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Abstract 

Research on multiple cue judgment with continuous cues 
and a continuous criterion has been dominated by statis-
tical modeling of the cue utilization with linear multiple 
regression. In this study we apply two cognitive process 
models to investigate the relative contributions of explicit 
abstraction of the cue-criterion relations and memory for 
concrete exemplars in a multiple-cue judgment task. The 
task was an extension of a previous task with binary cues 
(P. Juslin, H. Olsson., A-C. Olsson, 2003) and involved 
multiple continuous cues that either combined by addi-
tion or multiplication. As predicted by the process model 
∑ (P. Juslin, L. Karlsson, & H. Olsson, manuscript) ex-
plicit abstraction of cue-criterion relations were induced 
in the additive task, while exemplar memory was induced 
in the multiplicative task.   

Introduction 
Multiple-cue judgment research has traditionally been 
concerned with statistical modeling of judgment data. 
Rather exquisite regression models have been devel-
oped that describe multiple-cue judgment as a) well 
fitted by a linear additive model; b) only taking a few 
cues into account; c) hard to report on subjectively; d) 
characterized by cue weightings that differ greatly be-
tween individuals; and e) plagued by considerable in-
consistency in the weighting of the cues (see Brehmer, 
1994; Cooksey, 1996; Hammond & Stewart, 2001).  
   In the light of the cognitive revolution it might seem 
puzzling that this field of research has not benefited 
from the growth of cognitive modeling as a means to 
track the underlying cognitive representation and proc-
ess of judgment, a growth seen in related fields like 
categorization learning (but see for example Bott & 
Heit, 2004; Busemeyer, Byun, DeLosh, & McDaniel, 
1997; or DeLosh, Busemeyer & McDaniel, 1997, sin-
gle-cue learning). Categorization – which is in many 
ways similar to multiple-cue judgment (see Juslin, 
Olsson, & Olsson, 2003) – has invited extensive inves-
tigation of the cognitive representations and processes 
that underlie behavior. A plethora of models, ranging 
from an emphasis on how abstract rules or prototypes 

guide category decisions to a domination of memory 
for category exemplars are thus available in cognitive 
science today. In this study we apply the methods of 
cognitive modeling to a typical multiple-cue judgment 
task. By connecting research on cognitive science to 
judgment and decision making research, we can gain an 
understanding of what cognitive representations and 
processes guide the judgments, and how this is mani-
fested in the results of the traditional statistical model-
ing (e.g., Cooksey, 1996).  
   Arguably, it is not mere coincidence that linear, addi-
tive models fit multiple cue judgment data well and that 
categorization is often well captured by exemplar mod-
els that entail a linear additive combination of retrieved 
exemplars (Juslin, Karlsson, & Olsson, manuscript). 
Imagine how you sequentially consider and weigh the 
pros and cons of different aspects of a car before you 
purchase it (its looks, reliability, etc). You may weigh 
them differently but positive qualities add to and nega-
tive qualities subtract from your overall opinion. Like-
wise, you may sequentially consider exemplars of simi-
lar cars that you are aware of: similar cars (e.g., same 
model) that have worked properly add to the appeal of 
the car and cars that that have been frustrating subtract 
from it. 

We have proposed a general process model, ∑, that 
captures the essentials of multiple-cue judgment, both 
when it is driven by consideration of cue-criterion rela-
tions and exemplar retrieval (Juslin et al., manuscript). 
The assumptions in ∑ are that our controlled and ex-
plicit thought processes have an architectural constraint 
enhancing sequential, real-time consideration of multi-
ple pieces of evidence (cues or exemplars). The process 
involves successive adjustment of an estimate, a proc-
ess structurally compatible with linear, additive cue 
integration (Einhorn, Kleinmuntz, & Kleinmuntz, 1979) 
and exemplar models (Nosofsky & Johansen, 2000).  

