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Risk controlled decision trees and random forests for precision 
Medicine

Kevin Doubleday1, Jin Zhou2, Hua Zhou2, Haoda Fu3

1Department of Biostatistics, University of Arizona, Tucson, Arizona

2Department of Biostatistics, University of California, Los Angeles, California

3Eli Lilly and Company, Indianapolis, Indiana

Abstract

Statistical methods generating individualized treatment rules (ITRs) often focus on maximizing 

expected benefit, but these rules may expose patients to excess risk. For instance, aggressive 

treatment of type 2 diabetes (T2D) with insulin therapies may result in an ITR which controls 

blood glucose levels but increases rates of hypoglycemia, diminishing the appeal of the ITR. 

This work proposes two methods to identify risk-controlled ITRs (rcITR), a class of ITR which 

maximizes a benefit while controlling risk at a prespecified threshold. A novel penalized recursive 

partitioning algorithm is developed which optimizes an unconstrained, penalized value function. 

The final rule is a risk-controlled decision tree (rcDT) that is easily interpretable. A natural 

extension of the rcDT model, risk controlled random forests (rcRF), is also proposed. Simulation 

studies demonstrate the robustness of rcRF modeling. Three variable importance measures are 

proposed to further guide clinical decision-making. Both rcDT and rcRF procedures can be 

applied to data from randomized controlled trials or observational studies. An extensive simulation 

study interrogates the performance of the proposed methods. A data analysis of the DURABLE 

diabetes trial in which two therapeutics were compared is additionally presented. An R package 

implements the proposed methods (https://github.com/kdoub5ha/rcITR).

Keywords

decision trees; precision medicine; random forests; risk control; variable importance

1 ∣ INTRODUCTION

In precision medicine, treatment selection is carried out based on an individual’s particular 

set of characteristics. Optimizing clinical benefit, or treatment efficacy, is often the primary 

objective of a treatment recommendation, but secondary complications and risks should also 

be considered. Numerous statistical methods propose constructing individualized treatment 

rules (ITRs) to optimize efficacy,1-9 including our previous work.10 ITRs that optimize 
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treatment efficacy with respect to several outcomes are a natural extension. For instance, 

Lizotte et al11 proposed a reward function that scans across all linear combinations of trade-

offs between the outcomes under consideration. Examining trade-offs between outcomes 

is commonly investigated in developing optimal dosing strategies (eg, Thall et al12) where 

striking a balance between response to treatment and toxicity is desired. Lipkovich et al2 

proposed to balance efficacy and risk via specifying a joint distribution of efficacy and risk 

scores, and used a splitting criteria based on an additive model that maximized the weighted 

group effects for efficacy and risk. Their method, however, assumed training data were 

from a randomized trial. Laber et al13 avoided explicit trade-offs in ITR specification by 

returning a set of treatment recommendations demonstrating significant differential benefit 

in all outcomes.

Alternatively, one could construct treatment rules that maximize an expected clinical benefit 

while controlling expected risk at a given threshold. For instance, Wang et al14 estimated the 

marginal mean efficacy and risk scores under a value-based framework (Qian and Murphy5). 

They provided two solutions to this constrained optimization problem, model-based benefit-

risk learning (BR-M) and benefit-risk O-learning (BR-O). BR-M determines optimal ITR 

through estimating treatment contrasts for efficacy and risk scores. Treatment contrasts were 

modeled using a linear function of predictors, subjecting this approach to the potential for 

model misspecification leading to a suboptimal rule. BR-O is an extension of the outcome 

weighted learning method.8 They utilized support vector machines (SVM) and kernel tricks 

to solve optimal risk-controlled ITR. However, nonlinear kernels (eg, Gaussian) in BR-O 

introduce substantial computational cost in problems of modest dimensionality. Variable 

importance measures were proposed for BR-O as a rank ordering of coefficient magnitude. 

For both BR-M and BR-O, interpreting the final rule is difficult. Note that the methods 

proposed both here and by Wang et al14 conceptualize “riskε as an undesirable, measurable 

outcome that is potentially correlated with treatment assignment and patient profile.

In this work, two nonparametric, risk-controlled ITR (rcITR) estimation procedures are 

proposed. Both methods utilize decision trees15,16 to identify an ITR with maximized 

expected treatment efficacy while maintaining expected risk within a clinically relevant 

threshold. This constrained problem was solved by formulating an objective function that 

maximizes expected efficacy while penalizing rules with expected risk greater than a 

clinically relevant threshold. The proposed approach avoids specifying trade-offs as was 

the case in Lizotte et al.11 Instead, prespecification of a clinically relevant risk threshold 

is utilized in a constrained optimization-like framework to obtain a high efficacy rule that 

controls expected risk at the specified threshold. The proposed objective function is closely 

related to that proposed by Wang et al,14 but has the advantage of preferring rules with 

lower risk, given similar efficacy. This corresponds well to patient preferences for treatment 

choices in the real world. Decision trees are employed to optimize the objective function. 

The resulting model is called a risk-controlled decision tree (rcDT). Traditional decision 

trees are comprised of a series of localized (ie, node-specific) models, and single tree models 

are highly variable. Accordingly, the rcDT model is extended to risk-controlled random 

forests (rcRF). rcRF aggregates rcDT learners with notable advantages. First, unbiased risk 

estimates can be obtained from the out-of-bag sample and leveraged in model selection. 

Second, rcRF is robust as it aggregates several weaker rcDT learners. Third, rcRFs can 
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return a hard rule (ie, treat or not) and a probability measure to assess the strength of 

the treatment recommendation. Finally, rcRF naturally offers variable importance measures 

relevant to ITRs. Both rcDT and rcRF can be applied to randomized controlled trial data 

as well as observational studies. Performance of rcDT and rcRF procedures was assessed 

through extensive simulation studies. Data analysis was performed using randomized 

controlled trial data from the DURABLE (DURAbility of Basal vs Lispro mix 75/25 insulin 

Efficacy) trial.17

In summary, our contribution in this paper is: (1) development of two non-parametric 

rcITR estimation procedures using decision trees (rcDT) and random forests (rcRF); (2) 

implementation of three variable importance measures for an rcRF model; (3) extensive 

assessment of rcDT and rcRF methods via simulation studies; (4) demonstration of rcDT 

and rcRF procedures by analysis of DURABLE trial data; (5) implementation of rcDT and 

rcRF methods in a publicly available software package rcITR ( https://github.com/kdoub5ha/

rcITR) using the statistical computing language R.18

2 ∣ STATISTICAL FRAMEWORK

Given a finite sample of n observations from a population of interest, the observed data 

are (yi, ri, xi, ai) for i = 1, 2, … , n. Values of yi, ri ∈ ℝ correspond to patient efficacy 

and risk scores, xi ⊂ ℝp is the p-dimensional vector of covariates, and ai ∈ {0,1} is the 

binary treatment indicator. Observed data is a realization from the underlying distribution 

P = (Y , R, X, A). Without loss of generality, larger values of Y and smaller values of R 

are assumed to be desirable. Define the propensity score pi = Pr(ai∣xi) ∈ (0,1), that is, 

the probability of receiving treatment ai given the covariates. For randomized controlled 

trials (RCTs) the value of pi is viewed as fixed (eg, assuming two treatments and a 1:1 

allocation ratio, then pi = 0.5). In observational studies, pi can be estimated using logistic 

regression.19,20 A treatment rule d maps the predictor space to the treatment space, that is, 

d : X → A such that d(xi) ∈ {0,1}. Let Ed(Y) and Ed(R) correspond to the expected efficacy 

and risk under rule d, respectively.

We aim to maximize the expected efficacy while controlling expected risk at a clinically 

relevant level.14 Specifically, we seek to find do that solves

maxd Ed(Y )

subject to Ed(R) ≤ τ,
(1)

where τ is a predefined clinically relevant bound for the expected risk. When Pr(ai∣xi) is 

strictly positive, Ed(Y) and Ed(R) can be estimated as,

V Y (d) = Ed(Y ) = ∑
i = 1

n
wi

−1
∑
i = 1

n
wiyi , (2)
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V R(d) = Ed(R) = ∑
i = 1

n
wi

−1
∑
i = 1

n
wiri , (3)

where wi = I(ai = d(xi))(Pr(ai ∣ xi))−1.

The current work aims to solve an optimization problem closely related to (1). Under a 

recursive partitioning framework, a splitting criterion needs to be defined that increases 

the “purity” of the daughter nodes relative to the common parent node. To that end, the 

constrained optimization problem (1) is translated to an unconstrained one,

L(d) = Ed[Y ] − λ Ed[R] − τ , (4)

where λ > 0 penalizes rules with expected risk greater than τ, that is, ER(d) > τ. L(d) acts as 

a purity measure in the sense that an increase in L(d) indicates either an increase in expected 

efficacy, a decrease in expected risk, or an increase in risk accompanied by an acceptable 

increase in efficacy (see Appendix S1 for more details). The optimal partition of the data 

is selected such that L(d) is maximized and λ is treated as a tuning parameter. Note that 

optimizing L(d) does not necessarily imply that E[Y] is maximized when the risk constraint 

in system 1 is satisfied since rules with expected risk less than τ contribute positive values 

to L(d). Optimizing L(d) prefers rules with lower expected risk (for fixed expected efficacy), 

which is reflective of patient preferences. This differentiates the proposal from translating 

the optimization as a difference of convex functions as was done by Wang et al.14 Given a 

set of values for λ, the rule both maximizing L(d) and satisfying E[R] < τ can be selected, 

thereby enforcing the constraint from 1. In summary, the proposed splitting criteria balances 

expected efficacy and risk such that rules with smaller risk are preferred for fixed expected 

efficacy. See Section 3 for details about the optimization.

