constitute random effects is 

that their weights are determined differently. If we were to posit a factor targeting a particular 

group in simple logistic regression—for example, a constraint targeting a particular word, 

APPLY–Word-i—its coefficient (i.e., weight) would be estimated by the group mean, or the 

application rate across Word2 tokens—call this !!"#$!!. Without lexical constraints, a general 

constraint such as APPLY would apply to the entire population of words, and thus its coefficient 

would be estimated by the population mean—call this !!"" !"#$%. But in mixed models, the 

coefficient of a level of a random intercept—the weight of APPLY–Word-i, for example—is 

determined by combining both group information and population information. Whereas in a 

simple logistic regression the coefficient is a free parameter (see below), here the coefficient is 

not a free parameter, but rather is determined by a weighted average of the mean of Word-i (rate 

across Word-i tokens) and mean over all words (Snijders & Bosker 2012, p. 62-3): 

(26a)  !!"#$!! ∗ !!"#$!! + 1− !!"#$!! ∗ !!"" !"#$% 

The expression in (26a) is called the empirical Bayes estimate, which produces a so-called 

posterior mean (see Efron & Morris 1975, Gelman 2004, Snijders & Bosker 2012). !!"#$!!, 

called the reliability of the mean of Word2, is determined as follows (Snijders & Bosker 2012, p. 

62-3, 291): 
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(26b)   

!!!

!!! + !!
!!"#$!!

 

In the above, !!! is the variance of the random effect for Word, and !! is the residual variance. 

The reliability takes on a value between 0 and 1, and depends on the number of observations in a 

particular group—e.g., the number of tokens of Word2, !!"#$!!—with more observations 

resulting in values closer to 1, and fewer observations resulting in values closer to 0. That the 

reliability is sensitive to the size of the group is of particular importance. Since we deal with 

groups of tokens that are finite, !!"#$!!  in (26b) is necessarily finite, and so !!"#$!! is less 

than 1. Hence the population mean at least in part determines the posterior mean for Word-i, and 

as a result, the Word-i mean is always slightly shrunken toward the population mean (see 

Snijders & Bosker 2012, Raudenbush & Bryk 2012 for further discussion of shrinkage). In our 

dataset, Word-i has a different application rate than the overall average; if Word-i were to have a 

small number of tokens, then the weight of APPLY–Word-i would be more shrunken towards the 

weight of APPLY than if Word-i were to have lots of tokens. The property that a lexical weight 

departs from general weight more when it targets a larger group of data, and less when it targets 

a smaller group of data, predicts a pattern of variation observed in Morgan & Levy (2016) and 

Smith & Moore-Cantwell (2017) whereby more idiosyncrasy is observed within frequent forms, 

but more grammatical behavior within infrequent forms.  

 The parameters of a mixed model are the coefficients of the fixed effects—the weights of 

our non-lexical constraints—and the variances of the random effects and residual variance, as in 

!!! and !! (Snijders & Bosker 2012, Raudenbush & Bryk 2012). The objective function of a 

mixed logistic regression model—the probability of the observed dataset given the fixed effect 
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coefficients and the random effect variances (leaving aside a regularization term)—does not 

possess a closed form, and so these parameters are estimated by maximizing a Laplace 

approximation to this likelihood. The approximation is maximized by applying the penalized 

iterative reweighted least squares algorithm, which performs batch gradient descent first on the 

fixed effect coefficients and then on the random variances—iteratively—to determine optimal 

values, until the relative change in predictors has fallen below a threshold value, at which point 

the iterates are said to have converged. Explanations of the details of the approximation and the 

learning algorithm lie outside the scope of this dissertation, but see Bates (2009), p. 28-31 for 

more details. R uses the Laplace approximation and penalized iterative reweighted least squares 

algorithm to determine the values of the coefficients for the main and random effects. See Bates 

(2009), Snijders & Bosker (2012), Raudenbush & Bryk (2012) (inter alia) for further discussion 

of the mathematical details behind how mixed-effects logistic regression models are 

implemented, and how simple logistic regression models and mixed-effects logistic regression 

models differ. 

 We seek to predict the following: 1) with the general constraint APPLY, the behavior of 

speakers in nonce probe studies to frequency match to the overall average rate of application 

across all Words in the dataset; 2) and with the set of lexical constraints, the attested rates for 

each Word. We run a model of the dataset in Table 44 using the glmer function of the lme4 

package R. Each Word had 10,000 tokens, assigned proportionally to their rate—for example, 

Word3 had 1,000 tokens of an alternated output, and 9,000 tokens of the faithful output. I 

inputted into R the following command in (27). We set family = “binomial” to indicate 

that the model is within the logistic family. Below, application is the dependent variable, 1 

is the general intercept—that is, its coefficient corresponds to wAPPLY—and (1|word) is the 
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random intercept for word, with different levels of the intercept corresponding to the different 

weights of the lexical constraints.  

(27) model =  glmer(application ~ 1 + (1|word),  
   data = toyPropensityData, family = “binomial”) 
 
Note that while in the MaxEnt formulation we restricted coefficients to be positive (through 

using a combination of lexically indexed APPLY and FAITH constraints), here the coefficients of 

the level of the random intercept can also be negative.  

 From this, we obtain the modeling results in Table 45. The coefficients obtained for 

APPLY and the levels of the random intercept result in a good fit to the data. In particular, while 

the overall rate of application across the twelve words is 0.608, we find that the model predicts a 

0.667 application rate to nonce words. We see that the weight of APPLY contributes to fitting 

accurate propensities, as it factors into how each of the lexical weights are fitted. On the other 

hand, we found that the weight of the general constraint contributed nothing to MaxEnt’s ability 

to fit to lexical rates in the strict exceptionality toy dataset. Here, with wAPPLY set to zero, we 

observe a drastic decrease in the model’s accuracy in predicting word-specific rates, especially at 

medial rates. This is because the coefficients of the intercept are predominantly negative (except 

for Words 8 through 12)—we see that the positive coefficient for APPLY is being recruited in 

conjunction with the coefficients of the intercept to fit to these medial rates effectively. 
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Word            Weight        Actual rate        Predicted rate      Predicted rate,   Accuracy 
               wAPPLY = 0 difference 
 

