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Tiling as a Durable Abstraction for
Parallelism and Data Locality

Didem Unat Cy Chan Weiqun Zhang John Bell John Shalf
Lawrence Berkeley National Laboratory

1 Cyclotron Rd, Berkeley, California, USA 94720
dunat, cychan, weiqunzhang, jbbell, jshalf @lbl.gov

Abstract—Tiling is a useful loop transformation for expressing
parallelism and data locality. Automated tiling transformations
that preserve data-locality are increasingly important due to
hardware trends towards massive parallelism and the increasing
costs of data movement relative to the cost of computing. We
propose TiDA as a durable tiling abstraction that centralizes
parameterized tiling information within array data types with
minimal changes to the source code. The data layout information
can be used by the compiler and runtime to automatically
manage parallelism, optimize data locality, and schedule tasks
intelligently. In this paper, we present the design features and
early interface of TiDA along with some preliminary results.

I. INTRODUCTION

There are two main trends in the computer architecture that
legitimately concern application developers. First, exponential
increases in raw parallelism has replaced nearly two decades
of clock rate improvements in a microprocessor. From now
on, applications must rely extensively on explicit fine-grained
parallelism as a main source of performance improvement.
Second, the energy cost of moving data is not improving
as fast as the energy required for computation. In the future
data movement is expected to become the leading contribu-
tor to power consumption and cost of future machines [1].
Whereas current programming environments were designed
to assume modest growth in parallelism, uniform costs for
communicating, and that FLOPs are most expensive (often
at the expense of data movement), the future of computing
hinges on preserving data locality (sometimes at the expense
of FLOPs) and minimizing data movement.

In order to minimize data movement, applications have to
be optimized both for vertical and horizontal data movement.
Vertical data movement concerns the management of data
through the memory hierarchy from memory to processing
units and has to be tuned to increase data reuse in on-
chip memory. Horizontal data movement concerns the locality
management of non-uniformity in bandwidth and latencies to
on-chip memory. The NUMA (non-uniform memory access)
issues are already prevalent for on-chip data movement and
will be more conspicuous on 1000-core chips, leading to seri-
ous performance consequences. To address the programming
challenges that result from these trends in computer architec-
ture, programming models play a crucial role in abstracting
the complexity for programmers. Current programming models
assume equal cost for all data accesses and rely on the
cache to virtualize data movement, not reflecting reality in
the computer architecture. Thus, application developers need
a richer interface to express parallelism and data locality

requirements of an algorithm.

Tiling is a loop transformation that is proven to be useful
to exploit parallelism and enhance data locality. Despite the
long list of literature on this optimization [2]–[9], there is no
standard automated solution to transfer tiling information to
the compiler and runtime system. Most current methods rely
on static loop transformations (usually in the source-to-source
translation or in the compiler intermediate representation) and
do not allow the runtime system to be involved in decisions
about tiling transformations using dynamic data. The status-
quo is inadequate for modern adaptive codes such as Adaptive
Mesh Refinement (AMR) where crucial information about op-
timizing data locality are only available at runtime and change
during execution. We argue that tiling should be decoupled
from the loops and elevated to the programming model for
better interaction with compiler and runtime system. A tiling
formulation supported as a language construct can expose
massive degrees of parallelism through domain decomposition
because a tile represents an atomic unit of work – thus making
it far easier for the runtime to schedule tasks. Automating
the scheduling decisions enables the runtime system to hide
the complexity of massive growth in on-chip parallelism
from the application developers. Moreover, tiles represent the
core concept for data locality because vertical locality can
be achieved by hierarchically partitioning the domain and
selecting the appropriate tile size at each level. Horizontal
locality can be achieved by respecting tile topology and co-
locating tiles that share data closer to each other when data is
mapped to execution units. This formulation naturally allows
multi-level parallelism because coarse-grained parallelism can
be expressed across tiles and fine-grained parallelism can
be introduced in the forms of vectorization and instruction
ordering within a tile.

Although the immediate application of this approach tar-
gets data parallel or bulk synchronous stencil operations,
atomic nature of the tiling abstraction also makes amenable
to future work on asynchronous runtime systems. We envision
a programming model of the future that is neither purely bulk
synchronous nor purely asynchronous parallel since neither
approach is perfect for every situation. Our vision for a future
programming model embeds data parallel units within task
containers, where the data parallel unit focuses on expression
of hierarchy and topology with the tiling abstraction and
the task parallel unit focuses on functional partitioning, tile
mapping and scheduling.