The key assumption is that, in effect, all integration 
of information involves addition (or subtraction). This 
hypothesis suggests that explicit and controlled thought 
processes are apt at performing cue-integration only in 
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tasks where the cue-criterion relations in the task indeed 
combine by addition. By contrast, a task that involves 
non-linear or multiplicative cue combination requires 
capitalization on exemplar memory (Medin & Schaffer, 
1978; Nosofsky & Johansen, 2000). Exemplar memory 
involves no strong computational commitments to par-
ticular task structures. With a division of labor between 
distinct representations we are better equipped to adapt 
to different task structures. We propose that the judg-
ment process adapts to specific task environments and 
predict that in a multiple-cue judgment task with con-
tinuous cues we can induce a shift between qualita-
tively distinct processes by manipulating the structural 
properties of the environment: additive cue combina-
tion should promote cue abstraction and multiplicative 
cue combination should promote exemplar memory.   

Judgment Task and Cognitive Models 
The judgment task involves judgment of a continuous 
criterion based on continuous cues. The task concerns 
judgments of the effectiveness of different species of 
herbs as medical treatments to a lethal virus. The effec-
tiveness is measured as the maximal amount of a 
chemical substance (mg) that can be extracted from the 
species.  The species have four continuous dimensions 
(C1, C2, C3, C4), and each cue dimension can take a 
value between 0 and 10. The judgment of effectiveness 
requires inference from these dimensions, which are 
presented as verbal statements (e.g., weeks of bloom 
per year, geographic place of growth).  

The tasks involve two manipulations. First, there is 
one condition in which all cues are related to the criteria 
positively and linearly, and one condition in which two 
cues are positively and two cues are negatively linearly 
related to the criterion. This manipulation makes the 
task a matter of function learning. Second, there is a 
manipulation of whether the effects of the four cues on 
the criterion combine by addition or multiplication.  

In the additive condition the criterion is a linear, ad-
ditive function of the continuous cues: 

ε+⋅+⋅+⋅+⋅+= 4321 1234500 CCCCc . (1) 
C1 is the most important cue with coefficient 4 (i.e., a 
relative weight .4), C2 is the second to most important 
with coefficient 3, and so forth. The cues are uncorre-
lated. ε  is a normally and independently distributed 
random error with a standard deviation that produces a 
multiple correlation R between cues and criterion of .9 
(i.e., defining the ecological validity of the cues).  

In the multiplicative condition the criterion c is a 
multiplicative function of the four cues: 

ε+⋅= ⋅+⋅+⋅+⋅ 18/)1234( 43210.54545+509.05 CCCCec ,   (2) 
with the same coefficients as in the additive task (Eq. 
1). The effectiveness varies between 500 and 600 mg of 
chemical substance in the additive task and 509 to 650 
mg in the multiplicative task. However, the training 
ranges are hold equal for the two conditions. The range 
of cue values observed in the two tasks is therefore the 

same. Moreover, the criterion in the multiplicative 
condition is an exponential function of the criterion 
presented in the additive condition.  

We use two structural models to derive predictions, a 
cue-abstraction (CAM) and an exemplar model (EBM). 
∑ implies that in the additive task CAM should be the 
correct structural description of the process, whereas in 
the multiplicative condition EBM should be the appro-
priate description1. The CAM assumes that participants 
abstract explicit cue-criterion relations in training that 
are mentally integrated at the time of judgment. When 
presented with a probe the participants retrieve rules 
connecting cues to criterion (e.g., “More weeks in 
bloom gives more effectiveness”). The rules specify the 
sign and importance of each cue with a cue weight. For 
example, after training the rule for C1 may specify that 
high C1 goes with an increase in the criterion. 