Word1  -16.56  0.000    0.000   0.000      0.038 
 

Word2  -16.56  0.000    0.000   0.000      0.096 
 

Word3  -7.32  0.100    0.100   0.001      0.099 
 

Word4  -6.51  0.200    0.200   0.001      0.199 
 

Word5  -5.97  0.300    0.300   0.003      0.297 
 

Word6  -3.74  0.800    0.800   0.023      0.777 
 

Word7  -2.93  0.900    0.900   0.051      0.849 
  

Word8   7.14  1.000    0.999   0.999      0.000 
 

Word9   7.14  1.000    0.999   0.999      0.000 
   

Word10  7.14  1.000    0.999   0.999      0.000 
 

Word11  7.14  1.000    0.999   0.999      0.000 
 

Word12  7.14  1.000    0.999   0.999      0.000   

wAPPLY = 5.130 
 

OVERALL AVERAGE APPLICATION RATE: 0.608  
PREDICTED APPLICATION RATE TO NONCE WORDS: 0.667 

 
Table 45: output of the mixed-effects logistic regression model for the propensity dataset 

 
 
Note that the predicted nonce application rate is obtained differently in mixed models than it is in 

simple logistic regression. In MaxEnt, for example, we would simply take the inverse logit of 

wAPPLY to be the predicted nonce application rate. But for the mixed-effects logistic regression 

model, we cannot do the same by simply “zeroing out” the weights of the lexical constraints in 

order to determine the nonce application rate, as it would result in nonce rate predictions that are 

non-frequency matching and highly exaggerated, tending towards the poles 0 and 1 (Pavlou et al. 

2015).9 The exact predicted nonce rate produced by the mixed-effects logistic regression model 

cannot be calculated analytically, and involves a complex integral over the random effect 
                                                
9 I note here that even Moore-Cantwell & Pater (2016) obtained exaggerated nonce rate 
predictions using the inverse logit of the weight of the general constraints, when they tested their 
MaxEnt model on Ernestus & Baayen (2013)’s dataset on Dutch voicing alternations. Though 
this is speculation, it could be that Pavlou et al. (2015)’s findings explain the exaggeration effect 
produced by their model too. 
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(Skrondal, Rabe-Hesketh 2009; Pavlou et al. 2015). To obtain an estimate of the model-predicted 

application rate to nonce words, I calculated Zeger et al. (1998)’s approximation to the model-

predicted nonce rate, which roughly equates to taking the inverse logit of the value obtained by 

dividing the model-obtained value of wAPPLY by the standard deviation of the random intercept, 

! (see Pavlou et al. 2015 for justification for using this approximation to these ends). The actual 

equation for this approximation is given below—c is a constant equal to 
!" !
!"! . 

(28) 

exp !APPLY
!!!! + 1

1+ exp !APPLY
!!!! + 1

 

Thus inputting wAPPLY = 5.130 by the standard deviation of the random intercept, ! = 12.38, 

yields the 0.667 rate. This rate closely matches the overall application rate across attested words, 

and thus the model mimics the frequency-matching behavior of language learners during nonce 

probe studies. 

 As we see in Table 45, this model: 1) predicts every word-specific rate, thereby learning 

the lexical idiosyncrasy displayed by the data; 2) predicts the nonce application rate that closely 

matches the overall application rate across attested data—mimicking participants in nonce probe 

studies, without going haywire at high levels of input. The grammar is sustained in learning 

without the weights of the general constraint beginning to vacillate together with general, 

grammatical rates once the learner achieves a high degree of fit to word-specific rates. The 

mixed-model outcome stands in stark contrast with that of the MaxEnt analysis given in the prior 

sections, whereby in no period of learning does the learner achieve a particularly close fit to the 

overall average via the weight of the grammatical constraint wAPPLY, and in which the period of 
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learning during which the learner achieves a close fit to the word-specific idiosyncrasies is 

characterized by vacillating grammatical rates, and—in the most extreme case where the learner 

acquires the lexicon perfectly—the zeroing out of grammatical weights such that the learner 

begins to select palatalization in eligible nonce probes at chance.  Modeling the learning of a 

frequency-matching grammar together with lexical propensities was made possible by: switching 

from the simple logistic regression-based MaxEnt to the mixed-effects logistic regression 

model—Mixed-Effects MaxEnt; and realizing that we can obtain accurate, frequency-matching 

nonce regularity rates from the latter by using Zeger et al. (1998)’s approximation to Skrondal et 

al. (2009)’s method.  

 What about real data? We observed in Chapters 3, for example, that the model does 

indeed match to palatalization rates across the Slovenian lexicon. The learning model based in 

mixed-effects logistic regression acquires idiosyncratic application rates depending on suffix 

identity and stem identity, and yet is able to detect and track accurately trends across the lexicon. 

For example, the learner closely tracks that palatalization applies more readily to stem-final k 

than to g; moreover, it applies categorically where the faithful candidate would produce a 

geminate. Note that the predicted rates below were obtained using Zeger et al. (1998)’s 

approximation, as in (28). 
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Figure 24: model succeeds in predicting phonological trends in Slovenian 
 

 I therefore submit mixed-effects logistic regression as a viable future approach to the 

modeling of lexical variation—to modeling the learning and representation of the lexicon and the 

grammar. That is to say, I propose Mixed-Effects MaxEnt Harmonic Grammar as a theory of the 

language learner. I note here that Mixed-Effects MaxEnt is not the only regression-based model 

currently on the market for adequately explaining speaker behavior when they learn datasets 

displaying lexical variation. Smith & Moore-Cantwell (2017) posit a MaxEnt-based model of 

lexical that uses UR constraints (Pater, Staubs, Jesney & Smith 2012, Smith 2015) to represent 

lexical idiosyncrasy. UR constraints are situated within an online error-driven learner in which 

learning data are sampled according to lexical frequency, and UR constraints are induced only 

when needed, and decay when they are not used—see Smith & Moore-Cantwell (2017) for 

further details. That these constraints are set to decay may be crucial in ensuring that a 

frequency-matching grammar is sustained throughout the learning process. Further research 
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should be conducted to compare Smith & Moore-Cantwell (2017)’s model with the mixed-

effects logistic regression model. But, thus far, the mixed model succeeds for my data, and has 

proven to be effective in modeling other variable datasets, both in morphophonology and other 

fields of linguistics (Baayen 2004, 2008; Baayen et al. 2008; Jaeger 2008; Quené & van den 

Bergh 2008; Levy 2010; Fruehwald 2012; Shih & Inkelas 2016; Zuraw & Hayes 2017; Smith & 

Moore-Cantwell 2017; Shih 2018).  