In this paper, we introduce TiDA as a durable tiling
abstraction for data parallelism for the programming model



that we are currently designing. The prototype for TiDA
is implemented as a Fortran library to identify the inter-
face requirements. Our ultimate goal is to have tiles as a
core concept for parallelism and data locality, and introduce
language constructs to manipulate tiles. We anticipate using
Fortran as the base language because of its native support for
multidimensional arrays, though our designs and principles are
not tied to a particular language and can be implemented in
any other language, such as C/C++ or Python.

II. BACKGROUND ON TILING

Even though tiling is not inherently supported in OpenMP,
there are ways to implement it. The common misconception is
to use the collapse clause for tiling. This clause only flattens
the multidimensional iteration space into single dimension and
the new iteration space is then subdivided among threads. The
programmer has to introduce nested thread teams and collapse
loops to have the tiling effect on the iteration space. Also,
the common usage of OpenMP assumes execution units are
equidistant to each other, thus the iteration space partitioning
with omp for does not express how the data is laid out on
the execution units. The new interface1 in OpenMP 4.0 [10]
tries to fix this problem by introducing places inspired by
the X10 language [11]. Places help the runtime reason about
locality for task-oriented parallelism. When creating a team for
a parallel region, the programmer can use the thread affinity
clause (proc_bind) to specify a policy for mapping OpenMP
threads to places. However, this still poses a problem for
adaptive applications.

Although vendor compilers have limited support for it-
eration space tiling, there have been a long list of literature
focusing on tiled code generation both using traditional [12]–
[14] and polyhedral compiler methods for perfectly [15],
[16] and imperfectly nested loops [17], [18]. Mint [12] uses
compiler directives for annotating loops and generates tiled
code that exploits on-chip memory on GPUs. Chill [17] is an
autotuning compiler, which can generate tiled code based on
the recipes provided by the programmer in a script. Pluto [19]
is a polyhedral transformation framework, which can generate
tiled code where the tile sizes are fixed at compile-time.
Since the tile size has a great impact on performance and
should be selected based on memory hierarchy, it is highly
desirable to parameterize the tile size and configure it at
runtime. PrimeTile generates parametrically tiled code for
affine, imperfectly nested loops but it outputs sequential code.
PTile [20], a successor of PrimeTile, offers a compile-time
polyhedral solution for generating parallel parametric tiling for
affine, imperfectly nested loops.

A common issue with code generators is that they are
agnostic about the runtime system and how parallel execution
of tiles is scheduled on the underlying architecture. Hence,
the loop transformations are performed independently per
nested loop, without obeying data locality across loop nests.
Applications need to have a more direct approach for memory
affinity management and expression of tiles in a way that can
be exploited by an adaptive runtime system, both in selecting
tile size and scheduling them.

1as of July 2013

To our knowledge, Hierarchically Tiled Arrays (HTAs) [3]
is the first attempt in formulating computation in a tiled
framework. HTA offers rich semantics for describing hierarchy
and topology of data across distributed machines. Parallel com-
putation and communications are represented by overloaded
array operations. These array operations hide many details
from the programmer but eventually leave the programmer
with performance problems such as excessive use of temporary
arrays or frequent data layout transformations. HTA has a
fixed, user-defined distribution of tiles where the user specifies
the mesh topology of the processors and distribution type. We
believe the distribution of tiles on processors would be better
left to the compiler and runtime because they can improve task
placement on the underlying machine topology to minimize
data movement. The runtime may also choose to co-schedule
tiles on subsets of cores or processors to expose task-level
parallelism.

III. INTRODUCING TIDA

TiDA centralizes and parameterizes the tiling information
at the data structure. This helps isolate tiling parameters to
a single point in the code when the data is instantiated and
minimizes the number of places that the code must be changed.
TiDA represents only the layout of the leaf tiles and its
runtime constructs the tile hierarchy by grouping the tiles in the
intermediate levels. The programmer is indifferent about how
many levels there are or the tile topology in the intermediate
levels because these depend on the organization of memory
subsystem. This approach is different from HTA’s where the
programmer specifies the topology and number of tiles for the
intermediate levels of the hierarchy as well as the leaf level.

