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ABSTRACT OF THE DISSERTATION

Reverse Engineering Synchronization of Brain Network Dynamics:
Controllability Properties and Functional Patterns

by

Tommaso Menara

Doctor of Philosophy, Graduate Program in Mechanical Engineering
University of California, Riverside, December 2021

Dr. Fabio Pasqualetti, Chairperson

Reverse engineering the brain holds the promise to overhaul the quality of life of human beings and

vastly benefit mankind. Further advances towards this goal will lead to the reversal of cognitive

decline, the creation of pioneering neural prostheses, the establishments of novel treatments for

neurological disorders, and the development of human augmentation methods. This dissertation

presents a cross-disciplinary approach to the study of the structure-function relationship in neural

systems. Specifically, we study the brain as a dynamical system that obeys network-wide principles,

and address three foundational challenges by using mathematically grounded methods that lie at

the intersection of control theory, network science, and neuroscience.

First, through the application of control and graph-theoretic paradigms, we investigate

how the spatial organization of anatomical brain network components governs and constrains its

complex dynamical behaviors. The first chapters are dedicated to the study of structural brain

networks – that is, empirically reconstructed large-scale networks that describe the interconnection

scheme between different brain regions. We rigorously reveal that brain state transitions can be

controlled by a single region, and that structural brain networks possess distinct controllability

profiles with respect to random networks of the same size.

Second, we address the modeling and analysis of neural activity synchronization across

different brain areas – which can be described by functional brain networks. To do so, we juxtapose

vi



a bottom-up approach and a top-down approach. In the former, we utilize data-driven dynamical

models to reveal that the synchronization of brain network dynamics is resilient to data heterogeneity,

thus supporting the utilization of large heterogeneous repositories of brain recordings. In the latter,

we abstract rhythmic activity of a neural system as the output of a network of diffusively coupled

oscillators, and derive prescriptive conditions for the emergence of cluster synchronization. Such a

phenomenon emerges when different groups of synchronized components coexist in a network, and

regulates the functional interactions among network components.

Third and final, we build upon our previous findings and take aim at the tantalizing idea

of controlling the synchronization of brain dynamics through minimally invasive local interventions.

We derive a method to optimally intervene on the structural network parameters to achieve desired

cluster-synchronized trajectories and, thus, prescribed functional interactions. Additionally, we

show that our synchronization-based framework is robust to mismatches in network parameters,

and validate it using a realistic neurovascular model to simulate neural activity and functional

connectivity in the human brain.
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Chapter 1

Introduction

“We have always two universes

of discourse [...], one dealing

with questions of quantitative

and formal structure,

the other with those qualities

that constitute a ‘world’.”

O. SACKS [1]

Reverse engineering the human brain is the quintessential challenge of modern science. This

seemingly insurmountable task holds the promise to not only reveal what establishes the persona,

the self, but also vastly benefit mankind. Importantly, while our understanding of the brain working

principles may still be far from complete, the joint efforts of the scientific community towards

this goal will lead to breakthrough clinical and technological achievements. Examples include the

development of novel treatments for neurological disorders, the reversal of cognitive decline, and

the engineering of human augmentation devices. Furthermore, such advances in brain science will
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alleviate the global economic burden of neurological and psychiatric disorders, which is projected to

reach $6T by 2030 [2].

A key aspect in neuroscience research is the characterization of the link between structure

and function in the nervous system and the brain. The study of this complex structure-function

relationship has sparked the interest of physicians and scientists since the early days of medicine –

the earliest known documents reporting cases of brain injuries along with various treatment recom-

mendations date back a staggering five thousand years [3]. Three thousand years later, Hippocrates

of Kos, a forefather of neurology, boldly hypothesized that intelligence resides in the brain [4]. Fast

forward to modern times, outstanding technological advances have enabled tremendous discoveries

in neuroscience. An exquisite example – easily digestible to any interested reader – of how modern

brain probing techniques have further enhanced our collective knowledge is the collection of clinical

stories by the neurologist O. Sacks [1]. Yet, despite recent formidable advances, the investigation

into the brain structure-function relationship is by no means concluded. The main thrust of this

dissertation is to shed light onto this critical topic through a cross-disciplinary approach.

Here, we leverage the emerging intersection between control theory, network science, and

neuroscience, to investigate how the spatial organization of neural circuits at different scales (the

structural domain) supports and governs the large-scale complex coordinated behavior of neural

activity (the functional domain) that ultimately maps into cognitive processes (see Fig.1.1). The

main objective of this thesis is to present a series of results wherein, by applying rigorous engineering

methods, we (i) elucidate the structural brain properties that allow for endogenous and exogenous

control of neural activity, (ii) unveil the mechanisms underpinning large-scale neural synchronization,

and (iii) gaze upon the etiology of cognition as a result of dynamical process that evolve at multiple

spatio-temporal scales.
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tro

l T
heo

ry
Network Science

Neuroscience

Figure 1.1: The synergistic interaction of control theory, network science and neuroscience promotes
the discovery of the brain working principles and the design of systems-level interventions to correct
abnormal brain dynamics.

1.1 Control and Graph-Theoretic Paradigms Meet Neuro-

science Challenges

At the core of this thesis is the study of the brain as a dynamical system whose relevant

dynamics are governed by network-wide rules. In this setup, the communication between single

neurons or, at a coarser scale, between neuronal populations is constrained by axons or axonal

bundles, and is hierarchically regulated across many scales of spatial and temporal organization.

That is, the interconnection scheme between neural components constrains the evolution of brain

dynamics, and the integrative nature of brain function can be addressed from a complex network

perspective. Such a framework lends itself to be investigated through control-theoretic tools. In

fact, the intersection between control theory and the study of the brain as a network system has the

potential to overhaul our understanding of the brain dynamical wandering between different states

and motivates the first scientific questions addressed in this thesis.

What is the role of the brain anatomical (structural) interconnection scheme in enabling

cognitive control? How do external stimuli propagate through the web of neural interconnections

to steer the state of the system? The capability of driving the state of a network system through

endogenous or exogenous stimuli – controllability – is inherently determined by the network organi-
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zation. By employing control-theoretic tools, we provide prescriptive conditions for structural brain

networks to be controllable and demonstrate that such brain networks possess distinct controllabil-

ity profiles. Notably, control theory offers two primary advantages over traditional approaches to

the analysis of brain network function. First, the theoretical framework enables the study of the

intimate relationship between structure and function, in contrast to approaches that characterize

each separately. Second, control theory often goes beyond the purely descriptive approach of net-

work science by defining generative models that are parameterized by both a network’s spatial and

temporal features. These methods and tools hold the promise to inform the development of novel

treatments and stimulation schemes to treat multiple neurological disorders.

1.2 Reverse Engineering Synchronization of Brain Network

Dynamics

Synchronization phenomena are ubiquitous in the brain. During a cognitively demanding

task or at rest, the brain exhibits a rich repertoire of large-scale synchronization patterns supported

by its static interconnection scheme. These patterns are a measure of the coherence among the neural

activities in different brain areas, and enable a multitude of functions in the brain. Examples include

motor coordination, sleep spindles, circadian rhythms, and large scale integration of sensori stimuli.

Furthermore, synchronization can be used as a biomarker in multiple psychiatric and neurological

disorders, and abnormal or decreased synchronized activity has been linked to neurological damage or

cognitive decline due to aging. In this part, we leverage the view of the brain as a dynamical network

system, and propose two complementary approaches to address the following scientific challenge.

What are the mechanisms underpinning different synchrony configurations of brain activ-

ity? We will present a bottom-up and a top-down explorations of the relationship between data,

models, and paradigms of neural synchronization. In the bottom-up approach, we infer a data-

driven dynamical model, where distinct synchronization patterns define different states. We use
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such a model of large-scale trajectories to identify brain dynamics fingerprints and assess the quality

of multi-site repositories of brain activity recordings. Next, in the top-down approach, we make

use of oscillator networks and mathematical abstractions to reverse engineer the synchronization of

oscillatory brain rhythms. By abstracting oscillatory neural activity as the result of interconnected

nonlinear oscillators whose dynamics are constrained by the brain’s structure, we reveal the mecha-

nisms that enable a variety of synchronization phenomena. Specifically, we study the phenomenon of

cluster synchronization in networks of oscillator – where distinct groups of synchronized oscillators

coexist in a network.

1.3 Control of Synchronization in Brain Networks

The development of an overarching theory to bridge the intertwined nature of the neural

activity synchronization with our view of the brain as a complex network system enables the devel-

opment of principled methods to effectively control synchronization phenomena. By developing the

aforementioned framework, where neural activity evolution can be approximated by the dynamics

of interconnected nonlinear oscillators, the following question arises naturally.

Which control parameters can we leverage to govern the level of synchrony between differ-

ent brain regions? We explore the tantalizing idea of controlling brain-wide functional relations –

defined as functional connectivity – by selectively acting on the brain’s structure and parameters

(see Fig. 1.2). Functional connectivity, which measures the degree of correlation between neural

activities in different brain regions, can be used to distinguish between healthy and certain diseased

brain dynamics and, possibly, as a control parameter to restore healthy functions. In this part of the

thesis, we show that functional connectivity is essentially regulated by the degree of synchronization

between different clusters of oscillators. Then, we propose a minimally invasive method to correct the

oscillators’ interconnections and frequencies to enforce arbitrary and stable synchronization patterns

among the oscillators and, consequently, a desired pattern of functional connectivity.
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Optimal & Localized
Interventions

Figure 1.2: Networks of nonlinear oscillators can be used to inform the design of optimal and
localized interventions.

1.4 Organization and Summary of Contributions

The contents of this dissertation are organized into nine main chapters, followed by a shared

conclusion. The main contributions of each chapter are listed below.

Chapter 2 – Preliminaries in Graph Theory, Control Theory, and Brain Net-

works. In this chapter, we introduce some preliminary notions and results that will be used through-

out the thesis. Specifically, we present graph theory concepts used to describe network systems, we

define controllability of network systems, and we describe how the brain and its activity can be

studied as complex networks.

Chapter 3 – Structural Controllability of Empirically Reconstructed Brain Net-

works. The contribution of this chapter is twofold. First, we extend the theory of structural con-

trollability. Second, we apply such a theory to prove that empirically-reconstructed structural brain

networks are controllable from any node. The theory of structural controllability allows us to assess

controllability of a network as a function of its interconnection graph and independently of the edge

weights. Yet, existing structural controllability results require the weights to be selected arbitrar-

ily and independently from one another and provide no guarantees when these conditions are not
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satisfied. Here, we develop a new theory for structural controllability of networks with symmetric,

thus constrained, weights. In this chapter, we show that network controllability remains a generic

property even when the weights are symmetric, and we demonstrate that a symmetric network is

structurally controllable if and only if it is structurally controllable without weight constraints. Our

results enables to assess the controllability of symmetric structural brain networks reconstructed via

diffusion imaging methods.

Chapter 4 – The Structured Controllability Radius of Symmetric (Brain) Net-

works. In this chapter, we further elaborate the study of controllability of symmetric brain networks

and propose and analyze a novel notion of controllability of network systems with linear dynamics

and symmetric weights. Namely, we quantify the controllability degree of a network with its dis-

tance from the set of uncontrollable networks with the same structure, that is, with the minimum

Frobenius norm of a structured perturbation rendering the network uncontrollable (structured con-

trollability radius). We derive analytical conditions to compute the structured controllability radius

of a network with symmetric weights, and illustrate our results through a number of examples. In

particular, we use our theoretical results to study the controllability properties of a set of brain net-

works reconstructed from diffusion MRI data, and compare them with the controllability properties

of a class of random networks. Our results show that brain networks feature a controllability radius

that is consistently smaller than the one of random networks with similar weights, indicating that

the considered brain networks may not be optimized to favor controllability.

Chapter 5 – Brain Network Dynamics Fingerprints are Resilient to Data Het-

erogeneity In this chapter, we investigate how large-scale synchronization of neural activity defines

reliable brain dynamics fingerprints. Our objective is to validate the estimation of individual brain

network dynamics fingerprints and to appraise sources of variability in large resting-state functional

magnetic resonance imaging datasets by providing a novel point of view based on data-driven dynam-

ical models. We utilize hidden Markov models to examine how diverse scanning factors in multi-site

fMRI recordings affect our ability to infer the brain’s spatiotemporal wandering between large-scale
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networks of activity. Specifically, we leverage a stable hidden Markov model trained on the Human

Connectome Project (homogeneous) dataset, which we then apply to an heterogeneous dataset of

traveling subjects scanned under a multitude of conditions. Building upon this premise, we first

replicate previous work on the emergence of non-random sequences of brain states. We next high-

light how these time-varying brain activity patterns are robust subject-specific fingerprints. Finally,

we suggest these fingerprints may be used to assess which scanning factors induce high variability

in the data. These results demonstrate that we can use large scale dataset to train models that can

be then used to interrogate subject-specific data, recover the unique trajectories of brain activity

changes in each individual, but also urge caution as our ability to infer such patterns is affected by

how, where and when we do so.

Chapter 6 – Cluster Synchronization in Networks of Phase Oscillators. Building

upon the premises of the previous chapter, we model neural activity as the output of a network

of interconnected oscillators. In this framework, each oscillator represents a brain region, and the

anatomical structure of the brain defines the network over which such oscillators interact. During

rest or cognitive tasks, neural activity moves between specific brain-wide synchronization patterns.

To enable a mathematical investigation of the mechanisms underlying this behavior, we focus on

cluster synchronization of oscillators, which emerges when the oscillators can be partitioned in a

way that their phases remain identical over time within each group. This phenomenon is critically

important for normal and abnormal behaviors in technological and biological systems ranging from

the power grid to the human brain. Yet, despite its importance, cluster synchronization has re-

ceived limited attention, so that the fundamental mechanisms regulating cluster synchronization in

important classes of oscillatory networks are still unknown. In this chapter, we provide the first

conditions for the stability of the cluster synchronization manifold for general weighted networks of

heterogeneous oscillators with Kuramoto dynamics. In particular, we discuss how existing results

are inapplicable or insufficient to characterize the stability of cluster synchronization for oscillators

with Kuramoto dynamics, provide rigorous quantitative conditions that reveal how the network
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weights and oscillators’ natural frequencies regulate cluster synchronization, and offer examples to

quantify the tightness of our conditions. Further, we develop approximate conditions that, despite

their heuristic nature, are numerically shown to tightly capture the transition to stability of the

cluster synchronization manifold.

Chapter 7 – Relay Interactions Enable Remote Synchronization of Phase Os-

cillators. This chapter concludes the analysis of synchronization phenomena by focusing on remote

synchronization. This fascinating phenomenon occurs when oscillators that are not directly con-

nected via physical links evolve synchronously. Remore synchronization is thought to be critical for

distributed information processing in the mammalian brain, where long-range synchronization is em-

pirically observed between neural populations belonging to spatially distant brain regions. Inspired

by the growing belief that this phenomenon may be prompted by intermediate mediating brain

regions, such as the thalamus, in this chapter we derive a novel mechanism to achieve remote syn-

chronization. This mechanism prescribes remotely synchronized oscillators to be stably connected

to a cohesive relay in the network – a group of tightly connected oscillators mediating the distant

ones. Remote synchronization unfolds whenever the stability of the subnetwork formed by relays

and remotely synchronized oscillators is not affected by the rest of the oscillators. In accordance

with our results, we find that remotely-synchronized cortico-thalamo-cortical circuits in the brain

posses strong interconnection profiles. Finally, we demonstrate that the absence of cohesive relays

prevents stable remote synchronization in a large class of cases, further validating our results.

Chapter 8 – Feedback Linearization of Nonlinear Network Systems. This chap-

ter introduces the section on the control of neural synchronization. We utilize the framework of

interconnected oscillators introduced in the previous chapters and provide novel conditions to test

whether a nonlinear network is feedback-linearizable. Feedback linearization allows for the local

transformation of a nonlinear system to an equivalent linear one by means of a coordinate trans-

formation and a feedback law. However, feedback linearization of large-scale non-linear network

systems is typically difficult, since existing conditions become harder to check as the network size
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becomes larger. In this chapter, given some dedicated control inputs injected to a set of network

nodes, we derive an easy-to-check algebraic condition that can be tested on the Jacobian matrix

of the network dynamics evaluated at some desired working point. Furthermore, our requirements

are sufficient for (local) controllability, and thus provide a testable condition for controllability of

large-scale nonlinear networks. Finally, we validate our findings by enforcing the formation of desired

synchronization patterns in networks of coupled oscillators.

Chapter 9 – A Framework to Control Functional Connectivity. In this chapter,

we propose a framework to control brain-wide functional connectivity by selectively acting on the

brain’s structure and parameters. Functional connectivity, which measures the degree of correlation

between neural activities in different brain regions, can be used to distinguish between healthy and

certain diseased brain dynamics and, possibly, as a control parameter to restore healthy functions.

Here, we use a collection of interconnected Kuramoto oscillators to model oscillatory neural activity,

and show that functional connectivity is essentially regulated by the degree of synchronization be-

tween different clusters of oscillators. Then, we propose a minimally invasive method to correct the

oscillators’ interconnections and frequencies to enforce arbitrary and stable synchronization patterns

among the oscillators and, consequently, a desired pattern of functional connectivity. Additionally,

we show that our synchronization-based framework is robust to parameter mismatches and numeri-

cal inaccuracies, and validate it using a realistic neurovascular model to simulate neural activity and

functional connectivity in the human brain.

Chapter 10 – Conclusions. This chapter concludes the dissertation. We summarize the

main contributions of this manuscript, and present directions for future research.
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Chapter 2

Preliminaries in Graph Theory,

Control Theory, and Brain

Networks

“Far from being able to accept the idea of the individuality and independence

of each nerve element, I have never had reason, up to now,

to give up the concept which I have always stressed, that nerve cells,

instead of working individually, act together [. . . ].

However opposed it may seem to the popular tendency to individualize the elements,

I cannot abandon the idea of a unitary action of the nervous system [. . . ]”

C. GOLGI [5]

What Camillo Golgi hypothesized in the late 1800s is now commonly accepted by numerous

research communities: brain functions are enabled and supported by the concurrent activation of

ensembles of neurons in distinct cortical and subcortical regions. To allow for a rigorous study of

such phenomenon, this chapter presents a primer on concepts from Graph Theory, Control Theory,

and Network Neuroscience that will be used throughout this dissertation.
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2.1 Preliminaries on Graph Theory

Networks are used to describe many natural and engineering systems where the spatial or

temporal interactions between components are governed by distinct architectural features [6]. Ex-

amples include power distribution networks, online interactions between Facebook friends, complex

ecological systems, communicating satellites in orbit, swarms of drones, and the brain. The inter-

action scheme defining a network can be described by a graph. We let G = {V, E} denote a graph,

where V = {1, . . . , n} is the vertex (or node) set, and E = {(i, j) : i and j are connected} ⊆ V×V is

the edge (or link) set. The connections between the nodes of a graph can be weighted or unweighted.

In both cases, a graph of cardinality n (i.e., comprising n nodes) can be conveniently described by

a square adjacency matrix A ∈ Rn×n:

A = [aij ] =





aij ∈ R if (i, j) ∈ E ,

0 otherwise.

Loosely speaking, an adjacency matrix encodes the network’s sparsity (whether aij 6= 0) and the

interconnection strength between its components (the scalar value of aij). In the case of unweighted

networks, either aij = 1 or aij = 0. Unless specified differently, in this dissertation we use weighted

graphs, as we are interested in characterizing how the interconnection scheme and the interconnection

strength between a (brain) network components constrain its dynamics.

2.2 Control Theory Notions

We study the brain as a dynamical system whose components interact based on a network

structure. Ultimately, our goal is the application of engineering techniques and principles to the

analysis and control of neural systems. To formalize these concepts, we make use of control theory

notions. Control theory offers two primary advantages over traditional approaches to the analy-

sis of brain network function. First, the theoretical framework enables the study of the intimate

relationship between structure and function, in contrast to approaches that characterize each sepa-
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rately. Second, control theory often goes beyond the purely descriptive approach of network science

by defining generative models that are parameterized by both a network’s spatial and temporal

features.

Before framing research problems in the context of networks representing brain structure

and function, we introduce the key concepts of dynamical systems and their control properties. A

continuous-time time-invariant nonlinear system is described by the equation

ẋ(t) = f(x(t), u(t)) (2.1)

where x(t) ∈ Rn and u(t) ∈ Rm denote the state vector and the input vector, respectively, f(·) is a

vector field that describes the dynamics of the system. Engineers are usually interested in controlling

the system (2.1) around a working point – an equilibrium point. We define an equilibrium point of

the system (2.1) as any point x̄ ∈ Rn that satisfies f(x̄) = 0.

Since nonlinear dynamics are typically challenging to handle, we can obtain a good ap-

proximation of the nonlinear system (2.1) in a small neighborhood of x̄ through linearization of the

system around the equilibrium point. By taking the derivatives ∂f/∂x = A and ∂f/∂u = B, we

obtain a continuous-time linear time-invariant system, which is defined by the equation

ẋ(t) = Ax(t) +Bu(t), (2.2)

where A ∈ Rn×n the dynamics matrix, and B ∈ Rn×m the input matrix.

We are interested in the control of the dynamical system (2.2). That is, we want to answer

the question: Does there exists a control input u(t) that can steer the state from an initial state

x(0) = x0 to a final desired state x(T ) = xf in a finite time T?. To answer this question, we let the

controllability matrix of (2.2) be

C(A,B) = [B AB A2B · · · An−1B]

and recall that the network (2.2) is controllable if and only if its controllability matrix C(A,B) is

invertible [7]. Fig. 2.1 depicts a 3-dimensional system’s trajectory going from an initial state x0 = 0
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Figure 2.1: A controllable system’s state can be steered from its initial state x0 to a desired final
state xf in finite time.
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Figure 2.2: A control input u is injected into the network at node i. The network weight between
nodes j and k, denoted by ajk, determines how the states xj and xk influence each other.

to a final state xf .

Dynamical Network Systems. Utilizing an adjacency matrix in (2.2) yields a network

systems that obeys linear dynamics – a linear network system. Fig. 2.2 illustrates a network where

a scalar control input is injected at node i through the input matrix B = ei, where ei is the i-th

canonical vector.

Clearly, the network structure encoded by the adjacency matrix A can also underlie a

nonlinear network system, where the interconnection scheme is described by A, but the interactions

between the network components are nonlinear. We explore these types of networks in the second

part of this dissertation.
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Network
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Figure 2.3: The field of network neuroscience lies at the intersection of network theory (from which
many tools and metric to study graphs are borrowed) and neuroscience.

2.3 Brain Networks

In this dissertation, we focus on the modeling, analysis and control of brain networks.

Brain networks are network representation of the brain’s structure or function [8]. Brain networks

span multiple spatial scales, from the microscale of individual cells and synapses to the macroscale

of cognitive systems and embodied organisms. Thanks to enormous advances in the methods and

technologies used to record and trace the brain anatomy and its signals, the field of network neu-

roscience (see Fig. 2.3) has matured and ultimately exploded in the last decade. This field defined

two main types of brain networks: structural brain networks and functional brain networks.

Structural brain networks. These networks represent the anatomical organization of

the brain – a set of physical or structural (anatomical) connections linking neural elements. The

spatial scale of structural brain networks range from axonal interconnections between single neurons

to large fiber bundles between brain regions. Depending on how such connections are recorded or

traced, the estimated network can have weighted or unweighted links.

Functional brain networks. These networks represent functional relations (such as cor-

relation or statistical deviation from independence) between distributed neural units. Data may be

extracted from cellular recordings, EEG, MEG, fMRI, or other techniques. Notice that the inter-

connection values in this type of network are inherently time-dependent. In many cases, functional

brain networks change on a scale of hundreds of milliseconds, and are modulated by external task

demands and sensory stimulation, as well as the internal state of the organism.
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Brain

Anatomical parcellation

Structural brain network

Imaging data

Recording sites

Time series data

Functional brain network

• nodes : cortical and subcortical areas

• edges : white matter fibres

• nodes : cortical and subcortical areas

• edges : correlation levels between areas

Figure 2.4: The left side of this figure shows a pipeline to construct a structural brain network, where
nodes represent neural units such as brain regions and edges represent the estimated thickness of the
fiber bundles connecting such regions. The right side of this figure illustrates a pipeline to obtain a
functional brain network from brain activity recordings. The nodes represent the same neural units
as in the structural network, but the edges are proportional to the correlation between the neural
activity recorded at the nodes.