 Further research should be undertaken to assess more fully the capabilities of mixed-

effects logistic regression models in capturing the behavior of language learners. The dissertation 

has introduced the binomial mixed-effects logistic regression model as a way to capture the 

learning of datasets displaying variation. Future work should flesh out the multinomial mixed-

effects logistic regression model, to cover datasets in which underlying forms re associated with 

three or more surface forms. In addition, more work should be conducted to determine exactly 

what constraints must constitute fixed effects, versus a random effect. Invoking the hierarchical 

fixed-random distinction may be necessary for a variety of phenomena that require multiple 

levels of generalization—for example, cases where we need to invoke a general constraint 

together with constraints governing the behavior of different lexical classes (Shih & Inkelas 

2016). Even further research should be conducted to assess how we can model generalizations at 

three or more levels: e.g., to cover a case where different lexical classes behave differently, and 

within each class, different morphemes behave differently. Lastly, more research should be 

conducted to assess the use of random slopes in capturing morphophonological variation (though 

some work showing their promise has already been put forth—see Shih & Inkelas 2016). 
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6.4 Summary 
 
This section investigates how we can model the language learner who frequency matches to 

trends across the lexicon while also acquiring lexical propensities. A popular approach aims to 

capture trends with idiosyncrasy in Maximum Entropy Harmonic Grammar, using general, 

grammatical constraints to model frequency-matching behavior in nonce probe studies, together 

with lexical constraints to model lexical idiosyncrasies in the data. Though this approach is 

capable of representing lexical propensities, I have shown with a series of learning simulations 

that it encounters a GRAMMAR-LEXICON BALANCING PROBLEM: lexical constraints are so 

powerful in explaining the dataset that that the learner comes to acquire the behavior of each 

form using only these constraints, at which point the general constraint is rendered ineffective. I 

have argued that the choice to embed both grammatical and lexical constraints in Maximum 

Entropy Harmonic Grammar in particular, in which the grammatical constraint and lexical 

constraints are treated as equally viable explanatory devices for learning the dataset and its 

patterns, is what leads to the overfitting problem. The negative results obtained in the learning 

simulations, as well the findings that real language learners are nonetheless capable of 

generalizing across idiosyncratic variation, suggests that learners possess a generality bias, 

privileging general, grammatical constraints over the more granular lexical constraints when they 

acquire variable datasets. It is argued that MaxEnt in its current formulation—essentially a 

canonical logistic regression model—fails to appropriately represent this property, even after 

taking into consideration the MaxEnt penalty term. Privilege of general constraints to granular, 

lexical constraints can be represented in a hierarchical mixed-effects logistic regression model—

Mixed-Effects MaxEnt—by encoding general constraints as fixed effects and lexical constraints 

as a random effect. The learner treats the grammar and lexicon differently upon positing the 
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distinction between main effect and random effect, such that idiosyncratic effects of the 

vocabulary are subordinated to broad, grammatical effects in the learning process. The mixed 

model has been shown to succeed in learning both a frequency-matching grammar together with 

lexical propensities.  
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Chapter 7: 
 

On morphosyntactic generality and specificity in  
phonology and phonological learning 

 
 
 
A number of investigators have uncovered evidence for phonological learning biases: biases 

inherent in learners that favor certain language phonologies over others (Wilson 2006; Martin 

2007, 2011; Finley 2012; Hayes & White 2013; White 2014; McMullin & Hansson 2014; Myers 

& Padgett 2014; Chong 2016, 2017; amongst many others; cf. Moreton & Pater 2012a, b). How 

strong, and how pervasive, are these biases? And to what extent can a learning bias be defied in 

language? Ultimately, in what form must these biases take in theories of language learning? 

These questions bear directly on the theory of phonological learning, as they address the limits of 

learner capability. The previous chapter found that models allowing general constraints to be 

pitted directly against lexically specific constraints overfits the latter to the dataset. It was 

proposed that learners must therefore be endowed with a generality bias, such that general 

constraints are privileged to lexically specific constraints for purposes of learning variable 

phonology—as in mixed-effects logistic regression, rather than canonical logistic regression. The 

model must privilege general principles to the extent that learners can extract broad 

generalizations from noisy data, but it also must be able to represent the numerous idiosyncrasies 

of the lexicon. The generality bias proposal, as well as the balance between representing 

generality and specificity in grammar, raises a number of questions. Beyond lexical idiosyncrasy, 

how does generality bias extend to how learners generalize out of whole morphosyntactic 

domains? Is generalization bias defiable, such that speakers learn a process specific to a single 
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domain or affix, with no evidence of the process’s working in other domains (e.g., phonotactics)? 

This chapter reviews prior findings relevant to generality and specificity at the phonology-

morphosyntax interface, and raises a series of questions concerning how it should be modeled in 

the future. 

 

7.1 The learner’s tendency to extend phonological generalizations 
across morphosyntactic domains 
 
A growing family of findings suggests that learners tend to favor phonological constraints that 

are morphosyntactically general—i.e., are obeyed by at least several morphemes, or in multiple 

or all grammatical contexts. That phonological alternations are typically corroborated by the 

phonotactic constraints of a given language was observed as early as Chomsky & Halle (1968) 

(Kenstowicz & Kisseberth 1977; McCarthy 2002; et seq), but the generalizing tendency just 

mentioned has also been observed in a number of recent corpus studies.  

 Martin’s (2007) and (2011) studies, for example, find cases of grammatical “leaking”, in 

which strong phonotactic restrictions tend to manifest as weaker statistical generalizations across 

compound boundaries. Martin focuses on two cases of grammatical leaking: Navajo sibilant 

harmony and English geminate avoidance. In Navajo, sibilants in a root must agree for 

anteriority. For example, the roots [tʃ’oʒ], ‘worm’ and [ts’ozi], ‘slender’ are attested in the 

language, but forms like *[soʃ] are forbidden. The harmony restriction can be observed in the 

cross-boundary domain as well. Prefixes in the Navajo undergo sibilant harmony as an 

alternation in order to match the anteriority of a sibilant in the root (e.g., /ji+s+leeʒ/ → [ji-ʃ-leeʒ]; 

Fountain 1998, Martin 2011). But across a compound boundary, sibilant harmony is not 

obligatory. Though many compounds abide by the restriction, a number of compounds do not: 
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(28) Disagreeing sibilants across a compound boundary (Young & Morgan 1987,  
 Martin  2011) 
 
 [tʃei#ts’i:n], heart#bone = ‘ribcage’ 
 [tshe#tʃe:ʔ], stone#resin = ‘amber’ 
 
Martin investigates in a corpus whether compounds with disagreeing sibilants across a boundary 

are underattested in the lexicon. To determine whether the number of compounds disobeying the 

restriction is significantly above chance, Martin conducts a Monte Carlo test for significance 

(Kessler 2001). He indeed finds that the number of compounds that disobey the restriction is well 

below what chance alone would predict. Compounds in Navajo therefore obey the sibilant 

harmony restriction, though gradiently—the phonotactic restriction “leaks” into the domain of 

compounding. Martin shows that a similar leaking phenomenon arises in English compounds: 

though English bans geminates within roots, compounds such as bookcase and bus stop—

wherein a geminate is formed at the boundary—are underattested. Zuraw (2015) and Shih & 

Zuraw (2018) further observe cases of grammatical “leaking”, in which strong phonotactic 

restrictions tend to manifest across word boundaries, or affect the choice between grammatical 

constructions.  