TiDA assumes that the programmer uses another library
(e.g. MPI) or a language (e.g. UPC [23], CoArray Fortran [24])
to domain decompose the entire problem and distribute it
across distributed memories prior to tiling on a NUMA node.
The rational behind this design choice is to make the true cost
of accessing a remote memory explicit and the performance
implications more transparent. Moreover, many scientific ap-
plications today decompose the application into smaller do-
mains each of which fits into a NUMA node and have an
OpenMP parallelism within a node. Thus, adding TiDA to
existing implementations is not as disruptive as completely
rewriting the original data structures. We offer the means to
partition the data within a NUMA node. Figure 1 shows how
such domain decomposition may look like on a structured-
grid adaptive mesh refinement code, where the entire grid
is partitioned into different size boxes at different levels (by
BoxLib [25] in this case) and a number of boxes are assigned
to a NUMA node. Using TiDA, we further subdivide each
box into tiles and address parallelism and locality management
within a box.

We prototype TiDA as a library which serves as an inter-
mediate step to language extensions because library interface is
not as invasive as changing the type system in a language. Ele-
vating interface to the language will provide the compiler more
opportunities to perform code transformations in response to
the type information, hence, the next step for TiDA to add the
language and compiler support.
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Fig. 1: Box 1 is at level 0, Box 2 and 3 are at level 1, and Box 4 and 5 are at level 2. A number of boxes are assigned to a
NUMA node, then each box is subdivide into tiles by TiDA.

A. TiDA Data Structures

TiDA provides four main data structures: two for construct-
ing iteration space and two for actual data.

• mtile is the metadata. It represents a rectangular
domain in space and does not hold any data. A
mtile contains the indices of its low end and high
end, multidimensional ID, and multidimensional flag
indicating whether the tile resides at the boundaries of
the box.

• mtilearray contains a multidimensional array of
mtiles. The size of the array in each dimension is
the number of mtiles in that dimension. mtilearray
represents the layout of the tiles and their neighboring
relation. This information is passed to the compiler
and runtime to perform the data placement by respect-
ing data locality.

• tile holds data. It contains the mtile that it is built on
and a pointer to the actual data. A TiDA programmer
does not usually deal with a tile alone but rather
accesses data through a tilearray.

• tilearray contains a multidimensional array of tiles
for data and a mtilearray to identify the space and
layout that data is defined.

B. Tile Boundaries

Both distributed memory and NUMA decomposition of
structured grid problems introduce ghost zone. The ghost zone
consists of neighboring cells outside of the local domain that
must be read during computation. The depth of the ghost
zone and its shape, thus the access pattern depends on the
problem. In many languages including Chapel [26], X10 [11]
or Titanium [27], arrays are allocated to accommodate the
ghost zone by expanding the domain while iteration on arrays
is controlled by the interior domain. However, neither the
compiler nor runtime is aware of what ghost cell really implies
in these languages. The ghost zone is a read-only shared
region during computation and needs to be updated with a
synchronization primitive at the end of a timestep. In TiDA,

we make the ghost zone part of the data structure, thus its
meaning to the compiler and runtime is clear. The depth of
the ghost zone can be specified in the build method when
constructing a TiDA array.

TiDA is responsible for updating the boundaries of tiles
within a box and relies on the library or language for inter-
box communication. TiDA provides an interface to update the
box ghost zone, which introduces an extra copy overhead if
the supplementary library or language is unaware of TiDA.
This can be eliminated by composing messages directly from
TiDA arrays.

C. Memory Layout

The programmer has the options to specify memory layout
for tiles when the data is allocated, as shown in Figure 2.
One of the options is the logical tiling where the tilearray
is allocated contiguously in the main memory, thus the tiles
are logical, only expressed in the iteration space. The second
option are isolated, which allocates each tile contiguously
with its ghost zone. This has the overhead of ghost region
duplication and increases the memory requirement dramati-
cally for small tile sizes. However, the isolated tiles allows
more aggressive loop fusion because synchronization points
between tiles can be removed. A programmer does not need
to change the program when memory layout option is changed
at the TiDA array construction. Computations and communica-
tions for different memory layouts are handled implicitly. For
example, fill_boundary(), which is the interface to update
ghost zone, only updates the tiles at the box boundaries when
the logical tiling is used, otherwise, it will update the ghost
zone of the interior tiles as well.

Another option TiDA will support is to allocate each tile
contiguously without duplicating the ghost zone. Even though
this option eliminates the redundant ghost regions, it introduces
the control complexity due to the possible tile out-of-bound
exceptions because a tile may touch neighboring tiles during
computation. This layout in theory introduces PGAS on a
chip and requires extensive compiler transformation to add the
machinery to check whether the data is local to the computing



	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Logical	  )les	   	  	  	  	  	  	  	  	  	  Isolated	  )les	   	  	  	  	  	  	  Con)guous	  )les	  

Fig. 2: Memory layout options in tilearrays

tile or resides in another tile in the memory. We are still
investigating this memory layout option.