Fig. 2.4 illustrates the construction of structural and functional brain networks.
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Chapter 3

Structural Controllability of

Empirically Reconstructed Brain

Networks

This chapter presents seminal results on the controllability from any region of empirically

reconstructed brain networks. We demonstrate that structural controllability depends only on the

network structure and can be assessed reliably and efficiently, even when the network weights are

constrained to be symmetric – as in the case of many empirically reconstructed brain networks. As

an additional contribution, we settle a disagreement between the authors in [9] and the ones in [10],

proving that the conclusions in [10] are numerically accurate and theoretically correct. Briefly, the

topics of debate relate to the question of whether a linear dynamical network is controllable from a

single node, where the network structure is akin to those reconstructed from tract tracing data in non-

human animals, or from diffusion tensor, diffusion spectrum, and other diffusion weighted imaging

scans in humans. By developing a mathematically correct argument that structural controllability of

network systems from one node depends only on the network structure, we demonstrate that brain
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networks numerically controllable for any generic choice of network weights. We refer the reader

to [9, 11–13] for a comprehensive discussion on this topic.

3.1 Introduction

The question of controllability of complex network systems arising in engineering, social,

and biological domains has been the subject of intensive study in the last few years [14–16]. One

key question motivating the investigation is to characterize relationships and tradeoffs between

the interconnection structure of a network and its controllability [17–19]. To this end, graphical

tools from structural systems theory [20–23] are typically preferred over algebraic controllability

tests, which suffer from numerical instabilities when the network cardinality grows, require exact

knowledge of the network weights, and are agnostic to the graph supporting the dynamics.

While the theory of structured systems and generic properties of linear systems is well-

developed and understood [24], all results assume the possibility of assigning the network weights

arbitrarily and independently from one another. In fact, when this condition is violated, the con-

clusions drawn from structural analysis may lead to incorrect results [20, 25]. Unfortunately, it is

often the case that this assumption is violated in real networks due to physical, technological, or

biological reasons. For instance, the small-signal network-preserving model of a power network con-

tains a Laplacian submatrix, whose entries are symmetric and satisfy linear constraints (row sums

equal to zero) [26, 27]. Similar constraints appear also when studying synchronization in networks

of Kuramoto oscillators [28] and general systems with consensus dynamics [29]. Novel theories and

tools are needed to study controllability of networks with constrained weights.

In this chapter, we focus on networks with symmetric weights and derive graph-theoretic

conditions for their structural controllability from dedicated control inputs. While (group) symmetry

has previously been found to be responsible for network uncontrollability [30, 31], the question of

how symmetric edge weights affect structural controllability has not been investigated, with the
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exception of [32]. In [32], however, the proposed conditions for structural controllability of undirected

(symmetric) networks are implicit and based on the generalized zero forcing sets to estimate the

dimension of the controllable subspace. Similarly, although the recent paper [33] studies structural

controllability for a class of networks with constrained parameters, this class of network matrices

does not contain the set of symmetric matrices considered in this chapter. Thus, the necessary and

sufficient conditions derived here are the first graph-theoretic conditions for structural controllability

of networks with symmetric weights.

The contribution of this chapter is two-fold. First, we show that a network with symmetric

weights is structurally controllable if and only if it is spanned by a (symmetric) cactus rooted at

the control node. By comparing our result with those in [34], our analysis shows that a network

is structurally controllable with symmetric weights if and only if it is structurally controllable with

unconstrained weights. Second, we use our results to show that a class of (symmetric) brain networks

reconstructed from diffusion MRI data is structurally controllable from a single dedicated control

region. Finally, we note that, due to duality between controllability and observability, the results

of this chapter extend directly to the study of structural observability of networks with symmetric

weights and a dedicated sensor.

The rest of the chapter is organized as follows. Section 3.2 contains our network model and

preliminary notions. Section 3.3 contains our analysis and conditions for structural controllability of

networks with symmetric weights, and some examples. Finally, Section 3.4 contains an illustrative

example featuring brain networks, and Section 9.6 concludes the chapter.
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3.2 Problem setup and preliminary notions

We study controllability of symmetric network systems, which are described by a weighted

directed graph (digraph) G = (V, E), where V = {1, . . . , n} and E ⊆ V × V are the vertex and edge

sets, respectively, and a symmetric weighted adjacency matrix A = [aij ] with aij = 0 if (i, j) 6∈ E

and aij ∈ R if (i, j) ∈ E . Let x ∈ Rn be the vector containing the state of the network nodes over

time, and let i ∈ V be the control node. We let x evolve according to linear time-invariant dynamics:

δ(x) = Ax+ biu, (3.1)

where δ(x) denotes the time derivative (resp. time shift) operator for continuous-time (resp. discrete-

time) dynamics, and bi = ei, with ei the i-th canonical vector of dimension n. Finally, let the

controllability matrix of (4.1) be

C(A, bi) =

[
bi Abi · · · An−1bi

]
, (3.2)

and recall that the network (4.1) is controllable if and only if its controllability matrix C(A, bi) is

invertible [7].

Assessing controllability of network systems is numerically difficult because the controlla-

bility matrix typically becomes ill-conditioned as the network cardinality increases; e.g., see [17,35].

Because different controllability tests suffer similar numerical difficulties, a convenient tool to study

controllability of networks is to resort to the theory of structural systems. To formalize this discus-

sion, let aE = {aij : (i, j) ∈ E}ordered denote the set of nonzero entries of A in lexicographic order,

and notice that the determinant det(C(A, bi)) = φ(aE) is a polynomial function with variables aE .

From the above reasoning, the network (4.1) is uncontrollable when the weights aE are chosen so

that φ(aE) = 0. Let S contain the choices of weights that render the network (4.1) uncontrollable;

that is,

S = {z ∈ Rd : φ(z1, . . . , zd) = 0}, (3.3)
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where d = |E| = |aE |. Notice that S describes an algebraic variety of Rd [36]. This implies that

controllability of (4.1) is a generic property, as it fails to hold on an algebraic variety of the parameter

space [36–38]. Consequently, when assessing controllability of the network (4.1) as a function of the

weights, only two mutually exclusive cases are possible:

1. either there is no choice of weights aij , with aij = 0 if (i, j) 6∈ E , rendering the network (4.1)

controllable; or

2. the network (4.1) is controllable for all choices of weights aij , with aij = 0 if (i, j) 6∈ E , except,

possibly, those belonging to the proper algebraic variety S ⊂ Rd.1

Loosely speaking, if one can find a choice of weights such that the network (4.1) is controllable, then

almost all choices of weights yield a controllable network. In this case, the network is said to be

structurally controllable [20, 34,39].

Classical results on structural controllability cannot be directly applied to networks where

the weights are constrained [20, 25]. In fact, these results assume that the network weights can

be selected arbitrarily and independently from one another, a condition that cannot be satisfied,

for instance, when the weights need to be symmetric. In this note we overcome this limitation,

and extend the results on structural controllability to symmetric networks. In particular we show

that a network is structurally controllable with symmetric weights if and only if it is structurally

controllable with unconstrained weights.

1The variety S of Rd is proper when S 6= Rd [36].
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3.3 Structural controllability of symmetric networks

In this section we derive necessary and sufficient graph-theoretic conditions for structural

controllability of networks with symmetric weights. We proceed as follows. First, we show that

network controllability remains a generic property when the weights are symmetric. Second, we

provide conditions to construct controllable networks with symmetric weights. Finally, combining

these results yields conditions for structural controllability of networks with symmetric weights.

Theorem 1 (Symmetry and genericity) Controllability of the network (4.1) with symmetric

matrix A is a generic property.

Proof. Let d = |E| and ds = |{i : (i, i) ∈ E}|. Notice that a network with symmetric

weights is uniquely specified by (d+ ds)/2 parameters, for instance, by the set a′E = {aij : (i, j) ∈

E , i ≤ j}ordered in lexicographic order. Further, because of the symmetry constraint, the determinant

of the controllability matrix of (4.1) is a polynomial function φ′(a′E), which can be obtained, for

instance, from the determinant det(C(A, bi)) by substituting aij with aji whenever i > j. Thus,

even for symmetric networks, the determinant of the controllability matrix is a polynomial function

of the network weights, and the weights that render the network uncontrollable define the algebraic

variety P = {z ∈ R(d+ds)/2 : φ′(z1, . . . , z(d+ds)/2) = 0}. To conclude, either P = R(d+ds)/2, and the

network is uncontrollable for all choices of symmetric weights, or P is a proper algebraic variety of

R(d+ds)/2, and the network is controllable for all choices of symmetric weights except, if any, those

belonging to the set P of zero Lebesgue measure [36].

Theorem 1 shows that controllability remains a generic property even when the weights are

constrained to be symmetric. This result will be key in the derivation of our conditions for structural

controllability of networks with symmetric weights. In fact, because controllability remains a generic

property, it will be sufficient to show that a network is controllable for a specific choice of symmetric

weights to guarantee that controllability holds for almost all choices of weights. In the next example

we illustrate that the set of symmetric weights preventing controllability forms an algebraic variety.
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Figure 3.1: Algebraic variety defined by a23a
2
12−a23a

2
13 = 0, which determines the weights for which

the network in Example 2 is not controllable. The network is controllable for all weights outside of
this algebraic variety.

Example 2 (Structural controllability with symmetric weights) Consider a network with

symmetric adjacency matrix

A =




0 a12 a13

a12 0 a23

a13 a23 0



, (3.4)

and input vector b1 =

[
1 0 0

]T
. From (3.2), the controllability matrix of the pair (A, b1) is

C(A, b1) =




1 0 a2
12 + a2

13

0 a12 a13a23

0 a13 a12a23



, (3.5)

with determinant det(C(A, b1)) = a23a
2
12−a23a

2
13. Thus, the network is controllable (i.e., det(C(A, b1)) 6=

0) for all symmetric choices of weights a12, a13, and a23, except those lying on the proper algebraic

variety shown in Fig. 3.1 and defined by the equation a23a
2
12 − a23a

2
13 = 0. �

Remark 3 (Structural controllability of consensus systems) A multi-agent consensus net-

work with leader nodes is described by a linear time-invariant dynamical system, where the nonzero

entries of A have a specified sign and the sums along the rows of A equal to a constant (1 for
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discrete-time networks, and 0 in the case of continuous-time networks) [40, 41]. Theorem 1 can be

easily extended to include constraints on the sign of the entries of A and on their sums. In fact, if

∑n
j=1 aij = c, for some constant c ∈ R, then2 ai1 = c −∑n

j=2 aij can be substituted in the polyno-

mial det(C(A, bi)), showing that the set of parameters preventing controllability forms an algebraic

variety of the free parameter space, and that controllability remains a generic property despite the

constraints. Similarly, when some entries have a specified sign or need to assume identical values,

the set of parameters preventing controllability can be shown to be a subset of an algebraic variety,

which either equals the set of feasible parameters, or remains of zero Lebesgue measure. �

Example 4 (Structural controllability of consensus systems) Consider a linear discrete-time

consensus system with node 1 as a leader and adjacency matrix

A =




0 a12 a13

a21 0 a23

a31 a32 0



.

Because the rows of A need to sum to 1, it is possible to rewrite 3 parameters as a function of the

others. For instance, rewrite a13 = 1 − a12, a23 = 1 − a21, and a32 = 1 − a31. By doing so, the

determinant det(C(A, b1)) = −a2
21a31 + a2

21 + a21a
2
31 − a2

31, and the set of weights that make such

determinant vanish defines a proper algebraic variety of R3. �

We next introduce some graph-theoretic notions [20, 42]. Given a digraph, a path is an

ordered sequence of nodes such that any pair of consecutive nodes in the sequence is a directed

edge of the digraph. A digraph is strongly connected if there exists a directed path from any node

to any other node. Furthermore, given the digraphs G1, . . . ,Gm, let G =
⋃m

i=1Gi be the connected

digraph (V, E) defined as follows: V =
⋃m
i=1 Vi and E =

⋃m
i=1 Ei ∪ Ē , where |Ē | = 2(m − 1) and,

for all i ∈ {2, . . . ,m}, there is a unique pair of edges (pi, qi) ∈ Ē and (qi, pi) ∈ Ē with pi ∈ Vi and

qi ∈
⋃i−1
j=1 Vj . Finally, we present some definitions that are inspired by [34] and will be used to derive

our structural controllability conditions for networks with symmetric weights.

2If ai1 = 0, then select a different nonzero entry.
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G2

G3

G4

G5

Figure 3.2: A sym-cactus G =
⋃ 5

i=1Gi rooted at the control node. Sym-cycles G2, . . . ,G5 are high-
lighted with different colors. Notice that G1 is not a sym-cycle because it comprises 1 node without
a self-loop. See Definition 6.

Definition 5 (Sym-cycle) A sym-cycle is a strongly connected digraph with n ≥ 1 nodes, edge set

{(i, j) : |i− j| = 1} ∪ {(1, n), (n, 1)}}, and symmetric weights aij = aji. �

From Definition 5, the adjacency matrix of a sym-cycle is

A =





aij 6= 0 if |i− j| = 1 or (i, j) ∈ {(1, n), (n, 1)},

aij = 0 otherwise.

(3.6)

Definition 6 (Sym-cactus) A sym-cactus is a strongly connected digraph G = (V, E) defined as

G =
⋃m

i=1Gi and satisfying the following properties:

1. G1 = (V1, E1) is a sym-cycle if |V1| > 1 (if |V1| = 1, we allow G1 to contain no edges, that is,

E1 = ∅),

2. Gi = (Vi, Ei) is a sym-cycle for every i ∈ {2, . . . ,m},

3. the node sets satisfy Vi ∩ Vj = ∅, whenever i 6= j. �

Notice that, if |V1| = 1, the graph G1 in Definition 6 can either be a sym-cycle (thus having a

self-loop), or a node without self-loop.

Remark 7 (Stem, buds, cactus, and sym-cactus) Our definitions of sym-cycle and sym-cactus

are compatible with the classic notions of stem, bud, and cactus as defined in [34]. In particular,
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because we focus on networks with symmetric weights, stems, buds, and cacti [34] become equivalent

to interconnected sym-cycles. �

We say that a graph G = (V, E) is spanned by G′ = (V ′, E ′) if V ′ = V and E ′ ⊆ E . Further,

the sym-cactus G =
⋃m

i=1Gi is rooted at the node i if i is a node of G1. Fig. 3.2 illustrates the

definitions of sym-cycle and sym-cactus rooted at node i.

The following lemma shows that every sym-cycle is structurally controllable from any node.

That is, for almost all symmetric choices of network weights, every cycle network is controllable

independently of the location of the control node.

Lemma 8 (Every sym-cycle is structurally controllable) Let A ∈ Rn×n be the adjacency

matrix of a sym-cycle. The pair (A, bi) is structurally controllable for all i ∈ {1, . . . , n}.

Proof. Owing to Theorem 1 we need to show that, for every sym-cycle and control node, there exists

a choice of weights rendering the network controllable. Without affecting generality, we assume that

the control node is i = 1 (if i 6= 1, simply apply a similarity transformation PAPT via a permutation

matrix P to reorder the nodes as desired).

If n ≤ 2, the network is clearly controllable. For n > 2, partition the matrix A as

A =




0 A12

A21 A22


 ,

where A12 ∈ R1×(n−1), A21 ∈ R(n−1)×1 and A22 ∈ R(n−1)×(n−1). Notice that A22 is a tridiagonal

matrix.

Suppose that the pair (A, b1) is not structurally controllable. Then, for all choices of

weights, there exists an eigenvector3 v of A such that vTb1 = 0 [7]. Thus, v = [v1, v2, . . . , vn]T =

[v1, v̄]T = [0, v̄]T, and the eigenproblem Av = λv becomes



0 A12

A21 A22







0

v̄


 =




0

λv̄


 . (3.7)

3Since A = AT, we do not distinguish between left and right eigenvectors.
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From (3.7), the pair (A, b1) is uncontrollable if and only if A22 has an eigenvector v̄ that lies in the

null space of A12. Equivalently, A22v̄ = λv̄ and A12v̄ = a12v̄1 + a1nv̄n−1 = 0.

Assign all the weights of A22 as 1 (or any other constant), and notice that A22 is a Toeplitz

tridiagonal matrix with eigenvectors v̄i = [v̄ij ] =
[
sin
(
jiπ
n

)]
, for i, j ∈ {1, . . . , n − 1} [43, Example

7.2.5]. Finally, to ensure controllability of (A, b1), select a12 and a1n such that, for all i ∈ {1, . . . , n−

1},

a12 sin

(
iπ

n

)
+ a1n sin

(
(n− 1)iπ

n

)
6= 0. (3.8)

Notice that (3.8) can be ensured by |a12| 6= |a1n|. In fact,

1. for i odd, sin
(
iπ
n

)
= sin

(
(n−1)iπ

n

)
because

π − iπ

n
+ 2kπ − (n− 1)iπ

n
= (2k + 1− i)π = 0,

by selecting k = (i− 1)/2;

2. for i even, sin
(
iπ
n

)
= − sin

(
(n−1)iπ

n

)
because

(n− 1)iπ

n
− 2kπ +

iπ

n
= (i− 2k)π = 0,

by selecting k = i/2.

This concludes the proof.

Lemma 8 implies that every sym-cycle is controllable for almost every symmetric choice of

weights. In particular, the following choice of weights yields a controllable sym-cycle from node i

(see the proof of Lemma 8 and Eq. (3.8)):

A =





aij = a, if |i− j| = 1, and

a1n = an1 = b, with |a| 6= |b|,
(3.9)

for some nonzero constants a and b. We next show that sym-cacti are also a fundamentally control-

lable structure contained in every structurally controllable symmetric network.
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Theorem 9 (Structural controllability of symmetric networks with one control node)

The network G with control node i is structurally controllable with symmetric weights if and only if

it is spanned by a sym-cactus rooted at i.

The proof of Theorem 9 is postponed to the Appendix. In Theorem 9 we show that a

necessary and sufficient condition for structural controllability of networks with symmetric weights

is the existence of a spanning sym-cactus rooted at the control node. This result implies that

the symmetry constraint on the network weights does not prevent controllability if the same un-

constrained network is structurally controllable. It should be noticed that a sym-cactus is not, in

general, strongly structurally controllable [44]. That is, there exist choices of weights that render a

sym-cactus uncontrollable. We next illustrate a systematic procedure to construct an uncontrollable

sym-cactus composed of controllable sym-cycles.

Example 10 (Uncontrollable sym-cactus) Consider the sym-cactus G = G1∪G2 with control

node 1 and adjacency matrix

A =




0 1 2 0 0 0

1 0 1 c2 0 0

2 1 0 0 0 0

0 c2 0 0 3 −4

0 0 0 3 0 3

0 0 0 −4 3 0




,

where the diagonal blocks are the adjacency matrices of the sym-cycles G1 and G2, and the remaining

blocks denote the interconnection between G1 and G2 with weight c2. It can be verified that λ0 = −2

is a transmission zero of the system [7]

δ(x) =




0 1

1 0


x+




1

0


 ,

y =

[
1 2

]
x,
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and that the pair (A, b1) is uncontrollable when c2 satisfies







2 3 −4

3 2 3

−4 3 2




−1

1,1




2 1

1 2




−1

2,2




− 1
2

= 6.292853089,

where [M ]−1
i,i denotes the i-th diagonal entry of the matrix M−1. The reader is referred to the proof

of Theorem 9, Case 2.a, for a detailed derivation of this result. �

Following the above discussion and the derivation in the proof of Theorem 9, we next

describe an algorithm to assign the weights of a sym-cactus to guarantee controllability. To this

aim, let spec(M) denote the spectrum of the matrix M , and notice that the adjacency matrix A of

the sym-cactus mbox G =
⋃m

i=1Gi can be written recursively as (k = 2, . . . ,m)

Ak =



Ak−1 ckeqke

T
1

cke1e
T
qk

Hk


 , (3.10)

where Hk is the adjacency matrix of Gk, A1 = H1, Am = A, and ck 6= 0, for some index qk ∈

{1, . . . ,∑k−1
j=1 |Vj |}.4 Let

Ak−1 =



A11 A12

A21 A22


 , (3.11)

where A11 is a scalar, and let Zk = {λ : A12(A22 − λI)−1eqk = 0} be the zeros of the single-input

single-output system (A22, eqk , A12). Then, the pair (A, b1) can be made controllable by selecting

the weights in Gk to recursively satisfy the following conditions:

1. (Hk, b
1) is controllable (see (3.9) for a choice of weights),

2. spec(Hk) ∩ spec(A22) = ∅, and

3. for all λ ∈ Zk, c−2
k 6=

[
Hk − λI

]−1

1,1

[
A22 − λI

]−1

qk,qk

,
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Algorithm 1 Design of controllable sym-cactus

Input : {Hk : k = 1, . . . ,m, Hk satisfying (3.6)}

Output : Controllable pair (A, b1), with A adjacency matrix of the sym-cactus G =
⋃m

i=1Gi rooted at 1

1 Select the weights of H1 as in (3.9)

2 Set A1 = H1

for k = 2 : m do

3 Partition Ak−1 according to (3.11)

4 Select qk ∈ {1, . . . ,
∑k−1
j=1 |Vj |}

5 Select the weights of Hk as in (3.9) and so that spec(Hk) ∩ spec(A22) = ∅

6 Compute Z = {λ : A12(A22 − λI)−1eqk = 0}

7 Select ck 6= cλ for every λ ∈ Z, where cλ =

([
Hk − λI

]−1

1,1

[
A22 − λI

]−1

qk,qk

)− 1
2

8 Generate Ak as in (3.10)

9 return A = Am. The pair (A, b1) is controllable

A procedure to construct a controllable sym-cactus is summarized in Algorithm 1, whose complexity

is linear in the number of sym-cycles and cubic in their dimension.

Remark 11 (Structural controllability of symmetric networks with multiple dedicated

control nodes) Theorem 9 can be extended to the case of multiple dedicated control nodes; that is,

when the input matrix in (4.1) satisfies B =

[
ec1 · · · ecm

]
and {c1, . . . , cm} ⊆ V is the set of control

nodes. In particular, a network G with m control nodes {c1, . . . , cm} is structurally controllable with

symmetric weights if and only if it is spanned by a disjoint union of sym-cacti rooted at the nodes

{c1, . . . , cm}. The necessity of this result follows directly from [45, Theorem 1], while its sufficiency

is obtained by applying the same steps as in the proof of Theorem 9 to each disjoint cactus. �

We conclude this section with an example of structural controllability in the case of multiple

dedicated control nodes.
4This recursive construction follows directly from Definition 6.
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Example 12 (Structural controllability with symmetric weights and multiple dedicated

control nodes) Consider the network in Fig. 3.3(a) with adjacency matrix

A =




0 0 a13 0 0 0 0

0 0 a23 a24 0 0 0

a13 a23 0 a34 a35 0 0

0 a24 a34 0 0 0 0

0 0 a35 0 0 a56 a57

0 0 0 0 a56 0 a67

0 0 0 0 a57 a67 0




and control vector b1 = e1. The pair (A, b1) is structurally controllable because of Theorem 9. In fact,

there exists a sym-cactus G =
⋃ 3

i=1Gi that spans the network and is rooted at 1. Consider now the

network in Fig. 3.3(c) with adjacency matrix Ã = A and disconnect nodes 6 and 7; that is, a67 = 0.

The pair (Ã, b1) is not structurally controllable because there is no sym-cactus that spans the network

and is rooted at 1. However, by connecting an additional input at node 7, it is possible to span the

network with a disjoint union of sym-cacti. That is, there exist distinct sym-cacti G1∪G2 and G4∪G5

that span the network and are rooted at 1 and 7, respectively. Therefore, by setting b2 = e7, the pair

(Ã, [b1 b2]) is structurally controllable with symmetric weights. �

3.4 Application to structural brain networks

We apply our analysis to a class of structural brain networks reconstructed from diffusion

magnetic resonance imaging (MRI) data, where nodes correspond to well-known brain regions and

edges correspond to white matter connections between them [46]. Diffusion magnetic resonance

images were acquired for a total of eight subjects in triplicate (mean age 27 ± 5 years, two female,

two left handed), and at each scanning session a T1-weighted anatomical scan was acquired. For

each subject, n = 234 regions were registered as areas of interest [10]
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Figure 3.3: The networks considered in Example 12. (a) The network of the pair (A, b1). (b) The
network is structurally controllable because it is spanned by a sym-cactus rooted at 1. (c) The
network of the pair (Ã, b1) is not structurally controllable with only one control input at node 1.
(d) By adding a control input at node 7, the network recovers structural controllability because it
is spanned by a disjoint union of sym-cacti rooted at nodes 1 and 7, respectively.