Apply the law of total expectation to Equation (4) and define δY(X) = E[Y∣X, A = 1] – 

E[Y∣X, A = 0] and δR(X) = E[R∣X, A = 1] – E[R∣X, A = 0]. Here δY and δR correspond to 

the expected difference in efficacy and risk due to receiving active treatment versus control. 

Equation (4) is then equivalent to,

L(d) = E{I(d(X) = 1)[δY (X) − λδR(X)]} + Ȳ 0 + R̄0 + λτ, (5)

where Ȳ 0 and R̄0 are the mean efficacy and mean risk in the control group, respectively. 

From Equation (5) the optimal rule satisfies L(d) = E{I(d(X) = 1) [δY(X) – λδR(X)]} > 

0. This can be interpreted as d(X) satisfying 
δY (X)
δR(X)  > λ among participants assigned to 

treatment, that is, d(X) = 1. Note that this assumes δR(X) > 0. Thus, the ratio of expected 

benefit to expected risk for those recommended to treatment must be “large enough,” which 

is captured by λ.

Instead of modeling efficacy scores directly, residual efficacy scores are used as model 

inputs. The validity of this follows from the fact that,
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arg max
d

E[w ⋅ Y ] = arg max
d

E[w ⋅ (Y − m(X))],

where m(X) is some function of X. Zhou et al9 demonstrated that using residuals from a 

regression of Y on X stabilizes the variance of the expected efficacy estimator. Since efficacy 

is to be maximized and risk is to be constrained, analysis of residuals is restricted to efficacy 

scores.14 The empirical estimate of the purity measure is,

L(d) =
∑i = 1

n wi(yi − m(xi))
∑i = 1

n wi
− λ

∑i = 1
n wiri

∑i = 1
n wi

− τ , (6)

where λ is the tuning parameter. For simplicity m(xi) were estimated from a linear regression 

of Y on X throughout the rest of this work. Note that alternative models such as random 

forests can also be use to obtain m(xi).9,10

3 ∣ ESTIMATION OF RISK CONTROLLED ITRs

3.1 ∣ Risk-controlled decision trees

An rcDT model is constructed given values of λ and τ. Recall that λ is a tuning parameter 

and τ is a fixed quantity selected based on clinical relevance. First, an initial split is made 

using an exhaustive search of all possible cut points across all candidate predictors. A class 

of candidate rules d(X) is constructed for continuous or ordinal covariates as d(X) = I(Xj ≤ 

c) or d(X) = I(Xj > c) where c is a candidate cut point for covariate j (∀j ∈ {1 … p}). This 

partition is denoted asΩ = Ω1⋃Ω2 whereΩ = {xi : i = 1 … N}, Ω1 = {xi : xij ≤ c, i = 1 … N} 

and Ω2 = {xi : xij > c, i = 1 … N}. Further, let Ω11 ∪ Ω12 = Ω1 represent a similar partition 

of Ω1. For instance, Ω11 = {xi : xi ∈ Ω1, xij′ ≤ c′, i = 1 … N} for splitting covariate j′ and 

cut point c′. Through recursively splitting, the candidate rule do is selected which maximizes 

the purity measure (Equation (6)). For j ∈ {1, … , p}, all possible candidate cuts c, and 

treatment assignments (d, d′) ∈ {(0,1), (1,0)} for the two resulting subspaces, the initial and 

daughter node splits are estimated as
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Initial Split of Ω

max
j, c, (d, d′) ∈ {(0, 1), (1, 0)}

∑i ∈ Ω1wiyi
∑i ∈ Ω1wi

+
∑i ∈ Ω2wi′yi
∑i ∈ Ω2wi′

− λ
∑i ∈ Ω1wiri
∑i ∈ Ω1wi

+
∑i ∈ Ω2wi′ri
∑i ∈ Ω2wi′

− τ ,

Daughter Split of Ω1

max
j, c, (d, d′) ∈ {(0, 1), (1, 0)}

∑i ∈ Ω11wiyi
∑i ∈ Ω11wi

+
∑i ∈ Ω12wi′yi
∑i ∈ Ω12wi′

− λ
∑i ∈ Ω11wiri
∑i ∈ Ω11wi

+
∑i ∈ Ω12wi′ri
∑i ∈ Ω12wi′

− τ ,

+
∑i ∈ Ω2wi

oyi
∑i ∈ Ω2wi

oyi
− λ

∑i ∈ Ω2wi
ori

∑i ∈ Ω2wi
o − τ ,

where wi =
I(ai = d(xi))

Pr(ai ∣ xi)
, wi′ =

I(ai = d′(xi))
Pr(ai ∣ xi)

, and wi
o =

I(ai = do(xi))
Pr(ai ∣ xi)

. In the daughter node purity 

measure do is the estimated optimal rule corresponding to the initial split of Ω. When 

considering a partition of daughter node Ω1, information from Ω2, the other daughter node, 

is incorporated into the splitting criteria. This allows for risk to be properly controlled at 

the population level throughout the entire construction of the tree. The following stopping 

criteria are employed: (1) no candidate daughter split can be found to increase the purity 

of the tree, (2) parent nodes contain too few training observations, and (3) treatment group 

sizes in parent nodes are not large enough. Each daughter node is selected for splitting in a 

random order and splitting continues until a stopping criteria is reached. Note that stopping 

criterion (1) ensures that L(d) functions as a proper purity measure (ie, the purity of the tree 

structure is guaranteed to increase after splitting a parent node).

3.1.1 ∣ Pruning an rcDT for optimal tree selection—Optimal rcDT model selection 

consists of identifying risk penalty parameter λ and cost complexity (ie, tree size) parameter 

α. Out of a sequence of candidate values of Λ = {λs : s = 1, 2, … , S), select λ = 

λs and grow large tree Γ0
s. Tree Γ0

s maximizes L(d) given in Equation (4) with λ = 

λs. Using a CART (Classification And Regression Tree) pruning procedure, a sequence 

of cost-complexity parameter values based on the structure of tree Γ0
s is identified using 

the “weakest link” criteria. Briefly, a sequence of subtrees ΓM
s ≺ ΓM − 1

s ≺ ⋯ ≺ Γ1
s ≺ Γ0

s is 

constructed where “≺” means “is subtree of.” Note that ΓM
s  is the root node and Γ0

s is the 

full tree. Each element Γm
s  for fixed s and m = 1, 2, …, M is constructed by pruning off 

the branch from Γm − 1
s  that results in the smallest reduction in value, that is, minimizes 

∣ L(Γm
s ) − L(Γm − 1

s ) ∣.
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The cost-complexity function for tree Γm
s  is,

Lα(Γm
s ) = L(Γm

s ) − α ⋅ Γm
s , (7)

where L(Γm
s ) evaluates the purity measure in tree Γm

s . L(Γm
s ) is obtained by evaluating 

Equation (6) for the decision rule generated by tree Γm
s . Γm

s  is the set of terminal nodes of 

tree Γm
s  and α > 0 penalizes more complex models. A tree with larger Lα(Γm

s ) is desirable. 

A unique sequence α0 < α1 … < αM corresponds to each subtree in the optimally pruned 

sequence of subtrees. The optimal value of a is selected via a k-fold cross-validation as 

proposed previously.10

This procedure yields {Γ∗
s : s = 1, 2, … , S} a set of optimally pruned trees, one corresponding 

to each value in Λ. The final tree Γ* is selected such that the cross-validated risk is less 

than τ and the reward is maximized. Defining a parsimonious set of candidate values λ can 

considerably decrease the computational burden required. Values of λ are roughly bounded 

by

0 < λ < E(δY (X)) + Ȳ 0 + R̄0
E(δR(X)) − τ , (8)

where the right-hand side of the inequality is derived from Equation (5) and can easily be 

estimated from the training data. In summary, rcDT model selection is completed in three 

main steps: (1) fit a large rcDT for each Λ = {λs : s = 1, 2, … , S), (2) for each value 

of λs, select the optimally pruned subtree Γ∗
s via cross-validation, and (3) from the set of 

optimally pruned trees {Γ∗
s : s = 1, 2, … , S}, obtain the final model Γ* that has the largest 

expected efficacy and maintains expected risk at the τ level.

