
UCSF
UC San Francisco Previously Published Works

Title
Prediction of Coronary Artery Calcium Using Deep Learning of Echocardiograms

Permalink
https://escholarship.org/uc/item/0s08x625

Journal
Journal of the American Society of Echocardiography, 36(5)

ISSN
0894-7317

Authors
Yuan, Neal
Kwan, Alan C
Duffy, Grant
et al.

Publication Date
2023-05-01

DOI
10.1016/j.echo.2022.12.014
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0s08x625
https://escholarship.org/uc/item/0s08x625#author
https://escholarship.org
http://www.cdlib.org/


Prediction of Coronary Artery Calcium Using Deep Learning of 
Echocardiograms

Neal Yuan, MD,
School of Medicine, University of California, San Francisco

Section of Cardiology, San Francisco Veterans Affairs Medical Center, San Francisco

Alan C. Kwan, MD,
Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles

Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles

Grant Duffy,
Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles

John Theurer,
Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles

Jonathan H. Chen, MD, PhD,
Department of Medicine, Stanford University, Stanford, California

Koen Nieman, MD, PhD,
Department of Medicine, Stanford University, Stanford, California

Department of Radiology, Stanford University, Stanford, California

Patrick Botting, MSPH,
Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles

Damini Dey, PhD,
Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles

Daniel S. Berman, MD,
Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles

Susan Cheng, MD, MPH, MSc,
Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles

David Ouyang, MD

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Reprint requests: Neal Yuan, MD, Department of Cardiology, University of California, San Francisco, 4150 Clement Street, San 
Francisco, CA 94121 (Neal.Yuan@ucsf.edu). 

Conflicts of Interest: K.N. reports unrestricted institutional research support from the National Institutes of Health, Siemens 
Healthineers, Bayer, and HeartFlow and consulting for Siemens Medical Solutions, unrelated to the present work. D.O. reports 
involvement in InVision, an artificial intelligence company that uses deep learning algorithms similar to those used in this paper. 
InVision currently has no commercial interests or pursuits relevant to the research in this paper.

SUPPLEMENTARY DATA
Supplementary data to this article can be found online at https://doi.org/10.1016/j.echo.2022.12.014.

HHS Public Access
Author manuscript
J Am Soc Echocardiogr. Author manuscript; available in PMC 2023 May 07.

Published in final edited form as:
J Am Soc Echocardiogr. 2023 May ; 36(5): 474–481.e3. doi:10.1016/j.echo.2022.12.014.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/


Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles

Department of Medicine, Division of Artificial Intelligence in Medicine, Cedars-Sinai Medical 
Center, Los Angeles

Abstract

Background: Coronary artery calcification (CAC), often assessed by computed tomography 

(CT), is a powerful marker of coronary artery disease that can guide preventive therapies. 

Computed tomographies, however, are not always accessible or serially obtainable. It remains 

unclear whether other widespread tests such as transthoracic echocardiograms (TTEs) can be used 

to predict CAC.

Methods: Using a data set of 2,881 TTE videos paired with coronary calcium CTs, we trained 

a video-based artificial intelligence convolutional neural network to predict CAC scores from 

parasternal long-axis views. We evaluated the model’s ability to classify patients from a held-out 

sample as well as an external site sample into zero CAC and high CAC (CAC ≥ 400 Agatston 

units) groups by receiver operating characteristic and precision-recall curves. We also investigated 

whether such classifications prognosticated significant differences in 1-year mortality rates by the 

log-rank test of Kaplan-Meier curves.

Results: Transthoracic echocardiogram artificial intelligence models had high discriminatory 

abilities in predicting zero CAC (receiver operating characteristic area under the curve [AUC] = 

0.81 [95% CI, 0.74–0.88], F1 score = 0.95) and high CAC (AUC = 0.74 [0.68–0.8], F1 score 

= 0.74). This performance was confirmed in an external test data set of 92 TTEs (AUC = 0.75 

[0.65–0.85], F1 score = 0.77; and AUC = 0.85 [0.76–0.93], F1 score = 0.59, respectively). Risk 

stratification by TTE-predicted CAC performed similarly to CT CAC scores in prognosticating 

significant differences in 1-year survival in high-CAC patients (CT CAC ≥ 400 vs CT CAC < 400, 

P = .03; TTE-predicted CAC ≥ 400 vs TTE-predicted CAC < 400, P = .02).