The network dynamics can be derived from the linearization of a general noise-free Wilson-

Cowan system [47] and read as δ(x) = Ax+ biu, where A is a symmetric matrix that represents the

anatomical connectivity of the brain. Further, u : N→ R is the control input applied to the i-th brain

region, and x : N→ Rn is the vector containing the state of the brain regions over time. Examples of

state values range from the magnitude of electrical activity [48] to the quantity of oxyhemoglobin and

deoxyhemoglobin in the hemodynamic response [49]. Although brain dynamics may be nonlinear

at the micro-scale, the study of linear network models for macro-scale neural dynamics has been

validated in several studies (see e.g. [50]), and has given access to theoretical and practical tools that

are particularly useful around an operating point [10, 51]. Controllability of this class of networks

has been examined in different studies, including [10], via numerical controllability tests. Yet,

because of the large cardinality of these networks, most controllability tests suffer from numerical

instabilities, sometimes leading to competing conclusions [9, 10]. Further, because typical diffusion

MRI techniques produce symmetric adjacency matrices, the graphical investigation of structural

controllability for this type of networks was, up to now, not possible.

As illustrated in Fig. 3.4, the brain networks in our dataset are spanned by a Hamiltonian

path,5 which is a special case of a sym-cactus. Theorem 9 implies that, despite having symmetric

5A path in a graph is Hamiltonian if it visits all the vertices exactly once.
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Figure 3.4: Sagittal and axial view of the structural brain network and a spanning Hamiltonian
path. Each node represents a brain region of the anatomical scans. The Hamiltonian path starts
from the region representing the control node (brain stem). Regions are plotted according to the
mean location of voxels in each of the 234 parcels in the Lausanne atlas [46] and averaged over the
cohort of healthy adult subjects. This figure was obtained with BrainNet Viewer [52].

weights, networks reconstructed from diffusion MRI data are structurally controllable from any

single brain region, thus controllable for almost every symmetric choice of weights.

3.5 Conclusion

In this chapter we derive necessary and sufficient graph-theoretic conditions for structural

controllability of networks with symmetric weights and one control node. Because weights need to be

symmetric, classic results from structural systems theory cannot be directly applied. Surprisingly, we

show that network controllability remains a generic property even when the weights are symmetric,

and that a network with symmetric weights is structurally controllable if and only if its unconstrained

equivalent network is structurally controllable; that is, if and only if it is spanned by a (symmetric)

cactus. While our analysis focuses on symmetric weights and a single control node, as discussed in

Remark 1 and 3, our results extend directly to other classes of parameter constraints and to the case

of multiple dedicated control nodes.
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3.6 Appendix

We now prove some instrumental results and Theorem 9.

Lemma 13 ( Controllability of subsystems) Consider the network G = (V, E) with control nodes

K ⊂ V, input matrix BK =

[
e1 . . . em

]
, and adjacency matrix A partitioned as

A =



A11 A12

A21 A22


 ,

where A11 ∈ Rm×m and A22 ∈ R(n−m)×(n−m). If the pair (A,BK) is controllable, then (A22, A21) is

also controllable.

Proof. If (A22, A21) is not controllable, then there exists an eigenvector v2 associated with λ ∈

spec(A22) satisfying [7]

vT2

[
A21 A22 − λI

]
= 0.

Let vT =

[
0T vT2

]T
, and notice that

[
0T vT2

]


A11 − λI A12

A21 A22 − λI


 = 0.

Then, v is a left eigenvector of A associated with the eigenvalue λ ∈ spec(A), and it satisfies

vTBK = 0. This implies that (A,BK) is not controllable, and concludes the proof.

Lemma 14 ( Eigenspace of perturbed matrix) Let A ∈ Rn×n be a symmetric matrix, and let

∆ = eie
T
i , with i ∈ {1, . . . , n}. Then, λ ∈ spec(A+ c∆) for all c ∈ R if and only if there exists v 6= 0

satisfying (A− λI)v = 0 and ∆v = 0.

Proof. (If) The sufficiency of the statement follows by noting that (A−λI+c∆)v = (A−λI)v = 0.

(Only if) Let the vectors vc 6= 0 and v0 6= 0 satisfy vTc (A − λI + c∆) = 0 and (A − λI)v0 = 0,

respectively. Then, for all c ∈ R, vTc (A−λI+c∆)v0 = cvTc ∆v0 = 0. Let vc̄ denote the vector vc with
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c = c̄ 6= 0. Notice that, because ∆ = eie
T
i , vc̄,iv0,i = 0, where vc̄,i and v0,i denote the i-th element of

vc̄ and v0, respectively. Let v = v0 if v0,i = 0, and v = vc̄ otherwise. To conclude, notice that v 6= 0,

∆v = 0, and (A− λI)v = 0.

We are now ready to prove Theorem 9.

Proof of Theorem 9: (Only if) Assume that G is structurally controllable from the node i. From [34],

there must exist a directed cactus D rooted at i that spans G. Because G has symmetric weights,

this also implies the existence of a sym-cactus, which is obtained by adding edges to D to make it

symmetric. See Remark 7 for a discussion of directed and symmetric cacti.

(If) Let the network be spanned by the sym-cactus G =
⋃m

i=1Gi rooted at the control node.

Let Ak be the adjacency matrix of
⋃ k

i=1Gi, k ≤ m. Without loss of generality, we assume bi = b1

(if bi 6= b1, reorder the nodes). We will construct a controllable realization (Am, b
1), thus proving

that the original network admits a controllable realization. The claimed statement then follows from

Theorem 1.

We proceed by induction. In the base step, Lemma 8 concludes on the controllability of

the pair (A1, b
1). In the inductive step, we assume that (Ak−1, b

1) is controllable, and show that

(Ak, b
1) is controllable. Let Ak be partitioned as

Ak =




A11 A12 A13

A21 A22 A23

A31 A32 A33



, (3.12)

where A11 ∈ R, A22 ∈ R(n1−1)×(n1−1), and A33 ∈ Rn2×n2 , with n1 and n2 being the dimension

of Ak−1 and the difference between the dimension of Ak and Ak−1, respectively. Notice that A33

corresponds to Hk in decomposition (3.10). We show that Ak has no eigenvector v of the form

v =

[
0 vT1 vT2

]T
, (3.13)

which, by the eigenvector test, implies that (Ak, b
1) is controllable. Due to the definition of the

operator
⋃

(a single connection between adjacent sym-cycles) and by exploiting the decomposition
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of Ak in (3.10), we have that either

(1) A32 = AT
23 = 0 and A31 = AT

13 = cke1 6= 0, or

(2) A31 = AT
13 = 0 and A32 = AT

23 = cke1e
T
qk
6= 0,

where e1, eqk are canonical vectors of appropriate dimensions.

Case (1) Consider the eigenproblem Akv = λv. For v to be of the form (3.13), λ must be

an eigenvalue of both A22 and A33. Therefore, by choosing the weights in A33 such that spec(A33)∩

spec(A22) = ∅, we obtain a controllable (Ak, b
1). Notice that such a choice of weights always exists

because A33 has generically full rank.6 For instance, given a full rank realization of A33, we can

multiply A33 by a suitable constant c ∈ R to guarantee that spec(cA33) ∩ spec(A22) = ∅.

Case (2) Define the matrix P (λ) as

P (λ) =




A12 0

A22 − λI A23

A32 A33 − λI



.

Due to (3.13), the eigenproblem Akv = λv reduces to

P (λ)



v1

v2


 = 0. (3.14)

We will show that P (λ) is full rank for all λ, thus ensuring that an eigenvector as (3.13) cannot

exist. As in Case (1), we choose weights in A33 such that spec(A33) ∩ spec(A22) = ∅. Thus, we

consider 3 cases:

(2.a) λ 6∈ spec(A22) ∪ spec(A33),

(2.b) λ ∈ spec(A22), and

(2.c) λ ∈ spec(A33).

6The graph with adjacency matrix A33 contains a set of n2 edges, for instance M = {(1, 2), (2, 3), . . . , (n2 −
1, n2), (n2, 1)}), where no two edges point to the same node. Such set of edges is called a matching of size n2, and its
existence guarantees that A33 is generically full rank [53, §1.1.2].
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Case (2.a) Because A22 − λI and A33 − λI are invertible,

Rank (P (λ)) = Rank


P (λ)




(A22 − λI)−1 0

0 (A33 − λI)−1







= Rank







A12(A22 − λI)−1 0

I ckT3

ckT2 I







where T2 = e1e
T
qk

(A22 − λI)−1, and T3 = eqke
T
1 (A33 − λI)−1.

Notice that, for any vector v3 of appropriate dimension we have T3v3 = αeqk , for some

value α dependent on λ and A33. Similarly, T2v2 = βe1, for some value β dependent on λ and A22.

Further, for any fixed λ, there exists a value ck such that



I ckT3

ckT2 I


 (3.15)

is invertible. In fact, elementary column operations reveal that

Rank







I ckT3

ckT2 I





 = Rank






I − c2kT3T2 ckT3

0 I





 .

Notice that T3T2 is a rank-1 matrix and that spec(I − T3T2) = {1, . . . , 1, 1 − c2kλ̃}, where λ̃ is the

only nonzero eigenvalue of T3T2. Thus, (3.15) is invertible whenever c2k 6= λ̃−1.

Let Z = {λ : A12(A22 − λI)−1eqk = 0}, and let ck be such that (3.15) is invertible for all

λ ∈ Z. Then, P (λ) is also full rank for all λ ∈ Z. Next, assume by contradiction that P (λ) loses

rank for some value λ̄ 6∈ Z. Then, there exist nonzero w2 and w3 such that



A12(A22 − λ̄I)−1 0

I ckT3

ckT2 I






w2

w3


 = 0.

We have w2 = −ckT3w3 = −ckαeqk , and ckαA12(A22− λ̄I)−1eqk = 0. Notice that α 6= 0. Otherwise,

T3w3 = 0 and, consequently, w2 = 0 and w3 = 0. Further, A12(A22 − λ̄I)−1eqk 6= 0 because λ̄ 6∈ Z.

We conclude that, when ck is such that (3.15) is invertible for all λ ∈ Z, P (λ) is full rank.
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Case (2.b) Because A33 − λI is invertible,

Rank (P (λ)) = Rank


P (λ)



I 0

0 (A33 − λI)−1





 = Rank







A12 0

A22 − λI ckT3

A32 I






,

where T3 = eqke
T
1 (A33 − λI)−1. By means of elementary column operations we obtain

Rank (P (λ)) = Rank







A12 0

A22 − λI − ckT3A32 ckT3

0 I






.

Notice that, if λ 6∈ spec(A22− ckT3A32) for some ck, then P (λ) can be made full rank by a selection

of ck. Instead, if λ ∈ spec(A22 − λI − ckT3A32) for all values of ck, then, due to Lemma 14,

(A22−λI−ckT3A32)v = 0, for some fixed eigenvector v and for all ck. Because (Ak, b
1) is controllable

by the induction hypothesis, so is the pair (A22, A21) = (A22, A
T
12) by Lemma 13. We conclude that

A12v 6= 0. This implies that, for all values of ck, the submatrix



A12

A22 − λI − ckT3A32




is full rank and, consequently, so is P (λ).

Case (2.c) Because A22 − λI is invertible,

Rank (P (λ)) = Rank


P (λ)




(A22 − λI)−1 0

0 I





 = Rank







A12(A22 − λI)−1 0

I A23

ckT2 A33 − λI






,

where T2 = e1e
T
qk

(A22−λI)−1. By means of elementary row operations we obtain that Rank (P (λ))

equals

Rank







A12(A22 − λI)−1 0

I A23

0 A33 − λI − ckA23T2






.
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Notice that, if λ 6∈ spec(A33− ckA23T2) for some ck, then P (λ) can be made full rank by a selection

of ck. Instead, if λ ∈ spec(A33 − λI − ckA23T2) for all values of ck, then, due to Lemma 14,

(A33 − λI − ckA23T2)v = 0, for some fixed eigenvector v and for all ck. Because (A33, b
i) can be

made controllable for all indices i due to Lemma 8, the submatrix




A23

A33 − λI − ckA23T2


 (3.16)

is full rank. To make P (λ) full rank, we proceed by contradiction. Suppose there exist nonzero v1

and v2 such that




A12(A22 − λI)−1 0

I A23

0 A33 − λI − ckA23T2






v1

v2


 = 0.

Notice that v1 = −A23v2 = −ckeqkeT1 v2 and that v1 has exactly one nonzero entry (qk) due to (3.16)

being full rank. Finally, A12(A22 − λI)−1v1 = 0 implies that λ must be a transmission zero of the

single-input single-output system (A22, eqk , A12) [7]. Thus, P (λ) can be made full rank by selecting

A33 such that its eigenvalues are different from the transmission zeros of the system (A22, eqk , A12).

In conclusion, by choosing A33 and the interconnection weight ck as discussed in Cases

(1), (2.a), (2.b), and (2.c), we obtain a controllable realization of the sym-cactus G =
⋃m

i=1Gi, thus

concluding the inductive procedure. �
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Chapter 4

The Structured Controllability

Radius of Symmetric (Brain)

Networks

In this chapter, we study the controllability radius – that is, the distance from the closest

uncontrollable realization – of undirected networks, with a particular emphasis on the controllability

radius of empirically reconstructed brain networks. Our results shed light on the unique topological

features of structural brain networks. We refer the interested reader to the publication [51] for

further details.

4.1 Introduction

The question of controllability of natural and man-made network systems has recently re-

ceived considerable attention. In the context of the human brain, the study of various controllability

properties may not only shed light into the organization and function of different neural circuits, but
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also inform the design and implementation of minimally invasive yet effective intervention protocols

to treat neurological disorders [54]. Although the study of the human brain as a network system is

still in its infancy, some recent results, e.g., see [10, 55, 56], have suggested that the complexity of

the brain and its underlying principles can be further untangled with tools from control theory and

network science [57].

While the dynamics of most brain processes is clearly nonlinear, linearized models with em-

pirically reconstructed network matrices have been proved useful to characterize how the anatomical

structure of the brain influences its dynamic functions [58,59]. In this chapter we follow this line of

work, and model the dynamics of a brain network as a linear, discrete-time, time-invariant system,

where the network matrix is empirically estimated from diffusion MRI data. A key feature of these

empirically reconstructed networks is that the estimated edges are undirected, giving rise to sym-

metric network matrices [46]. This constraint on the edge weights adds a layer of complexity to the

study of network controllability [30, 60]. For instance, it prevents the use of most tools developed

within structural control theory [20].

In this chapter we propose and analyze a novel notion of controllability for symmetric

networks, namely, the structured controllability radius. Specifically, we quantify the controllability

degree of a network with the size of the smallest symmetric perturbation (measured with the Frobe-

nius norm) that has a given sparsity pattern and renders the network uncontrollable. We provide

analytical conditions to compute the structured controllability radius of a symmetric network, and

use these conditions to compare a set of brain networks with a class of random networks. Our results

show that the considered brain networks feature a controllability radius that is consistently smaller

when compared to the considered random networks, suggesting that the topological organization of

the brain may lead to unique dynamical features different from those of random network models [61].

Related work Different notions of controllability of a system have been proposed over the years.

Starting from the binary definition of controllability proposed in [62], Gramian-based metrics have

been proposed to provide a quantitative measure of the controllability degree of a system and, more
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recently, of a network based on the energetic effort needed to control the state towards a desired

value [17,63]. In [64,65] an alternative notion of controllability is introduced, where the controllability

degree of a system is quantified by the smallest norm of a perturbation of the system parameters

causing uncontrollability. Later, this notion of controllability radius has been extended to account

for several types of constrained perturbations (Hermitian, symmetric, and skew-symmetric) [66].

Yet, with the exception of [67], the use of the controllability radius to quantify the controllability

degree of a network has not been investigated. In this case, because only existing edges can typically

be modified, perturbations need to feature a pre-specified sparsity pattern, a constraint that renders

classic results on the controllability radius inapplicable. In this chapter we improve upon existing

results, particularly [67], by focusing on symmetric and structured perturbations, by deriving an

explicit set of equations for the computation of the structured controllability radius, and by exploiting

our results to compare a class of brain networks with random networks with similar weights.

Contribution The contribution of this chapter is three-fold. First, we propose a novel notion

of controllability degree for networks with symmetric adjacency matrix, namely, the structured

controllability radius, which equals the smallest Frobenius norm of a symmetric perturbation that

renders the network uncontrollable and has a pre-specified sparsity pattern. Second, we derive

explicit necessary and sufficient conditions for the computation of the structured controllability

radius, and illustrate our procedure through various examples. Third and finally, we use our notion

of structured controllability radius to compare a class of brain networks reconstructed from diffusion

MRI data with a set of random networks with similar weights and topologies. Our results show

that the controllability radius of brain networks is consistently smaller than in the case of random

networks, suggesting that the anatomical organization of the brain may favor dynamic properties

different from controllability.

Chapter organization The remainder part of the chapter is organized as follows. In Section 4.2

we introduce our network model, we define different controllability metrics, and we state the control-

lability radius optimization problem. In Section 4.3 we derive our conditions for the computation
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of the structured controllability radius. Section 4.4 contains our numerical study of the structured

controllability radius of brain and random networks. Section 9.6 concludes the chapter.

Mathematical notation supp(·) denotes the support of a vector and vec(·) denotes the vector-

ization of a matrix. λmin(·) and σmin(·) denote the minimum eigenvalue and singular value of

a matrix. ◦ and ⊗ denote the Hadamard (element-wise) and Kronecker products, respectively.

1n ∈ Rn (1n×n ∈ Rn×n) denotes a vector (matrix) of all ones. (·)+ denotes the Moore-Penrose

pseudo inverse of a matrix. ‖ · ‖F, ‖ · ‖2 and tr(·) denote the Frobenius norm, spectral norm and

trace of a matrix, respectively. ei denotes the i-th canonical vector. Finally, we denote a positive

definite (positive semi-definite) matrix A with A > 0 (A ≥ 0).

4.2 Model and problem statement

We consider networks represented by a weighted graph G = (V, E), where V = {1, . . . , n}

and E ⊆ V × V are the node and edge sets, respectively. Let A = [aij ] be the weighted adjacency

matrix of G, where aij = 0 if (i, j) 6∈ E and aij ∈ R if (i, j) ∈ E . Because we study brain networks

reconstructed from diffusion MRI images [46], we assume that A = AT. An example of adjacency

matrix is in Fig. 4.1.

The network dynamics is described by the following discrete-time linear time-invariant

system:

x(t+ 1) = Ax(t) +Bu(t), (4.1)

where x : N → Rn is the vector containing the state of the nodes over time, u : N → Rm is the

control input that is applied to the network through the input matrix B ∈ Rn×m. Without loss of

generality, we assume that B has full rank.

The system (4.1) is controllable if there exists a control input that can steer the system from

a given initial state to any desired final state. Several notions exist to quantify the controllability

degree of a system. One such metric measures the control energy required to control the state
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Figure 4.1: Example of an anatomical connectivity matrix derived from diffusion MRI scans of a
brain. Notice that entries are symmetric and the diagonal entries are zero.

between two values, and is quantified by the controllability Gramian

W =

∞∑

τ=0

AτBBT(AT)τ .

Notice that W ≥ 0 and, further, W > 0 if and only if the pair (A,B) is controllable [7]. As a known

result in system theory [17,63], the upper bound for the control energy required to steer the network

to a desired final state is inversely proportional to λmin(W ). Thus, if the eigenvalues of W are large,

the required control energy is small and hence, the system has a larger controllability degree. In the

case of brain networks, a larger controllability degree might enable or guide the use of less invasive

treatments.

An alternative characterization of the degree of controllability of a system is provided by

the controllability radius, which is defined as the smallest norm of a perturbation that renders the

system uncontrollable. Mathematically, such perturbation is obtained by solving the minimization
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problem

µ = min
∆A,∆B

‖ [∆A ∆B ] ‖2

s.t. (A+ ∆A, B + ∆B) is uncontrollable.

Equivalently [68],

µ = min
s∈C

σmin ([sI −A, B]) .

Clearly, µ > 0 if and only if W > 0. Further, when µ is small, a small perturbation of the system

weights exist that renders the system uncontrollable.

Although the above metrics λmin(W ) and µ provide useful information regarding control-

lability degree of a system, they may not be directly applicable to networks due to the following

reasons. First, the definition of µ allows for only unstructured perturbations ∆A,∆B . In contrast,

feasible network perturbations may be subject to constraints on their sparsity patterns and edge

weights, as in the case of the networks considered in this chapter. Second, the above metrics are in

terms of smallest eigenvalue/singular value and, consequently, they do not provide any insight about

the magnitude and the distribution of the individual entries of the perturbation. For instance, they

do not help in determining which edges of a network are more (or less) sensitive to perturbations

with respect to making the system uncontrollable.

To overcome these limitations and to make the metric µ meaningful for structured net-

works, we reformulate the optimization problem to include both symmetry and sparsity constraints

explicitly in the problem. We use the Frobenius norm to measure the size of the perturbation.

Further, we consider perturbations only on the network weights, that is, ∆B = 0. For simplicity,

in the remainder of the chapter we denote ∆A by ∆. We introduce the sparsity constraints on ∆

via a constraint graph H = (V, EH), where EH denotes the set of edges that can be perturbed.1

Let H be the 0-1 adjacency matrix associated with H, and let Hc = 1n×n −H be the unweighted

1The graph H has the same nodes as G, but possibly different edge set.
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complimentary adjacency matrix. Then, the sparsity constraints can be written as Hc ◦ ∆ = 0.

Since ∆ is symmetric, we also assume H to be symmetric.2

The structured controllability radius of the pair (A,B) is the solution of the following

minimization problem:

min
∆,v,λ

‖∆‖2F (4.2)

s.t. ∆ = ∆T, (symmetry constraint) (4.2a)

(A+ ∆)v = λv, (eigenvalue constraint) (4.2b)

‖v‖22 = 1, (eigenvector constraint) (4.2c)

vTB = 0, (uncontrollability) (4.2d)

Hc ◦∆ = 0, (structural constraint) (4.2e)

where constraint (4.2d) follows from the PBH uncontrollability test [7], and constraint (4.2c) is for

uniqueness of v. Notice that the minimization problem (4.2) is not convex due to the eigenvalue

constraint (4.2b). Consequently, multiple local minima may exist. This is a common feature in

various minimum distance and eigenvalue assignment problems [69]. We conclude this section with

the following remark.

Remark 15 (Structured vs unstructured controllability radius) The minimization problem

(4.2) admits the trivial solution ∆ = 0 if and only if the pair (A,B) is uncontrollable. Further,

the controllability radius without structural constraints is always finite, that is, a finite perturba-

tion causing uncontrollability always exists. Instead, the sparsity constraints (4.2e) may render the

problem unfeasible (trivially, in the case where (A,B) is controllable and H = 0). �
2If H is not symmetric, construct a symmetric H′ by removing a minimal set of edges from H. It can be shown

that the optimization problems with constraints H and H′, respectively, admit the same solutions.
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4.3 Solution to the optimization problem

In this section we derive a solution to the non-convex optimization problem (4.2). In the

theory of equality constrained non-linear programming, the first-order optimality conditions are

meaningful only when the optimal points satisfy the regularity condition given by rank J = nc,

where J is the Jacobian of the constraints and nc equals the total number of independent equality

constraints. This regularity condition is mild and usually satisfied for most classes of problems [70].

Before presenting the main result, we derive the Jacobian and state the regularity condition for the

optimization problem (4.2). Given the constraint graph H, let ns and n̄s satisfy

ns = |{(i, j) : Hc = [hij ], j ≥ i, hij = 1}|,

n̄s = |{(i, j) : Hc = [hij ], hij = 1}|,

and note that the constraint (4.2e) can be equivalently written as (see the proof of Lemma 16 for a

formal definition of Q)

Qvec(∆) = 0, (4.3)

for some 0-1 matrix Q of dimension n̄s × n2.

Lemma 16 (Jacobian of the constraints) The Jacobian of the equality constraints (4.2a)-(4.2e)

is given by

J(∆, v, λ) =




I − Tn 0 0

vT ⊗ I A+ ∆− λI −v

0 2vT 0

0 BT 0

Q 0 0




, (4.4)

where Tn is the n2-dimensional permutation matrix satisfying vec(∆T) = Tnvec(∆), and Q is as in

(4.3). Further, the total number of independent scalar constraints in (4.2a)-(4.2e) is

nc =
n2 + n

2
+ n+ 1 +m+ ns. (4.5)
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Proof. We construct the Jacobian J(∆, v, λ) by rewriting the constraints (4.2a)-(4.2e) in

vectorized form and taking their derivatives with respect to δ , vec(∆), v and λ. Vectorization of

(4.2a) yields (I − Tn)δ = 0 and its derivatives read as the first block row of J . Among the total

n2 scalar constraints in (4.2a), n
2−n
2 are redundant resulting in only n2+n

2 independent constraints.

Using the property vec(AB) = (BT⊗I)vec(A), re-vectorization of (4.2b) yields (A−λI)v+(vT⊗I)δ =

0, from which we obtain the second block row of J . Notice that (4.2b) consists of n scalar constraints.