3.2 ∣ Risk-controlled random forest

An rcRF is constructed by aggregating several rcDT predictors via bootstrap sampling of the 

training data, typically called “bagging”.21 Given n training samples indexed by i = 1, 2, … , 

n, draw bootstrap sample ℬ of size n with replacement from the training samples. An rcDT 

model, denoted Γb is then constructed from bootstrap sample ℬ. At each split max(⌊p/3⌋, 1) 

covariates are selected as candidates for splitting.22 Repeating this procedure B times yields 

an rcRF comprised of a set of rcDT predictors, denoted as ℱ = {Γb :b = 1, 2, … , B}.

Tuning of the risk penalty parameter λ for an rcRF is accomplished via risk estimation in 

the out-of-bag sample. Let ℬb represent the bth bootstrap sample for b = 1, 2, …, B and 

ℬb
∗ represent the bth out-of-bag sample corresponding to ℬb, that is, the observations not 

included in the bth bootstrap sample. Let θ i(Γb) denote the predicted treatment for the ith 

observation derived from Γb. The cumulative predicted probability of recommendation to 

active treatment for the ith sample up to the rth tree for r ≤ B is recorded as,
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Pr i, r∗ (α = 1) = ∑r
b = 1 I(i ∈ ℬb

∗)
−1

∑
b = 1

r
θ i(Γb) ⋅ I(i ∈ ℬb

∗) . (9)

The estimator Pr i, r∗ (a = 1) is an ensemble estimator that was cross-validated using the out-of-

bag sample and did not rely on the training observations. Cumulative out-of-bag prediction 

allows for an estimator of risk in the forest up to the rth tree, namely V R
ai, r

∗
(d). Tuning of λ 

is carried out by first setting λ = λ0 using an initial value λ0. An rcRF (denoted as ℱ0) is 

constructed and the risk estimate, R0, obtained using Equation (3). If ∣R0 – τ∣ < ε for some ε 
> 0 then keep ℱ0 as the final model. The value of ε is user defined. If ∣R0 – τ∣ > ε and R0 < 

τ, then set λ1 = δ · λ0 for some 0 < δ < 1. Otherwise, set λ1 = δ · λ0 for some δ > 1. Fit a 

new rcRF model using λ = λ1 and iterate until the out-of-bag risk is controlled at the τ level 

within the specified ε tolerance. To avoid using a grid search of candidate values of δ, we 

obtain the updated value of λs+1 based on λs and out-of-bag risk from the current iteration, 

Rs. For instance, let δ = 1 +
Rs − τ

τ . This factor inflates λs, that is, λs+1 > λs, if the current 

risk estimate is greater than τ, and decreases values of λ if the current risk estimate is less 

than τ.

The probability of recommendation to treatment given in (9) is noted as a “soft” decision. 

A “hard” decision could be defined as ai, r
∗ = I(Pr i, r∗ (a = 1) > 0.5). However, more stringent 

thresholds could be used, for example, ai, r
∗ = I(Pr i, r∗ (a = 1) > 0.8) to be assigned to treatment.

3.2.1 ∣ rcRF variable importance—Variable importance measures are defined for an 

rcRF through a permutation scheme applied to the out-of-bag sample. Suppose we have an 

rcRF consisting of B rcDT learners. For the bth rule, run out-of-bag sample ℬb
∗ down tree 

Γb to obtain L∗(θ(Γb)). Let jm correspond to a covariate used in the construction of tree 

Γb. Permute the values of jm in the out-of-bag sample and run the permuted data down 

tree Γb to obtain the objective value for the permuted covariate L ∗ m(θ(Γb)). Repeat this for 

all predictors included in tree Γb. Record the variable importance measure for predictor jm 

derived from tree Γb as VImb = {L∗(θ(Γb)) − L ∗ m{θ(Γb))}+, where (x)+ = x if x > 0; (x)+ = 

0 if x ≤ 0. This considers a predictor as “important” if permuting its values results in the 

objective function decreasing in value and quantifies the importance as the magnitude of 

the decrease. The total importance of predictor jm is then the sum of importances across 

the B trees. Importances are scaled to sum to one for ease of interpretation. This is called 

the total importance measure (ie, combines efficacy and risk information). Two additional 

importance measures can be similarly defined, one of each for efficacy and risk. Estimation 

of importance for efficacy and risk scores is accomplished by replacing L with V Y (d) and 

−V R(d), respectively. Given an rcRF model, the importance of a predictor is characterized in 

three ways, (1) a total importance which measures the relative contribution of the predictor 

to maximizing the purity measure, (2) an efficacy importance which measures the relative 
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contribution of the predictor to achieving greater efficacy, and (3) a risk importance which 

measures the relative contribution of the predictor to maintaining risk at the τ level.

4 ∣ SIMULATION STUDIES

Performance of rcDT and rcRF methods was assessed via simulation study (Table 1). Each 

scheme has 10 predictors, X1, X2, …, X10, generated from a uniform distribution. Treatment 

indicator A ∈ {0, 1} was simulated to mimic an RCT design with a 1:1 allocation ratio to 

two treatment arms, that is, Pr(A∣X) = 0.5. Random noise for efficacy scores was generated 

from a standard normal distribution. For risk scores, random noise was generated as N(μ = 

0, σ2 = 0.5). In all schemes, the optimal rule for a plausible value of τ is defined by X1 and 

X2 detailed below. Efficacy and risk scores were based on formulas presented in Table 1. 

Schemes A to C have risk controlled ITR defined by a rectangle. Schemes D and E appeared 

in Wang et al14 and have a risk controlled ITR favoring linear and quadratic boundaries, 

respectively.

Scheme A has optimal treatment regions defined by the rectangle X1 ≤ 0.6 and X2 ≤ h. The 

value of h depends on the desired risk constraint τ. If risk constraint is ignored the optimal 

rule recommends observations with X1 ≤ 0.6 to active treatment and all others to control, 

yielding efficacy score of 3.50 and a risk score of 3.20. For observations with X1 ≤ 0.6, the 

expected benefit from receiving active treatment vs control decreases as X2 increases. For 

the entire population, larger values of X2 increase expected risk from receiving treatment vs 

control. If no modeling was performed and all patients were assigned to control, that is, the 

least risky rule, the expected risk is 1.90. Hence, risk constraints were set to be τ = 2.20, 

2.50, 2.80. The optimal ITRs are defined by the rectangles X1 ≤ 0.6 and X2 ≤ h for h = 

0.43, 0.65, 0.80, respectively. This set of optimal ITRs recommends 27%, 39%, and 49% of 

observations to active treatment.

Scheme B has an optimal treatment region defined by the rectangle X1 ≤ 0.7 and X2 ≤ h. 

The value of h depends on the desired risk constraint τ. The unconstrained ITR recommends 

observations with X1 ≤ 0.7 ∩ X2 ≤ 0.7 to treatment and control otherwise, with an efficacy 

score of 3.97 and risk score of 3.17. A constant efficacy reward of +2 is given to treated 

observations with X1 < 0.7 and X2 < 0.7 and also to control observations with X1 > 0.7 

or X2 > 0.7. The risk function for Scheme B is identical to Scheme A. Assigning all 

observations to control has an expected risk of 2.40. Hence, risk constraints of τ = 2.50, 2.75 

and 3.00 are considered. The accompanying ITRs are defined by the rectangle X1 ≤ 0.7 and 

X2 ≤ h for h = 0.20, 0.45, 0.60. These rules send 15%, 32%, and 42% of observations to 

active treatment. Simulation schemes A and B are similar in that the risk score generating 

functions both depend on X2 in the same way (ie, (2X2 – 0.1)(2A – 1)). In scheme A, the 

benefit received from a treatment / subgroup match (ie, [A = 1 and in S] OR [A = 0 and not 

in S]) decreases as X2 increases. In scheme B, the same treatment / subgroup match always 

yields a constant benefit of 3 units. These two schemes were intended to assess performance 

under two “tree-favorable” scenarios where efficacy scales with one of the covariates vs a 

constant “on/off” efficacy benefit.
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Scheme C has an optimal treatment region defined as the rectangle X1 ≤ h and X2 ≤ h. 

The value of h depends on the risk constraint τ. The unconstrained optimal rule sends 

observations with X1 ≤ 0.7 ∩ X2 ≤ 0.7 to treatment and all others to control, yielding an 

efficacy score of 3.52 and a risk score of 2.29. Observations with larger values of either X1 

or X2 are at greater risk on treatment. Observations with larger values of either X1 or X2 

receiving treatment are also expected to have smaller efficacy scores if X1 ≤ 0.7 and X2 ≤ 

0.7. Observations with X1 > 0.7 or X2 > 0.7 receiving control receive an expected benefit of 

+1. Assigning all observations to control carries an expected risk of 1.75. Risk constraints of 

τ = 1.90, 2.05, 2.20 are considered with optimal treatment regions defined by rectangles X1 

≤ h and X2 ≤ h for h = 0.44, 0.57, 0.65, respectively. These rules recommend 20%, 33%, and 

43% of observations to treatment.

Scheme D has an optimal treatment region defined as a linear combination of X1 and X2. 