Conclusions: A video-based deep learning model successfully used TTE videos to predict 

zero CAC and high CAC with high accuracy. Transthoracic echocardiography–predicted CAC 

prognosticated differences in 1-year survival similar to CT CAC. Deep learning of TTEs holds 

promise for future adjunctive coronary artery disease risk stratification to guide preventive 

therapies.

Keywords

Coronary artery calcium; Echocardiogram; Deep learning; Machine learning; Convolutional neural 
network

Coronary artery calcification (CAC) is a highly specific marker of atherosclerosis that is the 

result of pathogenic inflammatory, metabolic, and developmental processes.1 Assessment 

of CAC now plays an increasingly important role in risk stratification for coronary artery 

disease (CAD) and prognostication in asymptomatic patients. Guidelines from both the 

American College of Cardiology/ American Heart Association and European Society of 

Cardiology endorse using CAC scores for guiding decisions on the use of lipidlowering 

therapy and aspirin as well as informing discussions around modification of cardiovascular 

risk factors.2,3 Individuals with no coronary calcium have an extremely low risk of 
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cardiovascular disease and mortality over the next 15 years and may safely deescalate 

certain medical therapies.4,5 Conversely, individuals with any coronary calcium have a 

greater risk of long-term cardiovascular events and mortality that increases with the amount 

of calcium and represents risk beyond those predicted by traditional clinical risk factors.6–8

Although CAC is visualizable by multiple x-ray-based imaging modalities including chest 

radiography and fluoroscopy, CAC is most frequently assessed by the Agatston scoring 

method using computed tomography (CT) imaging.9 Despite the potential usefulness of 

information gained from CAC CTs, concerns remain about patient exposure to ionizing 

radiation, inappropriate use of testing, cost, and an increase in the detection of incidental 

noncardiac findings.10–13 In light of these considerations, at least 1 guideline body, the 

U.S. Preventive Task Force, concluded in 2018 that there was insufficient evidence to 

formally recommend CAC for cardiovascular risk stratification.14 These limitations have 

also tempered the use of serial CAC CTs for ongoing disease surveillance, even though the 

rate of CAC progression is known to provide additional prognostic insight.7,,15

Recent advances in computational techniques have revealed that machine learning 

when applied to information-dense medical images can identify disease phenotypes and 

prognosticate outcomes beyond what is possible by expert clinician observation alone.16–19 

Given that some clinicians and patients may remain apprehensive about or may not have 

easy access to CAC CTs, we sought to understand whether applying deep learning to 

other widely used cardiovascular tests, such as transthoracic echocardiograms (TTEs), could 

leverage already acquired imaging to complement and extend the prognostic power of CAC 

assessment.

In this retrospective study of patients with both CAC CTs and TTE studies, we used a 

video-based deep learning architecture to predict (1) the presence of any CAC and (2) the 

presence of high CAC levels (CAC score ≥ 400) from standard TTE views. In addition to 

validating results in an external test data set, we tested whether these model predictions 

could be used to successfully prognosticate differences in 1-year mortality and applied 

model attribution methods to better understand areas of focus by the deep learning model.

METHODS

Dataset

We identified all patients with CT studies with CAC scoring performed at Cedars-Sinai 

Medical Center, a large multisite urban health system, from January 1, 2015, to December 

31, 2020, who also had a TTE completed within 1 year of the CAC study. While a CAC 

score could be paired with potentially multiple TTEs, each TTE could only be paired with a 

single CAC score. Using multiple studies to predict a single label has been established as a 

helpful method that can improve the performance of deep learning models.17

Per institutional protocol, CAC scoring was performed on chest CTs with noncontrast 

image volumes according to standard imaging acquisition and Agatston scoring methods.9 

Computed tomography scans were acquired using Siemens and GE CT scanners. 

Echocardiograms were acquired using Philips EPIQ 7 or iE33 ultrasound machines. 
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Echocardiogram characteristics (left ventricular ejection fraction (LVEF), presence of 

wall motion abnormalities, and presence of at least moderate valvular disease) were 

obtained from echocardiogram reports. To better characterize our cohort, we distinguished 

echocardiograms with “≥moderate valvular disease” as any TTE with moderate or worse 

regurgitant or stenotic disease in any of the 4 heart valves.

For deep learning, each TTE study was initially sourced in Digital Imaging and 

Communications in Medicine format and contained multiple video loops and still images. 