Differentiation of (4.2c) and (4.2d) is straightforward and it provides 1 and m rows, respectively.

Finally, (4.2e) consists of n̄s non-trivial sparsity constraints, which can be written as Qδ = 0 where

Q = [ei1 ei2 . . . ein̄s ]T and {i1, . . . , in̄s} = supp(vec(Hc)) is the set of indices indicating the ones in

vec(Hc). Because Hc is symmetric, only ns constraints of (4.2e) in the lower-triangular (or upper-

triangular) part of Hc are independent when we combine (4.2e) with the independent constraints of

(4.2a). Thus, the total number of independent constraints in (4.2a)-(4.2e) is nc = n2+n
2 +n+1+m+ns

and this concludes the proof.

We now solve the minimization problem (4.2).

Theorem 17 (Structured controllability radius of symmetric networks) Let ∆∗, v∗ and

λ∗ satisfy the constraints (4.2a)-(4.2e). Then, ∆∗ is a local minimum of the minimization problem

(4.2) if and only if, for some l∗ ∈ Rn and q∗ ∈ Rm,

∆∗ = −1

4
H ◦

[
v∗(l∗)T + l∗(v∗)T

]
, (4.6a)

[
A+ ∆∗ − λ∗I B

]


l∗

q∗


 = 0, (4.6b)

(v∗)Tl∗ = 0, (4.6c)

rank J(∆∗, v∗, λ∗) = nc, and (4.6d)

P ∗D∗P ∗ ≥ 0, (4.6e)
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where nc is as in (4.5), D∗ is the Hessian defined as

D∗ =




2I I ⊗ l∗ 0

I ⊗ (l∗)T 0 −l∗

0 −(l∗)T 0



,

P ∗ is the projection matrix of J(∆, v, λ) defined as

P ∗ = I − J+(∆∗, v∗, λ∗)J(∆∗, v∗, λ∗).

Proof. We prove the result using the Lagrange theorem for equality constrained mini-

mization [71]. Let S ∈ Rn×n, l ∈ Rn, h ∈ R, q ∈ Rm, and M ∈ Rn×n be the Lagrange multipliers

associated with constraints in (4.2), respectively. We make use of the following properties for the

proof:

(a) tr(A) = tr(AT) and tr(AB) = tr(BA),

(b) ‖A‖2F = tr(ATA) = vecT(A)vec(A),

(c) 1T
n(A ◦B)1n = tr(ATB),

(d) A ◦B = B ◦A and A ◦ (B ◦ C) = (A ◦B) ◦ C,

(e) A ◦ (B + C) = (A ◦B) + (A ◦ C) and (A ◦B)T = AT ◦BT,

(f) d
dX tr(X

TX) = 2X and d
dX tr(AX) = AT,

(g) aTXy = yT(I ⊗ aT)vec(X) = vecT(X)(I ⊗ a)y,

The Lagrange function for the optimization problem is

L(∆, v, λ, S, l, h, q,M) = ‖∆‖2F + 1T
n[S ◦ (∆−∆T)]1n + lT(A+ ∆− λI)v

+ h(‖v‖22 − 1) + qTBTv + 1T
n[M ◦ (Hc ◦∆)]1n =

(a)
= tr(∆T∆) + tr[(ST − S)∆] + lT(A+ ∆− λI)v + h

(
vTv − 1

)
+ qTBTv + tr[(M ◦Hc)T∆]
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where (a) follows from properties (i)-(iv). Next, we derive the first-order necessary conditions for a

local minimum. Differentiating L w.r.t. ∆ and equating to 0, we get

d

d∆
L (vi)

= 2∆ + S − ST + lvT +M ◦Hc = 0. (4.7)

Taking the Hadamard product of (4.7) with Hc and using Hc ◦∆ = 0 and Hc ◦Hc = Hc, we get

(S − ST) ◦Hc + (lvT) ◦Hc +M ◦Hc = 0. (4.8)

Replacing M ◦Hc from (4.8) into (4.7), we get

∆ = −1

2
H ◦ (S − ST + lvT ). (4.9)

Since H is symmetric, the transpose of (4.9) yields

∆ = ∆T (v)
= −1

2
H ◦ (ST − S + vlT). (4.10)

Adding (4.9) and (4.10) and using (v), we obtain (4.6a).

Next, we differentiate L w.r.t. v and equate to 0:

(A+ ∆− λI)Tl + 2hv +Bq = 0. (4.11)

Pre-multiplying (4.11) by vT and using the eigenvalue, eigenvector and uncontrollability constraints,

we get h = 0. Then, since A and ∆ are symmetric, (4.11) yields (4.6b).

Finally, differentiating L w.r.t. λ and equating to 0, we get the orthogonality constraint

(4.6c).

Equation (4.6d) is the necessary regularity condition and follows from Lemma 16 Next, we

obtain the second-order sufficient conditions by deriving the Hessian of L. Recall that δ = vec(∆).

Taking the differential of L twice, we get

d2L = 2tr((d∆)Td∆) + 2h(dv)Tdv + 2lT(d∆− Idλ)dv

(b)
= 2(dδ)Tdδ + 2(dv)T(I ⊗ lT)dδ − 2dλlTdv = [(dδ)T, (dv)T, dλ] D [(dδ)T, (dv)T, dλ]T,
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Brain Anatomical parcellation

Anatomical connectivity Imaging data

Figure 4.2: Main steps performed to obtain anatomical connectivity matrices.

where (b) follows from properties (ii), (vii) and h = 0. The sufficient second-order optimality

condition for the optimization problem requires the Hessian matrix to be positive semi-definite in

the kernel of the Jacobian at the optimal point [72]. That is, zTD∗z ≥ 0, ∀z : J(∆∗, v∗, λ∗)z = 0.

This condition is equivalent to P ∗D∗P ∗ ≥ 0, since J(∆∗, v∗, λ∗)z = 0 if and only if z = P ∗u for any

u ∈ Rn2+n+1 [70]. Since the projection matrix P ∗ is symmetric, (4.6e) follows and this concludes

the proof.

Remark 18 (Computing an optimal solution) Observe that ∆∗ in (4.6a) is symmetric (since

H is symmetric) and satisfies the structural constraint (4.2e). Thus, to obtain a solution to the

minimization problem (4.2), we perform an iterative procedure (starting from some random initial

condition) that solves numerically the constraint equations (4.2b)-(4.2d) and the optimality equations

(4.6a)-(4.6c). We then verify that these solutions satisfy the regularity and local minima equations

(4.6d) and (4.6e), respectively. We repeat this procedure for several initial conditions to improve upon

local solutions. However, due to the non-convexity of the minimization problem (4.2), convergence

to a global minimum is not guaranteed. �
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Example 19 (Structured controllability radius of a line network) Consider a network with

adjacency matrix

A =




0 1 0

1 0 2

0 2 0




and input matrix B =

[
1 0 0

]T
. Notice that this is a line network controlled by the first node,

which is known to be strongly structurally controllable [73]. We are interested in modifying only the

existing edges of the line, that is, H = G. With this sparsity constraint, the symmetric perturbation

with the minimum Frobenius norm (global minimum) that renders the network uncontrollable is the

one that removes the edge with the smallest weight [67]:

∆∗global =




0 −1 0

−1 0 0

0 0 0



.

To verify our procedure against this result, we solve the constraint and optimality equations in The-

orem 17. In addition to the above global minimum (with v∗global = [0, 0.7071, 0.7071]T, l∗global =

[5.6569,−1.7038, 1.7038]T, λ∗global = 2), we also obtain the following two local minima, where λ∗1 =

λ∗2 = 0, and

∆∗1, v
∗
1 , l
∗
1 =




0 0 0

0 0 −2

0 −2 0



,




0

0

1



,




8.1341

8

2.5228



, and

∆∗2, v
∗
2 , l
∗
2 =




0 −1 0

−1 0 −2

0 −2 0



,




0

0.9711

−0.2387



,




4.1191

5.1020

9.4922



,

which correspond to removing the edges between node 2 and 3, and all the edges of the network,

respectively. �
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4.4 The controllability radius of symmetric brain and ran-

dom networks

In the remainder part of the chapter we focus on the numerical analysis and comparison of

the controllability radius of brain and random networks. We focus on the case H = G, and consider

the following network models.

Structural brain network (SBN). We use brain networks modeled by (4.1), where the anatomical

connectivity matrices represent weighted adjacency matrices. To obtain the connectivity matrices,

anatomical scans of 15 healthy subjects were parcellated according to the Lausanne atlas [46], and

n = 129 regions are chosen as regions of interest. Figure 4.2 shows the main steps performed to

obtain the connectivity matrices of structural brain networks. These network dynamics can be

derived as a linearization of brain processes [47], and have been used, for instance, in [10, 58, 74].

Among these, [10] has numerically shown that this class of brain networks constructed from diffusion

MRI data is controllable from one single node, which will support our assumption of selecting only

one control node in our numerical study.

Random network (RN). Starting from a structural brain network, we generate a set of sym-

metric adjacency matrices by randomly permuting its edges, while maintaining connectivity and

controllability from the selected control node.

In our study, we consider 15 SBN’s and 10 RN’s generated from each SBN, for a total

of 165 networks. For each network, the solution to the optimization problem (4.2) is computed

numerically. To do so, we run an extensive number of minimizations from random initial conditions.

Finally, we compare the controllability radius of each SBN with the mean controllability radius of

the 10 corresponding RN’s.

We run two sets of numerical studies. First, we compare the structured controllability

radius of brain and random networks for a fixed choice of control node, that is, the control node

in a brain network and in all its random permutations is the same. Second, we compare brain
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Figure 4.3: Comparison between the controllability radii of 15 SBN’s and 150 RN’s. (a) The control
node maximizes λmin(W ) for the i-th SBN, and the same control node is employed for the 10
randomized brain networks corresponding to the i-th SBN, i = 1, . . . , 15. (b) The control node is
selected differently in each network to maximize λmin(W ).

and random networks after varying the control node to maximize the smallest eigenvalue of the

controllability Gramian. The results of our studies are reported in Fig. 4.3.

In both our sets of numerical studies, the results show that the controllability radius of

structural brain networks is on average smaller than the controllability radius of the respective

randomized versions. This result suggests that the topology of brain networks may not be acci-

dental. Furthermore, the peculiar architecture of the brain could have evolved to favor dynamic

features different from controllability by single regions [75]. This raises several questions, including
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Figure 4.4: Average magnitude of the weight changes among all the perturbations ∆i for subject 1
when controlled by single brain regions, i = 1, . . . , n.

characterizing the cost functions optimized by the anatomical structure of the brain [76].

The controllability radius of structural brain networks can be further exploited to provide

interesting information on the effectiveness of network control from a certain area. In fact, it is

possible to understand which areas make a better position for a control node without incurring in

numerical artifacts that affect the spectral analysis of the controllability Gramian. For instance,

when the brain network of subject 1 is controlled by the right superiorparietal-3 region3 (node 30),

it displays the smallest controllability radius: ‖∆‖F ≈ 10−7. When the brain network of subject one

is controlled by the left isthmus of cingulate (node 88), it displays the largest controllability radius:

‖∆‖F ≈ 2.5 · 10−2. This insight could inform the design of novel brain stimulation techniques.

To conclude, we noticed that the most perturbed interconnections correspond to entries

with a small magnitude in the connectivity matrix. Furthermore, when comparing the mean per-

turbation for subject 1 (see Fig. 4.4) with the brain atlas, the areas where the most changes occur

among all the perturbation matrices turn out to be the frontal pole (node 4 and 68) and the pars

3See [46] for the atlas with labels of the regions of interest in the brain.
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orbitalis (node 67). These two areas are indeed important for cortico-cortical control [10]. Assessing

which interconnections tend to be more fragile toward uncontrollability of the brain and further en-

hancing the role that network controllability plays in the correct functioning of this complex organ

opens new challenges for future research and may ultimately lead to the development of innovative

personalized clinical therapies [54,75].

4.5 Conclusion

In this chapter we propose and analyze a novel notion of controllability for symmetric

networks, namely the structured controllability radius. In particular, we quantify the controllability

degree of a network with the smallest norm of a symmetric perturbation that renders the network

uncontrollable and satisfies a pre-specified set of sparsity constraints. We derive a set of equations for

the computation of the structured controllability radius, and illustrate our results through various

examples including networks approximating a class of brain dynamics. Our numerical results show

that brain networks feature a controllability radius that is consistently smaller than the one of

random networks with similar weights, further highlighting the fundamental role of the organization

of the brain for its dynamic functions.
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Chapter 5

Brain Network Dynamics

Fingerprints are Resilient to Data

Heterogeneity

In this chapter, we focus on validating the estimation of individual brain network dynamics

fingerprints and appraise sources of variability in large resting-state functional magnetic resonance

imaging (rs-fMRI) datasets by providing a novel point of view based on data-driven dynamical

models. We utilize hidden Markov models (HMM) to examine how diverse scanning factors in

multi-site fMRI recordings affect our ability to infer the brain’s spatiotemporal wandering between

large-scale networks of activity. Building upon this premise, we first replicate previous work on

the emergence of non-random sequences of brain states. We next highlight how these time-varying

brain activity patterns are robust subject-specific fingerprints. We refer the reader to [77] for a

comprehensive discussion.
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5.1 Introduction

Untangling the brain’s dynamics at rest is a central aspect in the quest to reveal the

mechanisms underlying the spontaneous wandering of the mind between well-established, large-

scale networks of neural activity [78–80]. The characterization of the brain dynamics’ spatiotempo-

ral organization into networks has greatly benefited from the creation of very large neuroimaging

datasets [81,82], such as the Human Connectome Project (HCP) [83,84], the UK Biobank [85], and,

in the context of neurodegenerative diseases, the Alzheimer’s Disease Neuroimaging Initiative [86].

Large neuroimaging datasets have, furthermore, played a crucial role in the development of novel

biomarkers for psychiatric and neurodegenerative disorders [87–89]. Yet, appraising how differences

in physical parameters or scanning protocols affect the quality of these data – especially fMRI record-

ings – remains an outstanding problem [90–93]. For instance, imaging sequences are considerably af-

fected by site-dependent differences such as scanner drift over time, or maintenance routine [93]. Only

few recent works have addressed the problem of data variability in rs-fMRI data across sites [94–97],

while some others have proposed techniques to harmonize multi-site data [87, 89,91–93,98,99]. De-

spite growing interest in the intricacies inherent to multi-site data, this line of research is still in its

infancy (the first publication appeared in 2013 [100]). Furthermore, although the brain is a complex

dynamical system capable of exhibiting rich nonlinear dynamics [101,102], most studies to date have

relied on static measures (e.g., functional connectivity); and little to no attempts exist at exploring

such issues from the viewpoint of dynamical models.

Data-driven dynamical models are a promising and powerful tool for the analysis and

prediction of the spatiotemporal organization of brain activity [103–106]. These models allow us to

harness the vast amount of spurious information contained in large datasets [107–109], capture the

hierarchical organization of brain activity [110], enhance brain-computer interfaces [111, 112], and

may even be employed in clinical settings [87,113–115]. However, how the inference and identification

of dynamical models is affected by different factors in multi-site data acquisition has yet to be
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investigated. Additionally, dynamical models could provide fine-grained insight into the extent of

the effect of these factors on the data.

One limitation of data-driven models is that, generally, large amounts of data are needed to

train the model in the first place. Here, we avoid this issue by employing two datasets. We leverage

the high number of subjects (nHCP > 1000) with rs-fMRI data available in the HCP dataset [83], to

train a stable and reliable Hidden Markov Model (HMM). An HMM infers brain network dynamics

from rs-fMRI time series, where networks are probability distributions representing graphs. We then

apply the pretrained HMM to the smaller (nTS = 9) Traveling-subject dataset, which consists of a

novel, state-of-the-art collection of rs-fMRI measurements of nine healthy subjects who traveled to

twelve different sites and were scanned under various conditions (different sites, days, phase encoding,

number of channels/coils, manufacturer, scanner; see Materials and Methods and Supplementary

Table 5.2 for a full list of scanning factors and attributes) [99]. This way, we were able to infer

subject-specific brain states and investigate how the retrieval of brain state time courses is affected

by an array of scanning factors. Training the model on the HCP data guarantees that (1) the model

is inferred on a large sample, made of carefully collected and homogeneous data and that (2) the

model is stable and does not over-fit on a dataset of limited size. We illustrate the methodological

approach in Fig. 5.1.

Thus, we first utilize the trained HMM to validate the findings on rs-fMRI fingerprints

– robust and reproducible quantitative signatures – reported in previous work [105, 110, 116]. We

then generalize these findings by applying the HCP-trained HMM to the Traveling-subject dataset.

This important step allows us to exploit the HMM to assess if, and to what extent, mixed scanning

factors affect subject-specific fingerprints and, thus, rs-fMRI recordings. We depart from previous

work, which has mostly relied on static functional connectivity / correlation measures and smaller

datasets, by exploiting dynamical brain network collective states at a finer temporal resolution.

Altogether, this chapter juxtapose complementary, yet contrasting, results with respect to rs-fMRI

61



· · ·
−−−−−−−−−−−−−−−−−−−−−−−−︸ ︷︷ ︸

WUSTL scanner

HCP dataset

site 3

-
-
-
-

AP

Siemens

Skyra

· · ·
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa| {z }

WUSTL “Connectome Skyra” scanner

HCP dataset

site 1

-
-
-
-

PA

Siemens

TimTrio

· · ·
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa| {z }

WUSTL “Connectome Skyra” scanner

HCP dataset

site 1

-
-
-
-

PA

Siemens

TimTrio

· · ·
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa| {z }

WUSTL “Connectome Skyra” scanner

HCP dataset

site 1

-
-
-
-

PA

Siemens

TimTrio

· · ·
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa| {z }

WUSTL “Connectome Skyra” scanner

HCP dataset

site 1

-
-
-
-

PA

Siemens

TimTrio

site 4

-
-
-
-

PA

GE

MR750W

· · ·
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa| {z }

WUSTL “Connectome Skyra” scanner

HCP dataset

site 1

-
-
-
-

PA

Siemens

TimTrio

· · ·
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa| {z }

WUSTL “Connectome Skyra” scanner

HCP dataset

site 1

-
-
-
-

PA

Siemens

TimTrio

site 2

-
-
-
-

PA

Siemens

TimTrio

· · ·
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa| {z }

WUSTL “Connectome Skyra” scanner

HCP dataset

site 1

-
-
-
-

PA

Siemens

TimTrio

· · ·
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa| {z }

WUSTL “Connectome Skyra” scanner

HCP dataset

site 1

-
-
-
-

PA

Siemens

TimTrio

site 1

-
-
-
-

AP

Philips

Achieva

· · ·
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa| {z }

WUSTL “Connectome Skyra” scanner

HCP dataset

site 1

-
-
-
-

PA

Siemens

TimTrio

· · ·

AP phase encoding

· · ·
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa| {z }

WUSTL “Connectome Skyra” scanner

HCP dataset

site 1

-
-
-
-

PA

Siemens

TimTrio

channels/coil

Traveling-subject dataset

1

2

3

4

metastate 1

5

6

7

8

9

10

11

12
metastate 2

pr
ob

ab
ili

ty

fro
m

st
at

es

to states

Transition Probability
Matrix

Hidden Markov Model

0 100 200 300
0

1

pr
ob

.

st
at

es

time (min)
0 3 6

1

6

12

state time course

HMM Decoding and Analysis(a)

(b)
SS : Same subject Same factor attribute SD : Same subject Different factor attributes DS : Different subjects Same factor attribute

Figure 5.1: Conceptual flow of the analysis and modeling approach. (a) rs-fMRI data from the
HCP dataset, collected at the Washington University in St. Louis (WUSTL) Connectome-Skyra
scanner, were used to infer a Hidden Markov Model (HMM). This model is described by a transition
probability matrix, which encodes the probabilities of jumping from one state to another at each
time step. Following [110], 12 states were identified and the graph depicted in the figure illustrates
the largest transition probabilities (> 0.1) in our model (see also Supplementary Figure 5.6). The
states are color-coded in order to distinguish which set of strongly connected states (metastate)
they belong to. HMM decoding was then applied to the Traveling-subject dataset, in which rs-
fMRI data was collected from subjects travelling to different sites. The state time courses from the
Traveling-subject dataset were finally used to (1) validate the subject-specific fingerprints associated
with states’ dwelling probabilities and the 2-metastate structure put forth previously [110], and (2)
analyze the impact of different factors, e.g., site, or scanner model, on fMRI measurements. (b) To
gauge how different factors influenced fMRI data collection, the state time courses obtained from
the HMM decoding procedure were compared within and across three different groups: SS (Same
subject Same factor attribute), SD (Same subject Different factor attributes), and DS (Different
subjects Same factor attribute). In this panel, these three categories are illustrated for the factor
”site”, whose attributes consist of the different geographical locations.
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data analysis: we confirm previous findings reporting subject-specific fingerprints, but we also shed

light on the presence of factors that induce variability in such fingerprints and, thus, the homogeneity

of multi-site fMRI data collections and subsequent inference from the viewpoint of dynamical models.

5.2 Materials and Methods

5.2.1 Datasets

The two dataset used in this study are (1) the HCP 1200-subject distribution (data available

at https://db.humanconnectome.org) and (2) the Traveling-subject dataset (data available at

https://bicr-resource.atr.jp/srpbsts/ after free registration). The former consists of rs-fMRI

data from N = 1206 healthy subjects (age 22-35) that were scanned twice (two 15-minute runs) on

two different days, one week apart, on a Siemens 3T Connectome-Skyra scanner. For each subject,

in total four 15-minute runs of rs-fMRI time series data with a temporal resolution of 0.72 s and a

spatial resolution of 2-mm isotropic were available. For our analysis, we used time series from the

1003 subjects with 4 complete scanning sessions. The HCP dataset provides the required ethics and

consent needed for study and dissemination, such that no further institutional review board (IRB)

approval is required.

The Traveling-subject dataset consists of 9 healthy subjects (all men; age range 24–32;

mean age 27±2.6y), who were all scanned at each of the 12 sites, producing a total of 411 10-minute

scanning sessions [99]. Each participant underwent three rs-fMRI sessions of 10 min each at nine

sites, two sessions of 10 min each at two sites (HKH and HUH), and five cycles (morning, afternoon,

following day, following week, and following month) consisting of three 10-min sessions each at a

single site (ATT). In the latter situation, one participant underwent four rather than five sessions

at the ATT site because of a poor physical condition. Thus, a total of 411 sessions were conducted

[8 participants × (3 × 9 + 2 × 2 + 5 × 3 × 1) + 1 participant × (3 × 9 + 2 × 2 + 4 × 3 × 1)]

(see Supplementary Table 5.2 for all the details on the scanning protocols). In total, there were two
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phase-encoding directions (posterior to anterior [P → A] and anterior to posterior [A → P]), three

MRI manufacturers (Siemens, GE, and Philips), four numbers of channels per coil (8, 12, 24, and

32), and seven scanner types (TimTrio, Verio, Skyra, Spectra, MR750W, SignaHDxt, and Achieva).

All participants in all datasets provided written informed consent. All recruitment procedures and

experimental protocols were approved by the institutional review boards of the principal investiga-

tors’ respective institutions (Advanced Telecommunications Research Institute International [ATR]

[approval numbers: 13–133, 14–133, 15–133, 16–133, 17–133, and 18–133], Hiroshima University

[E-38], Kyoto Prefectural University of Medicine [KPM] [RBMR-C- 1098], SWA [B-2014-019 and

UMIN000016134], the University of Tokyo [UTO] Faculty of Medicine [3150], Kyoto University [C809

and R0027], and Yamaguchi University [H23-153 and H25-85]) and conducted in accordance with

the Declaration of Helsinki.

5.2.2 Hidden Markov Model

In this chapter, we utilized Hidden Markov model(s) to capture the dynamical evolution

of brain states in subjects scanned at rest. In neuroscience and neuroimaging, HMMs are typically

used to represent the stochastic relationship between a finite number of hidden states that underlie

the brain’s complex dynamics, whose evolution in time is captured by the measured data. That is,

Hidden Markov modeling is a powerful technique that enables the description of time series extracted

from a system of interest. The underlying assumption of this class of models is that the observed

time series of data can be explained by a discrete sequence of hidden states, which must be finite

in number. Additionally, to describe a hidden Markov model, an observation model needs to be

chosen. We assume multivariate Gaussian observation model, so that, if xt denotes the data at time

step t, and st represents the state at time step t, we can write, whenever state k is active,

xt|st ∼ multivariate Gaussian(µk,Σk)

64



where µk ∈ Rc is the vector of the mean blood oxygen level-dependent (BOLD) activation for each

channel, with c being the number of channels in the data, and Σk ∈ Rc×c is the covariance matrix

encoding the variances and covariances between channels. The transitions between different brain

states depend on which state is active at the previous time step. Specifically, the probability of a

state being active at time t depends on which state is active at time step t−1. This is encoded in the

Transition Probability Matrix Θ, in which the entry Θij – the transition probability – denotes the

probability of state i becoming active at the next time step if state j is currently active. Formally,

by denoting a probability with Pr, it holds that

Pr(st = i) =
∑

j

ΘijPr(st−1 = j)

For large datasets, it is possible to resort to stochastic Variational Bayes inference to

estimate the posterior distribution of each state (µk,Σk), the probability of each state being active

at each time step, and the transition probabilities between each pair of states Θij [108]. Finally,

notwithstanding the fact that in this study the model has been inferred by concatenating all the

subjects – thus implicitly defining the brain states as the outcome of common brain dynamics – the

state time courses are subject-specific. That is, the states are inferred at the group level, but the

time instants at which each brain state becomes active is subjective and changes between and across

subjects.