The slope of the line is dependent on the risk constraint level τ. The unconstrained rule 

recommends treatment if X1 + X2 ≤ 1 and control otherwise, carrying an efficacy score of 

0.670 with a risk score of 2.520. Assigning all observations to control lowers the expected 

risk to 1.50. Risk constraints of τ = 1.75, 2.00, 2.25 were considered. Scheme E has an 

optimal treatment region defined on an ellipse for efficacy scores and a linear function in 

the risk scores. The unconstrained rule sends observations with X1
2 + X2

2 ≤ 1 to treatment 

providing an efficacy score of 3.62 and a risk score of 2.67. Recommending control to all 

patients lowers risk to 1.80. Risk constraints of τ = 2, 2.1, 2.2 were considered.

Figure 1 presents an X-ray plot of the optimal treatment regimes under the risk constraints τ. 

Regions colored black indicate optimal assignment to control. Regions colored gray indicate 

an optimal recommendation of treatment at a particular risk threshold. As the risk threshold 

is relaxed, the shade of gray darkens to black, and a greater proportion of patients are 

recommended to active treatment. For instance, in simulation scheme A, risk constraints of τ 
= 2.20, 2.50, and 2.80 correspond to light, medium, and dark gray coloring, respectively.

Risk-controlled ITRs for all simulation studies were estimated using rcDT and rcRF 

methods along with comparator methods, BR-M and BR-O (Wang et al14). Briefly, BR-

M fits linear models to efficacy and risk outcomes using first-order interactions between 

predictors and binary treatment indicator. Contrasts for efficacy and risk outcomes derived 

from the fitted models are then used to explicitly derive the optimal treatment rule. BR-

O is a machine learning algorithm that translates the constrained optimization into an 

unconstrained O-learning problem with enforcement of risk control. Readers are directed to 

Wang et al14 for further details on BR-M and BR-O model fitting.

Estimates of efficacy and risk along with treatment assignment accuracy were calculated 

and reported for each simulation from a 20 000 observation validation set. A total of 100 

replicates for each simulation study were used. For each simulation setting training sample 

sizes of n = 500 and 1000 were considered. For rcDT model, tuning parameters λ and α 
were selected using 5-fold cross-validation. For rcRF model fitting, λ was selected using 

out-of-bag risk estimates. Each rcRF model consisted of 500 rcDT predictors, and variable 

importance measure were calculated for each rcRF model. Residuals for efficacy scores 

were estimated using fitted values from a linear model that regressed efficacy scores (Y) on 
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the 10 covariates (X). Efficacy and risk summaries are presented as mean (SD) and median 

(median absolute deviation). Accuracy was calculated as proportion of the 20 000 validation 

observations recommended to the optimal treatment. Mean and median accuracy summaries 

were similar and median was selected for presentation. The final two columns of Tables 

2 and 3 provide the percent of the 100 simulation replicates with mean validation set risk 

scores falling below the specified threshold (τ) or below a 5% increase of τ. Tables 2 and 

3 summarize efficacy, risk, and accuracy results from simulation studies A and D. Results 

from simulation studies B, C, and E are provided in Appendix S1 (Tables S1, S2, and S3). 

BR-M models were fit using the procedure specified in Wang et al.14

In simulation scheme A, all four procedures control risk at the specified value of τ. Consider 

τ = 2.50 and n = 1000 from simulation scheme A. Mean risk scores from rcDT, rcRF, BR-M, 

and BR-O were 2.491 (SD = 0.099), 2.465 (SD = 0.128), 2.499 (SD = 0.035), and 2.462 (SD 

= 0.109), respectively. This indicates that risk is controlled on average at the τ = 2.50 level. 

Tree-based modeling identified rules with greater efficacy scores on average than BR-M or 

BR-O. Mean efficacy scores for rcDT, rcRF, BR-M, and BR-O methods were 3.350 (SD = 

0.060), 3.329 (SD = 0.117), 3.203 (SD = 0.025), 2.831 (SD = 0.106), respectively. Note that 

for τ = 2.50 the optimal rule has an efficacy score of 3.38. Median accuracies for rcDT, 

rcRF, BR-M, and BR-O were 95.2%, 95.8%, 83.4%, and 71.0%, respectively. In simulation 

scheme A, both BR-M and BR-O tend to propose rules that control risk, but fail to optimize 

efficacy.

Simulation scheme D has an optimal treatment assignment regime defined by a linear 

combination of X1 and X2. Consider τ = 1.75 with n = 1000 training observations. All 

three methods control risk at the specified level. Validation set mean risk estimates for 

rcDT, rcRF, BR-M, and BR-O were 1.751 (SD = 0.053), 1.746 (SD = 0.038), 1.751 (SD 

= 0.026), and 1.711 (SD = 0.063), respectively. A less conservative risk constraint of τ = 

2.25 results in mean risk estimates for rcDT, rcRF, BR-M, and BR-O of 2.228 (SD = 0.083), 

2.237 (SD = 0.053), 2.256 (SD = 0.037), and 2.135 (SD = 0.098), respectively. Despite 

the true optimal treatment assignments aligning to a linear rule, both rcDT and rcRF are 

competitive with BR-M and BR-O in maximizing efficacy. When τ = 1.75, mean validation 

set efficacy estimates from rcDT, rcRF, BR-M, and BR-O models were 0.327 (SD = 0.049), 

0.336 (SD = 0.040), 0.356 (SD = 0.025), and 0.278 (SD = 0.068). When τ = 2.25, mean 

validation set efficacy estimates for rcDT, rcRF, BR-M, and BR-O models were 0.558 (SD 

= 0.028), 0.597 (SD = 0.016), 0.618 (SD = 0.010), and 0.572 (SD = 0.042), respectively. 

When τ is highly conservative, τ = 1.75, median accuracies for rcDT, rcRF, BR-M, and 

BR-O were 92.4%, 94.1%, 96.8%, and 90.6%, respectively. Note that rcDT can approximate 

the optimal treatment region for simulation scheme D with τ = 1.75 reasonably well as a 

narrow rectangle. When τ is less conservative, for example, τ = 2.25, median accuracy for 

rcDT dropped to 86.4% while rcRF was 92.1%, (BR-M and BR-O were 96.2% and 90.7%, 

respectively). This highlights the robustness of rcRF when the underlying optimal treatment 

assignments may not conform to a rectangular region of the predictor space. Readers can 

peruse results from simulation scheme E in Appendix S1 as another demonstration for the 

robustness of rcRF method.
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Approximately 40% to 60% of simulation replicates across all methods for all simulation 

studies controlled risk at the τ level in the validation set. Risk is controlled by rcRF, BR-M, 

and BR-O in the validation set in greater than 90% of simulation replicates at the 1.05 · τ 
level. For instance, in simulation scheme A with τ = 2.20 and training sample of size n = 

500, 64% of rcRF simulation replicates produced validation set risk estimates less than τ = 

2.20 and 93% of simulation replicates produced validation set risk estimates less than 1.05 

· τ = 2.31. Due to the variability inherent in tree models, rcDT modeling controlled risk at 

the τ and 5% excess of τ levels in 57% and 76% of simulation replicates, respectively, under 

the same simulation settings. Risk estimates under the stated settings for rcDT simulation 

replicates ranged from 1.92 to 2.51 and risk estimates from rcRF ranged from 2.00 to 2.44.

While asymptotic properties of the proposed methods cannot be derived, simulation studies 

reveal that as training sample size increases (1) accuracy of the rule increases, (2) efficacy 

increases, (3) risk is controlled closer to the τ level, and (4) the rule becomes more stable (ie, 

precision estimates decrease). A summary of the computational cost associated with model 

fitting for simulation schemes A and D is included in Appendix S1 (Table S8). Briefly, 

consider simulation scheme A. When the training sample size is n = 500, rcDT model fitting 

was typically completed in under 1 minute, rcRF in slightly more than 5 minutes, BR-M in 

under 1/10 of a second, and BR-O in 3 to 5 minutes. Times were fairly consistent across 

different values of τ. When the training sample size is n = 1000, model fitting was typically 

completed in under four minutes for rcDT, 7 to 12 minutes for rcRF (faster times for small τ 
values), under 1/10 of a second for BR-M, and 31 to 36 minutes for BR-O (shorter times for 

larger τ values). Note that BR-M is expected to be much faster than the other methods since 

only simple linear model fits are required for estimating the treatment rule. As noted, the 

computational cost of BR-O grows rapidly as dimensionality of the training data increases 

even modestly.14 The rcRF learner scales better than BR-O as dimensionality increases. In 

addition, the computational cost of rcRF can be controlled by specifying the number of 

decision trees and the depth of the individual rcDT learners. Variable importance measure 

summaries for each simulation scheme are presented in Appendix S1.

To demonstrate use of rcDT and rcRF modeling when original treatment assignments 

were not randomized, model fitting was performed using the efficacy and risk models 

outlined in simulation scheme D, but with original treatment assignments generated from 

an observational study design as opposed to an RCT design (see Table S4 in Appendix 

S1). This introduces additional variability to the modeling process as propensity scores are 

drawn from a generative model and then used to generate treatment assignments. Under 

the observational design, rcDT and rcRF models have mean risk scores above τ for smaller 

values of τ. For τ = 1.75 and 2.00, risk is typically controlled. Under conservative risk 

thresholds, higher risk is accompanied by higher efficacy on average (eg, around +25%). 