Videos corresponding to the standard parasternal long-axis (PLAX) view were extracted, 

masked, and down-sampled by cubic interpolation to a resolution of 112 × 112 pixels 

per previously described methods.16 The PLAX view was chosen because it visualizes 

anatomical features adjacent to the proximal coronary arteries that can experience early 

calcification (i.e., the aorta and aortic valve), is readily identified by automated view 

classifiers, and is easily obtainable by even novice ultrasound scanners.20,21 We randomly 

split our data set using 80% of TTEs for model training, 10% for model validation, and 10% 

for hold-out testing. For a supplemental analysis, we also extracted apical 4-chamber (A4C) 

views from the same TTEs. Since some studies did not have both highquality PLAX and 

A4C views, the number of PLAX and A4C videos was different.

We obtained an additional limited external data set from Stanford Healthcare containing all 

TTEs completed within 1 year of CAC studies performed from July 1, 2016, to August 1, 

2018. The A4C and PLAX videos were extracted from these TTEs and then masked and 

down-sampled according to a workflow similar to what was used for processing TTEs from 

Cedars-Sinai.

This study was approved by the Institutional Review Boards at Cedars-Sinai Medical Center 

and Stanford Healthcare.

Assessment of Patient Characteristics and Outcomes

Patient characteristics were derived from electronic health records data according to standard 

Elixhauser comorbidity definitions.22 The atherosclerotic cardiovascular disease (ASCVD) 

risk score for 10-year risk of heart disease or stroke was calculated for a subgroup of 

402 patients who had available cholesterol and blood pressure information.23 Mortality 

information was sourced from deaths recorded in the electronic health records as well as 

from the California Department of Public Health Death Index.

Deep Learning Model Selection and Training

We trained a convolutional neural network model with residual connection and 

spatiotemporal convolutions across frames to predict CAC scores. This model, based on the 

R2+1D architecture, has been previously used successfully to predict LVEF from TTEs.16 

Our model was initialized with pretrained weights from the EchoNet-Dynamic data set.16 

The model was trained to minimize the squared loss between the prediction and log (CAC 

score + 1) using an Adam optimizer with a learning rate of 0.001 and batch size of 10 across 

40 epochs.
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The model input used video clips of 32 frames, which were created by sampling every 

other frame. The weights from the epoch with the lowest validation loss were used for final 

model testing on the held-out data set. Model training was done in Python using the publicly 

available PyTorch deep learning library.

Model Performance and Survival Analysis

We evaluated the ability of our model to correctly classify patients into coronary calcium 

versus no coronary calcium groups as well as CAC score ≥ 400 versus <400 groups. We 

tested our model on the held-out test set and an external test set from Stanford Healthcare, 

as well as a subset of the original held-out data set containing only patients ages <70 years 

old. We displayed receiver operating characteristic (ROC) and precision-recall (PR) curves 

to demonstrate model performance across classification thresholds. As a measure of overall 

model performance, we reported the area under the curve (AUC) for the ROC and PR curves 

as well as F1 scores. Confidence intervals were reported using 10,000 bootstrapped samples.

To compare our model’s performance with the prognostic abilities of a CAC score of zero 

by CT, we used predicted calcium scores to stratify patients into low or high risk using the 

score cutoff that was most accurate for predicting the presence of CAC (highest mean of 

sensitivity and specificity). We then also divided these same patients into low or high risk 

based on whether they had a CAC score of 0 or >0 by CT. We then determined whether 

there were significant differences in mortality rates between these groups by the log-rank 

test of Kaplan-Meier curves over a 1-year period from the date of the TTE or CT. The same 

process was repeated when comparing the TTE model’s performance with the predictive 

abilities of a CAC score of ≥200 and ≥400 by CT. Lastly, we calculated net reclassification 

indices for 1-year mortality when going from risk stratification by CT CAC score of 0 to risk 

stratification by TTE-predicted CAC score of 0.24

Survival analysis was conducted using R software (ver. 3.4.1) survival and survminer 

packages.

Model Interpretability

We attempted to visualize the input features that were most influential in our deep learning 

models using the integrated gradients attribution method, which has several advantages over 

other attribution methods including its ability to better meet the tests of sensitivity and 

implementation invariance.25 We chose representative output images using this attribution 

method on PLAX models.