5.2.3 Data Preparation and HMM Training

HCP dataset. Following [110], extensively preprocessed HCP ICA time series were used

for the model training. The preprocessing followed the steps of [83, 117] and is briefly described

here. Spatial preprocessing used the procedure described by [118]. Next, structured artifact removal

using ICA was followed by FMRIB’s ICA-based X-noisefier (FIX) from the FMRIB Software Library

(FSL) [119], which removed more than 99% of the artifactual ICA components in the dataset. Finally,

the 50-dimensional extensively preprocessed time series obtained after group spatial ICA are freely

65



available at https://www.humanconnectome.org/study/hcp-young-adult/.

Traveling-subject dataset. The dataset was obtained from https://bicr-resource.atr.

jp/srpbsts/. Hereafter, we describe the preprocessing procedure that was originally reported

in [99]. Raw BOLD signals were preprocessed using SPM8, implemented in MATLAB (R2016b;

Mathworks, Natick, MA, USA), The first 10 s of each scan data were discarded to account for

T1 calibration. Ensuing preprocessing steps included: slice-timing correction, realignment, coreg-

istration, segmentation of T1-weighted structural images, normalization to Montreal Neurological

Institute (MNI) space, and spatial smoothing with an isotropic Gaussian kernel of 6 mm full-width

at half-maximum. Thirty-six noise parameters were included in a linear regression model to remove

multiple sources of spurious variance (e.g., six motion parameters, average signals over the whole

brain, white matter, and cerebrospinal fluid) [120]. Time-series were band-pass filtered using a first-

order Butterworth filter [0.01 - 0.08 Hz] to restrict the analysis to low-frequency fluctuations, which

are characteristic of rs-fMRI BOLD activity [120]. Finally, to reduce the impact of head motion,

scrubbing was performed: framewise displacement (FD) was calculated and volumes with FD > 0.5

mm were removed [121]. Thus, 5.4% ± 10.6% volumes (mean [approximately 13 volumes] ± 1 SD)

were removed per 10 min of rs-fMRI scanning (240 volumes). If the number of volumes removed

after scrubbing exceeded the average of –3 SD across participants, the sessions were excluded from

the analysis. As a result, 14 sessions were removed from the dataset.

Before combining the HCP time series and the Traveling-subject time series for the model

inference, we matched the temporal resolution of the two datasets. Specifically, for all results

reported in the main text, the Traveling-subject time series were up-sampled in order to match

the same repetition time as the HCP data (from TR = 2.5 s to TR = 0.72 s). We also down-

sampled the HCP data from TR = 0.72 s to TR = 2.5 s to match the Traveling-subject repetition

time. However, the model inferred on HCP down-sampled ICA time-series was not satisfactory (see

below). Therefore, we have chosen to re-sample the Traveling-subject data instead of down-sampling

the HCP data.
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The HMM inference was performed on 50-dimensional standardized ICA time series (0 mean

and unitary standard deviation) concatenated along the time direction. To concatenate HCP rs-fMRI

data and the ones from the Traveling-subject dataset, we proceeded as follows. First, we matched

the voxel coordinates of the Traveling-subject data with the group average spatial maps from the

group-ICA decomposition of the HCP time series. These spatial maps were extracted from the group

average analysis across all the subjects of the S1200 release and are available on the HCP website:

https://www.humanconnectome.org/. Because the spatial maps are in a gray-ordinate CIFTI

format [118], we extracted the xyz coordinates in a standard stereotaxic space MNI152 by using a

mid-thickness surface file for the surface vertices and the coordinate transformation matrix included

in the CIFTI file. Next, we extracted the time series from the Traveling-subject data corresponding

to the same xyz coordinates of the aforementioned spatial map in Matlab by using the ROI Signal

Extractor provided by the toolbox DPABI [122]. Finally, the HCP group average spatial map allowed

us to obtain the estimated 50-dimensional ICs for the Traveling-subject data from the extracted time

series. To note, once the Traveling-subject rs-fMRI time series were reduced to 50 ICs, they matched

the spatial dimension of the HCP data used to infer the HMM in [110]. Finally, to train our HMM, we

used the publicly available toolbox HMM-MAR (https://github.com/OHBA-analysis/HMM-MAR) [123].

We inferred N = 50 models with 12 states (the number of states was chosen based on previous

work [110]) from random initializations, multiple priors, and different combinations of the available

datasets. Specifically, we inferred N1200 = 28 models inferred on time series from the 1200-subject

HCP release only with random priors, N820 = 14 models inferred on the 820-subject HCP release

(a subset of the 1200-subject release, which was used in the original work on the HMM-derived

hierarchical organization of brain states [110]) with random priors, and NTS = 8 models inferred

on the 9 subjects of the Traveling-Subject dataset using the best model inferred from HCP data

only one as a prior, so that N1200 +N820 +NTS = 50). The selection of the best model (described

below in detail) took into account both classical model evaluation methods and the definition of the

metrics used in this study.
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5.2.4 FO Correlation Matrix and Fingerprints Computation

By applying (i.e., decoding) an HMM to a dataset with multiple subjects, we obtained the

state time courses for each subject, from which it is possible to compute the vector of the Fractional

Occupancy (FO) of every state for each subject. Stacking such vectors in a matrix yielded the

FO Matrix R, which is a (no. of subjects) × (no. of states) matrix that encodes state dynamics

similarities across subjects. Each element Rij of this matrix denotes the fraction of time spent by

subject i in state j. Further, by taking the pairwise correlation of the columns of the FO Matrix R,

we obtained the (no. of states) × (no. of states) FO Correlation Matrix

C = corr(R:,k,R:,`),

where R:,k denotes the column vector of the FO of all subjects for the k-th state. This matrix

captured the overall organization of brain dynamics across states, and its entries quantified the

affinity between the FOs of each pair of states across all subjects. In other words, the FO Correlation

Matrix highlighted the similarities and dissimilarities between brain states, and encoded the temporal

characteristics of brain network dynamics. The organization of the FO Correlation matrix revealed

(both by visual inspection and by numerical investigation) the emergence of two groups of states,

known as metastates. Metastates are distinct sets of functional network states that the brain has

a propensity to cycle within, and have been shown to hierarchically group brain states into a 2-

metastate structure [110].

We made use of the information encoded in the FO Correlation Matrix to calculate two

different subject-specific metrics in the Traveling-subject data that were key in this study: the Metas-

tate Profile (MP) Differences and the Fractional Occupancy (FO) Correlations. Loosely speaking,

the former provided the difference between the time spent in the two distinct metastates that emerged

in our model, compatibly with previous findings [110]. The latter provided the pairwise correlation

between the FO vectors of different scanning runs. To derive these metrics, we first construct the

MP matrix, whose entry (i, k) represents the FO of the second metastate (states 6 to 12) minus the
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FO of the first metastate (states 1 to 4) for the subject i during the scanning session k. We excluded

state 5 from our analysis as it was uncorrelated from the other states, had the highest variance, and

was previously shown to be associated with head motion in the scanner [110]. Formally, given the

FO Matrix R for the run k, MPi,k is computed as follows:

MPi,k =

12∑

j=6

Ri,j −
4∑

j=1

Ri,j .

Then, the MP Difference between run k1 for subject i1 and run k2 for subject i2 reads as

MP Difference = |MPi1,k1
−MPi2,k2

|.

Instead, the FO Correlation between run k1 for subject i1 and run k2 for subject i2 is defined as

FO Correlation = corr(FOi1,k1
,FOi2,k2

),

where FOi,k denotes the 11-dimensional column vector of the FOs of all 12 states minus state 5 for

subject i and run k.

It is worth noting that exploiting and comparing the two metrics defined above gave us

a remarkable advantage with respect to utilizing only the model’s TPM. Namely, because of the

stochastic nature of the model inference, we were able to avoid the non-uniqueness issue of the TPM

and, at the same time, to reliably capture the temporal characteristics of the state time courses. In

fact, due to the availability of numerous scanning sessions for each subject, both metrics could be

computed not only across different subjects, but also at the individual level. We capitalized on the

robustness of the HMM model inferred on HCP homogeneous data to reveal, through MP Differences

and FO Correlations, temporal information of brain state time series in the heterogeneous Traveling-

subject dataset. These metrics allowed us to perform a richer analysis rather than simply limiting

ourselves to the study of a model’s TPM – in this context it was one single matrix valid for all

subjects (Fig. 5.1(a)).
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5.2.5 Model Selection

To select the model that best fit the data, we computed the free energy for each of the fifty

different models that were inferred. The free energy provides a bound on the log-evidence for any

model [124], and can be derived as the sum of the model average log-likelihood, the negative entropy

and the Kullback–Leibler divergence [125]. Because the data sets have different sizes (HCP1200,

HCP820, and Traveling-subject only), we corrected the free energy according to the size of the

dataset used for the model inference in order to compare different models fairly. Next, we ranked

the N = 50 models inferred in this study based on their free energy, and chose the one minimizing

this quantity.

Based on previous findings [110], and because the definition of MP Difference strongly rely

on the hierarchical structure of the inferred states, we also verified that the selected model presented

a sufficiently marked 2-metastate structure. To take this topological notion into account, we com-

puted for each model the Euclidean distance from the ideal FO Correlation Matrix (Supplementary

Figure 5.7), which gauged how well the metastates emerged in the model’s FO Correlation Matrix.

Mathematically, this distance is defined as:

di =

∥∥∥∥∥∥∥∥∥∥∥∥

Ci −




14×4 04×1 −14×7

01×4 1 01×7

−17×4 07×1 17×7




∥∥∥∥∥∥∥∥∥∥∥∥

for i = 1, . . . , 50, where Ci is the FO Correlation Matrix of model i, 1 is a matrix of all ones, 0 is a

zero matrix, and ‖ · ‖ denotes the Euclidean norm. The model that we have used in this study was

not only the one with the lowest free energy, but also the one with and the smallest di. Thus, our

model fit the data the best and simultaneously embodied a pronounced 2-metastate structure.

Finally, to verify the robustness of our model when applied to time series other than the

HCP data, we applied the HCP-trained HMM to autoregressive data (Appendix and Supplementary

Figure 5.8). We found that this control analysis yielded state time courses that spend most of the

time on state 5. Moreover, state 5 was not only uncorrelated to all other states in our model, but
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had previously been found to be associated to motion artifacts in HCP data [110]. This result

substantiates the robustness of our results in regards to application of our HCP-trained model to

the Traveling-subject time series.

5.2.6 Subject Classification Using Brain Dynamics Fingerprints

To support our findings, and the robustness of the subject-specific fingerprints to data

heterogeneity, we used machine learning on these fingerprints to perform subject-level classification.

Specifically, individual subjects from the Traveling-subject dataset were classified based on their

Metastate Profiles and Fractional Occupancies. We detail the procedure hereafter.

For each scanning factor, we trained a logistic regression classifier – which minimizes the

cross-entropy loss – with the scikit-learn machine learning package [126] in Python 3 with the

following parameters: default L2 penalty, default L-BFGS-B algorithm [127], and ‘multi class’ option

set to ‘multinomial’. The classification task was repeated multiple times by splitting the data into

different training and validation sets as follows. We repeated the training and validation of the

linear regression classifier for each factor attribute (e.g., for the scanner parameter, we repeated

the procedure for each scanner model) by performing a leave-one-attribute-out cross-validation: we

chose as validation set all the samples (i.e. fingerprints) belonging to one factor attribute, and

we used as training set all the remaining samples. This analysis allowed us to (1) compare the

classification based on brain dynamics fingerprints in the presence of different scanning protocols

and heterogeneous data with baseline chance level, and (2) investigate which scanning factors tend

to affect data collections more than others.
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Figure 5.2: HCP-trained Hidden Markov Model. (a) Transition Probability Matrix. The emer-
gence of the two metastates can be recognized by simple visual inspection, and was confirmed by a
community-detection algorithm. (b) FO Correlation Matrix. The two metastates are clearly delin-
eated, with state 5 being mostly uncorrelated from all other states [110]. The state FOs are highly
correlated (Person correlation > 0.8) within the two metastates across subjects.

5.3 Results

5.3.1 Test-retest reliability of brain dynamics estimation

We first inferred the HMM by leveraging the large amount of rs-fMRI data in the HCP

dataset. Due to the stochastic nature of the HMM inference – which is based on the probabilistic

process of Bayesian inference – the results might vary at each new model training. Thus, we inferred

multiple models and selected for further analyses the one with the best fit. We show in Fig. 5.2 the

HMM selected and employed in this chapter, which is the model that ranked best with respect to

free energy, displayed the smallest distance from the ideal FO Correlation Matrix, and was trained

solely on HCP time series (see also Supplementary Figure 5.9). Further details and matrices of

notable models different from the best one can be found in Supplementary Figure 5.10-5.11.

Given the stochastic nature of the Variational Bayes approach used to infer the HMM [108],

it was unlikely that one would obtain an exact replica of the model originally reported in [110].

However, as displayed in Fig. 5.2(b) and Supplementary Figure 5.11, all models showed a clear 2-

metastate structure, validating the claims that resting-state brain dynamics tend to be hierarchically

organized in two larger sets of states (one associated with higher-order cognition, and the other
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one with sensorimotor and perceptual states, as originally reported in [110]). Moreover, a visual

inspection of the TPM matrix alone suggested the emergence of two groups of states that tended

to be more (statistically) connected. We confirmed this hypothesis by employing the generalized

Louvain algorithm [128] for the discovery of communities in networks.

To note, we also used the HCP-derived TPM as a prior to train an HMM on the Traveling-

subject dataset alone. This choice of prior ensured that the inference started from established

initial conditions before dealing with the small size of the Traveling-subject dataset. Surprisingly,

although the number of subjects in the Traveling-subject dataset was much smaller than the number

of subjects in the HCP dataset, the 2-metastate structure still emerged in the model’s matrices

(Supplementary Figure 5.11(d)), as also confirmed by the generalized Louvain algorithm. This

result highlighted that, notwithstanding mixed scanning protocols and small sample, the metastates

could be retrieved and unfold as a robust feature of resting-state data.

5.3.2 Metastate Profiles and Fractional Occupancies Are Robust Subject-

Specific Fingerprints

Previous findings reported that brain dynamics is subject-specific and nonrandom. To

extend this notion, we applied the best-fitting, HCP-trained HMM, to the Traveling-subject dataset,

obtaining the state time courses for each 10-minute scanning session. Next, from each individual’s

state time courses, we calculated the MP Differences and the FO Correlations. We summarize the

derivation of these two measures in Fig. 5.3(a). To note, here we use the notation subject i1 and

i2 for a general case, but this naturally applies to two different scans belonging to the same subject

(i.e., within-subject comparison).

Before delving into the main analyses of the Traveling-subject dataset, we considered the

consistency of these two measures of brain activity dynamics both in the HCP and the Traveling-

subjects datasets. In both datasets, there were multiple scans per subject (mHCP = 4 and mTS > 42,
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Figure 5.3: Metastate Profile Differences and FO Correlations computation, and within-subject
comparison. (a) Schematic illustrating the computation of the MP Differences and FO Correlations.
To note, subject i1 and i2 can mean both the same subject’s data but from different scans, or different
subjects. (b) Within-subject MP Differences and FO Correlations in the HCP (in red) and the
Traveling-subject (TS, in purple) datasets. We report hereafter the median and interquartile range.
For MP Differences (left panel) in the HCP data: median = 0.13 [0.06 0.22]; for MP Differences in
the TS data: median = 0.19 [0.09 0.35]. For the FO Correlations (right panel) in the HCP data:
median = 0.74 [0.22 0.89]; for FO Correlations in the TS data median = 0.88 [0.78 0.94].

respectively), allowing us to compute MP Differences and FO Correlations within subjects. Given

the high homogeneity of the HCP dataset, we expected this to provide a lower bound in terms

of dissimilarity between scans belonging to a given subject. Notwithstanding inherent differences

(2-sample Kolmogorov-Smirnov test, k = 0.19 and p < 10−3 for MP Differences, k = 0.329 and

p < 10−3 for FO Correlations), both MP Differences and FO Correlations distributions displayed

remarkable similarity in the distributions of MP Differences (peak = 0.06 for HCP data and peak

= 0.06 for TS data, Fig. 5.3(b) left plot) and FO correlations (peak = 0.9 for HCP data and peak

= 0.93 for TS data, Fig. 5.3(b) right plot). Moreover, the interquartile range also had large overlap,

particularly for MP Differences (Fig. 5.3(b) legend). These results provided initial evidence for the

presence of – and our ability to infer – subject-specific brain dynamics patterns.

We next interrogated in detail the Traveling-subject dataset. Each scanning factor consid-

ered in this study had multiple distinct attributes. For instance, for the factor scanner manufacturer

there were sessions recorded through scanners produced by three different manufacturers (Siemens,

Philips, and General Electric, see also Supplementary Table 5.2). We computed the values of MP
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Differences and FO Correlations for all the runs of the same subject and the same factor attribute

(SS), the same subject and different factor attributes (SD), and different subjects but the same

factor attribute (DS). A 1-way ANOVA on the median MP Differences (Fig. 5.4(a)), and on the

median FO Correlations (Fig. 5.4(b)), resulted in a highly significant main effect of comparison

group (SS, SD, DS), for both measures (MP differences: F2,15 = 7.64, p = 0.005; FO correlations:

F2,15 = 19.76, p < 10−3). Applying post-hoc comparisons, we found that, on average, the median

MP Differences for the same subject within the same factor (SS) were significantly lower than the

median MP Differences for different subjects within the same factor (DS), (∼ 38% lower, 2-sided

t-test, t10 = −3.59, p = 0.005, Fig. 5.4(a)). Analogously, on average, the median FO Correlations

within the same factor for the same subject were higher than across different subjects (∼ 10%

higher, 2-sided t-test, t10 = 8.15, p < 10−3, Fig. 5.4(b)). Additional evidence for how the state time

courses of a given subject (within the same factor attributes) tended to be particularly similar was

also evident in the FO Correlations median values of the group SS being significantly higher than

the median FO Correlations in the groups SD and DS (Fig. 5.4(b)). These findings support the

hypothesis that MP Differences and FO Correlations are robust subject-specific measures, as they

were resilient to the single effect of all the factors considered in this study.

To further substantiate these results, we used a simple machine learning approach to predict

individuals based on their brain dynamics fingerprints. We applied logistic regression to classify the

individuals in the Traveling-subject dataset by a leave-one-attribute-out cross-validation procedure

(Materials and Methods). In brief, for each factor, we repeated the training and validation of the

classifier as many times as the number of factor attributes, using each time the samples of one

left-out factor attribute as validation set and the remaining samples from all other attributes as

training set. We found the accuracy of the classification to be consistently well above the theoretical

chance level (9 subjects: 1/9 ≈ 0.11), scoring on average 0.22 ± 0.02 for the classification based on

MPs (a single value for each factor attribute) (t-test against chance level, t5 = 16.4, p < 10−4),
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Figure 5.4: Metastate Profile Differences and FO Correlations within vs between subjects, across
scanning factors. (a)-(b) The average median of the MP Differences and FO Correlations for the three
sets SS (Same subject Same factor attribute), SD (Same subject Different factor attributes), and DS
(Different subjects Same factor attribute). MP Differences are the absolute difference between the
Metastate Profiles of different runs, while FO Correlations are the pairwise correlation between the
Fractional Occupancy vectors of different runs. The set SS consistently displays lower MP Differences
and higher FO Correlations than the set DS, confirming the fact that such metrics are subject-
specific. The fact that the set SD lies between SS and DS suggests that some scanning parameters
influence the aforementioned metrics for resting-state scans of the same subject, but not as much as
inter-individual differences. Bars represent the median, error bars the SEM. Statistical comparisons
were performed with 2-sided t-tests. (c)-(h) Distributions of values for both metrics and all subjects
pooled. The set SS comprises the MP Differences (resp., FO Correlations) computed for each subject
within the same factor attribute (e.g., for ‘Days’, day 1), and the SS distribution displays these values
for all subjects; the set SD consists of the MP Differences (resp., FO Correlations) computed for
each subject across different attributes of the same factor (e.g., all possible combinations within
‘Days’), and the SD distribution displays these values for all subjects; finally, the set DS consists
of the MP Differences (resp., FO Correlations) computed across all subjects within the same factor
attribute, and the DS distribution displays these values for all attributes of the same factor. For all
the distributions, the black dashed lines illustrate the mean. In panels (g) and (h) the difference
between SS and SD distributions was not significant (Table 5.1).

0.30 ± 0.03 for the classification based on FOs (a length-11 vector for each factor attribute) (t-test

against chance level, t5 = 17.62, p < 10−3), and 0.28 ± 0.02 when using the combined measures

(t-test against chance level, t5 = 21.56, p < 10−3). We report the classification results for each

factor in see Supplementary Table 5.4 (see also Supplementary Figure 5.12).
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Table 5.1: 2-Sample Kolmogorov-Smirnov test results for MP Differences and FO Correlations. The
check-mark indicates that the difference is significant (i.e., the null hypothesis that the samples are
drawn from the same underlying continuous population can be rejected at the 5% significance level),
and the cross otherwise. All p-values have been FDR-adjusted [129] and they all satisfy p < 10−3

when the null hypothesis is rejected. Test statistics are reported in Supplementary Table 5.3. SS:
Same subject Same factor attribute. SD: Same subject Different factor attributes. DS: Different
subjects Same factor attribute.

MP Diff. FO Corr.

Factor

SS

vs

SD

SD

vs

DS

SS

vs

SD

SD

vs

DS

1. Site 3 3 3 3

2. Day 3 3 3 3

3. Phase 7 3 7 3

4. Channels/Coil 3 3 3 3

5. Manufacturer 3 3 3 3

6. Scanner 3 3 3 7

5.3.3 In rs-fMRI Data, Not All Factors are Equal

Given that the Traveling-subject dataset contained a considerable number of factors, we

inquired which of these factors, and to what extent, influenced the subject-specific fingerprints

defined on the HMM state time courses. Specifically, we asked which factors affected the MP

Differences and the FO Correlations most, both within and across subjects. Thus, we compared

three different groups (SS, SD, and DS, as illustrated in Fig. 5.1(b)) of MP Differences and FO

Correlations, for six different factors, each containing at least two attributes (see Supplementary

Table 5.2 for the full list of factors and associated attributes).

Although different runs always carried some variability, some factors seemed to influence the

MP Differences and the FO Correlations more than inherent inter-subject differences. We summarize

the main results of this comparison in Fig. 5.4 and report the additional ones in Supplementary
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Figure 5.13. We also report in Table 5.1 the results of Kolmogorov-Smirnov nonparametric tests

between all the distributions of values for the groups of MP Differences and FO Correlations. More

in detail, by comparing the distributions of values for both metrics between the sets SS (Same

subject and Same factor attribute) and SD (Same subject and Different factor attributes), we found

them to be statistically different (p < 10−3, see Table 5.1) for all factors except for the phase

encoding direction, as also noticeable in Fig. 5.4(g)-(h). It is worth noting that the median MP

Difference of any given subject displayed only small changes in the comparison within attribute vs.

between attributes for all factors (2-sided t-test, t10 = −1.55, p = 0.15); compatibly, the median FO

Correlations were, on average, ∼ 6.5% higher in the group SS than in the group SD (2-sided t-test,

t10 = 3.43, p = 0.007).

Additionally, the machine learning classifications of brain dynamics fingerprints described

earlier were qualitatively generally in agreement with these findings. Leave-one-attribute-out clas-

sification revealed that, for both fingerprints, the accuracy in predicting individual subjects was

the lowest when the training and validation sets were based on different days (see Supplementary

Table 5.4).