The proportion receiving the optimal treatment assignment decreases slightly under the 

observational design, typically dropping by a couple of percentage points.

5 ∣ ANALYSIS: DURABLE TRIAL

rcDT, rcRF, and BR-M methods were applied to the DURABLE trial.17,23 Briefly, the 

trial investigated the use of twice-daily insulin lispro mix 75/25 (LMx75/25) vs once-daily 
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basal insulin glargine (Glargine) in patients with type 2 diabetes. There were 18 covariates 

available at baseline including body mass index, height, weight, adiponectin, systolic and 

diastolic blood pressure, duration of diabetes, heart rate, HbA1c, fasting insulin, fasting 

glucose, and a 7-point self monitored blood sugar measure taken throughout the day. 

Of the 2187 patients enrolled, 1498 were retained for analysis. A more detailed patient 

flow diagram can be found in Appendix S1 (Figure S6). Patients were excluded from 

the analysis set if they had incomplete follow up data or extreme values in either the 

covariates or outcomes. The primary efficacy outcome was change in HbA1c from baseline 

to 24-week follow-up. The risk outcome was daily rate of hypoglycemia. Data from this 

study are not publicly available. Table 4 presents baseline covariate summaries for the 

DURABLE analysis dataset. All predictor values are well balanced at baseline between the 

two treatment groups. Mean decrease in HbA1c from baseline to end of follow-up was 

1.79 (SD = 1.44) and 1.87 (SD = 1.45) for Glargine and LMx75/25 groups, respectively. 

Mean daily hypoglycemia event rates were 0.057 (SD = 0.069) and 0.074 (SD = 0.081) for 

Glargine and LMx75/25 groups, respectively. This provides some evidence that the more 

aggressive treatment, LMx75/25, yielded greater control of HbA1c over the 24-week follow-

up, accompanied by higher rates of hypoglycemia. Three risk constraints were considered (τ 
= 0.063, 0.065, 0.067) spanning the range of risk values obtained from recommending all 

patients receive more conservative (Glargine) to the more aggressive (LMx75/25) treatment. 

These risk control levels were selected to mirror analyses performed by Wang et al.14

Modeling performance was assessed using a 1:1 random split of the available observations. 

A model was trained using half of the data and validated using the other half. This was 

replicated 100 times for each modeling procedure. Each rcDT model was trained using 

5-fold cross validation to select tuning parameters. Each rcRF model was trained using a 

forest of 500 trees with the tuning parameter selected using the out-of-bag estimate of risk. 

BR-M models were fit using the procedure outlined in Wang et al.14 BR-O was not included 

here due to the high computational cost and the relatively good performance of BR-M in 

the simulation studies. Estimates of the efficacy and risk from training and validation sets 

was reported for each model fitting procedure. Results are summarized in Table 5. Risk is 

controlled close to the τ level in the validation sets for all three procedures across all risk 

constraints. BR-M and rcDT tended to produce a more conservative rule, especially as the 

risk constraint is relaxed, yielding more control over risk at the expense of loss in efficacy. 

rcRF models not only control risk well on average in the validation sets, but also pick up 

more efficacy compared to rcDT and BR-M methods. When τ = 0.063, rcDT, rcRF, and 

BR-M methods produced validation risk estimates of 0.0638 (SD = 0.0061), 0.0643 (SD = 

0.0035), and 0.0614 (SD = 0.0054). The accompanying efficacy estimates were 1.79 (SD 

= 0.11), 1.80 (SD = 0.07), and 1.76 (SD = 0.11), respectively. When the risk constraint is 

relaxed to τ = 0.067, rcDT, rcRF, and BR-M produced respective validation risk estimates 

of 0.0645 (SD = 0.0058), 0.0666 (SD = 0.0035), and 0.0648 (SD = 0.0057) with validation 

efficacy estimates of 1.79 (SD = 0.12), 1.80 (SD = 0.06), and 1.79 (SD = 0.11), respectively.

Since rcDT and rcRF methods appear to control risk close to the τ level in the validation 

sets, rcDT and rcRF models were fit to the 1498 available observations from the DURABLE 

trial. Figure 2 presents rcDT structures fit using risk thresholds of τ = 0.063, 0.065, and 

0.067 hypoglycemic events per day. Identical tree structures were identified for daily 
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hypoglycemia event rates of 0.063 and 0.065. The first split is made on systolic blood 

pressure with a cut point of 130 mmHg. Patients with systolic blood pressure less than 130 

mmHg and diastolic blood pressure less than 68 mmHg are recommended to LMx75/25 

while those with greater than 68 mmHg receive a treatment recommendation of Glargine. 

Among patients with systolic blood pressure above 130 mmHg, those under 165 cm in 

height are recommended to be on LMx75/25, and Glargine otherwise. This model for τ = 

0.063 and τ = 0.065 controls risk in the training data at 0.060 hypoglycemic events per 

day. The training set efficacy estimate was a decrease in HbA1c of 1.946 mg/dL. When 

the risk constraint is relaxed to control daily rates of hypoglycemia at 0.067, an additional 

split among patients with systolic blood pressure greater than 130 mmHg and height above 

165 cm is made on noon fasting glucose. Specifically, those with noon fasting glucose 

values less than 179 mg/dL to LMx75/25 and those above 179 mg/dL are recommended to 

Glargine. This model corresponding to τ = 0.067 controls risk in the training data at 0.061 

hypoglycemic events per day. The training set efficacy estimate was a decrease in HbA1c of 

1.943 mg/dL. Both these models mirror the pattern observed in Table 5 where risk is over 

controlled in a training set and likely to be well controlled at the desired level in an external 

validation data set.

Internal nodes of each rcDT structure contain the global efficacy and risk estimates 

associated with the partition. In the upper right corner of each internal node is the place 

of that node in the order of splitting. For example, in the decision tree corresponding to τ 
= 0.063 and 0.065 the initial partition sends patients with systolic blood pressure greater 

than 130 mmHg to LMx75/25 and Glargine otherwise. This results in global efficacy and 

risk estimates of 1.812 mg/dL decrease in HbA1c and 0.062 hypoglycemic events per day, 

respectively. The second split results is on height (cut point = 165 cm) within the group with 

higher systolic blood pressure. This second split yields efficacy and risk estimates of 1.857 

mg/dL decrease in HbA1c and 0.057 hypoglycemic events per day, respectively. This can be 

repeated until no partitions remain. Terminal nodes display the efficacy and risk estimates 

for patients in that terminal node who received the recommended treatment. For instance, 

those with systolic blood pressure less than 130 mmHg, diastolic blood pressure less than 

68 mmHg, and receiving LMx75/25 had mean decrease in HbA1c of 2.111 mg/dL and 

an average of 0.084 hypoglycemic events per day. In general, LMx75/25 recommendation 

carries with it a greater risk of hypoglycemia, but also a greater decrease in HbA1c.

For each of the three risk constraints considered in the DURABLE analysis, an rcRF model 

was trained. Risk estimates for rcRF models trained using τ = 0.063, 0.065, and 0.067 

hypoglycemic events per day were 0.057, 0.064, and 0.068, respectively. The associated 

decrease in HbA1c (efficacy) for each of the risk control values was 1.87, 1.97, and 

2.01 for τ = 0.063, 0.065, and 0.067, respectively. Table 6 summarizes rcDT and rcRF 

predictions for 10 DURABLE patients. The 10 observations were selected across the range 

of rcRF predicted probabilities. For most observations, the probability of being assigned 

to LMx75/25 from the rcRF model increases as the risk threshold is relaxed from 0.063 

to 0.067 hypoglycemic events per day. Consider Patient 1 who was originally assigned to 

Glargine, had an observed decrease in HbA1c of 4.7 mg/dL, and recorded no hypoglycemic 

events. This patient is recommended to remain on Glargine by the rcRF model (probabilities 

of recommending LMx75/25 all below 0.25). All three rcDT models recommend Glargine 
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as well. Patient 6 was also originally assigned to Glargine, but had a smaller observed 

decrease in HbA1c (2.1 mg/dL) compared to Patient 1, and experienced 1 hypoglycemic 

event (0.006 per day over 24-week follow-up). For Patient 6, the rcRF model makes a weak 

recommendation to switch to LMx75/25 when τ = 0.063 (P = .516). As τ increases the 

probability of recommending a change of treatment to LMx75/25 rises to 0.540 (τ = 0.065) 

and 0.586 (τ = 0.067). The rcDT models recommend remaining on Glargine when τ = 

0.063 and 0.065 and switching to LMx75/25 when τ = 0.067. Since Patient 6 experienced a 

benefit from Glargine and had a low rate of hypoglycemia (0.006 vs Glargine group mean 

of 0.057), the recommendation to switch to active treatment is weak if desired risk control is 

highly conservative. Patient 10 was originally assigned to Glargine, but had a much weaker 

response (1.5 mg/dL decrease in HbA1c) and higher daily rate of hypoglycemic events 

(0.018 events / day over 24-week follow-up). Hence, there is a strong recommendation of 

switching to LMx75/25 regardless of risk control choice with rcRF probabilities all greater 

than 0.78 and all three rcDT models also recommend LMx75/25. Finally, consider Patients 

3 and 7. Both were originally assigned to LMx75/25, experienced similar efficacy responses 

(decrease in HbA1c both roughly 1.1 mg/dL), and both with no hypoglycemic events. 