RESULTS

We trained a CNN model on a dataset of 2,881 TTEs paired with coronary calcium scores 

from 1,635 patients. Patients had a mean age of 72 years (SD = 14.3), were 37.4% female 

and 31.4% nonwhite, and had a range of cardiovascular comorbidities (25.4% hypertension, 

36.9% heart failure, 59.8% hyperlipidemia; Table 1). Patients with available cholesterol 

and blood pressure information were on average at intermediate cardiovascular risk, with 

a mean ASCVD risk score of 13.6% (SD = 11.4%). Over three quarters of patients had a 

normal LVEF, and 69.2% of echocardiograms had no wall motion abnormalities. The mean 
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absolute difference in time between TTE and CT was 68.6 days (SD = 96.0), with 13.4% 

having a calcium score of 0 and 53.0% having a calcium score ≥400. An external dataset 

from Stanford Healthcare contained 92 TTEs paired with coronary calcium scores from 92 

patients. The mean patient age was 58.4 years (SD = 11.7), and 43.4% were female. Almost 

all TTEs had a normal LVEF, with 47.8% of TTEs paired with a calcium score of 0 and 

17.4% with a calcium score ≥400.

When tested on a held-out dataset not used for model training, the CNN model had high 

discriminatory abilities in predicting which patients had 0 calcium (ROC AUC = 0.81 

[95% CI, 0.74–0.88], F1 score = 0.95; Figure 1A). The model performed modestly well 

in predicting patients who had high calcium scores >400 Agatston units (AUC = 0.74 [0.68–

0.8], F1 score = 0.74; Figure 1B) and intermediate calcium scores >200 Agatston units 

(AUC = 0.75 [0.69–0.81], F1 score = 0.78; Supplemental Figure 1). On the external data set 

of TTEs from Stanford Healthcare, the model was able to again predict patients who had 

zero coronary calcium (AUC = 0.75 [0.65–0.85], F1 score = 0.77) as well as those with high 

coronary calcium (AUC = 0.85 [0.76–0.93], F1 score = 0.59; Figure 2).

In supplemental analyses, we found that a model trained using A4C videos was able to also 

predict both zero CAC (AUC = 0.73 [0.67–0.79], F1 score = 0.95) and high CAC (AUC 

= 0.72 [0.68–0.76], F1 score = 0.73; Supplemental Figure 2). However, performance was 

worse compared to the model using PLAX videos, especially when applied to the external 

data set (AUC = 0.55 [0.47–0.64], F1 score = 0.67 for zero CAC; AUC = 0.73 [0.62–0.84], 

F1 score = 0.33 for CAC > 400).

Since our patient cohort was on average older than the typical target population for CAC 

screening, we performed an additional sensitivity analysis by testing our model in a limited 

subset of patients younger than 70 years old who were not used in model training. This 

subset had a mean age of 57.7 years (SD = 9.8) and mean ASCVD risk score of 10.1% 

(SD = 9.2%), with 22% of patients having a calcium score of 0 (Supplemental Table 1). 

Prediction performance was similar when compared to testing in the entire cohort of patients 

in predicting zero coronary calcium (AUC = 0.79 [0.73–0.85], F1 score = 0.87) and high 

coronary calcium (AUC = 0.74 [0.67–0.81], F1 score = 0.64; Supplemental Figure 3).

We compared the risk discrimination abilities of our TTE CAC prediction model to having 

a CT CAC score of 0 in predicting 1-year survival. Both risk stratification by TTE-predicted 

CAC and CT CAC produced survival curves that separated by 1 year, although in both 

cases, the separation was not statistically significant, likely because the sample size was 

underpowered to detect a significant difference (CT calcium vs CT no calcium, P = .20; 

TTE-predicted calcium vs TTE-predicted no calcium, P = .07; Figure 3A). When comparing 

survival curves in patients with a TTE-predicted CAC score >400 or a CT CAC >400, both 

methods of CAC assessment were in fact able to significantly predict 1-year survival (Figure 

3B). When going from a CT CAC score of 0 to a TTE-predicted CAC score of 0, there 

was an improved net reclassification index for nonevents (=0.12 for PLAX) and similar net 

reclassification index for events (=−0.04 for PLAX; Supplemental Table 2).
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In an exploratory interpretability analysis using the integrated gradients attribution method, 

we found that the model appeared to focus more heavily on the aortic valve anulus, aorta, 

left ventricular outflow tract, and mitral valve (Figure 4).

DISCUSSION

Assessing the risk of CAD in asymptomatic individuals continues to be a cornerstone for 

ensuring that patients receive appropriate preventive care and therapies. Echocardiography 

is a widely available, noninvasive, and radiation-free diagnostic tool that captures a large 

amount of physiological information that could be used for helping better assess CAD risk. 