To further evaluate the influence that different scanning variables have on MP Differences

and FO Correlations, we directly compared their effects across these fingerprints. We first ana-

lyzed the raw medians of the distributions of MP Differences and FO Correlations for each scanning

factor in the groups SS (Same subject Same factor attribute), SD (Same subject Different factor

attributes), and DS (Different subjects Same factor attribute). We found that, while both finger-

prints possessed a shared variance (Fig. 5.5(a), Coefficient of determination R2 = 0.375), they also

provided independent information. In fact, as evident not only by their distributions of values in

Fig. 5.4, MP Differences displayed consistently larger median differences within the three groups of

values (SS, SD, DS) than FO Correlations (Fig. 5.5(a), 2-sided Wilcoxon signed rank test, z = 3.68,

p < 10−3).
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Figure 5.5: Effect of scanning factors within and across MP Differences and FO Correlations
distributions. The dashed line represents the diagonal y=x. (a) The x and y axes represent the
median of MP Differences and 1 - median of FO Correlations, respectively, for different scanning
factors in different groups SS, SD, and DS, along with the standard error of mean. The median
of MP Differences is more affected by all of the scanning factors (Wilcoxon signed-rank test, z =
3.68, p < 10−3). (b) The effect size (Cohen’s d) values obtained by comparing the log-transformed
distributions of the MP Differences and FO Correlations across different scanning session factors
and attributes. The ellipses represent the least squares minimization of the distance from the cloud
of points for each of the three sets [130]. The largest effect sizes were consistently caused by the
factors site and day, for all the comparisons between groups of distributions. (c) Median differences
between the sets SD and DS. Positive values suggest that the noise induced in our metrics by different
scanning factors is larger than the inherent inter-subject differences. The factor scanner is depicted
differently as it was not statistically significant for the FO Correlations (see Table 5.1).

Next, to achieve an unbiased estimate of the effect size of each factor on the distributions

of MP Differences and FO Correlations, we computed the Cohen’s d from the log-transformed

distributions of the MP Differences and FO Correlations across all scanning factors, between groups
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SS-SD, and SD-DS. Fig. 5.5(b) highlights how the dissimilarity between brain dynamics fingerprints

was the greatest when comparing, for the same scanning factor, measures from the same subject

and measures from different subjects. Based on this observation, we assessed which scanning factors

influenced the median values of the groups SD and DS the most by computing mSD −mDS , where

m denoted the median, for the MP Differences, and (1−mSD)− (1−mDS) for the FO Correlations.

Notice that a positive value indicates that the noise induced by different factors (group SD) has a

larger effect than than inter-subject differences (group DS). In accordance with the analysis above,

we found that most of the scanning factors seemed to induce less noise on our metrics than the inter-

subject differences. Therefore, while site and day were the co-variate associated with the largest

effect in the two groups SS vs SD and SD vs DS (Fig. 5.5(b)), the results in Fig. 5.5(c) suggest that

the number of coils and the manufacturer are the only factors for which we can robustly estimate

the effect on the data, beyond inter-subject differences.

5.4 Discussion

In this chapter, we addressed the issues of reproducibility and variability of fMRI data

from the angle of brain dynamics. We leveraged the large HCP collection of rs-fMRI data to infer a

hidden Markov model capable of describing brain state time courses at the subject level. By applying

such a model to a dataset of traveling subjects, we found that brain network dynamics displayed

signature fingerprints that were robust to different physical and temporal factors affecting the data

that populates multi-site collections of neuroimaging data. Precisely, we found that MP Differences

and FO Correlations are reliable, stable individual traits, as shown by the SS/DS differences, when

taken across all factors (Fig. 5.4(a)-(b)). This study corroborates and complements previous work

that found that the emergence of temporal patterns of brain activity tend to repeat more similarly

within the same subject and over time [105,110,131]. This result promotes further investigations on

the dynamical characteristics of brain states.
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Recent years have witnessed a growing interest in the identification and characterization

of the factors that tend to introduce spurious effects in multi-site fMRI recordings, endangering the

reproducibility and the overall quality of the results that may be inferred from these data. The first

warnings came from a study that investigated sources of nuisance variation across multiple sites and

their impact on rs-fMRI data [100], followed by a number of studies that reported mostly consistent

results [91–93, 96, 97]. Although we used different methods, our finding that different scanning

factors introduce noise into brain dynamics fingerprints (as can be seen by the SS/SD comparisons

in Fig. 5.5(b)) is in line with prior reports [93, 96]. Furthermore, the present study made use of

larger datasets. The Traveling-subject dataset contains the largest number of subjects out of all the

aforementioned studies. To date, only [93] has more sites than the Traveling-subject dataset used in

this study, but it has the drawback of scanning only a single subject. The Traveling-subject dataset

also allowed for the analysis of some scanning factors – such as the numbers of channels per coil or

different scanner models within the same vendor – that have not been taken into consideration in

previous work, giving more breadth and depth to our findings. Nevertheless, it is important to stress

out that the potential variability brought in by scanning factors may not always be a necessarily

negative feature. In fact, such variability may even be a powerful test for reproducibility of some

findings. For instance, although different scanning factors may be confounds for certain analyses

(e.g., comparing participant populations from different sites), they can also be used to test the

robustness of a model when generalizing analyses across sites with different scanning parameters.

Our results complement, from a dynamical point of view, both seminal and more recent work

reporting more dissimilar resting-state networks inter-subject than intra-subject [93,100,116,132].

Functional connectivity – typically computed as the correlation between time series repre-

senting the average activity in a brain region – has been the mainstay in the analysis of variability in

fMRI data. Previous work has demonstrated that a sizable amount of recordings from the same site

enables precise measurements of individual variations in functional connectivity [116], and that in-

dividual differences in functional networks are not affected by anatomical misalignment [132]. Here,
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we complement such studies by showing that individual signatures can still be (easily) recovered

within limited recordings from multiple sites (i.e., in the Traveling-subject dataset). To note, the

comparison of functional connectivity between scanning sessions is inherently different from the

comparison of state time courses. Differently from functional connectivity computed over a whole

scanning session, the HMM captures the local temporal wandering of brain activity across states

(networks). Therefore, while comparing functional connectivity between different subjects may be

akin to comparing longer-term traits, comparing state time courses between subjects may be more

closely aligned to comparing a repetition of sequences of brain states at rest.

While the aforementioned studies on functional connectivity have significantly increased our

understanding of the brain as a system that obeys network-wide principles, they are mainly agnostic

to temporal dynamics within the scanning sessions. This may prevent the level of precision that could

at times be the most clinically relevant [133]. Differently from [93, 97], where time seemed to play

a negligible effect, we found that different scanning days greatly affected our estimation of brain

network dynamics. As mentioned earlier, an intuitive explanation for this apparent discrepancy

is that functional connectivity tends to be associated to more coarsely defined subjective traits,

whereas an HMM, being inherently more sensitive to temporal differences, is apt to capture more

instantaneous cognitive processes. It is worth noting that our findings do not go against the claim

that functional connectivity networks remain a reliable subject-specific fingerprint over long period

of times, but rather we suggest that brain state trajectories can differ extensively between days,

probably due to different cognitive or mental processes. As such, we suggest that dynamic and static

measures in fact carry complementary information, which may provide additional insight when used

in combination. However, due the limited number of scanning sessions taken on different days in the

Traveling-subject dataset (see Supplementary Table 5.2), and to the inter-subject variability being

larger than the variability across different factors (see Fig. 5.5(c)), future studies will need to further

validate this fact.
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How do HMMs compare with the sliding window approach? The sliding window analysis

is typically used to improve the temporal definition of functional connectivity studies [134]. Albeit

being intrinsically easier to set up, it has crucial limitations. Namely, the sliding window size is

constrained by a trade-off between time resolution and quality of the results, and the conclusions

from sliding window studies tend to be affected by sampling variability [135]. Conversely, HMM

is as fast as the data modality allows, since it provides instantaneous likelihood of high correlation

between brain signals [110].

If the goal of a study is a robust and detailed description of a system’s dynamics, the

HMM approach requires large amounts of data for training purposes, thus appearing not suitable to

analyze small cohorts of subjects. However, in this study we give proof-of-concept that one can use

a very large dataset (i.e. HCP) to infer an HMM, which can then be applied to a smaller dataset.

Our results indicate that this procedure is robust. Interestingly, if only a relatively small number of

subjects is available for the inference process, it is still possible to recover a coarser – and nonrandom

– representation of the brain dynamics by using the TPM inferred from a large dataset as a prior

(see Supplementary Figure 5.11(d)). Thus, detailed analyses and claims based on hidden Markov

modeling should be gauged on the size of the available data. This is a common requirement in

neuroimaging studies, as functional connectivity studies also require large amount of data to enable

precise measurements [116].

Despite its capabilities, hidden Markov modeling is based on some premises (see also [108,

110] for thorough discussions). It is worth noting that the HMM builds on the Markovian assumption,

theorizing that we can predict, based on the state we are at time t, which state is more likely to

follow at time t+ 1. Yet, while the brain may violate this assumption due to established long-range

temporal dependencies [81], FO Correlations and MP Differences inherently display information that

appears at longer time scales.

There are some limitations to this work. For example, while the decoding approach utilized

here - training the HMM on the HCP data, and infer brain states trajectories in the Traveling-subject
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dataset, is a strength of this study, it is also one of its limitations. The HCP and Traveling-

subject datasets harbor some differences relating to the scanning protocols or even the countries in

which the data were collected (US and Japan). For instance, the sampling rate of the two datasets

were originally different (TRHCP = 0.72 s and TRTS = 2.5 s). As such, the up-sampling of the

Traveling-subject dataset may have been sub-optimal and thus bias the overall HMM-based brain

state dynamics estimation. Yet, the presence of these very differences appear to corroborate the

finding that brain dynamics fingerprints are subject-specific. Specifically, we still find that, on

average, the MP Differences (resp., FO Correlations) are lower (resp., higher) within subjects than

across subjects, even when comparing runs with different scanning parameters. The fact that, at

the within-subject level, these two measures had very similar values to those obtained from the

HCP dataset (where both model and fingerprints were derived from the same data) provides strong

support for this interpretation (i.e., brain dynamics fingerprints are subject-specific), such that it

is unlikely that these results are due to inherent bias or noise. A second limitation may arise

from the factors that were considered in the Traveling-subject dataset. Although there are several

factors, some with many attributes (e.g., there are 12 sites), these factors are sometimes nested

within each other. For instance, within the same phase encoding attribute there are scans belonging

to different sites. This aspect may have partly influenced (reduced) the effect size of such factors

which are heterogeneous with respect to other factors, while factors such as day or site would remain

unaffected, since these scans were recorded at the same site, with the same protocol. Above all, while

the Traveling-subject dataset allowed us to investigate the nuisance effect of multiple variables, it

did not offer any insight into other relevant scanning factors such as TR length, the duration of the

scanning session, and voxel sizes. To enhance our collective appraisal of the sources of variability

in heterogeneous collections of rs-fMRI data, it will be important to generate datasets that include

variations along these additional dimensions.

Given the considerable recent advances in inference techniques [108,136,137], and the ever-

increasing availability of computational power, our work further suggests that the HMM is, and,
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most importantly, will be, a powerful technique to explain and interpret the dynamic aspects of

the brain. Furthermore, the possibility of inferring an HMM on a very large dataset to apply it

to a much smaller one has important implications for clinical applications. In the future, perhaps

with even more data, these general models could be built and then utilized to infer subject-specific

fingerprints in other smaller cohorts and be used for a more personalized approach to treatments. In

other words, a one-size-fits-all approach could be employed to build the model in its general terms,

consequently allowing us to move to a personalized course of action by evaluating the model at the

individual level. For instance, closed-loop fMRI neurofeedback [138, 139] could significantly benefit

from these models, which will allow for a more holistic approach to the dynamical properties of

mental and cognitive processes, particularly from a clinical perspective [114,133,140,141].

5.5 Conclusion

In this chapter, we address the important issues of reproducibility and variability of fMRI

data. We leveraged the large, homogeneous HCP collection of resting-state data to reliably infer a

hidden Markov model capable of describing the brain state time courses at the subject level. By

applying such a model to a dataset of traveling subjects, we show that dynamical states can be

estimated reliably. Specifically, we find that brain network dynamics displays fingerprints that are

robust to different scanning factors and distinctive for each subject. Further, we explore which

scanning factors impact measures of brain dynamics the most, and what is the magnitude of their

effect. We find that, amongst the scanning factors available in our dataset, sites and days tend to

induce higher variability in the estimation of individual brain state time courses. However, due to

the large noise induced by inter-subject variability and the limited sample size, this claim will need

further validation by future studies.

These results enable and promote further investigations on the dynamical characteristics

of brain states. Once a good model is inferred, it can be applied to a battery of different goals,
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such as the analysis of task-based datasets, the examination of data collections from subjects with

neurological disorders, and the promising use in clinical or rehabilitation settings, for instance by

using brain state inference in clinical populations to estimate the best time for providing a given

treatment.

5.6 Appendix

5.6.1 Control Analysis with Autoregressive Data

To verify the robustness of our analysis in regards to the application of the HMM model to

the Traveling-subject dataset, we applied the HCP-trained HMM to autoregressive data. To assess

a model AR(n) of order n fairly and prevent it from trying to disproportionately fit to the first n

datapoints, we discarded the first 3n datapoints. For this analysis, we have chosen autoregressive

model of order 5. With this AR(5) model, we have generated 50 time series as dummy ICA timeseries

to be used the model inference. Analogously to the real ICA timeseries, the AR time series have

been normalized (zero mean and unitary standard deviation).

The decoding of our model on autoregressive time series yielded state time courses that in

which state 5 is predominant in all different scanning sessions. See Fig. 5.11 for a few examples of the

state time courses obtained from HMM decoding of the randomly permute Traveling-subject time

series. It is worth noting that state 5 is the state that is mostly uncorrelated from the remaining

11 states and it is the state with the largest variance. In [110], it is demonstrated that state 5 is

associated with motion artifacts in the scanner. The outcome of the HMM decoding on autoregressive

data is in accordance with these observations, therefore supporting the robustness of our findings.
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Figure 5.6: Network associated with the Transition Probability Matrix of the HMM used in this
study. The first 4 states comprise metastate 1, whereas states 6 to 11 comprise metastate 2. State
5 is mostly uncorrelated to the other states, is associated with head motion, and has the highest
variance [110]. The interconnections depicted in this graph represent probabilities higher than
10% (i.e. > 0.1) in the HMM’s Transition Probability Matrix, and their color and thickness are
proportional to their magnitude.
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Figure 5.7: Best Model inferred on downsampled HCP time series. (a) Transition probability matrix
for the model inferred on downsampled HCP time series. The TPM is very skewed towards only
three states: 10,11, 12. (b) FO Correlation Matrix for the model inferred on downsampled HCP time
series. The metastate structure (groups of states in which the state time courses tend to remain) is
not as clear as on the original time series, but still emergent.
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Figure 5.8: Models ranking based on the free energy. We ranked the N = 50 models inferred in this
study based on their free energy, and chose the one minimizing this quantity. To compare all the
models (N1200 = 28 models inferred on 1200-subject HCP release, N820 = 14 models inferred on the
820-subject HCP release, and NTS = 6 models inferred on the 9 subjects of the Traveling-Subject
dataset, so that N1200 +N820 +NTS = 50), each free energy calculation has been adjusted to account
for different dataset sizes. The FO Correlation Matrix can be found in Figure S2, and further details
on different models from the best one can be found in Figure S4.
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Figure 5.10: Transition Probability Matrix and Fractional Occupancy Correlation Matrix for dif-
ferent HMM models.(a) The best model among all the models trained in terms of free energy and
Euclidean distance from the ideal FO Correlation Matrix. (b) The best model in terms of free energy
among all models trained on the subjects of the HCP 1200-subject distribution. (c) The best model
in terms of Euclidean distance from the ideal FO Correlation Matrix among all models trained on the
subjects of the HCP 1200-subject distribution. (d) The best model in terms of Euclidean distance
from the ideal FO Correlation Matrix among all models trained on the Traveling-subject dataset by
using the model (a) as a prior. Notice that, while the model in this last panel displays very distinct
metastate separation in the TPM matrix, such a matrix is not irreducible (i.e. there does not exist a
path connecting the two groups of states), making it not suitable to represent any biological system.

90



(a) (b)

0 100 200
0

1

pr
ob

.

st
at

es

time (min)
0 5 10

1

6

12

state time course

0 100 200
0

1

pr
ob

.

st
at

es

time (min)
0 5 10

1

6

12

state time course

0 100 200
0

1

pr
ob

.

st
at

es

time (min)
0 5 10

1

6

12

state time course

0 100 200
0

1

pr
ob

.

st
at

es

time (min)
0 5 10

1

6

12

state time course
(c) (d)

0 100 200
0

1

pr
ob

.

st
at

es

time (min)
0 5 10

1

6

12

state time course

0 100 200
0

1

pr
ob

.

st
at

es

time (min)
0 5 10

1

6

12

state time course
(e) (f)

Figure 5.11: Examples of state time courses after HMM decoding on AR(5) time series. (a)-(f) To
provide a baseline for our study, we applied the HMM model used in this chapter to autoregressive
data with dimension 50×T , where T denotes the number of time points. The HMM decoding yields
state time courses that stay most of the time in state 5, which is the state that is highly uncorrelated
from the other 11 states and the one with the highest variance. This fact supports the goodness of
fit of the inferred model, as randomized time series do not provide meaningful state time courses.
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Figure 5.12: Summary of the leave-one-attribute-out cross-validation for all scanning factors. The
three bars represent the average classification accuracy across all different scanning factors, along
with the standard deviation, for the Metastate Profiles (MP), the Fractional Occupancies (FO), and
the combination of the two, respectively. The red dashed line indicates the baseline chance level.
These results show that the personal signature of brain dynamics fingerprints emerges even with a
simple logistic regression classifier.
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Figure 5.13: Distributions of values for MP Differences and FO Correlations, for the factors: numbers
of channels per coil, manufacturers, and scanner model. In panels (a) to (f), the set SS comprises
the MP Differences (resp., FO Correlations) computed for each subject within the same factor
attribute, and the SS distribution displays these values for all subjects; the set SD consists of the
MP Differences (resp., FO Correlations) computed for each subject across different attributes of the
same factor, and the SD distribution displays these values for all subjects; finally, the set DS consists
of the MP Differences (resp., FO Correlations) computed across all subjects within the same factor
attribute, and the DS distribution displays these values for all attributes of the same factor. Further,
for all the distributions, the black dashed lines illustrate the mean. The difference between SS and
DS distributions in panel (a) and the difference between SD and DS distributions in panel (f) are
not statistically significant (see also Table 1 in the main text).
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Table 5.3: Kolmogorov-Smirnov test statistics for MP Differences and FO Correlations

MP Differences FO Correlations

Parameter

SS

vs

SD

SD

vs

DS

SS

vs

SD

SD

vs

DS

1. Site 0.28 0.16 0.55 0.14

2. Day 0.44 0.25 0.47 0.27

3. Phase 0.04 0.15 0.04 0.17

4. Channels/Coil 0.14 0.15 0.25 0.04

5. Manufacturer 0.07 0.14 0.22 0.03

6. Scanner 0.15 0.09 0.26 0.01

Table 5.4: Logistic regression accuracy results

Parameter MP FO combined

1. Site 0.21 0.29 0.29

2. Day 0.19 0.27 0.25

3. Phase 0.22 0.29 0.27

4. Channels/Coil 0.23 0.30 0.28

5. Manufacturer 0.22 0.34 0.32

6. Scanner 0.22 0.32 0.27

Mean 0.22 0.30 0.28

Standard Deviation 0.02 0.03 0.02
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Chapter 6

Cluster Synchronization in

Networks of Phase Oscillators

In this chapter, we present a top-down approach to the modeling and analysis of brain

dynamics synchronization. That is, we propose and analyze a dynamical network model to replicate

the complex structure-function relationship of neural systems. As functional brain networks are

characterized by the degree of similarity – synchronization – between neural activity of distinct

brain regions, here we model neural activity as the output of a network of nonlinear oscillators, and

reveal the mechanisms underlying different synchronization patterns.

To do so, we study cluster synchronization in networks of oscillators with heterogenous Ku-

ramoto dynamics, where multiple groups of oscillators with identical phases coexist in a connected

network. Cluster synchronization is at the basis of several biological and technological processes;

yet the underlying mechanisms to enable cluster synchronization of Kuramoto oscillators have re-

mained elusive. In this chapter we derive quantitative conditions on the network weights, cluster

configuration, and oscillators’ natural frequency that ensure asymptotic stability of the cluster syn-

chronization manifold; that is, the ability to recover the desired cluster synchronization configuration
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following a perturbation of the oscillators’ states.

Qualitatively, our results show that cluster synchronization is stable when the intra-cluster

coupling is sufficiently stronger than the inter-cluster coupling, the natural frequencies of the oscilla-

tors in distinct clusters are sufficiently different, or, in the case of two clusters, when the intra-cluster

dynamics is homogeneous. We refer the reader to [142] and [143] for a comprehensive discussion.

6.1 Introduction

Synchronization refers broadly to patterns of coordinated activity that arise spontaneously

or by design in several natural and man-made systems [144–146]. Examples include coherent firing of

neuronal populations in the brain [147], coordinated flashing of fireflies [148], flocking of birds [149],

exchange of signals in wireless networks [150], consensus in multi-agent systems [29], and power

generation in the smart grid [151]. Synchronization enables complex functions: while some systems

require complete (or full) synchronization among all the components in order to function properly,

others rely on cluster (or partial) synchronization, where different groups exhibit different, yet

synchronized, internal behaviors [152].

While studies of full synchronization are numerous and have generated a rich literature, e.g.,

see [153–155], conditions explaining the onset of cluster synchronization and its properties are less

well understood. Such conditions are necessary for the analysis and, more importantly, the control

of synchronized activity across biological [156–158] and technological [159] systems. For instance, a

deeper understanding of the mechanisms enabling cluster synchronization might not only shed light

on the nature of the healthy human brain [160], but also enable and guide targeted interventions for

patients with neurological disorders, such as epilepsy [161] and Parkinson’s disease [162]. In fact,

he underlying mechanisms of cluster synchronization are particularly useful to model, analyze, and

regulate synchronized neural activity in the human brain (see Fig. 6.1).