However, Patient 3 is recommended to Glargine (except for and rcDT model with τ = 0.067) 

and Patient 7 is recommended to stay with the original assignment of LMx75/25. Digging 

into the data we find that Patient 3 is taller than Patient 7 (172 vs 160 cm) with a slightly 

greater systolic blood pressure measurement (140 vs 132 mmHg). Additionally, Patient 3 

had blood glucose measures across all seven time points throughout the day that were about 

33% lower than Patient 7. From the tree structures in Figure 2 it appears height and blood 

glucose measurement are driving the opposing treatment decisions for Patients 3 and 7.

Variable importance measures for the rcRF models are presented in Figure 3. Importance 

measures (total, efficacy, and risk) for τ = 0.065 daily hypoglycemic events per day are 

summarized using box plots with individual points overlaid each corresponding to one of the 

100 rcRF models. Height, systolic blood pressure, and weight were the top three predictors 

for all importance measures. This indicates that they are the strongest predictors of treatment 

recommendation among the available covariates. This corresponds to the rcDT models 

presented in Figure 2 as systolic blood pressure and height appear within the first two layers 

of every tree, regardless of the risk constraint imposed. Notably, LMx75/25 more effectively 

lowers postprandial blood glucose compared to basal insulin. The tree structures for the 

DURABLE data indicate that patients with greater systolic blood pressure are recommended 

to LMx75/25. One possible explanation is that patients with greater systolic blood pressure 

also consume more food at each meal and so the mix may yield greater benefit to these 

patients. Notably, heart rate and blood glucose readings taken after a meal (either morning 

or evening) were consistently among the top predictors in all three proposed importance 

measures.

A variable importance measure was proposed by Wang et al14 to accompany their 

BR-O proposal. Using the same set of predictors as this current work, their analysis 

identified baseline HbA1c, BMI, and fasting glucose as the three most important 

predictors of treatment assignment. Height and weight, which are highly correlated with 

BMI, were identified by rcRF modeling as highly important predictors of treatment. 

Participant height and weight were the fourth and sixth ranked predictors for BR-O. 
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Postprandial glucose measures were identified by rcRF modeling, which may link to 

the phenomena of postprandial reactive hypoglycemia,24,25 that is, elevated insulin levels 

trigger a hypoglycemic state. Given that both postprandial glucose measures had increased 

importance specifically related to risk prediction, this corresponds well with the current 

understanding of the relationship between food consumption, insulin production, and risk 

of hypoglycemia. Systolic blood pressure ranked 11th of 18 predictors in BR-O modeling, 

while it ranked in the top two predictors in rcRF modeling. This potential link between 

blood pressure and treatment assignment warrants further investigation.

6 ∣ DISCUSSION

This work proposes two novel methods for discovery of risk-controlled ITRs, namely rcDT 

and rcRF. The goal of this class of ITR is to balance the expected efficacy and risk for a 

given treatment regime, aiming to control the expected risk at a predetermined, clinically 

meaningful threshold while achieving high efficacy. There is a pressing need for treatment 

rules that are easy to interpret as this facilitates communication with patients about why a 

particular treatment is being prescribed. To that end, the high interpretable rcDT model was 

developed. An rcDT model leverages a global estimator of efficacy and risk to construct a 

purity measure that is a composition of expected efficacy and risk scores computed under a 

“value”-based framework. The rcDT model, to our knowledge, is the only risk constrained 

optimization procedure available for ITR discovery that results in an easily interpretable rule 

and can be applied to both RCT and observational data. Additionally, the rcRF extension of 

rcDT is proposed. An rcRF model aggregates several bootstrap rcDT learners to construct 

an rcITR. Three variable importance measures calculated from an rcRF model were defined 

corresponding to the totality of the rule, efficacy, and risk. Importance measures can be 

directly compared for each predictor, representing a distinct advantage over other proposed 

importance measures in this class of ITR. Simulation studies demonstrated the robustness 

of the rcRF procedure (compared to rcDT, BR-M, and BR-O) to identify the optimal rcITR 

under a variety of efficacy and risk structures (see simulation schemes D and E).

We opt not to simply enforce the risk constraint at each split during tree construction, that 

is, define the splitting criterion as the constrained optimization 1. While this approach would 

surely control risk at the τ level, final rules may produce suboptimal efficacy estimates. 

As an illustration, suppose risk was to be constrained at each split and an initial partition 

of the data yields a set of candidate rules D such that ∀d ∈ D, Ed(R) > τ . Under these 

conditions, no splitting would be performed as all candidate rules have expected risk above 

the threshold, and a null tree would be returned. However, it may be possible that given 

some initial partition of the data, call it do
1, with Ed(R) ≤ τ, that there exists a second 

partition of daughter node 1, call it do
11, such that Edo11

(R) ≤ τ and L(d0
11) > L(do

1) Clearly, it 

would be preferred to consider splitting past the initial partition in order to capture potential 

complexity in the underlying association between efficacy, risk, and the predictor space. The 

proposed purity measure would accommodate this complexity, whereas defining the splitting 

criterion based on the constrained optimization directly would not.
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In the analysis of the DURABLE trial data rcRF controlled risk close to the τ level 

while returning the greatest estimates of efficacy compared to rcDT and BR-M procedures. 

The rcRF model also yielded a greater level of precision in risk and efficacy estimation 

than rcDT and BR-M modeling. rcDT returned efficacy estimates from validation sets 

that were close to those obtained using rcRF. In addition, rcDT models demonstrated 

the ability to control risk properly. A fitted rcDT model to the DURABLE trial data 

identified systolic and diastolic blood pressure and height as the defining covariates in the 

risk-controlled ITR. Analysis of the DURABLE trial data performed by Wang et al14 using 

an outcome weighted learning approach with a linear kernel identified height, diastolic, 

and systolic blood pressure as the fourth, eighth, and eleventh most important predictors 

out of 18 available. Their procedure identified baseline HbA1c, BMI, and fasting glucose 

level as the most important predictors. Both rcRF and outcome weighted learning derived 

importance measures for the DURABLE analysis did not change meaningfully across the 

risk constraints considered. As elevated blood pressure is the most prevalent comorbidity 

condition among diabetes patients, systolic blood pressure is associated with poor patient 

blood glucose control. Similarly, height and BMI may be acting as surrogate measures of 

the same risk factor. Since rcDT and rcRF methods are able to control risk while achieving 

greater efficacy than linear ITR methods, this rule represents an intriguing view into diabetes 

management.

The methods proposed accommodate treatment efficacy and risk heterogeneity via 

construction of subgroups containing patients with similar baseline characteristics and 

subgroup specific treatment assignments. One can imagine that changes in τ may result 

in different treatment recommendations for some patients, indicating there may be a 

functional relationship between τ and the covariates. We defer further investigation of this 

relation to future research. The methods proposed here can easily be extended to include 

categorical predictors, multiple treatments, and multiple constraints. Alternative endpoints 

can also be accommodated such as survival outcomes (Zhao et al26 investigated discovering 

ITRs for censored time-to-event data). A notable downside to the current risk controlled 

ITR procedures that utilize either random forests or SVMs is the computational cost 

associated with scaling for analyses with high dimensional data. Hence, analyzing predictors 

originating from the genome or proteome may not be feasible. Further work is needed to 

accommodate high-dimensional predictor sets into the modeling procedures. Since trial data 

is often collected over multiple follow-ups, the incorporation of time-varying covariates into 

risk-controlled modeling procedures warrants further exploration.

In conclusion, two novel methods were proposed for discovery of risk controlled ITR. The 

first, rcDT, is easy to interpret and performs well under a variety of circumstances. The 

second, rcRF, while not interpretable is robust against a wide variety of underlying rules 

as was demonstrated in the simulation studies. The rcRF model also allows for variable 

importance measures to be defined, further elucidating the contribution of predictors to the 

ITR. It is our recommendation that rcDT and rcRF models should be used in tandem, such 

that an interpretable tree structure is obtained (rcDT) along with importance measures from 

an rcRF model. This work contributes to a growing number of modern statistical techniques 

aimed at deciding proper treatment rules based on both efficacy and risk considerations.
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FIGURE 1. 
Optimal treatment assignment at different risk threshold levels for 20 000 validation 

observations. Shaded regions in each plot correspond to optimal treatment assignment under 

a given level of risk control (gray scale: active treatment; black: control)
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FIGURE 2. 
DURABLE risk-controlled decision tree structure for controlling daily hypoglycemic event 

rate at τ = 0.063 or 0.065 (left) and τ = 0.067 (right). Treatment recommendation (“GL”: 

Glargine; “LM”: LMx75/25) are given for terminal nodes in bold face. “Efficacy”, Decrease 

in HbA1c from baseline to end of follow-up; “Risk”, Daily hypoglycemic event rate (# 

events / days follow-up). Internal nodes contain the mean efficacy and risk scores from the 

training observations at the current node (annotated in upper right corner). Terminal nodes 

(gray highlighted) display the node level mean efficacy and risk estimates
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FIGURE 3. 
Variable importance measures for DURABLE trial with risk control level of τ = 0.065 

hypoglycemic events per day. Columns correspond to total, efficacy, and risk importances. 