The CAM implies that participants compute an esti-
mate of the criterion c based on sequential considera-
tion of cues. For each cue, the estimate of c is adjusted 
according to the cue weight iAω  (i=1…4). The final 
estimate CAĉ  is a linear additive function of the cues Ci, 

∑
=

⋅+=
4

1

ˆ
i

iiACA Ckc ω , (3) 

where )10100(5.500 iAk ω∑⋅−⋅+= . If A1ω =4, A2ω =3, 
A3ω =2, and A4ω =1, Eq’s 1 and 3 are identical and the 

model produce perfect judgments. The intercept k con-
strains the function relating judgments to criteria to be 
regressive around the midpoint (550) of the interval 
[500, 600] (Juslin et al., manuscript).       
Although ruled out by the predictions of ∑, we also 
consider the possibility that participants have correctly 
abstracted the multiplicative cue-criterion relations by 
fitting a multiplicative cue-abstraction model to the 
data: 
                  

∑ ⋅
=⋅+=
4

1
18/)(

54545.005.509 i
iiM C

ec
ω

            (4) 
 
where M1ω  are the best fitting subjective cue weights in 
the multiplicative cue abstraction model. 

 EBM is commonly applied to classification, but here 
we apply it to a continuous criterion. EBM implies that 
participants make judgments by retrieving similar ex-
emplars (herb species) from memory. When the exem-
plar model is applied to judgments of a continuous 
criterion variable, the estimate Eĉ  of the criterion c is a 
weighted average of the criteria cj stored for the J ex-
emplars, where the similarities S(p,xj) are the weights: 

∑

∑
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j
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),(
ˆ

. (5) 

                                                           
1 ∑ is a model of the real-time process of judgment that be-

comes structurally identical with a CAM when the represen-
tations fed to the process are abstracted cues and structurally 
identical to an EBM when the process is fed by exemplars. 
The structural description refers to the relationships between 
stimulus features and the response (Juslin et al., manuscript).   
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p is the probe to be judged, xj is exemplar j (j= 1…J), 
and S(p,xj) is the similiarity between probe p and exem-
plar xj. Eq. 5 is the generalized context model (GCM: 
Nosofsky, 1984; 1986), which generalizes the original 
version of the context model (Medin & Schaffer, 1978). 
The similarity S(p,xj) between exemplars is found by 
transforming the distance between them. The distance 
between a probe p and an exemplar j is, 









−= ∑

=

M

M
jmpmmpj xxwhd

1

, (6) 

where xpm and xjm, respectively, are the values of the 
probe and an exemplar on cue dimension m, the pa-
rameters wm are the attention weights associated with 
cue dimension m, and h is a sensitivity parameter that 
reflects overall discriminability in the psychological 
space (the sensitivity parameter is usually denoted c, 
but we changed that to avoid confusion with the crite-
rion c). Attentional weights vary between 0 and 1 and 
are constrained to sum to 1. The similarity S(p,xj) be-
tween a probe p and an exemplar j is assumed to be a 
nonlinearly decreasing function of their distance (dpj), 

( ) pjd
j expS −=, . (7) 

In the experiment, herb species with a criterion above 
590 and below 510 are not included in the training 
phase. This makes it possible to distinguish between the 
models as they provide different predictions (Figure 1). 
In the training phase, all exemplars have effectiveness 
between 510 and 590. If participants have estimated the 
correct cue weight for each cue they should compute 
the most extreme judgments for the extreme exemplars 
that are left out in the training phase. More specifically, 
whenever participants have correctly identified the sign 
of each cue (i.e., whether it increases or decreases the 
criterion) they should make more extreme judgments 
for the exemplars with all cues at their maximum and 
the exemplars with all cues at their minimum, as illus-
trated on the left-side of Figure 1. By contrast, the ex-
emplar model computes a weighted average of the 
criteria between 510 and 590 stored with the exemplars 
and this can never produce a value outside of this ob-
served range (Erickson & Krusckhe, 1998; but see 
DeLosh et al., 1997). Moreover, because of the non-
linear similarity function of the GCM the most extreme 
judgments tend to be made for the second to most ex-
treme exemplars. For these exemplars the judgment is 
dominated by retrieval of the identical stored exemplars 
and these identical exemplars are the most extreme that 
were encountered in the training phase. These predic-
tions are illustrated on the right side of Figure 1. 