We study cluster synchronization in networks of oscillators with Kuramoto dynamics [163],

97



�1

1

1 100
-5

0

5

1 100
-5

0

5

1 100
-5

0

5

1 100
-5

0

5

1 100
-5

0

5

1 100
-5

0

5

-5

0

5

co
rre

la
tio

n 
le

ve
l

<latexit sha1_base64="IFzDROaGB7K3/eAPKBS7ikb3L2g="></latexit><latexit sha1_base64="IFzDROaGB7K3/eAPKBS7ikb3L2g="></latexit><latexit sha1_base64="IFzDROaGB7K3/eAPKBS7ikb3L2g="></latexit><latexit sha1_base64="IFzDROaGB7K3/eAPKBS7ikb3L2g="></latexit>

re
gi
on

s
<latexit sha1_base64="VAsmbBq2Mz2eRfwHQEabfHsEuiU="></latexit><latexit sha1_base64="VAsmbBq2Mz2eRfwHQEabfHsEuiU="></latexit><latexit sha1_base64="VAsmbBq2Mz2eRfwHQEabfHsEuiU="></latexit><latexit sha1_base64="VAsmbBq2Mz2eRfwHQEabfHsEuiU="></latexit>

Correlation pattern
<latexit sha1_base64="bG/fUdCEIyljEvXpwvKel7gbO40="></latexit><latexit sha1_base64="bG/fUdCEIyljEvXpwvKel7gbO40=">AAACe3icbZFLSwMxEMfT9f1+Hb0Ei6BSZFcQPRYU9OChglWhFplNpzU0myzJrFgWP4tX/Uh+GMHstoKtDgT++c1kJjMTp0o6CsPPSjA1PTM7N7+wuLS8srq2vrF560xmBTaFUcbex+BQSY1NkqTwPrUISazwLu6fFf67Z7ROGn1DgxTbCfS07EoB5NHj+taZsRZVeeMpEKH1tBoehqXxvyIaiSobWeNxo9J46BiRJahJKHCuFYUptXOwJIXC18WHzGEKog89bHmpIUHXzsvfv/JdTzq8a6w/mnhJf7/IIXFukMQ+MgF6cpO+Av7na2XUPW3nUqcZoRbDQt1McTK8GAXvSIuC1MALEFb6v3LxBBaEH8J4lTJ3imKsk/wl01KYDk5QRS9kwUOHlIDURVf5jfQt/zCfrIB757InydWu/PR17cIi9vd/Av0OosmJ/xW3R4eR19dH1XqzPtzGPNtmO2yPReyE1dkla7AmE2zA3tg7+6h8BdXgIKgNQ4PKaINbbMyC428IcMUE</latexit><latexit sha1_base64="bG/fUdCEIyljEvXpwvKel7gbO40="></latexit><latexit sha1_base64="bG/fUdCEIyljEvXpwvKel7gbO40="></latexit>

Neural activity
<latexit sha1_base64="DZ6Pzt8rOnUf/wujYJiDt/5aXNo="></latexit><latexit sha1_base64="DZ6Pzt8rOnUf/wujYJiDt/5aXNo="></latexit><latexit sha1_base64="DZ6Pzt8rOnUf/wujYJiDt/5aXNo="></latexit><latexit sha1_base64="DZ6Pzt8rOnUf/wujYJiDt/5aXNo="></latexit>

Brain regions
<latexit sha1_base64="NPkiSDwdzMPS2i1NCwR3OsvwWaQ="></latexit><latexit sha1_base64="NPkiSDwdzMPS2i1NCwR3OsvwWaQ="></latexit><latexit sha1_base64="NPkiSDwdzMPS2i1NCwR3OsvwWaQ="></latexit><latexit sha1_base64="NPkiSDwdzMPS2i1NCwR3OsvwWaQ="></latexit>

correlation
<latexit sha1_base64="NtlB5dw2ppo9CkWCo5zc7rlSI5g="></latexit><latexit sha1_base64="NtlB5dw2ppo9CkWCo5zc7rlSI5g="></latexit><latexit sha1_base64="NtlB5dw2ppo9CkWCo5zc7rlSI5g="></latexit><latexit sha1_base64="NtlB5dw2ppo9CkWCo5zc7rlSI5g="></latexit>

correlation
<latexit sha1_base64="NtlB5dw2ppo9CkWCo5zc7rlSI5g="></latexit><latexit sha1_base64="NtlB5dw2ppo9CkWCo5zc7rlSI5g="></latexit><latexit sha1_base64="NtlB5dw2ppo9CkWCo5zc7rlSI5g="></latexit><latexit sha1_base64="NtlB5dw2ppo9CkWCo5zc7rlSI5g=">AAACcXicbZHNSgMxEMfT9fu76km8BIugWGS3Fz0WFPTgoYrVQltKNp22odlkSWbFsvgYXvVVfA2fwxcwu61gqwOBP7+ZzGcYS2HR9z8L3tz8wuLS8srq2vrG5lZxe+fB6sRwqHMttWmEzIIUCuooUEIjNsCiUMJjOLzI/I9PYKzQ6h5HMbQj1leiJzhDh5pcGwMy151iyT/1c6N/RTARJTKxWme7UGt1NU8iUMgls7YZ+DG2U2ZQcAkvq63EQsz4kPWh6aRiEdh2mvf8Qg8d6dKeNu4ppDn9/SNlkbWjKHSREcOBnfVl8D9fM8HeeTsVKk4QFB8X6iWSoqbZAmhXGOAoR04wboTrlfIBM4yjW9NUlTx3DHxqkvQ5UYLrLsxQic9omIMWMGJCZVOl98KN/MNcsgweXYq+QFu+cVtX5SsDMDz+CXQ3CGY3/lc8VE4Dp28rperdx/gay2SfHJAjEpAzUiXXpEbqhBNNXskbeS98eXse9Q7GoV5hcsFdMmXeyTdH+MIC</latexit>

time window
<latexit sha1_base64="rf4V00xSmZJpT8e4pxkwA33kpC8="></latexit><latexit sha1_base64="rf4V00xSmZJpT8e4pxkwA33kpC8="></latexit><latexit sha1_base64="rf4V00xSmZJpT8e4pxkwA33kpC8=">AAACcXicbVFLSgNBEO2M/7/RlbhpDIKiyEw2uhQUdOEiilEhBunpqcQm/Rm6azRh8Bhu9Spew3N4AXuSCCZa0PB4VV2f9+JUCodh+FkKJianpmdm5+YXFpeWV1bLazfOZJZDnRtp7F3MHEihoY4CJdylFpiKJdzGnZMif/sE1gmjr7GXQlOxthYtwRl6qoFCAX0WOjHPD6uV8CDsB/0LoiGokGHUHsql2n1ieKZAI5fMuUYUptjMmUXBJbzM32cOUsY7rA0NDzVT4Jp5f+cXuu2ZhLaM9U8j7bO/f+RMOddTsa9UDB/deK4g/8s1MmwdNXOh0wxB88GgViYpGloIQBNhgaPsecC4FX5Xyh+ZZRy9TCNT+r1T4COX5N1MC24SGGMldtEyTzpAxYQursqvvbzuh/PNCnLnVLQFuv0L74DeP7MAnd2fQu9BNK74X3BTPYg8vqxWjq8+Bm7Mkk2yRXZIRA7JMTknNVInnBjySt7Ie+kr2AhosDUoDUpDB9fJSAR738/Gwcc=</latexit><latexit sha1_base64="rf4V00xSmZJpT8e4pxkwA33kpC8="></latexit>

����
<latexit sha1_base64="m4X1gzuTcLNZrjZWBRSlN4lXDH8="></latexit><latexit sha1_base64="m4X1gzuTcLNZrjZWBRSlN4lXDH8=">AAACqXichVHLattAFB2rrzR9Oc2yG1FTSGkIUig0y4QG0kUWDsSJqWXM1ejaHjwPMXMVbAZ9T78m25b+TUeOA7VT6IGBw7mvuefmpRSOkuR3K3r0+MnTZ1vPt1+8fPX6TXvn7ZUzleXY40Ya28/BoRQaeyRIYr+0CCqXeJ3Pvjbx6xu0Thh9SYsShwomWowFBwrSqH2SVbpAm1vg6LObcgqajPIZ4Zw8/Bd1XY/aneQgWSJ+SNIV6bAVuqOdVjcrDK8UauISnBukSUlDD5YEl1hvZ5XDEvgMJjgIVINCN/TLXev4Q1CKeGxseJripfp3hQfl3ELlIVMBTd1mrBH/FRtUND4aeqHLilDzu0HjSsZk4sa4uBAWOclFIMCtCH+N+RSCbxTsXZuy7F0iX9vEzystuClwQ5U0JwtBdEgKhG628pcirHyvhWaNuHcqJoLc/nm4nN4/s4izj/eJ4QbppuMPydXhQRr4xefO8fnqGlvsHXvP9ljKvrBj9o11WY9x9oPdsp/sV/Qpuoj60fe71Ki1qtlla4j4H/On2BU=</latexit><latexit sha1_base64="m4X1gzuTcLNZrjZWBRSlN4lXDH8="></latexit><latexit sha1_base64="m4X1gzuTcLNZrjZWBRSlN4lXDH8="></latexit>

cluster 1
<latexit sha1_base64="IRMtkH0diMVgCRTq3tOEJkr+yIQ="></latexit><latexit sha1_base64="IRMtkH0diMVgCRTq3tOEJkr+yIQ="></latexit><latexit sha1_base64="IRMtkH0diMVgCRTq3tOEJkr+yIQ="></latexit><latexit sha1_base64="IRMtkH0diMVgCRTq3tOEJkr+yIQ=">AAACb3icbZHLSgMxFIYz463ebwsXggSLYKGUGTe6FBR04aKC9UItksmctqFJZkjOiGUo+A5u9cF8DN/ATFvBVg8Efr5zcq5RKoXFIPj0/JnZufmF0uLS8srq2vrG5tatTTLDocETmZj7iFmQQkMDBUq4Tw0wFUm4i3pnhf/uGYwVib7BfgotxTpatAVn6NADl5lFMDR82igHtWBo9K8Ix6JMxlZ/2vTqj3HCMwUauWTWNsMgxVbODAouYbD0mFlIGe+xDjSd1EyBbeXDjgf0wJGYthPjnkY6pL9/5ExZ21eRi1QMu3baV8D/fM0M2yetXOg0Q9B8VKidSYoJLcansTDAUfadYNwI1yvlXWYYd1uYrDLMnQKfmCR/ybTgSQxTVOILGuagBVRM6GKq/Ea4kX+YS1bAw3PREWirV27/unphAHqVn0B3g3B643/F7VEtdPr6qHx6/Tq6Ronskn1ySEJyTE7JJamTBuFEkTfyTj68L3/H3/PpKNT3xhfcJhPmV74BP6fAXg==</latexit>

����
<latexit sha1_base64="m4X1gzuTcLNZrjZWBRSlN4lXDH8="></latexit><latexit sha1_base64="m4X1gzuTcLNZrjZWBRSlN4lXDH8="></latexit><latexit sha1_base64="m4X1gzuTcLNZrjZWBRSlN4lXDH8="></latexit><latexit sha1_base64="m4X1gzuTcLNZrjZWBRSlN4lXDH8="></latexit>

cluster 2
<latexit sha1_base64="t21D3wig4z0TE2Q0D3mvDB8ApN4="></latexit><latexit sha1_base64="t21D3wig4z0TE2Q0D3mvDB8ApN4="></latexit><latexit sha1_base64="t21D3wig4z0TE2Q0D3mvDB8ApN4="></latexit><latexit sha1_base64="t21D3wig4z0TE2Q0D3mvDB8ApN4="></latexit>

����
<latexit sha1_base64="m4X1gzuTcLNZrjZWBRSlN4lXDH8=">AAACqXichVHLattAFB2rrzR9Oc2yG1FTSGkIUig0y4QG0kUWDsSJqWXM1ejaHjwPMXMVbAZ9T78m25b+TUeOA7VT6IGBw7mvuefmpRSOkuR3K3r0+MnTZ1vPt1+8fPX6TXvn7ZUzleXY40Ya28/BoRQaeyRIYr+0CCqXeJ3Pvjbx6xu0Thh9SYsShwomWowFBwrSqH2SVbpAm1vg6LObcgqajPIZ4Zw8/Bd1XY/aneQgWSJ+SNIV6bAVuqOdVjcrDK8UauISnBukSUlDD5YEl1hvZ5XDEvgMJjgIVINCN/TLXev4Q1CKeGxseJripfp3hQfl3ELlIVMBTd1mrBH/FRtUND4aeqHLilDzu0HjSsZk4sa4uBAWOclFIMCtCH+N+RSCbxTsXZuy7F0iX9vEzystuClwQ5U0JwtBdEgKhG628pcirHyvhWaNuHcqJoLc/nm4nN4/s4izj/eJ4QbppuMPydXhQRr4xefO8fnqGlvsHXvP9ljKvrBj9o11WY9x9oPdsp/sV/Qpuoj60fe71Ki1qtlla4j4H/On2BU=</latexit><latexit sha1_base64="m4X1gzuTcLNZrjZWBRSlN4lXDH8="></latexit><latexit sha1_base64="m4X1gzuTcLNZrjZWBRSlN4lXDH8="></latexit><latexit sha1_base64="m4X1gzuTcLNZrjZWBRSlN4lXDH8="></latexit>

cluster 3
<latexit sha1_base64="jgnpHTIHeydidwlxXQiyNp+hwxA=">AAACb3icbZHLSgMxFIbT8X6/LVwIEiyCQpGZutBlQUEXLipYL9RBMulpG5pkhuSMtAyC7+BWH8zH8A3MTCvY6oHAz3dOzjVKpLDo+58lb2p6ZnZufmFxaXlldW19Y/PWxqnh0OCxjM19xCxIoaGBAiXcJwaYiiTcRb2z3H/3DMaKWN/gIIFQsY4WbcEZOvTAZWoRDD1+Wi/7R35h9K8IRqJMRlZ/2ijVH1sxTxVo5JJZ2wz8BMOMGRRcwsviY2ohYbzHOtB0UjMFNsyKjl/oviMt2o6NexppQX//yJiydqAiF6kYdu2kL4f/+Zoptk/DTOgkRdB8WKidSooxzcenLWGAoxw4wbgRrlfKu8ww7rYwXqXInQAfmyTrp1rwuAUTVGIfDXPQAiomdD5VdiPcyD/MJcvhwbnoCLSVK7d/XbkwAL3Dn0B3g2By43/FbfUocPq6Wq5dvw6vMU92yB45IAE5ITVySeqkQThR5I28k4/Sl7ft7Xp0GOqVRhfcImPmHX4DQ63AYA==</latexit><latexit sha1_base64="jgnpHTIHeydidwlxXQiyNp+hwxA="></latexit><latexit sha1_base64="jgnpHTIHeydidwlxXQiyNp+hwxA=">AAACb3icbZHLSgMxFIbT8X6/LVwIEiyCQpGZutBlQUEXLipYL9RBMulpG5pkhuSMtAyC7+BWH8zH8A3MTCvY6oHAz3dOzjVKpLDo+58lb2p6ZnZufmFxaXlldW19Y/PWxqnh0OCxjM19xCxIoaGBAiXcJwaYiiTcRb2z3H/3DMaKWN/gIIFQsY4WbcEZOvTAZWoRDD1+Wi/7R35h9K8IRqJMRlZ/2ijVH1sxTxVo5JJZ2wz8BMOMGRRcwsviY2ohYbzHOtB0UjMFNsyKjl/oviMt2o6NexppQX//yJiydqAiF6kYdu2kL4f/+Zoptk/DTOgkRdB8WKidSooxzcenLWGAoxw4wbgRrlfKu8ww7rYwXqXInQAfmyTrp1rwuAUTVGIfDXPQAiomdD5VdiPcyD/MJcvhwbnoCLSVK7d/XbkwAL3Dn0B3g2By43/FbfUocPq6Wq5dvw6vMU92yB45IAE5ITVySeqkQThR5I28k4/Sl7ft7Xp0GOqVRhfcImPmHX4DQ63AYA==</latexit><latexit sha1_base64="jgnpHTIHeydidwlxXQiyNp+hwxA="></latexit>

Figure 6.1: As evident from fMRI scans, neural activity across different regions is correlated over
time, and this correlation pattern defines clusters of synchronized brain areas corresponding to well-
defined neural systems. Distinct correlation patterns are biomarkers of healthy and diseased neural
states.

which, despite their apparent simplicity, are particularly suited to represent complex synchronization

phenomena in neural systems [164], as well as in many other natural and technological systems [151].

Although our study and modeling choices are guided by the practical need to understand and control

patterns of synchronized functional activity in the human brain, as they naturally arise in healthy and

diseased populations [165,166], in this chapter we focus on developing the mathematical foundations

of a quantitative approach to the analysis and control of cluster synchronization in a weighted

network of Kuramoto oscillators. In particular, we derive conditions on the oscillators’ coupling and

their natural frequencies that guarantee the stability of an arbitrary cluster configuration.

Related work Cluster synchronization, where multiple synchronized groups of oscillators coex-

ist in a connected network, is an exciting phenomenon that has attracted the attention of the

physics, dynamical systems, and controls communities, among others. Existing work on this topic

has shown that cluster-synchronized states can be linked to the existence of certain network symme-

tries [167–171] or symmetries in the nodes’ dynamics [172]. More recently, in [173,174], the stability

of cluster states corresponding to network symmetries is addressed with the Master Stability Func-

tion approach [175]. In contrast to this previous work, [176] combines network symmetries with

contraction analysis to study the stability of synchronized states. Further studies relating contrac-

tion properties and cluster synchronization are conducted in [177, 178]. Finally, control algorithms
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for cluster synchronization are developed in [179, 180]. To the best of our knowledge, however, the

above studies are not applicable to oscillators with Kuramoto dynamics, which we study in this

work.

A few papers have studied cluster synchronization of Kuramoto oscillators. Specifically,

in [181, 182] the authors provide invariance conditions for an approximate definition of cluster syn-

chronization and for particular types of networks. Invariance of exact cluster synchronization, which

is the notion used in this chapter, is also studied in [183, 184]. Stability of exact cluster synchro-

nization is investigated in [185] where, however, only the restrictive case of two clusters for identical

Kuramoto oscillators with inertia is considered, and in [186], where only implicit and numerical

stability conditions are provided. To the best of our knowledge, our work presents the first explicit

analytical conditions for the (local) stability of the cluster synchronization manifold in sparse and

weighted networks of heterogeneous Kuramoto oscillators.

Chapter contribution The main contribution of this chapter is to characterize conditions for the

stability of cluster synchronization in networks of oscillators with Kuramoto dynamics. We consider

a notion of exact cluster synchronization, where the phases of the oscillators within each cluster

remain equal to each other over time, and different from the phases of the oscillators in the other

clusters. We derive four conditions. First, we show that the cluster synchronization manifold is

locally exponentially stable when the intra-cluster coupling is sufficiently stronger than the inter-

cluster coupling. We quantify this tradeoff using the theory of perturbation for dynamical systems

together with the invariance properties of cluster synchronization. Second, through a Lyapunov

argument, we show that the cluster synchronization manifold is locally exponentially stable when

the natural frequencies of the oscillators in disjoint clusters are sufficiently different (in their limit

to infinity). Third, we focus on the case of two clusters, and provide a quantitative condition on the

network weights and oscillators’ natural frequency for the stability of the cluster synchronization

manifold. Four, we combine the previous conditions through a heuristic approach that provides a

tighter, yet approximate, stability condition. Our holistic analysis shows that asymptotic stability
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of the cluster synchronization manifold is guaranteed for weak inter-cluster weights, sufficiently

different natural frequencies, or even homogeneous intra-cluster configurations.

As minor contributions, we provide examples showing that network symmetries are not

necessary for cluster synchronization of Kuramoto oscillators, and a sufficient condition guaranteeing

the absence of stable synchronization submanifolds.

Chapter organization The rest of the chapter is organized as follows. Section 9.2 contains our

problem setup and some preliminary notions. Section 9.3 contains our main results; that is, our

conditions for the stability of the cluster synchronization manifold in Kuramoto networks. Finally,

section 9.6 concludes the chapter, and the Appendix contains the proofs of our results.

Mathematical notation The set R>0 (resp. R<0) denotes the positive (resp. negative) real

numbers, whereas the sets S1 and Tn denote the unit circle and the n-dimensional torus, respectively.

The vector of all ones is represented by 1. We let O(f) denote the order of the function f . Further, we

denote a positive (resp. negative) definite matrix A with A � 0 (resp. A ≺ 0). Let λi(A) and σi(A)

denote the i-th eigenvalue and singular value of A ∈ Rn×n, respectively. We indicate the smallest

(resp. largest) eigenvalue of a symmetric matrix with λmin(·) (resp. λmax(·)). A (block-)diagonal

matrix is represented by (blk-)diag(·). Further, let λ(A) = 1
n

∑
i λi(A) and σ(A) = 1

n

∑
i σi(A). We

let ‖ · ‖ denote the `2-norm, and i =
√
−1. Finally, A† represents the Moore-Penrose pseudoinverse

of the matrix A.

6.2 Problem setup and preliminary notions

In this work we characterize the stability properties of certain synchronized trajectories

arising in networks of oscillators with Kuramoto dynamics. To this aim, let G = (V, E) be the

connected and weighted graph representing the network of oscillators, where V = {1, . . . , n} and

E ⊆ V × V represent the oscillators, or nodes, and their interconnection edges, respectively. Let

A = [aij ] be the weighted adjacency matrix of G, where aij ∈ R>0 is the weight of the edge
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(i, j) ∈ E , and aij = 0 when (i, j) 6∈ E . The dynamics of i-th oscillator is

θ̇i = ωi +
∑

j 6=i
aij sin(θj − θi), (6.1)

where ωi ∈ R>0 and θi ∈ S1 denote the natural frequency and the phase of the i-th oscillator. Unless

specified differently, we assume that the edge weights are symmetric. That is,

(A1) The network adjacency matrix satisfies A = AT.

Assumption (A1) is typical in the study of (cluster) synchronization in networks of Kuramoto oscil-

lators, e.g., see [28, 187, 188], as it facilitates the derivation of stability results. While relaxing this

assumption is beyond the scope of this work, we will discuss how our stability results can also be

applied to study cluster synchronization with asymmetric network weights (see Remark 34). Finally,

since the diagonal entries of the adjacency matrix A do not contribute to the dynamics in (9.1), we

assume that G does not contain self-loops.

A network exhibits cluster synchronization when the oscillators can be partitioned so that

the phases of the oscillators in each cluster evolve identically. To be precise, let P = {P1, . . . ,Pm},

with m > 1, be a partition of V, where
⋃m
i=1 Pi = V and Pi ∩ Pj = ∅ if i 6= j. Define the cluster

synchronization manifold associated with the partition P as

SP = {θ ∈ Tn : θi = θj for all i, j ∈ Pk, k = 1, . . . ,m}.

Then, the network is cluster-synchronized with partition P when the phases of the oscillators belong

to SP at all times.

In this chapter we characterize conditions on the network weights and the oscillators’ nat-

ural frequency that guarantee local exponential stability of the cluster synchronization manifold SP ,

for a given partition P.1 In order to study stability of the cluster synchronization manifold, we

assume SP to be invariant [189, Chapter 3].2 In particular, following [184], invariance of SP is

guaranteed by the following conditions:

1Loosely speaking, the manifold SP is locally exponentially stable if θ converge to SP exponentially fast when θ(0)
is sufficiently close to SP .

2The manifold SP is invariant if θ(0) ∈ SP implies θ ∈ SP at all times.
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Figure 6.2: Fig. 6.2(a) illustrates a network of 6 oscillators with adjacency matrix as in Fig. 6.2(b).
In this network, the partition P = {P1,P2}, which satisfies Assumption (A3), cannot be identified
by group symmetries of the network for any choice of the positive weights α1, α2, α3, α4, β1 and β2.
The manifold SP is invariant whenever the oscillators’ natural frequencies satisfy Assumption (A2).
Thus, this example shows that network symmetries are not necessary for cluster synchronization of
Kuramoto oscillators.

(A2) Given P = {P1, . . . ,Pm}, the natural frequencies satisfy ωi = ωj for every i, j ∈ Pk and

k ∈ {1, . . . ,m},3 and

(A3) The network weights satisfy
∑
k∈P` aik − ajk = 0 for every i, j ∈ Pz and z, ` ∈ {1, . . . ,m},

with z 6= `.

Thus, in the remainder of the chapter we assume that (A2) and (A3) are satisfied for the network

partition being considered.

Remark 20 (Network symmetries, equitable partitions, and balanced weights) Conditions

to ensure the invariance of the cluster synchronization manifold have been linked to network symme-

tries, which are defined by the group comprising all node permutations that leave the network topology

unchanged, e.g., see [173,174,186]. In Fig. 6.2 we propose a network with two clusters, which are not

defined by any group symmetry, that satisfies Assumption (A3) and thus admits an invariant cluster

synchronization manifold. This example shows that cluster synchronization of Kuramoto oscillators

does not require symmetric networks. Our Assumption (A3), and in fact the equivalent notion of

external equitable partition [183], is less restrictive than requiring partitions satisfying group sym-

3This condition is necessary for SP to be forward invariant, and thus stable [184], and is motivated by observed
synchronization phenomena, e.g., see [190].
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metries [191–193]. Finally, Assumptions (A2) and (A3) are necessary when the natural frequencies

in distinct clusters are sufficiently different (see [184] and Remark 21). �

Remark 21 (Invariance of submanifolds of SP) When the network of oscillators is cluster-

synchronized (i.e. θ(t) ∈ SP for all t ≥ 0), submanifolds of SP may appear whenever the phases

belonging to two (or more) disjoint clusters have equal values (see Fig. 6.3). Interestingly, the

example in Fig. 6.3 also points out that Assumption (A3) may not be necessary for the invariance of

SP if the clusters do not evolve with different frequencies (see Assumption (A1) in [184]). In what

follows we show that, if the natural frequencies of the oscillators in disjoint clusters are sufficiently

different, invariant, and hence stable, submanifolds cannot exist. To see this, assume that the phases

of the disjoint clusters P` and Pz remain equal over time. Then, using Assumption (A2) and (A3),

the dynamics

θ̇` − θ̇z = ω` − ωz +

m∑

k=1

[(∑

r∈Pk
a`r

)
sin(θk − θ`)−

(∑

r∈Pk
azr

)
sin(θk − θz)

]
, (6.2)

must be identically zero, where θi denotes the phase of any oscillator in Pi. Clearly, if the following

inequality holds,

|ω` − ωz| > 2(m− 2) max
k 6=`,z

{∑

r∈Pk
a`r ,

∑

r∈Pk
azr

}
, (6.3)

Equation (6.2) cannot vanish and, consequently, the clusters P` and Pz cannot evolve with the same

phases when the network is cluster synchronized.4 More generally, if condition (6.3) is satisfied for

all pairs of clusters, then invariant, and hence stable, cluster synchronization submanifolds cannot

exist. �

We conclude with an example showing that the synchronization manifold SP is, in general,

not globally asymptotically stable due to the existence of multiple invariant sets.