Importance measure for each predictor are displayed as points with a box plot summary 

overlaid. Boxplots are ordered in each plot by mean variable importance
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TABLE 1

Simulation schemes

Scheme Model Subgroup S optimally assigned to treatment if τ = τ*

A Y = 3 – 2X3 + X4

+(2 – 2X2)(I(x ∈ S) – I(x ∉ S))(2A – 1) +εY

τ* = +∞ → S = {X1 ≤ 0.6}
τ* = 2.80 → S = {X1 ≤ 0.6 ∩ X2 ≤ 0.80}
τ* = 2.20 → S = {X1 ≤ 0.6 ∩ X2 ≤ 0.43}

R = 3 + X3 – X4 + (2X2 + 0.1)(2A – 1) + εR

B Y = 1 – X3 + X4 + 3I(x ∈ S)I(A = 1)+ 3I(x ∉ S)I(A = 0) + εY τ* +∞ S = {X1 ≤ 0.7 ∩ X2 ≤ 0.7}
τ* = 3.00 → S = {X1 ≤ 0.7 ∩ X2 ≤ 0.6}
τ* = 2.50 → S = {X1 < 0.7 ∩ X2 ≤ 0.2}R = 2 + 2X3 + X4 + (2X2 + 0.1)(2A – 1) + ΣR

C Y = 3 – 2X3 + X4 + 2(1 – max(X1, X2))I(x ∈ S)(2A – 1)–I(x ∉ S)(2A – 1) 
+ εY

τ* = +∞ → S = {X1 ≤ 0.7 ∩ X2 ≤ 0.7}
τ* = 2.20 → S = {X1 ≤ 0.65 ∩ X2 ≤ 0.65}
τ* = 1.90 → S = {X1 ≤ 0.44 ∩ X2 ≤ 0.44}

R = 2 + X3 + (max(X1, X2))(2A – 1) + εY

D Y = 1 – 2X1 + X2 – X3 + 2(1 – X1 – X2)(2A – 1) + εY τ* = +∞ → S = {X1 + X2 ≤ 1}
τ* = 2.25 → S = {1.2X1 + X2 ≤ 1}
τ* = 1.75 → S = {3X1 + X2 ≤ 1}R = 2 + X1 + (1 + X1 – X2)(2A – 1) + εR

E Y = 1 − 2X1 + X2 − X3 + 8(1 − X1
2 − X2

2)(2A − 1) + εY
R = 2 + X1 + (X1 + X2 − 0.3)(2A − 1) + εR τ∗ = + ∞ S = {X1

2 + X2
2 ≤ 1}

τ∗ = 2.20 S ≈ {X1
1.5 + X2

1.5 ≤ 0.861.5}

τ∗ = 2.00 S ≈ {X1
1.3 + X2

1.3 ≤ 0.761.3}

Note: I(·) is an indicator function that evaluates to 1 if “·” is true and 0 otherwise.
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TABLE 2

Simulation results for scheme A

Risk 
(τ)

Opt
Efficacy n Method Accuracy

Mean
Risk

Mean
Efficacy

Median
Risk

Median
Efficacy

% 
Risk
<τ

% Risk
<1.05 · τ

2.20 3.12 500 rcDT 0.863 (0.078) 2.173 
(0.159)

2.900 (0.267) 2.149 (0.199) 2.853 (0.357) 57% 76%

rcRF 0.904 (0.032) 2.174 
(0.088)

3.002 (0.128) 2.165 (0.090) 3.002 (0.128) 64% 93%

BRM 0.876 (0.013) 2.200 
(0.053)

2.988 (0.050) 2.197 (0.054) 2.986 (0.053) 51% 97%

BRO 0.740 (0.015) 2.190 
(0.125)

2.590 (0.131) 2.180 (0.139) 2.577 (0.120) 58% 85%

1000 rcDT 0.888 (0.076) 2.199 
(0.160)

2.968 (0.267) 2.238 (0.166) 3.061 (0.243) 41% 67%

rcRF 0.916 (0.021) 2.191 
(0.077)

3.054 (0.107) 2.204 (0.074) 3.074 (0.101) 48% 96%

BRM 0.880 (0.012) 2.196 
(0.041)

2.997 (0.036) 2.199 (0.038) 2.997 (0.036) 55% 99%

BRO 0.741 (0.012) 2.148 
(0.090)

2.547 (0.095) 2.147 (0.091) 2.551 (0.091) 71% 97%

2.50 3.38 500 rcDT 0.930 (0.035) 2.491 
(0.144)

3.325 (0.085) 2.485 (0.143) 3.332 (0.089) 51% 83%

rcRF 0.932 (0.028) 2.465 
(0.109)

3.310 (0.085) 2.471 (0.084) 3.330 (0.060) 61% 95%

BRM 0.831 (0.013) 2.499 
(0.054)

3.191 (0.034) 2.497 (0.061) 3.193 (0.036) 54% 100%

BRO 0.719 (0.027) 2.462 
(0.152)

2.862 (0.148) 2.449 (0.154) 2.866 (0.147) 59% 86%

1000 rcDT 0.952 (0.036) 2.491 
(0.099)

3.350 (0.060) 2.502 (0.089) 3.363 (0.053) 48% 92%

rcRF 0.958 (0.021) 2.461 
(0.128)

3.329 (0.117) 2.488 (0.080) 3.359 (0.042) 55% 96%

BRM 0.834 (0.012) 2.496 
(0.035)

3.203 (0.025) 2.494 (0.032) 3.207 (0.023) 60% 100%

BRO 0.710 (0.018) 2.430 
(0.109)

2.831 (0.106) 2.415 (0.105) 2.829 (0.091) 74% 97%

2.80 3.46 500 rcDT 0.925 (0.031) 2.770 
(0.165)

3.407 (0.059) 2.768 (0.182) 3.426 (0.053) 53% 82%

rcRF 0.929 (0.021) 2.746 
(0.133)

3.395 (0.070) 2.754 (0.104) 3.401 (0.036) 71% 94%

BRM 0.838 (0.011) 2.796 
(0.057)

3.289 (0.029) 2.794 (0.066) 3.287 (0.028) 54% 100%

BRO 0.780 (0.048) 2.746 
(0.171)

3.115 (0.147) 2.756 (0.172) 3.135 (0.154) 60% 87%

1000 rcDT 0.946 (0.029) 2.797 
(0.107)

3.438 (0.033) 2.799 (0.113) 3.443 (0.030) 51% 91%

rcRF 0.953 (0.019) 2.772 
(0.091)

3.431 (0.026) 2.768 (0.092) 3.432 (0.030) 64% 96%

BRM 0.842 (0.010) 2.795 
(0.043)

3.305 (0.022) 2.793 (0.044) 3.303 (0.024) 55% 100%

BRO 0.771 (0.030) 2.736 
(0.107)

3.104 (0.103) 2.730 (0.114) 3.110 (0.105) 72% 99%
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Abbreviations: “% Risk < τ”, Percent of simulation replicates with validation set risk estimate less than τ; “% Risk < 1.05 · τ”, Percent of 
simulation replicates with validation set risk estimate less than 1.05 · τ; “Accuracy”, median (median absolute deviation) proportion receiving 
optimal treatment assignment; “Mean Efficacy” and “Mean Risk”, mean (sd) summaries for predicted efficacy and risk scores; ‘Median Efficacy’ 
and “Median Risk”, median (median absolute deviation) summaries for predicted efficacy and risk scores; “n”, Training sample size; “Opt 
Efficacy”, maximum achievable efficacy under the optimal treatment assignment; “Risk”, Risk threshold.
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TABLE 3

Simulation results for scheme D

Risk 
(τ)

Opt
efficacy n Method Accuracy

Mean
Risk

Mean
Efficacy

Median
Risk

Median
Efficacy

% Risk
< τ

% Risk
< 1.05 · 
τ

1.75 0.36 500 rcDT 0.910 (0.024) 1.753 
(0.071)

0.316 (0.066) 1.754 (0.062) 0.319 (0.068) 48% 90%

rcRF 0.935 (0.015) 1.753 
(0.053)

0.338 (0.050) 1.747 (0.051) 0.335 (0.050) 53% 92%

BRM 0.956 (0.008) 1.755 
(0.042)

0.354 (0.040) 1.754 (0.042) 0.354 (0.039) 46% 95%

BRO 0.901 (0.011) 1.726 
(0.095)