For new exemplars in the mid range of the criterion 
cue abstraction suggests no systematic difference be-
tween new exemplars and old exemplars matched on 
the criterion: the cognitive process is the same regard-
less of whether a specific exemplar has been encoun-

tered before or not. The exemplar model predicts more 
precise judgments for the old exemplars because for 
these exemplars the participants can benefit from previ-
ous identical exemplars with the correct criterion c. 
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Figure 1: Predictions by cue-abstraction model (CAM) 
and exemplar model (EBM) in additive and multiplica-
tive task environments. Panel A: CAM in additive task 
environment (with slightly regressive weights, 3.2, 2.4, 
1.6, & .8). Panel B: EBM in additive task environment 
(s = .25 and h = 10). Panel C: Additive [CAM(A)] and 
multiplicative [CAM(M)] cue-abstraction models in 
multiplicative task environment (with weights, 3.2, 2.4, 
1.6, & .8). Panel D: EBM in multiplicative task envi-
ronment (s = .25 and h = 10). The choice of values for 
the parameters is arbitrary and only used for illustrative 
purposes.  

The Experiment 
In the experiment we manipulated whether participants 
were confronted with a task that involved additive or 
multiplicative cue combination. For the reasons out-
lined in the introduction, we predicted that the additive 
task (Eq.1) should promote explicit cue abstraction with 
additive cue integration (Eq. 3). A multiplicative task 
(Eq. 2) should cause a shift to a qualitatively different 
process, that is, to exemplar memory (Eq. 5).  

The sign of the linear relations between cues and cri-
terion was also manipulated. For half of the participants 
all four cues were positively related to the criterion and 
for half of the participants two cues were positively and 
two cues were negatively related to the criterion. In line 
with the assumptions of ∑, we predict that in an addi-
tive task, whether cue directions are negative or posi-
tive should not affect the ability to perform cue abstrac-
tion. In a multiplicative task, both with homogeneous 
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and heterogeneous cue directions, exemplar memory is 
predicted to prevail over cue abstraction. 

 

Method 
Participants 
Thirty two undergraduate students volunteered, receiv-
ing a payment of 60-99 SKr, depending on their per-
formance. Twenty participants were male and 12 were 
female, all in the age between 20 and 32. 

Materials and Procedure 
The experiment consisted of a training phase and a test 
phase. In the training phase, the participant learned to 
judge the effectiveness of each species of the herb by 
means of outcome feedback. The effectiveness was 
measured as the amount (mg) of the fictitious chemical 
substance Ranulin. In the training phase, the effective-
ness varied between 510 and 590 mg. The species were 
shown as four written propositions on a computer 
screen. At each trial in the training phase, the partici-
pant was to answer the question “How many milligrams 
of Ranulin does this specie contain?”. After giving a 
response they received the correct answer: “This specie 
contain 540 milligrams of Ranulin”. The four dimen-
sions were: number of weeks in bloom, the optimal 
amount of iron in the ground, the degrees of latitude 
where it does well, and the amount of water it emits per 
leaf area. Each dimension varied “pseudo-
continuously” in 11 equidistant steps that ranged be-
tween 0 and 10, yielding a total of 114 different exem-
plars. In the training phase, a random sample of 300 
exemplars was drawn from this distribution and shown 
to the participant. A pause of two minutes was given to 
the participant after the first 150 trials.   
   In the test phase, participants were to judge the effec-
tiveness of the species of the herbs but now without 
outcome feed-back. In the test phase, new exemplars 
were included. The test phase consisted of 44 judg-
ments of a) 20 randomly chosen old exemplars shown 
in training, b) 20 randomly chosen new exemplars, 
drawn from the training distribution and c) 4 extreme 
exemplars, with criterion values outside the training 
range (eg. the exemplars with cue values [0,0,0,0] and 
[10,10,10,10])  
   In the condition with heterogeneous cue directions, 
for half of the participants, negative sign was assigned 
to the cues with objective weight 4 and 2, and for half 
of the participants to the cues with weights 3 and 1. 