 Martin attributes grammatical leaking to a generality bias, and in particular, to the penalty 

term adopted in the objective function of MaxEnt. Under small settings of σ, the following result 

is obtained: when the learner encounters the need for a structure-sensitive constraint (e.g., 

*s...ʃ/morpheme-internal in Navajo), it also posits a structure-sensitive constraint (*s...ʃ); since σ 

is low, the learner prefers small weights, and so it “spreads” some of the weight that would be 

obtained by *s...ʃ/morpheme-internal to the weight of *s...ʃ, thereby deriving the leaking effect 

(see Martin 2007, 2011 more in depth discussion). That this approach to generality bias suffices 

to model grammatical leaking but fails to model frequency matching to general lexical trends 
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when lexically specific constraints are included in the model (see Section 6) raises an interesting 

question: what should the shape of generality bias take within the learning theory of the 

phonology-morphosyntax interface, so as to account for all of the generalization effects observed 

thus far? Mixed logits also contain a regularization term, much as MaxEnt does; but would 

encoding the general constraint as a fixed effect and a set of domain-specific constraints as levels 

of a random effect suffice? 

 Chong’s (2016) and (2017) corpus investigation obtains a finding closely related to 

Martin’s: a set of phonological phenomena previously claimed to be derived environment 

effects—morphophonological alternations that lack a corresponding phonotactic generalization 

in the lexicon—are merely apparent. In Korean palatalization, for example, /t, th/ palatalize— 

mapping to [c, ch]—before suffixes beginning with high front vocoids, yet some roots fail to 

display the palatalization requirement morpheme-internally (Kiparsky 1973, 1993; Iverson & 

Wheeler 1988; T. Cho 2001). The Korean pattern was taken, based on these data, as evidence for 

a derived environment effect, and for the Derived Environment Condition—that is to say, 

morphological derivedness as a condition for a process to apply. However, Chong’s corpus 

investigation reveals that roots that fail to display palatalization before high front vocoids are 

underattested within the Korean lexicon. In other words, Korean palatalization is merely an 

apparent derived environment effect, in fact displaying a strong trend towards palatalized 

sequences in roots, in addition to displaying palatalization as an alternation.  

 Generalization effects were also borne out in a set of artificial language learning 

experiments. Myers & Padgett (2014) found that participants generalize an utterance-final 

devoicing pattern to the word-final domain without exposure to unambiguous evidence.  
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The results are relevant here in that they suggest that language learners prefer general 

phonological principles—insensitive to morphosyntactic domain—showing a tendency to 

generalize a phonological principle from one domain into another. Chong (2017) features 

another experiment with results that support learner generalization tendency. In a series of 

artificial language learning studies consisting of a blick test (Scholes 1966 et seq) followed by a 

wug test (Berko 1958), he found that participants more readily learned an artificial suffixal 

harmony alternation in the wug test when they were exposed to higher rates of root harmony in 

the blick test. The experimental results support the proposal that phonotactic generalizations 

assist in acquiring alternations (Tesar & Prince 2003, Hayes 2004, Jarosz 2006, a.o.; cf. 

Chomsky & Halle 1968; Kenstowicz & Kisseberth 1977, 1979; McCarthy 2002; et seq). 

Overall, the results of the Myers & Padgett (2014)’s artificial language learning experiment—

wherein learners generalize an utterance-final phonotactic constraint to a word-final constraint—

and Chong (2017) artificial language learning experiment—which establishes a direct correlation 

between the degree to which a phonotactic constraint is expressed in stems and the learner’s 

ability acquire an alternation driven by that constraint—suggest that learners favor phonological 

principles that are general across morphosyntactic domains.  

 On the other hand, the bias toward morphosyntactically general phonologies must 

constitute a soft learning bias (Goldsmith 1990; Beckman 1998; Lombardi 1998; de Lacy 2002, 

2006; Wilson 2006; Moreton & Pater 2012a, b; Staubs 2014; a.o.), or else we would not observe 

structure-sensitive phonology whatsoever in language. Moreover, there is some reason to suspect 

that the generality preference can be overridden. Vaux (1998) and Paster (2013), for example, 

provide the case of Marash Armenian, wherein adjacent root vowels must agree in backness and 

roundness, but affixed words can be disharmonic. Moreover, Archangeli & Pulleyblank (2007) 
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discuss the case of Ngbaka, wherein root vowels must agree for [ATR], but affix vowels do not 

alternate. Returning to Chong (2017), the dissertation features a second corpus investigation into 

another apparent derived environment effect—Turkish velar deletion (Lewis 1967; Sezer 1981; 

Inkelas 2000, 2011, 2014; inter alia), whereby velar obstruents delete intervocalically when the 

velar neighbors a boundary (/bebek+A/ � [bebe-e], ‘baby’-DAT)—showing that VC[+DORS]V 

sequences are in fact not underattested in roots. The alternation itself is not entirely productive, it 

would seem (Inkelas 2011): though deletion applies when the stem is velar-final and the affix is 

vowel initial (VC[+DORS]+V), it does not apply if the velar is contained in the affix 

(V+C[+DORS]V); in addition, deletion does not apply if the stem is verbal; and finally, the process 

as a whole has lexical exceptions.  Yet the alternation nevertheless applies in some derived 

environments, albeit not all of them, suggesting a moderate degree of productivity. Finally, 

Chong (2017) investigates assibilation in Finnish, a proposed derived environment effect 

whereby /t+i/ maps to [s-i], but [ti] is permitted morpheme internally (e.g., /tilat+i/ � [tilas-i], 

*[silas-i], *[tilat-i], ‘order’-PAST) (Kiparsky 1973, 1993; Karlsson 1983; Anttila 2006). Chong 

shows that, as in the Turkish case, there is no evidence for underattestation of [ti] in the Finnish 

lexicon. Though assibilation does not apply in all derived environments, three suffixes regularly 

undergo assibilation, and one suffix optionally assibilates, to avoid [t+i] (Karlsson 1983; Anttila 

2006). The Finnish system suggests that, once again, that derived environment effects can persist 

in language, at least to a degree. All this being said, it is an open question whether there exists a 

language with a complete derived environment effect (Inkelas 2011)—for example, a language 

Finnish′ whereby all eligible suffixes undergo assibilation, with phonotactics showing no 

dispreference toward [ti] sequences. 
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 In the following section, I present a case of extreme morphosyntactic specificity—not 

quite Finnish′—but still one that deserves a place in the discussion of morphosyntactic generality 

and specificity in phonological learning: the case of Malagasy backness dissimilation, whereby 

dissimilation applies to a single suffix in the language—the only suffix even eligible to undergo 

dissimilation—even though phonotactics displays no dissimilatory preference whatsoever, but in 

fact a weak but highly significant backness harmony preference.  