In this retrospective study of patients with both CAC and TTE studies, we demonstrated 

for the first time that a video-based deep learning algorithm using standard TTE views 

successfully predicted with high accuracy whether individuals had developed CAC as well 

as high levels of coronary calcium. These predictions additionally stratified patients into 

risk groups that performed similarly in predicting 1-year mortality when compared to CAC 

scores by CT.

With the application of machine learning techniques, it has become increasingly clear 

that diagnostics such as TTEs and electrocardiograms contain patterns of information that 

can be used for predicting patient characteristics and disease states beyond what may be 

immediately discernible by the human expert.17–19,21 In this study, we showed that deep 

learning of TTEs successfully predicted the presence of any CAC as well as high levels 

of calcium. Using TTE images to predict the presence of CAC, as opposed to another 

endpoint such as hard cardiovascular events, for example, is particularly valuable because 

the development of CAC is an early upstream process that may identify a key time window 

during which preventative therapies may be most effective. Indeed, there already exists a 

robust body of evidence linking the detection of CAC to actionable therapies such as the use 

of aspirin and statins.2,3

The connection between TTE images and CAC has a compelling physiological basis 

that warrants further investigation. Cardiac structural changes that are visualizable in the 

PLAX view, such as systolic and diastolic ventricular dysfunction, aortic and mitral valve 

calcification, and aorta calcification, are well known to be associated with CAD.26–29 Deep 

learning of PLAX views has been able to predict aortic stenosis with high accuracy.30 

Attribution methods confirmed that our deep learning algorithm appeared to focus on the 

aorta, left ventricular outflow tract, and aortic and mitral valves. We further propose that 

PLAX videos may have performed better in predicting CAC than A4C videos because 

PLAX views best visualized calcification of the aorta and aortic valve.

We confirmed that the calcium predictions by TTE deep learning models appeared to stratify 

patients into risk groups that had 1-year all-cause mortality rates similar to those predicted 

using CT CAC scores. In fact, we even observed a slight improvement in net reclassification 

of nonevents, meaning that patients who were deemed high risk by CT CAC were correctly 

reclassified into the low-risk group when using TTE-predicted CAC instead. As a result, 

in contrast to the TTE-predicted CAC survival curves, there was no statistical difference 

seen for the CT calcium versus CT no calcium curves at 1 year given the lower difference 
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in mortality rates between the 2 groups. The reason for this improved performance using 

TTE-predicted CAC is not immediately clear and remains to be confirmed in larger studies 

with greater power to detect differences in survival. It could be that there are additional 

features present in a TTE video that may help distinguish when a subset of patients with 

CAC are lower risk for future adverse events. It is known, for example, that statins, while 

reducing future cardiovascular events, can accelerate CAC, meaning that calcification in 

certain patients may not in fact be as worrisome.31

If confirmed in subsequent prospective testing, the use of deep learning of TTEs for CAD 

risk stratification could have several potentially intriguing applications. While we do not 

anticipate echocardiograms replacing CAC CTs, given the widespread availability of TTEs, 

deep learning of TTEs could conceivably be used for CAC approximation when CAC 

scoring by CT is deferred by the patient or inaccessible. There also may be a role for 

using these models to help patients and clinicians decide whether to pursue a CAC CT 

if the decision is unclear. When CAC scores by CT are obtained, such models could act 

as an adjunct to inform the interpretation of CAC scores to give an overall more accurate 

picture of disease. Transthoracic echocardiograms could also have a potential role in serial 

monitoring for the development of CAD years after a 0 CAC score. Prediction of high CAC 

scores may have additional uses such as determining when coronary CT angiography might 

have an increased likelihood of being nondiagnostic due to the presence of high calcium 

levels.

Several study limitations warrant consideration. Transthoracic echocardiogram and CAC 

assessment were not performed simultaneously, although we ensured that they occurred 

within 1 year of each other with the mean absolute difference in time being slightly over 2 

months. We included all recorded CAC scores that could be paired with TTEs. However, our 

study population was on average older and had a high proportion of positive CAC scores, 

which is likely due to the older population that is seen at our institution and differences in 

local practice patterns, including the possibility that some CTs with CAC were ordered for 

other indications in addition to CAC assessment. Although all included TTEs and CT scans 

were ordered by referring clinicians for standard indications, we could not confirm whether 

patients had anginal symptoms at the time of their imaging test. The training cohort may 

therefore not be fully representative of the population for whom CAC scoring is most often 

used. Nevertheless, in the subgroup of patients with available cholesterol and blood pressure 

information, the mean ASCVD risk score fell within the intermediate cardiovascular risk 

range. Model performance remained similar when limiting the test data set to only patients 

<70 years old. The model was additionally able to perform well in an external data set 

of younger patients who had a much lower proportion of CT scans with positive CAC. 