Dependent Measures 
The measure of performance is Root Mean Square 
Error (RMSE) of judgment (i.e., between judgment and 
criterion). Measures of model fit are the coefficient of 
determination (r2) and Root Mean Square Deviation 
(RMSD) between predictions and data from the test 
phase. 

Results 
A two-way ANOVA with environment (additive vs. 
multiplicative) and cue directions (homogeneous vs. 
heterogeneous) as between-subject factors shows two 
main effects on RMSE (Table 1), but no interaction. In 
the additive condition performance is significantly 
better (F(1.30) = 20.36; MSE = 32.36; p = 0.000). Also, 
when the cue directions are homogeneous RMSE is 
lower compared to when the cue directions are hetero-
geneous (F(1.30) = 20.36; MSE = 6.37; p = 0.018) 
 
Table 1: Judgment performance in the experiment as 
measured by the Root Mean Square Error (RMSE) 
between judgment and criterion.  
 
  Condition  

Cue directions Index Add. Mult. Mean 

Homogeneous RMSE 11.69 21.23 16.46 

Heterogeneous RMSE 17.21 25.90 21.56 

Mean RMSE   14.45  23.56  
 
Mean judgments are shown in Figure 2. In the additive 
homogeneous condition the judgments are a linear 
function of the criterion and no extra- or interpolation 
effects are visible. The best fitting regression lines for 
old and new judgments coincides. 
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Figure 2: Mean judgments for the different conditions. 
Panel A: additive, homogeneous. Panel B: multiplica-
tive, homogeneous. Panel C: additive, heterogeneous. 
Panel D: multiplicative, heterogeneous. Best-fitting 
regression lines are based on a) the old exemplars seen 
in training or b) the new exemplars introduced at test. 
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In the multiplicative homogeneous condition the 
judgments clearly deviate both from the identity line 
and the best fitting regression line based on old exem-
plars. Although the judgments are a positive function of 
the criteria in the training range there is evidence for an 
inability to extrapolate. The judgments are not extrapo-
lated beyond the range of training. 

In the additive heterogeneous condition (Figure 2C) 
the judgments are still close to the optimal judgment 
line, although there are signs of extra- and interpolation 
effects. In the multiplicative heterogeneous condition 
(Panel D) the mean judgments are a positive function of 
the criterion, but the inability to extrapolate is obvious.  

Quantitative model predictions were obtained by fit-
ting the models in the introduction (Eq. 3, 4 & 5) to the 
latter half of the training phase with Mean Square Error 
between predictions and data as the error function (Jus-
lin et al., 2003; manuscript).  
 
Table 2: Model fit: Root Mean Square Deviations 
(RMSD) and r2 for the additive cue-abstraction model 
(CAM(A)) the exemplar model (EBM) and the multi-
plicative cue-abstraction model (CAM(M)) in the four 
conditions.  
 

 CAM(A) EBM CAM(M) 

Cond. r2 RMSD r2 RMSD r2 RMSD 

Add:       

Homogen. .77 10.83 .75 13.73 - - 

Heterogen. .53 12.67 .51 13.40 - - 

Mult:       

Homogen. .21 28.26 .74 8.50 .70 12.20 

Heterogen. .18 48.62 .34 19.65 .32 18.97 

 
The models were thus fitted to data from the training 

phase and applied with these parameters to the wider 
range of herb species in the test phase. This implies 
cross-validation for exemplars presented in training and 
genuine predictions for new exemplars. To capture 
individual differences, the models were applied to indi-
vidual data. Table 2 shows the mean fit for the three 
models. In the additive condition cue abstraction is the 
overall dominant model, regardless of the cue direc-
tions. In the multiplicative condition exemplar memory 
describes the data best with regard to r2 and the multi-
plicative cue-abstraction model yields a smaller mean 
RMSD. The rather low fit of all three models in the 
heterogeneous conditions may be explained by larger 
noise in these data since this task is presumably more 
difficult than the homogeneous task. Figure 3 shows the 
proportion of participants best accounted for by each 
model in terms of RMSD. In the additive homogeneous 