IV. CODE EXAMPLE

The code snippet in Listing 1 shows an example to illustrate
how a tilearray is built in TiDA using the syntax of our
Fortran library. Line 1-2 declares two variables with type
mtilearray and tilearray. lo and hi are integer vectors
defining the low end and high end of the index space.
tilesizes is an integer vector for the tile sizes, which can
be set dynamically. Line 8 initializes the tilearr with the
index space and chops the space defined by lo and hi into
tiles based on the tilesizes and creates an array of mtiles.
Line 9 builds a tilearray, allocates its space based on the
memory layout provided, sets the depth of ghost zone, and
associates the layout of the tiles with the mtilearray. Finally,
destroy in Line 12 and 13 frees the data structures.
1 type(mtilearray) :: tilearr
2 type(tilearray) :: A
3
4 integer :: lo(2)
5 integer :: hi(2)
6 integer :: tilesizes(2)
7 ...
8 call tida_init(tilearr, lo, hi, tilesizes)
9 call tida_build(A, tilearr, numghosts, LOG)

10 ...
11
12 call tida_destroy(tilearr)
13 call tida_destroy(A)

Listing 1: Building a TiDA array using mtilearray and
tilearray

Listing 2 shows an example usage of a TiDA array. In Line
5, ntiles returns the number of tiles in tilearr and the do-
loop iterates over them. In Line 7, dataptr returns the pointer
to the data for a given tile no. Line 9 and 10 get the lower and
upper bounds of the tile tl. Line 12 and 13 are the elements
loops that iterate over the data points within a tab.

TiDA does not modify the original loop bodies but
introduces tiling loops and new bounds for the element
loops. This property brings a great advantage in terms of
programming effort because TiDA extensions can be easily
added to the existing source codes. At the language level, we
would like to decouple the loop traversal mechanism from
the loop body and implement the loop body as a lambda

function, which will not require any modifications in the loop
body. By decoupling, a TiDA compiler can generate different
traversal mechanisms for the loops.

1 type(tile) :: tl
2 integer :: tileno, tlo(2), thi(2), i, j
3 double precision, pointer :: ptrA(:,:)
4
5 do tileno=1, ntiles(tilearr)
6
7 ptrA => dataptr(A, tileno)
8 tl = get_tile(tilearr, tileno)
9 tlo = get_lwb(tl)

10 thi = get_upb(tl)
11
12 do j=tlo(2),thi(2) !element loop 1
13 do i=tlo(1), thi(1) !element loop 2
14 !loop body
15 ptrA(i,j) = do_something(i,j)
16 end do
17 end do
18
19 end do !end of tile loop

Listing 2: Operations on TiDA arrays

V. PRELIMINARY RESULTS

To demonstrate the early performance of TiDA, we used
the CNS code2, developed by the Exascale Combustion Co-
design Center. CNS is a combustion proxy application that
integrates the compressible Navier Stokes equations assuming
constant transport. Figure 3 shows the speedup over the serial
and untiled implementation for the CNS code. The results are
obtained on Intel Westmere3 using a single socket containing
6 cores and running two hardware threads. TiDA-logical
and TiDA-isolated indicate two memory layouts supported in
TiDA. Using 12 threads on a 1923 problem, both the logical
and isolated tiles outperform the OpenMP implementation
by 20% and 32% perspectively. While OpenMP parallelizes
only the outmost loop, TiDA divides the domain into smaller
subdomains, each of which fits into cache, thus reduces data
movement. Even though the current performance improve-
ments are modest, the results are encouraging.

2CNS is available for download at the ExaCT co-design center’s website.
3Intel Xeon X5680, 12MB cache/socket
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Fig. 3: Speedup over untiled code for TiDA and OpenMP.
TiDA-logical indicates column-major logical memory layout
and TiDA-isolated indicates tiled-major memory layout for
TiDA tiles.

VI. CONCLUSION

We use tiling as an abstraction for domain decomposition
rather than iteration space partitioning and propose data layout
description which can be used to express algorithm locality
requirements. This description can inform the compiler or
runtime to more efficiently map the data to the shared memory
subsystem. Tiling if expressed at the array construction level
provides a single place to set the data layout without changing
the entire code. We are currently in the process of developing
the language interface of TiDA, its compiler and runtime
support. We will report on the performance data and the
progress on the accompanying tools in near future.
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