We used all-cause death as our main outcome given its adjudication certainty, although 

cardiovascular-related outcomes would be more specific to CAD. While survival curves 

based on TTE-predicted CAC diverged at 1 year, longer-term follow-up in larger prospective 

studies properly powered to distinguish survival differences would be informative.
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CONCLUSION

A video-based deep learning model successfully used TTE videos to predict the presence of 

CAC as well as high levels of coronary calcium with a high degree of accuracy. Coronary 

artery calcium predictions were additionally able to successfully prognosticate differences in 

1-year mortality. These results speak to the potential role of using deep learning of TTEs for 

future CAD risk stratification to guide preventive therapies.
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HIGHLIGHTS

• CAC is a powerful marker of CAD and can guide preventive therapies.

• We used 2,881 TTEs paired with CAC scores to train an AI CAC prediction 

model.

• The TTE-based deep learning model accurately predicted zero CAC and high 

CAC scores.

• This was confirmed in an external data set of 92 TTEs paired with CAC 

scores.

• CAC prediction by TTE AI performed similarly to CT CAC in predicting 

1-year survival.
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Figure 1. 
Performance characteristics of a deep learning model for predicting CAC using PLAX 

TTE videos when applied to a held-out test data set. Receiver operating characteristic and 

PR curves across different classification thresholds with AUC (95% CI) and F1 score for 

predicting (A) presence versus absence of CAC and (B) CAC score < 400 versus >400 

Agatston units.
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Figure 2. 
Performance characteristics of a deep learning model for predicting CAC using PLAX TTE 

videos when applied to an external site test data set. Receiver operating characteristic and 

PR curves across different classification thresholds with AUC (95% CI) and F1 score for 

predicting (A) presence versus absence of CAC and (B) CAC score < 400 versus >400 

Agatston units.
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Figure 3. 
Kaplan-Meier survival curves for all-cause mortality over 1 year for patients in a held-out 

test data set stratified by (A) CT CAC score 0 versus >0 or by TTE-predicted CAC score 0 

versus >0 and (B) CT CAC score < 400 versus >400 or by TTE-predicted CAC score < 400 

versus >400.
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Figure 4. 
Areas of focus by the deep learning model (bright pixels) according to results from the 

integrated gradients attribution method.
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Table 1

Baseline patient, echo, and calcium score characteristics

Patients (N = 1,635)

 Age, mean (SD) 71.9 (14.3)

 Gender, female 612 (37.4)

 Race/ethnicity

  American Indian 5 (0.3)

  Asian 101 (6.2)

  Black 143 (8.7)

  Hispanic 119 (7.3)

  Non-Hispanic White 1,121 (68.6)

  Other 129 (7.9)

  Unknown 17 (1.0)

 Hypertension 416 (25.4)

 Heart failure 603 (36.9)

 Hyperlipidemia 977 (59.8)

 Diabetes 345 (21.1)

 Obesity 116 (7.1)

 Chronic lung disease 622 (38.0)

 Chronic kidney disease 287 (17.6)

 Active smoker 36 (2.2)

 On hypertension medication 817 (50)

 ASCVD risk score* 13.6 (11.4)

Echocardiogram videos paired with CAC (N = 2,881)

 Normal LVEF 2,166 (75.2)

 Wall motion abnormality 886 (30.8)

 ≥Moderate valvular disease 569 (19.8)

 Days from TTE to CT, mean (SD) 68.6 (96.0)

 CAC = 0 385 (13.4)

 CAC = 0–99 518 (18.0)

 CAC = 100–399 450 (15.6)

 CAC > 400 1,528 (53.0)

External site echocardiogram videos (n = 92)

 Age, mean (SD) 58.4 (11.7)

 Gender, female 40 (43.4)

 Normal LVEF 89 (96.7)

 ≥Moderate valvular disease 5 (5.4)

 Days from TTE to CT, mean (SD) 40 (169.9)

 CAC = 0 44 (47.8)

 CAC = 0–99 16 (17.4)

 CAC = 100–399 16 (17.4)

 CAC > 400 16 (17.4)
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Data are presented as n (%) unless otherwise specified.

*
ASCVD risk scores were calculable for a subset of 402 patients that had complete data.
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