 

7.2 A case of extreme specificity: Malagasy backness dissimilation 
targeting a single affix, with no accompanying phonotactic tendency 
 
It would seem that the above research into morphosyntactic generality bias is pointing towards 

the following conclusion: within any language, given that a morpheme or a set of morphemes in 

a domain undergoes a phonological alternation, we should find accompanying evidence for the 

alternation-driving constraint elsewhere in the language too (e.g., phonotactics). The grammar of 

Malagasy (Austronesian; Madagascar), as I will argue, challenges this conclusion, and 

complicates our current understanding of learners’ tendency to posit morphosyntactically general 

constraints. Malagasy displays backness dissimilation, an alternation that has persisted across 

multiple generations that sends a back vowel to front in the presence of a nearby back vowel. 

The process applies very consistently to the passive imperative suffix, –u, and displays blocking 

behavior typical of dissimilation, suggesting the working of an OCP constraint. But –u is the 

only affix in the language that undergoes dissimilation, and is the only suffix even eligible to 

undergo it. Moreover, stems in the lexicon show no preference for dissimilation whatsoever; in 

fact, they display a modest but highly significant opposing preference for harmony. This 

suggests that Malagasy learners induce a morphologically specific OCP constraint—specific 

either to –u alone or to the suffix domain as a whole—without the need for a corroborating 
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phonotactic trend. These findings suggest that no degree of morphosyntactic generality is a 

necessary condition for learning. Though learners might be biased towards acquiring 

grammatically general constraints, the Malagasy system suggests that they are capable of 

overriding this bias completely. I present this system below, and discuss the problems it poses 

for a theory in which learners favor grammatically general constraints. 

 

7.2.1 Backness dissimilation applying to the passive imperative 
suffix 
 
Unless otherwise specified, the data below come from the Malagasy Dictionary and 

Encyclopedia of Madagascar (hereafter MDEM; malagasyword.org; de la Beaujardière 2004), an 

annotated online corpus containing ~92,000 Malagasy words. The Malagasy vowel inventory is 

composed of [i e a u] (Parker 1883, de la Beaujardière 2004). There are four suffixes: the passive 

suffixes –ina and –ana, the active imperative suffix –a, and the passive imperative suffix –u 

(Parker 1883, Richardson 1885). 

The passive imperative suffix conditionally undergoes backness dissimilation (Parker 1883, 

Zymet 2015): underlying –u (29a-b) surfaces as –i after stems containing u (30a-d) unless a front 

vowel intervenes (31a-b). The alternation conforms to patterns driven by the Obligatory Contour 

Principle (Leben 1973, Goldsmith 1976, et seq). 

Underlying –u   (29a) /bata+u/ [bata-u] lift-PASS.IMP 
    (29b) /sava+u/ [sava-u] inspect-PASS.IMP 
 
Backness dissimilation (30a) /babu+u/ [babu-i] plunder-PASS.IMP 
    (30b) /tuv+u/ [tuv-i]  fulfill-PASS.IMP 
    (30c) /suav+u/ [suav-i] bless-PASS.IMP 
    (30d) /undan+u/ [undan-i] bolster-PASS.IMP 
 
Blocking by front vowels (31a) /turi+u/ [turi-u] preach-PASS.IMP 
    (31b) /fules+u/ [fules-u] thread-PASS.IMP 
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3,675 words in MDEM with the passive imperative suffix were extracted. The counts in Table 46 

show that dissimilation is triggered by the presence of stem-internal u, applies regularly when the 

trigger is local and semi-regularly across a, and is regularly blocked by front vowels. 

Context (ignoring consonants) –u –i Dissim. rate Example 

No trigger 1877 7 0.0% bata-u 

Adjacent trigger  4 989 99.6% babu-i 

Intervening a   196 201 50.9% tuda-i 

Intervening front vowel 399 2 0.4% turi-u 
 

Table 46: Counts for Malagasy backness dissimilation 
 
 

Multiple lines of evidence suggest that Malagasy speakers acquire this alternation. 

Dissimilation is observed across at least two generations: it was reported as early as Parker 

(1883), and evidence for it appears in dictionaries since then (e.g., Abinal & Malzac 1888, 

Rajemisa 1985, de la Beaujardière 2004). Dissimilation and its blocking can be observed even 

when –u comes after loaned stems, as in (4a-d) below. The stems given below can be found in 

the World Loanword Database (wold.clld.org; Adelaar 2009), except /matsu/, which is marked as 

a loan in MDEM. 

Dissimilation (32a) /matsu+u/ [matsu-i] march-PASS.IMP English loan 
  (32b) /kiraru+u/ [kiraru-i] shoe-PASS.IMP  Bantu loan 
  (32c) /kuhukuhu+u/ [kuhukuhu-i]  cluck-PASS.IMP Bantu loan 
Blocking (32d) /burusi+u/ [burusi-u] brush-PASS.IMP French loan 
 
 Remarkably, the passive imperative suffix is the only affix to undergo dissimilation, and, 

assuming the process sends back vowels to front but not vice versa, is the only suffix even 

eligible to undergo it (being the only one to contain u). Even if we assume that dissimilation 

sends back vowels to front and vice versa, it is still not displayed by any other affix, according to 

an MDEM search. Given below are all affixes in MDEM occurring with at least 20 stems and 
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that can place a front/back vowel tier-adjacent to a front/back root vowel. None of them alternate 

based on the root vowel (see http://malagasyword.org/bins/derivLists?form#longScroll), except 

for –in–/–un–, which displays some evidence of a harmony alternation (see Section 7.2.2 below). 

 

Pref. # forms  
w/ pref. 

Circumf. # forms w/ 
circumf. 

Inf. # forms 
w/ inf. 

Suff. # forms 
w/ suff. 

fi- 
‘manner of 
doing X’ 

2618 fi-…-ana 
‘instance of X’ 

2144 -in-/-un- 
-PASS- 

288+14 -ina/-
na10 

-PASS 

1700+32 

ki-11 
‘act of doing/ 
state of being X’ 

78 i-…-ana 
renders X into 
relative verb 

1991 

mi- 
ACTIV- 

4312 ampi-…-ina 
renders X into 
passive verb 

31 

mpi- 
‘one who    
provides X’ 

1975 

t ͡si- 
‘instance of X’ 

46 

ku- 
‘that which is  
X’ 

44 

fampi- 
PASS- 

53 

mampi- 
ACTIV- 

693 

mpampi- 
‘one who    
provides X’ 

20 

 
Table 47: different frequently occurring affixes and their counts 

 

                                                
10 The counts of the –na allomorph might be inaccurate, as it also serves as the allomorph to 
another passive suffix, –ana (Richardson 1885). Regardless –na surfaces as a result of hiatus 
repair in the language (cf. Albro 2005, Lin 2005, O’Neill 2015, a.o.). 
 