0.290 (0.095) 1.726 (0.088) 0.294 (0.091) 62% 86%

1000 rcDT 0.924 (0.015) 1.751 
(0.053)

0.327 (0.049) 1.750 (0.059) 0.332 (0.057) 51% 94%

rcRF 0.941 (0.014) 1.746 
(0.038)

0.336 (0.040) 1.748 (0.038) 0.341 (0.037) 53% 99%

BRM 0.968 (0.006) 1.751 
(0.026)

0.356 (0.025) 1.750 (0.025) 0.355 (0.029) 51% 100%

BRO 0.906 (0.009) 1.711 
(0.063)

0.278 (0.068) 1.715 (0.056) 0.285 (0.057) 75% 98%

2.00 0.54 500 rcDT 0.873 (0.030) 2.009 
(0.103)

0.477 (0.057) 2.000 (0.094) 0.481 (0.050) 49% 82%

rcRF 0.922 (0.018) 1.988 
(0.060)

0.514 (0.033) 1.991 (0.070) 0.521 (0.035) 58% 98%

BRM 0.953 (0.009) 2.009 
(0.038)

0.542 (0.020) 2.009 (0.034) 0.542 (0.019) 39% 98%

BRO 0.897 (0.021) 1.949 
(0.117)

0.485 (0.081) 1.940 (0.122) 0.498 (0.078) 66% 91%

1000 rcDT 0.883 (0.016) 1.996 
(0.071)

0.485 (0.039) 1.996 (0.072) 0.490 (0.038) 57% 90%

rcRF 0.928 (0.015) 1.989 
(0.052)

0.517 (0.038) 1.989 (0.034) 0.523 (0.022) 62% 100%

BRM 0.965 (0.007) 2.004 
(0.033)

0.544 (0.017) 2.004 (0.034) 0.543 (0.016) 40% 99%

BRO 0.899 (0.022) 1.924 
(0.096)

0.473 (0.068) 1.923 (0.109) 0.481 (0.061) 78% 94%

2.25 0.62 500 rcDT 0.848 (0.023) 2.208 
(0.118)

0.535 (0.040) 2.209 (0.111) 0.540 (0.040) 61% 89%

rcRF 0.908 (0.021) 2.215 
(0.082)

0.584 (0.027) 2.221 (0.069) 0.591 (0.021) 67% 96%

BRM 0.948 (0.012) 2.258 
(0.044)

0.615 (0.012) 2.256 (0.044) 0.616 (0.011) 42% 98%

BRO 0.894 (0.033) 2.124 
(0.149)

0.558 (0.070) 2.124 (0.130) 0.569 (0.052) 81% 95%

1000 rcDT 0.864 (0.026) 2.228 
(0.083)

0.558 (0.028) 2.243 (0.081) 0.560 (0.031) 58% 95%

rcRF 0.921 (0.013) 2.237 
(0.053)

0.597 (0.016) 2.240 (0.050) 0.599 (0.016) 57% 99%

BRM 0.962 (0.009) 2.256 
(0.037)

0.618 (0.010) 2.255 (0.040) 0.618 (0.010) 46% 100%

BRO 0.907 (0.036) 2.135 
(0.098)

0.572 (0.042) 2.130 (0.099) 0.575 (0.043) 87% 99%
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Abbreviations: “% Risk < τ”, Percent of simulation replicates with validation set risk estimate less than τ; “% Risk < 1.05 · τ”, Percent of 
simulation replicates with validation set risk estimate less than 1.05 · τ“Accuracy”, median (median absolute deviation) proportion receiving 
optimal treatment assignment; “Mean Efficacy” and “Mean Risk”, mean (SD) summaries for predicted efficacy and risk scores; ‘Median Efficacy’ 
and “Median Risk”, median (median absolute deviation) summaries for predicted efficacy and risk scores; “n”, Training sample size; “Opt 
Efficacy”, maximum achievable efficacy under the optimal treatment assignment; “Risk”, Risk threshold.
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TABLE 4

Cohort characteristics for DURABLE trial data

Characteristic
Glargine
(n = 754)

LMx75/25
(n = 744) P-value

a

Reduction in HbA1c 1.79 (1.44) 1.87 (1.45) .300

Daily hypoglycemic event rate 0.0568 (0.0686) 0.0741 (0.0808) < .001

Baseline HbA1c 9.1 (1.2) 9.1 (1.3) .521

Duration diabetes 9.5 (6.0) 10.0 (6.4) .115

Heart rate 77.1 (10.0) 76.7 (10.1) .448

Systolic BP 132.0 (16.4) 131.5 (16.4) .526

Diastolic BP 78.4 (9.3) 78.3 (9.3) .910

BMI 31.7 (6.0) 31.8 (6.0) .719

Height 166.1 (10.9) 166.7 (10.5) .325

Weight 87.9 (20.9) 88.8 (20.9) .396

Glucose: Nighttime (3 AM) 198.8 (62.4) 197.6 (60.8) .705

Glucose: Evening after meal 240.9 (67.7) 240.6 (64.5) .934

Glucose: Evening before meal 205.4 (64.4) 202.2 (63.1) .330

Glucose: Noon after meal 233.9 (67.7) 234.3 (65.6) .923

Glucose: Noon before meal 205.1 (66.4) 206.1 (64.4) .761

Glucose: Morning after meal 252.3 (62.7) 256.1 (63.3) .247

Glucose: Morning before meal 198.2 (54.0) 194.9 (51.5) .227

Fasting insulin 9.8 (7.3) 10.1 (7.4) .402

Adiponectin 6.9 (5.2) 6.8 (5.5) .955

Fasting glucose 11.0 (3.5) 11.3(3.7) .139

Abbreviations: BMI, body mass index; BP, blood pressure; HbA1c, Glycated hemoglobin; DURABLE trial, Assessing the DURAbility of Basal vs 
Lispro Mix 75/25 Insulin Efficacy.

a
from two-sample t-test.
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TABLE 5

DURABLE trial analysis results comparing rcDT, rcRF, and BR-M methods

Risk (τ) Method Efficacy (Training) Efficacy (Validation) Risk (Training) Risk (Validation)

0.063 rcDT 1.835 (0.093) 1.789 (0.112) 0.0567 (0.0051) 0.0638 (0.0061)

rcRF 1.749 (0.089) 1.799 (0.065) 0.0520 (0.0035) 0.0643 (0.0035)

BR-M 1.847 (0.052) 1.756 (0.105) 0.0597 (0.0017) 0.0614 (0.0054)

0.065 rcDT 1.855 (0.098) 1.796 (0.122) 0.0579 (0.0054) 0.0641 (0.0059)

rcRF 1.921 (0.083) 1.804 (0.061) 0.0615 (0.0050) 0.0657 (0.0040)

BR-M 1.871 (0.057) 1.778 (0.111) 0.0620 (0.0020) 0.0630 (0.0057)

0.067 rcDT 1.855 (0.088) 1.792 (0.120) 0.0586 (0.0053) 0.0645 (0.0058)

rcRF 2.004 (0.027) 1.804 (0.064) 0.0677 (0.0010) 0.0666 (0.0035)

BR-M 1.889 (0.063) 1.792 (0.106) 0.0643 (0.0025) 0.0648 (0.0057)

Abbreviations: BR-M, model-based benefit-risk learning;14 rcDT, risk controlled decision tree; rcRF, risk controlled random forest.

Stat Med. Author manuscript; available in PMC 2022 February 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Doubleday et al. Page 30

TABLE 6

DURABLE trial analysis summaries for 10 patients

ID
Original
Assignment Efficacy Risk

τ = 0.063
Prob / Pred

τ = 0.065
Prob / Pred

τ = 0.067
Prob / Pred

1 Glargine 4.709 0.000 0.166 / 0 0.208 / 0 0.240 / 0

2 Glargine 3.361 0.012 0.186/0 0.240 / 0 0.312 / 0

3 LMx75/25 1.131 0.000 0.330 / 0 0.336 / 0 0.412 / 1

4 Glargine 0.973 0.048 0.408 / 1 0.510 / 1 0.558 / 1

5 Glargine 1.596 0.036 0.506 / 0 0.472 / 0 0.466 / 0

6 Glargine 2.136 0.006 0.516 / 0 0.540 / 0 0.586 / 1

7 LMx75/25 1.081 0.000 0.566 / 1 0.592 / 1 0.558 / 1

8 Glargine −1.102 0.094 0.676 / 1 0.664 / 1 0.666 / 1

9 LMx75/25 4.730 0.012 0.776 / 1 0.824 / 1 0.858 / 1

10 Glargine 1.495 0.018 0.784 / 1 0.802 / 1 0.844 / 1

Abbreviations: “Efficacy”, Observed decrease in HbA1c from baseline; “Original Assignment”, Treatment originally received; “Pred”, rcDT 
predicted treatment from rcDT model (0 = Glargine; 1 = LMx75/25); “Prob”, rcRF probability of recommendation to LMx75/25; “Risk”, Observed 
daily hypoglycemia event rate.
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