condition most of the participants are accounted for by 
the cue-abstraction model. In the multiplicative homo-
geneous condition the reverse is true, namely that the 
exemplar model produces the best explanation. In the 
additive heterogeneous condition the proportion of 
participants explained by the cue abstraction model 
decreases. In the multiplicative heterogeneous condi-
tion, as hypothesized the exemplar-based model contin-
ues to provide the best explanation of data for most of 
the participants. The multiplicative cue-abstraction 
model describes some of the participants in both the 
homogeneous and the heterogeneous multiplicative 
tasks. 
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Figure 3: The proportion of participants accounted for 
by any of the three models in the additive and the multi-
plicative conditions in terms of RMSD. Panel A: addi-
tive condition. Panel B: multiplicative condition. 

Discussion 
The results reported in this paper support the assump-
tions made by ∑ that multiple-cue judgment processes 
conceal an effective division of labor between qualita-
tively distinct cognitive processes (Juslin et al., manu-
script). Cognitive modeling supports the hypothesis that 
in a multiple-cue judgment task where the cues com-
bine by addition, ∑ is fed with representations in form 
of abstracted knowledge of the relations between cues 
and criterion. On the other hand, in an environment 
where the cues relate to the criteria by a multiplicative 
function we seem to be equipped with no means to 
explicitly abstract the underlying structure. In such 
tasks, people seem to resort to the back-up process of 
exemplar-memory.  
   The fact that exemplar-memory plays part also in 
additive tasks is not a coincidence, since both processes 
allows accurate performance in training. That the multi-
plicative cue-abstraction model provide an explanation 
for some of the participants in the multiplicative task is 
more surprising. This is probably an effect both of large 
noise in data and of its high correlations to the exem-
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plar model. Figure 2 B & C yields no evidence for 
successful extrapolation beyond the range of training. 
   The bad performance in the multiplicative heteroge-
neous condition, together with the low fit of the models 
makes it unfair to draw conclusions regarding what 
cognitive process that has dominated the judgments in 
this condition. What makes this task difficult to learn? 
A tentative hypothesis would be that in training there is 
a bias towards the abstraction of specific rules (eg. rule 
bias; see for example Ashby et al., 1998; Juslin et al., 
2003; manuscript). Presumably, a period of extensive 
hypothesis testing is therefore taking place at beginning 
of training. However, the multiplicative heterogeneous 
task may be inductive of more extensive hypothesis-
testing procedures. The back-up of exemplar memory is 
thus postponed, and thereby learning may be impaired. 
      An interesting approach to the interpretation of the 
data would be to consider how an exemplar-model 
augmented with linear extrapolation would account for 
the results (see EXAM; DeLosh et al., 1997; Busemeyer 
et al., 1997, for results on single-cue learning). EXAM 
suggests that, although learning has been in the form of 
exemplar-memory, abstraction of cue-criterion relations 
is possible at test. When encountered with a new exem-
plar at test, familiar exemplars and their stored criterion 
are retrieved from memory. An extrapolated judgment 
for the new exemplar is then made possible through 
linear regression based on the old exemplars. How this 
model explains the data reported in this paper remains 
to be tested, although a first qualitative evaluation of 
the data in Figure 2 can be made. Given the data in the 
additive condition, EXAM is likely to produce the same 
fit as the cue-abstraction model. In the multiplicative 
condition EXAM would predict no difference between 
the regression made on old exemplars and the regres-
sion made on new exemplars. This difference is how-
ever apparent in the data in Figure 2 (Panel B & C) and 
thus suggests the refutation of EXAM in favor of EBM. 
   The main interpretation to be drawn from the results 
reported in this paper is that the human judge, under the 
constraints imposed by ∑, adapt to different task struc-
tures by means of representational shifts. This high-
lights how the task is a powerful predictor of cognitive 
process in human multiple-cue judgment.  
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