11 ki-/ku- could be allomorphs of the same morpheme—but even if this is were true, their 
distributions do not appear to be conditioned by neighboring vowels (ki-: 
http://malagasyword.org/bins/derivLists?form=ki~#longScroll; ku-: 
http://malagasyword.org/bins/derivLists?form=ko~#longScroll). 
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If there were other evidence for a dissimilatory tendency in the grammar, we would expect to 

find it in phonotactics. We now turn to a corpus study of roots to assess whether this is the case. 

 

7.2.2 A backness harmony tendency in Malagasy stem phonotactics 
 
Surprisingly, roots display a modest but highly significant tendency toward backness harmony. 

MDEM gives numerous harmonic roots: 

(33) kiri ‘small hole’  sarutru    ‘cape’  uzuna ‘curse’  
 lufu ‘persistence’  tevika    ‘spasm’  t ͡sindri ‘compression’ 
 gegi ‘indiscreet’  vulu    ‘color’  duku ‘identity’ 
 
Counts of tier-adjacent pairs involving only front or back vowels (i, e, and u) were enumerated 

across 4,514 roots that were extracted from MDEM. The counts reveal no preference for 

disharmonic sequences in roots, as Table 2 reveals below. Note that the majority of roots in the 

corpus are classified as nouns (2,737), adjectives (729), or adverbs (733); verbs are derived 

through affixation (cf. Keenan & Polinsky 1998).12  

 

 

 

 

 

                                                
12 Some words displaying reduplication (cf. Lin 2005) were classified as roots in the corpus; in 
these cases, only the root involved in reduplication contributed to the counts, rather than the 
reduplicated stem as a whole. A conference reviewer points out that there could exist productive 
pseudoreduplication, with the first syllable being a copy of the second, potentially inflating the 
harmony rate. The corpus revealed that only 115 of the 4,514 roots have matching first and 
second syllables, with only 64 beginning with a front or back vowel ([diditra] = ‘twisting’, 
[vuvuka] = ‘dust’). It is not at all obvious that the language possesses pseudoreduplication, 
considering how low the count is here. 
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 # harmonic 
VC0V seq.s  

# disharmonic 
VC0V seq.s 

# harmonic 
VC0aC0V seq.s 

# disharmonic 
VC0aC0V seq.s 

Within noun roots  786 602 35 44 

Within adj. roots 185 183 27 11 

Within adv. roots 312 188 109 49 
Within interj.,  
conj., prep. roots 96 41 24 14 

TOTAL 1379 1014 205 118 
 

Table 48: Raw counts of (dis/)harmonic sequences in roots 
 
 
There are around 350 more local harmonic sequences than local disharmonic sequences, and 

around 100 more nonlocal harmonic sequences than nonlocal disharmonic sequences. This 

makes backness dissimilation highly morphologically specific: it requires reference to the suffix 

domain or to the passive imperative suffix in particular, and lacks a counterpart generalization in 

stem phonotactics.  

In fact, as we will see, Malagasy displays a significant tendency toward backness harmony in 

roots—these counts are unlikely to have arisen by chance alone. The observed rates of local and 

nonlocal harmony are 1379/(1379 + 1014) = 57.3% and 205/(205+ 108) = 63.5%, respectively. 

We can calculate the expected local harmony rate given the frequencies of front and back vowels 

by extracting from roots all V1V2 sequences in which each vowel belongs to [i e u], and 

calculating [p(V1 = u) × p(V2 = u)] + [p(V1 = i or e) × p(V2 = i or e)], where e.g. p(V1 = u) is the 

number of instances of u in V1 position divided by the number of instances of i, e, and u in V1 

position. The expected rate of nonlocal harmony is computed analogously over V1aV2 sequences. 

Doing this, we obtain 51.6% and 57.7% as expected rates of local and nonlocal harmony. 

Comparing the observed and expected rates, we find that observed rates (local: 57.3%; nonlocal: 

63.5%) are higher than expected (local: 51.6%; nonlocal: 57.7%). To determine whether 
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harmonic sequences occur significantly more than chance would predict, we can run a Monte 

Carlo simulation (Kessler 2001). To run a simulation for local vowel sequences, we gather pairs 

of tier-adjacent vowels belonging to [i e u], shuffle the second vowels of each pair and randomly 

concatenate each of them to a first vowel, calculate the new harmony rate, and then repeat 

10,000 times. The simulation for nonlocal sequences (V1aV2) can be computed analogously. 

Figures 25a-b below show histograms of (non/)local harmony rate frequencies after the 10,000 

trials. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25a: distribution of local harmony rates yielded by Monte Carlo trials 
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Figure 25b: distribution of nonlocal harmony rates yielded by Monte Carlo trials 
 

 
For local harmony, the observed rate of 57.3% is greater than any rate yielded by 10,000 

trials, and is thus significantly greater than chance would predict (est. p < !
!"""" = 0.0001). For 

nonlocal harmony, the observed rate of 63.5% is greater than 9,834 of the trials, and is thus 

significantly above chance as well (est. p = !""""!!"#$!""""  = 0.008). The results suggest that 

overrepresentation is not coincidental, but rather reflects a backness harmony preference in 

phonotactics. Note that there exists some evidence of a harmony alternation as well. The –in–/–

un–infix is used to create passive verbs ([sava] = clear,     [s-in-ava] = clear-PASS; [fidi] = choice, 

[f-in-idi] = choice-PASS). MDEM gives 288 words with –in– and 14 with –un–. –in– can surface 

before any vowel, and in particular surfaces before u in 56 forms. But in the 14 forms with –un–, 

the following vowel is always u ([buri] = round; [b-un-uri] = round-PASS), suggesting that –un– 

is selected to satisfy a (weak) harmony drive. That an infix can harmonize while another suffix 

dissimilates is reminiscent of Yucatec Maya, in which two suffixes harmonize for backness and 

height, but another dissimilates for backness, and yet another for backness and height (Blair 
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1964; see Krämer 2001 for an account). Altogether, these cases suggest that contradictory 

markedness preferences can target different morphemes or domains. 

To summarize, Malagasy backness dissimilation applies consistently to the passive 

imperative suffix and displays blocking behavior typical of OCP. Roots, however, show no 

dissimilatory tendency, but rather a modest but highly significant harmony preference.  

 

7.2.3 Discussion and potential analytical directions  
 

The Malagasy system provides evidence that the learner can counteract the tendency to favor 

morphosyntactically general constraints. This finding patterns with other instances of learning 

bias defiance, in which systems that have been suggested to be disfavored by learners 

occasionally arise in the world’s languages and persist across generations, providing evidence 

that they can be apprehended to some extent (Hayes, Zuraw et al. 2009; Hayes & White 2015; 

Merrill 2015; Beguš & Nazarov 2017).   

The Malagasy system complicates the picture of how a morphosyntactic generality bias in 

phonological learning should be modeled. Martin (2011) finds that phonotactic constraints can 

“leak” into the cross-boundary domain: in Navajo sibilant harmony and English geminate 

avoidance, a categorical generalization within roots is mirrored by a statistical tendency across 

compound boundaries. To account for this, Martin introduces a Gaussian smoothing term into a 

MaxEnt learning system so that when the learner weights positively a structure-specific 

constraint (e.g., applying only stem-internally), it gives small positive weight to an analogous 

domain-general constraint, leading over time to a grammar with the morphosyntactic generality 

property. A model in which the usage of a structure-specific constraint implies the usage of an 
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analogous structure-insensitive constraint cannot be applied to Malagasy, at least without further 

elaboration.  

Two potential solutions to the problem are entertained. The first is to say that while any 

particular affix is allowed to depart from typical phonological behavior in a language, whole 

domains must overall respect the generality property, at least to a degree. We can say that OCP 

targets the passive imperative suffix in Malagasy, rather than the entire suffix domain, and so no 

generalizing tendency should arise. Although this would be a possible approach, we cannot be 

sure that OCP targets –u rather than the entire suffix domain: it could be that OCP in Malagasy is 

triggered only by back vowels and is indexed to the suffix domain, and thus the one suffix with a 

back vowel, –u, undergoes dissimilation. Nonetheless, corpus studies undertaken by Chong 

(2017) support indexing OCP to –u rather than to its domain, as they discount claims of the 

existence of certain derived environment effects—that is, domain-level mismatches: though prior 

investigators show that palatalization in Korean (Kiparsky 1973,1993; Iverson & Wheeler 1988) 

avoid sound sequences that are found in some of the languages’ roots, Chong shows that such 

roots are underattested. Korean therefore still displays the morphosyntactic generality property, 

at least for the most part. That being said, it may be that the generalizing tendency is not 

universal even for domains, as aforementioned: Finnish shows no tendency against [ti] sequences 

in roots, but three suffixes regularly undergo assibilation, and one suffix optionally assibilates, to 

avoid [t+i] (Kiparsky 1973, 1993; Karlsson 1983; Anttila 2006; Chong 2017). The Finnish 

system suggests that even domains can, to some extent, mismatch overall.  

Another possible solution is to say that a generalizing bias even applies in the Malagasy case, 

but that Malagasy learners make use of a harmony constraint that counteracts leaking of the 

dissimilatory drive into phonotactics. One can imagine that a learner with a generalizing bias, 



 158 

upon encountering the Malagasy system, would invoke a morphologically specific OCP 

constraint, and then “smooth” over the grammar with a general OCP constraint, so that the 

dissimilatory drive leaks into stems. This alone could not account for the Malagasy system, since 

no dissimilatory tendency is observed in phonotactics. Thus, to correct for this, the learner could 

weight positively a harmony constraint so that the phonotactic dissimilatory tendency is 

cancelled or overridden (see Zymet 2018 for a MaxEnt model involving this). Some evidence 

indeed suggests that learners can make use of constraints driving dissimilation in some 

morphemes or domains but harmony in others: after all, Malagasy displays consistent 

dissimilation to the passive imperative suffix, but a harmony tendency in phonotactics; in 

addition, backness dissimilation and harmony constraints seem to condition allomorphy in 

different suffixes in Yucatec Maya (Blair 1964, Krämer 2001). One might wonder, then, why 

contradictory-preferences systems are so typologically infrequent. Perhaps they are tied to 

backness restriction in particular. The cases of leaking found in Martin (2011) involve sibilant 

harmony and geminates; considering that grammars preferring disharmonic sibilants or 

geminates are rare or unattested, we might imagine that learners would not entertain such 

preferences as hypotheses about different grammatical contexts. As a result, sibilant harmony or 

geminate avoidance found in one grammatical context would leak into another. But backness 

harmony and dissimilation are observed crosslinguistically (Parker 1883, Esztergár 1971, 

Campbell 1977, Clements & Sezer 1982, Itô 1984, Harrison 1999, a.o.), and so it may be that the 

learner can entertain constraints driving both backness harmony and dissimilation in hypotheses 

about these different contexts. Learners might spread the effect of one of these constraints across 

contexts (e.g., dissimilation), but counteract the effect using the natural opposing constraint 

(harmony). It could be that generalization effects are only defied in cases where there exists 
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crosslinguistic evidence for the working of two opposing constraints, as in backness 

dissimilation and harmony. Where there does not, languages requiring restrictions specific to 

grammatical context may be relatively prone to being generalized. 

How might the Malagasy system have arisen if the generalizing bias is true? Here the picture 

is unclear, but we can speculate: the passive imperative suffix may have been adopted late in the 

language’s development, with dissimilation arising to distinguish the suffix boundary—a drive 

for recoverability that would directly conflict with the generalizing bias. Or perhaps dissimilation 

began as a constraint against u+u sequences, mirroring a ban on pairs of directly adjacent u’s in 

phonotactics, but was somehow generalized to u…+u sequences. This is a topic here left for 

further research. 

 

7.2.4 Summary of the Malagasy case  
 
Several findings now suggest that learners tend to favor morphosyntactically general 

phonological constraints. This section argues that this bias, if it exists, can be overridden. 

Malagasy backness dissimilation applies very consistently to the passive imperative suffix –u, 

and displays blocking behavior typical of OCP. But –u is the only affix in the grammar that 

undergoes it, and is the only suffix even eligible to undergo it. Stems, on the other hand, display 

a modest but significant harmony trend. This suggests that Malagasy learners induce a 

morphologically specific OCP constraint—specific either to   –u or to the suffix domain as a 

whole—without the need for a corroborating phonotactic trend. These findings suggest that no 

degree of morphosyntactic generality is a necessary condition for learning. Though learners 

might favor grammatically general constraints, the Malagasy system suggests that they are 

capable of overriding this bias completely. 
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7.3 Towards a broad understanding of generality and specificity at 
the phonology-morphosyntax interface 
 
At present, how granular a phonology can be—how learner-driven generality effects arise in the 

phonology-morphosyntax interface, and the extent to which structure specificity in phonological 

principles can be acquired by learners and persist in grammar—is an open question. To give an 

overview, the prior studies reviewed in this chapter and the dissertation overall have presented 

the following evidence for morphosyntactic generality bias in phonological learning: 

phonological alternations are typically accompanied by a corresponding phonotactic 

generalization (Chomsky & Halle 1968; Kenstowicz & Kisseberth 1977, 1979; McCarthy 2002; 

et seq); there exist cases in which a strong phonotactic generalization is generalized, “leaking” 

into other domains such as compound well-formedness (Martin 2007, 2011); Korean 

palatalization as a derived environment effect is merely apparent—phonotactics in fact displays a 

strong bias towards the palatalizing restriction (Chong 2016, 2017); in artificial language 

learning experiments, participants generalize a phonological principle from one morphosyntactic 

domain to another, without unambiguous evidence (Myers & Padgett 2014); in artificial 

language learning experiments, participants more readily acquire a harmony alternation when 

there is accompanying evidence for harmony in phonotactics (Chong 2017); and finally, learners 

extract broad phonological principles from datasets displaying high degrees of lexical 

idiosyncrasy, rather than simply internalizing principles on a word-by-word basis (Zuraw 2000, 

Hayes & Londe 2006, this dissertation; inter alia). On the other hand, other studies have 

presented the following evidence for morphosyntactic specificity in phonological learning: there 

are a couple—albeit less productive—cases where phonotactics and alternations mismatch, in 

particular, Turkish velar deletion and Finnish assibilation (Lewis 1967; Kiparsky 1973, 1993; 

Sezer 1981; Karlsson 1983; Vaux 1998; Anttila 2006; Archangeli & Pulleyblank 2007; Inkelas 
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2011; Paster 2013; Chong 2017; inter alia); Malagasy, furthermore, displays backness 

dissimilation to a single suffix—the only suffix eligible in the domain to undergo the process—

without showing an accompanying tendency in phonotactics (Zymet 2017, this dissertation); 

though they extract generalizations from datasets displaying lexical variation, speakers 

nonetheless internalize the fixed pronunciations of attested words (Zuraw 2000, Hayes & Londe 

2006, this dissertation; inter alia); and finally, French speakers even internalize word-specific 

lexical propensities in liaison, to some degree of accuracy (this dissertation). How can these facts 

be reconciled in the learning theory of the phonology-morphosyntax interface? On what grounds 

does the learner posit a structure-specific constraint, and on what grounds does the learner posit a 

completely general constraint—insensitive to structure of any kind, whether it be morpheme or 

morphosyntactic domain? When must the learner posit a set of morpheme-specific constraints, 

rather than a domain-specific, category-specific, or structure-insensitive constraint? And how do 

we model the learner’s positing of structure-sensitive constraints? Perhaps a clustering algorithm 

lies in the future of the theory of phonological learning, either bottom-up or top-down: for 

example, a bottom-up algorithm whereby the learner posits morpheme-specific constraints until 

she realizes that a broader generalization can be said to govern the data, whether it be domain-

specific, category-specific, or structure-insensitive entirely—much like what has been recently 

proposed in Shih (2018); or one whereby the learner posits a broad, structure-insensitive 

generalization, until she realizes that smaller clusters must be formed in cases where the 

evidence is strong enough—at first she might try domain- or category-specific constraints, but if 

the attempt fails to explain the ambient input sufficiently, then she might try morpheme-specific 

constraints. Maybe the best way to encode domain specificity or category specificity, 

furthermore, is as a random effect—much like morphemes—with grammar leaking simply 
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resulting from this distinction. Whatever the answers to these questions may be, they must 

explain the facts discovered so far—a considerable challenge for investigators to tackle in future 

studies. 
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Chapter 8: 

Conclusion 

Several theories of variation propose that encoded in morphemes is a binary scale ([+/- Rule X]) 

that determines whether they trigger or undergo a phonological process. Other, more recent 

theories raise the possibility that encoded in morphemes are gradient parameters ([0.7 Rule X]), 

predicting that they should display lexical—idiosyncratic, gradient rates at which they trigger or 

undergo a process. In this investigation, I argue that individual morphemes—both triggering 

morphemes and undergoing morphemes—can display differing propensities to participate in a 

variable process, and that learners internalize these propensities. The evidence for these claims 

comes from a series of corpus investigations into variable Slovenian palatalization and French 

liaison, and a nonce probe investigation into the intuitions of native French speakers, the results 

of which suggest that French learners internalize the liaison propensities of different Word1s. 

These findings favor theories that are capable of encoding a morpheme’s status on an entire 

spectrum, and would suggest that learners are capable of tracking morpheme-specific rates of 

allomorphy. Moreover, it validates theories that allow encoding on a morpheme-by-morpheme 

basis, and suggests that variation cannot be explained by referring to idiosyncrasies of stored 

larger constituents alone, or morphemes grouped arbitrarily or by semantic or lexical class alone. 

The theory of the grammar and lexicon must elucidate how such idiosyncratic propensities are 

represented and learned. 

 Such theories would share the following goals: 1) capturing language learners’ behavior 

to frequency match to statistical generalizations found across the lexicon; 2) capturing the 
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idiosyncratic behavior of individual words or morphemes to abide by or deviate from these 

trends. The modeling section primarily focused on a recent MaxEnt-based model for learning a 

frequency-matching grammar together with lexical propensities, which makes use of general 

constraints that putatively frequency match to general trends across the lexicon, as well as 

lexically specific constraints that govern the behavior of individual words. In this model, general 

constraints and lexical constraints are treated as equally viable explanatory variables for learning 

the dataset and its patterns. A series of learning simulations revealed that the approach fails to 

learn general, grammatical trends for this very reason, as it runs into a grammar-lexicon 

balancing problem: the lexical constraints are so powerful that the learner acquires the behavior 

of each word in the dataset well before the general constraints are strong enough to capture the 

grammatical trends, at which point grammar learning ceases. A generality bias was therefore 

attributed to learners, such that they privilege general constraints over lexical ones. MaxEnt—

essentially an ordinary logistic regression model—fails to represent this property. This 

dissertation argued that it should replaced with a mixed-effects logistic regression model—

Mixed-Effects Maximum Entropy Harmonic Grammar—which was shown to succeed in 

learning both grammatical and item-specific behavior by encoding general constraints as fixed 

effects and lexical constraints as random effects. The learner treats the grammar and lexicon 

differently, in that vocabulary effects are subordinated to broad, grammatical effects in the 

learning process. Mixed-effects logistic regression is used widely in linguistics experiments and 

across scientific fields. My purpose has been to make the case for why it should be adopted as a 

model of the language learner. 
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