Example 22 (Multiple invariant sets) Consider a Kuramoto network with 2N oscillators (N ≥

2) and with an adjacency matrix defined as follows5 (see Fig. 6.4(a) for the case N = 5):

4In (6.3), we have (m− 2) because for k = z, `, the sine terms in (6.2) vanish.
5This analysis extends directly to arbitrary weights aij = a, a ∈ R>0.
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Figure 6.3: Fig. 9.5(a) illustrates a network with partition P = {P1,P2,P3}. As shown in Fig.
6.3(b), the phases of the oscillators in P1 and P2 have the same value over time, showing that a
submanifold of SP is invariant and stable. For this simulation, we use ω1 = 4, ω2 = 2, ω3 = 6,
a14 = 3, and a47 = 5.

aij =





1, if |i− j| ≤ 2,

0, otherwise,

with i, j ∈ {1, . . . , 2N} (and the convention 2N + ` , `, −` , 2N + ` − 1, for ` ∈ {1, 2}). Let

P = {P1,P2}, with P1 = {1, 3, . . . , 2N − 1}, P2 = {2, 4, . . . , 2N}, and define

MP = {θ ∈ T2N : θi+2 = θi + 2π/N, i = 1, . . . , 2N − 2}.

It can be verified that Assumption (A3) is satisfied, and that the set SP is invariant whenever the

natural frequencies satisfy Assumption (A2). Yet, the set SP is not the only invariant set. In fact,

MP is also invariant (we prove this by showing that θ̇i = θ̇i+2 when θi, θi+2 ∈MP):

θ̇i = ωi + sin(θi−2 − θi) + sin(θi+2 − θi) + sin(θi−1 − θi) + sin(θi+1 − θi)

= ωi + sin(θi − θi+2) + sin(θi+4 − θi+2) + sin(θi+1 − θi+2) + sin(θi+3 − θi+2) = θ̇i+2,

where we have used the fact that θi+2 − θi = 2π/N , and ωi = ωj for all i, j in the same cluster.

Further, it can be verified numerically that, depending on the number of oscillators N , the set MP
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Figure 6.4: Fig. 6.4(a) shows the network in Example 22 for the case N = 5. The nodes belonging
to partition P1 are blue and have natural frequency ω1 = 1, while the nodes belonging to partition
P2 are orange and have ω2 = 3. Fig. 6.4(b) illustrates the stability of the set MP via numerical
simulations. We performed 103 iterations, each one with θ(0) chosen randomly within an angle of
±0.01 [rad] fromMP . The thick line represents the mean value among all simulations of the 2-norm
distance between θ and MP , while the faded area represents the smallest and largest value of the
2-norm distance between θ and MP . Fig. 6.4(c)-6.4(d) illustrate the invariance of the set MP as
the phases in the clusters P1 and P2 evolve respectively with the same frequencies.

is also locally stable (see Fig. 6.4(b)). We conclude that the cluster synchronization manifold SP

is not, in general, globally asymptotically stable. In what follows we derive conditions guaranteeing

local stability of SP . �
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6.3 Analytical conditions for the stability of the cluster syn-

chronization manifold

In this section we derive sufficient conditions for the local exponential stability of the cluster

synchronization manifold. Define the phase difference xij = θj − θi, and notice that

ẋij = ωj − ωi +

n∑

z=1

[ajz sin(xjz)− aiz sin(xiz)] . (6.4)

Given a partition P = {P1, . . . ,Pm} of the set V in the graph G, we define the following graphs (see

also Example 23):

(i) the graph of the k-th cluster, with k ∈ {1, . . . ,m}, Gk = (Pk, Ek), where Ek = {(i, j) : (i, j) ∈

E , i, j ∈ Pk};

(ii) a spanning tree Tk = (Pk, Espan,k) of Gk;6

(iii) a spanning tree T = (V, ET ) of G with ET =
⋃m
k=1 Espan,k∪Einter, where Einter satisfies |Einter| =

m− 1.

Further, we define the following vectors of phase differences:

(iv) x
(k)
intra = [xij ], for all (i, j) ∈ Espan,k with i < j,

(v) xintra =
[
x

(1)T
intra, . . . , x

(m)T
intra

]T
, and

(vi) xinter = [xij ], for all (i, j) ∈ Einter with i < j.

It should be noticed that the vectors x
(k)
intra, xintra and xinter contain, respectively, nintra,k =

|Pk|−1, nintra = n−m and ninter = m−1 entries. Notice that every phase difference can be computed

as a linear function of xintra and xinter. To see this, let i, j ∈ V, and let p(i, j) = {p1, . . . , p`} be

the unique path on T from i to j. Define diff(p(i, j)) =
∑`−1
k=1 sk, where sk = xpkpk+1

if pk < pk+1,

and sk = −xpk+1pk otherwise. Then, xij = diff(p(i, j)), and the vectors xintra and xinter contain

6We assume that G and its subgraphs Gk are connected. This guarantees the existence of the (connected) spanning
trees defined in (ii) and (iii). A graph is connected if there exists a path between any pair of nodes [42].

106



a smallest set of phase differences that can be used to quantify synchronization among all of the

oscillators in the network.

Let B = [bk`] ∈ R|V|×|E| denote the oriented incidence matrix of the graph G = (V, E),

where ` corresponds to the edge (i, j) ∈ E , bk` = 1 if node k is the sink of the edge `, bk` = −1

if k is the source of `, and bk` = 0 otherwise.7 Further, let Bk and Bspan,k denote the incidence

matrices of Gk and Tk, respectively. Notice that Bspan,k is full rank because it is the incidence matrix

of an acyclic graph (tree) [42, Theorem 8.3.1]. Let Tintra,k = BT
k (BT

span,k)† be the unique matrix

that maps the phase differences contained in x
(k)
intra to all intra-cluster phase differences in the k-th

cluster. That is,

x(k) = Tintra,kx
(k)
intra, (6.5)

where x(k) contains all phase differences in the cluster Pk.

We conclude this part by rewriting the intra-cluster dynamics in a form that will be useful

to prove our results. In particular, from the above discussion and for an intra-cluster phase difference

xij of x
(k)
intra, we rewrite (6.4) as

ẋij =
∑

z∈Pk
[ajz sin(diff(p(j, z)))− aiz sin(diff(p(i, z)))]

︸ ︷︷ ︸
F

(k)
ij (x

(k)
intra)

+
∑

z 6∈Pk
[ajz sin(diff(p(j, z)))− aiz sin(diff(p(i, z)))]

︸ ︷︷ ︸
G

(k)
ij (xintra,xinter)

, (6.6)

which leads to

ẋ
(k)
intra = F (k)(x

(k)
intra) +G(k)(xintra, xinter), (6.7)

where F (k) is the vector of F
(k)
ij and G(k) is the vector of G

(k)
ij , for all (i, j) ∈ Espan,k with i < j.

Finally, by concatenating the dynamics (6.7) for all clusters, we obtain

ẋintra = F (xintra) +G(xintra, xinter). (6.8)
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Figure 6.5: This figure illustrates the graph-theoretic definitions introduced in Section 9.3 for a
network of 9 Kuramoto oscillators. (see also Example 23). Fig. 6.5(a) shows the partitions P =
{P1,P2,P3}. In Fig. 6.5(b), Espan,1, Espan,2, and Espan,3 represent (in red) the edges of the intra-
cluster spanning trees T1, T2 and T3, while the edges belonging to the set Einter are depicted in
purple.

Example 23 (Illustration of the definitions) We provide here an illustrative example of the

definitions introduced in this section. Consider the network in Fig. 6.5(a) with partition P =

{P1,P2,P3}, where P1 = {1, 2, 3}, P2 = {4, 5, 6} and P3 = {7, 8, 9}. Fig. 6.5(b) illustrates the

definitions of spanning trees, together with the edge sets Espan,k (k = 1, 2, 3), and the inter-cluster

edges in Einter = {(3, 6), (4, 7)}. The vectors of intra-cluster differences read as x
(1)
intra = [x12 x23]T,

x
(2)
intra = [x45 x56]T, and x

(3)
intra = [x78 x79]T, whereas the vector of inter-cluster differences reads as

xinter = [x36 x47]T.

For the partition P1, order the edges as `1 = (1, 2), `2 = (1, 3), and `3 = (2, 3). Then,

a spanning tree is T1 = (P1, Espan,1), with Espan,1 = {(1, 2), (2, 3)}, and the (oriented) incidence

matrices B1 of G1 and Bspan,1 of T1 are

B1 =




−1 −1 0

1 0 −1

0 1 1



, Bspan,1 =




−1 0

1 −1

0 1



.

7Node i is the source (resp. sink) of (i, j) if i < j (resp. i > j).
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Finally, the matrix Tintra,1 = BT
1 (BT

span,1)† satisfies

Tintra,1 =




1 1 0

0 1 1




T

.

�

6.3.1 Asymptotic stability of SP via perturbation theory

In what follows we will make use of perturbation theory of dynamical systems to provide

our first stability condition. We first introduce the following instrumental result.

Lemma 24 (Properties of intra-cluster dynamics) The intra-cluster dynamics (6.8) satisfies

the following properties:

(i) the Jacobian matrix Jintra of F (xintra) computed at the origin is Hurwitz stable and can be

written as

Jintra =
∂F (xintra)

∂xintra

∣∣∣∣
xintra=0

= blkdiag (J1, . . . , Jm) , (6.9)

where, for k ∈ {1, . . . ,m}, Tintra,k is as in (6.5) and

Jk = −BT
span,kBk diag({aij}(i,j)∈Ek)Tintra,k. (6.10)

Thus, the origin is an exponentially stable equilibrium of the system ẋintra = F (xintra);

(ii) There exist constants γ(k`) ∈ R>0 such that

‖G(k)(xintra, xinter)‖ ≤
m∑

`=1

γ(k`)‖x(`)
intra‖, (6.11)

for all k, ` ∈ {1, . . . ,m}. Specifically,

γ(k`) = 2 max
r

nintra,r γ̃
(k`), (6.12)
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where, for any i ∈ Pk,

γ̃(k`) =





∑

j∈P`
aij , if ` 6= k,

m∑

`=1
6̀=k

∑

j∈P`
aij , otherwise.

(6.13)

As formalized in the next theorem, Lemma 24, together with results on stability of per-

turbed systems [194, Chapter 9], implies that the origin of (6.8), and thus the cluster synchronization

manifold SP , is exponentially stable for some choices of the network weights. Recall that an M -

matrix is a real nonsingular matrix A = [aij ] such that aij ≤ 0 for all i 6= j and all leading principal

minors are positive [195, Chapter 2.5].

Theorem 25 (Sufficient condition on network weights for the stability of SP) Let SP be

the cluster synchronization manifold associated with a partition P = {P1, . . . ,Pm} of the network G

of Kuramoto oscillators. Let γ(k`) be the constants defined in (6.12). Define the matrix S ∈ Rm×m

as

S = [sk`] =





λ−1
max(Xk)− γ(kk) if k = `,

−γ(k`) if k 6= `,

(6.14)

where Xk � 0 is such that JT
kXk +XkJk = −I, with Jk as in (7.2). If S is an M -matrix, then the

cluster synchronization manifold SP is locally exponentially stable.

Remark 26 (Family of bounds) In (7.3), the matrices Xk can be selected as the solutions to the

Lyapunov equations JT
kXk+XkJk = −Qk, for arbitrary positive definite matrices Qk. Yet, selecting

Qk = I for all k yields a tighter stability bound. This follows because (i) if S is an M -matrix, then

S + ∆ remains an M -matrix whenever ∆ is a nonnegative diagonal matrix [195, Theorem 2.5.3],

and (ii) the ratio λmin(Qk)/λmax(Xk) is maximal whenever Qk = I [194, Exercise 9.1]. �

Theorem 25 describes a sufficient condition on the network weights for the stability of

the cluster synchronization manifold. Loosely speaking, the cluster synchronization manifold is
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Figure 6.6: Fig. 6.12(a) illustrates the network of 6 Kuramoto oscillators in Example 36. We
identify the clusters P1 and P2 in blue and orange, respectively. Fig. 6.6(b) contains the adjacency
matrix of the network in Fig. 6.12(a). The parameters α1, α2, and β represent the intra-cluster and
inter-cluster weights, respectively. Fig. 6.6(c) illustrates the stability of the cluster synchronization
manifold SP for α1 = α2 = 1 and β = 0.1, as predicted by Theorem 25. Fig. 6.6(d) shows that SP
is unstable when α1 = β = 1 and α2 = 0.001.

exponentially stable when the intra-cluster coupling (measured by λ−1
max(Xk)− γ(kk)) is sufficiently

stronger than the perturbation induced by the inter-cluster connections (measured by γ(k`)). In

particular, the term λ−1
max(Xk) is proportional to the intra-cluster weights and it is implicitly related

to the network topology. In fact, the matrix Xk is the solution of a Lyapunov’s equation containing

Jk, whose spectrum coincides with the stable eigenvalues of the negative Laplacian matrix of the k-th

cluster. We refer the interested reader to the proof of Lemma 24. Finally, we remark that a result

akin to Theorem 25 has been derived in [196], although for interconnected systems whose coupling

functions are required to satisfy certain assumptions that fail to hold in the Kuramoto model.
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Figure 6.7: This Figure shows that the condition in Theorem 25 leads to conservative stability
bounds. For the network in Example 36, we let β = 0.1 and plot, as a function of the ratio α1/α2, the
stable configurations predicted by Theorem 25 (green) and those found numerically. For each value
of α1/α2, we assess numerical stability by making use of the Floquet stability theory [197, Chapter
5] and by resorting to statement (i) in Lemma 29. This is possible because the partition in Example
36 has only two clusters.

Example 27 (Tradeoff between intra- and inter-cluster weights) Consider the network in

Fig. 6.12(a) with partition P = {P1,P2}, where P1 = {1, 2, 3} and P2 = {4, 5, 6}, natural frequencies

ω1 = 1 and ω2 = 6 for the oscillators in P1 and P2, and adjacency matrix as in Fig. 6.6(b). The

parameters α1, α2 ∈ R>0 and β ∈ R>0 denote the strength of the intra- and inter-cluster coupling,

respectively. Let α1 = α2, and construct the matrix S as in Theorem 25:

S =



λ−1
max(X1)− γ11 −γ12

−γ12 λ−1
max(X2)− γ22


 ,

where Xk � 0 is such that JT
kXk + XkJk = −I, λ−1

max(X1) = λ−1
max(X2) = 2α1 and, from (6.12),

γij = 4β for all i, j. By inspecting all leading principal minors, S is an M -matrix if α1/β > 4, and

the cluster synchronization manifold SP is exponentially stable (see Fig. 6.6(c)). We remark that,

when α1 6= α2, the synchronization manifold SP can become unstable, as we verify numerically in

Fig. 6.6(d). �

The stability condition in Theorem 25 depends only on the network weights, and typically

leads to conservative bounds (see also Fig. 6.7). To derive refined stability conditions, we next char-

acterize how the natural frequencies of the oscillators affect stability of the cluster synchronization

manifold.
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6.3.2 Asymptotic stability of SP when the oscillators’ natural frequencies

in disjoint clusters are sufficiently different

Natural frequencies play a fundamental role for full and cluster synchronization of Ku-

ramoto oscillators. However, while heterogeneity of the natural frequencies typically impedes full

synchronization [28], we will show that cluster synchronization is in fact facilitated when the oscilla-

tors in different clusters have sufficiently different natural frequencies. We start with an asymptotic

result that is valid for arbitrary networks and partitions, and then improve our results for the case

of partitions containing only two clusters.

Theorem 28 (Stability of SP for large natural frequency differences) Let SP be the cluster

synchronization manifold associated with a partition P = {P1, . . . ,Pm} of the network G of Kuramoto

oscillators. Let ωi ∈ R>0 be the natural frequency of the oscillators in the cluster Pi, with i ∈

{1, . . . ,m}. In the limit |ωi − ωj | → ∞, for all i, j ∈ {1, . . . ,m}, i 6= j, the cluster synchronization

manifold SP is locally exponentially stable.

Theorem 28 shows that heterogeneity of the natural frequencies of the oscillators in different

clusters facilitates cluster synchronization, independently of the network weights. We remark that

a similar behavior was also identified in [198], albeit with a different method and definition of

synchronization.

We next improve upon Theorem 28 by analyzing the case where the natural frequencies

are finite and the partition P contains only two clusters. To this aim, let P = {P1,P2} and assume,

without loss of generality, that ω2 ≥ ω1, where ωi is the natural frequency of the oscillators in Pi.

Define

ω̄ = ω2 − ω1, and ā =
∑

k∈P2

aik +
∑

k∈P1

ajk,

for any i ∈ P1 and j ∈ P2. The next result characterizes the inter-cluster phase difference when the

network evolves on the cluster synchronization manifold.
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Lemma 29 (Nominal inter-cluster difference) Let SP be the cluster synchronization manifold

associated with a partition P = {P1,P2} of the network G of Kuramoto oscillators. Let θ(0) ∈ SP

(equivalently, xintra(0) = 0). Then, if xintra = 0 at all times and ω̄ > ā,

xinter(t) =





h(t), if t 6= t0 + kT, k ∈ Z,

π, if t = t0 + kT, k ∈ Z.

, xnom(t), (6.15)

where

h(t) = 2 tan−1



ā+
√
ω̄2 − ā2 tan

(√
ω̄2−ā2

2 (t+ τ)
)

ω̄


 ,

t0 = −τ + π/
√
ω̄2 − ā2, T = 2π/

√
ω̄2 − ā2, and τ ∈ R is a constant that depends only on θ(0).

Moreover,

(i) xnom is T -periodic with zero time average, and

(ii) the following inequality holds:

∣∣∣∣
∫ t

0

cos(xnom(τ)) dτ

∣∣∣∣ ≤
1

ā
log

(
ω̄ + ā

ω̄ − ā

)
. (6.16)

Remark 30 (Constant versus time-varying inter-cluster difference) The values of ω̄ and

ā determine the behavior of the inter-cluster phase difference. In particular, if ω̄ < ā, then the

inter-cluster difference evolves as in (6.15).8 If ω̄ = ā, (6.4) reduces to ẋinter = ā − ā sin(xinter),

which can be integrated:

āt =

∫ xinter(t)

xinter(0)

(1− sin(s))−1ds

āt =
2 sin(xinter(t)/2)

cos(xinter(t)/2)− sin(xinter(t)/2)
+ τ. (6.17)

By substitution, it can be verified that

xinter(t) = 2 cos−1

(
āt− τ + 2√

2(āt− τ + 1)2 + 2

)
,

8In fact,
√
ω̄2 − ā2 becomes a complex number and, by recalling that tan(iα) = i tanh(α), where α ∈ R, in (6.15)

we have xinter(t) = 2 tan−1((ā−
√
ā2 − ω̄2 tanh(

√
ā2 − ω̄2(t+ τ)/2))/ω̄).
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Figure 6.8: For the network in Example 36 with α1 = α2 = β = 1, ā = 2 and ω̄ = 1, Fig. 6.8(a)

shows that the clusters are synchronized (as ‖x(1)
intra‖ and ‖x(2)

intra‖ converge to zero), yet all oscillators
remain phase locked (xinter converges to a constant). Instead, Fig. 6.8(b) shows that the inter-cluster
difference follows a limit cycle when α1 = α2 = β = 1, ā = 2 and ω̄ = 6.

satisfies equation (6.17). In both cases (ω̄ ≤ ā), xinter converges to the constant value 2 tan−1((ā−
√
ā2 − ω̄2)/ω̄) as t increases to infinity. In other words, if ω̄ ≤ ā, then the phases of the oscillators in

the two clusters evolve with the same frequency, and the oscillators are phase locked (see Fig. 6.8(a)

and [28, Remark 1]). Instead, if ω̄ > ā, the clusters evolve with different frequencies, and the

inter-cluster phase difference follows a limit cycle (see Fig. 6.8(b) and [194, Chapter 2]). �

In the remainder of this section we assume that ω̄ > ā, so that the clusters evolve with

different frequencies (see Remark 30). Leveraging Lemma 29, we next present a refined condition

for the stability of the cluster synchronization manifold.

Theorem 31 (Sufficient condition on network weights and natural frequencies for the

stability of SP) Let SP be the cluster synchronization manifold associated with a partition P =

{P1,P2} of the network G of Kuramoto oscillators. Let ωi ∈ R>0 be the natural frequency of

the oscillators in the cluster Pi, with i ∈ {1, 2}. Let Jintra be as in Lemma 24, and Jinter =

∂G(xintra, xinter)/∂xintra along the trajectory xintra = 0 and xinter = xnom. The cluster synchroniza-
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tion manifold SP is locally exponentially stable if the following inequality holds:

(
ω̄ + ā

ω̄ − ā

) 2
ā‖Jinter‖

< 1 +
1

2λmax(X)‖Jintra‖
, (6.18)

where X � 0 is the solution of JT
intraX +XJintra = −I.

Theorem 31 provides a quantitative condition on the network weights and the natural

frequencies of the oscillators to ensure stability of the cluster synchronization manifold. It can be

shown that (i) when the inter-cluster weights decrease to zero (ā → 0) and ω̄ remains bounded,

then ‖Jinter‖/ā remains bounded, the left-hand side of (6.18) converges to 1, and the inequality

is automatically satisfied, and (ii) when ω̄ grows (ω̄ → ∞) and the inter-cluster weights remain

bounded, the left-hand side of (6.18) converges to 1 and the inequality is automatically satisfied.

The role of the intra-cluster connections on the stability of SP cannot be evaluated directly from

(6.18) because of the dependency of the right-hand side on λmax(X). The following result, however,

suggests that the synchronization manifold may remain exponentially stable when the intra-cluster

weights are homogeneous, independently of the inter-cluster weights and the natural frequencies.

Theorem 32 (Stability of SP with homogeneous clusters) Let SP be the cluster synchroniza-

tion manifold associated with a partition P = {P1,P2} of the network G of Kuramoto oscillators. Let

ωi ∈ R>0 be the natural frequency of the oscillators in the cluster Pi, with i ∈ {1, 2}. If Jintra = αI,

for some constant α ∈ R<0, then the cluster synchronization manifold SP is locally exponentially

stable.

We provide an example that illustrates the stability conditions derived in Theorem 31.

Example 33 (Heterogeneity of natural frequencies improves stability of the cluster syn-

chronization manifold) Consider the network of Kuramoto oscillators in Example 36. Fig. 6.9(a)

illustrates that the cluster synchronization manifold is asymptotically stable when the condition in

Theorem 31 is satisfied. Fig. 6.9(b) illustrates the tradeoff in the latter stability condition between
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Figure 6.9: For the network in Example 36, Fig. 6.9(a) illustrates the stability of SP when α1 =
α2 = β = ω1 = 1 and ω2 = 47, as predicted by the condition in Theorem 31. For the same network
and weights, Fig. 6.9(b) shows the largest value of inter-cluster weights β∗ that satisfies (6.18) with
equality. As predicted by Theorem 28 and Theorem 31, stability of the cluster synchronization
manifold SP is preserved when ω̄ grows with the inter-cluster weights.

the natural frequency ω̄ and the inter-cluster strength measured by β∗, which denotes the largest

inter-cluster weight β (see Example 36) such that (6.18) is still satisfied. Further, we show in Fig.

6.10 that, while being conservative, condition (6.18) captures the fact that stability of the cluster syn-

chronization manifold can be recovered by increasing ω̄. Namely, choosing the same network weights

that yield instability as in Fig. 6.6(d), we show that stability of the cluster synchronization manifold

is recovered as the difference in natural frequencies grows. �

We conclude this section with a discussion of cluster synchronization in asymmetric net-

works and identical nodes.

Remark 34 (Extension to networks with asymmetric weights) Symmetry of the network

weights is typically exploited to provide conditions for the stability of the full synchronization manifold

in networks of Kuramoto oscillators [28]. We rely on the symmetry assumption (A1) to derive

statement (i) in Lemma 24, which supports our main theorems. However, these results remain

valid for bidirected graphs,9 provided that the Jacobian Jintra can be proven to be Hurwitz. In other

words, Assumption (A1) is used to guarantee stability of the isolated clusters, and not of the cluster

9A bidirected graph is a directed graph where (i, j) ∈ E implies (j, i) ∈ E. The adjacency matrix of a bidirected
graph needs not be symmetric.
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Figure 6.10: For the network in Example 36, we let α1 = β = 1 and α2 = 10−4 and plot, as a
function of ω̄, the stable configurations predicted by Theorem 31 (green) and those found numerically.
For each value of ω̄, we assess numerical stability (in red) by making use of the Floquet stability
theory [197, Chapter 5] and by resorting to statement (i) in Lemma 29. This is possible because the
partition in Example 36 contains two clusters. Although condition (6.18) is conservative, it captures
the effect of large ω̄ on the stability of SP .
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Figure 6.11: Fig. 6.11(a) illustrates a network of 10 Kuramoto oscillators with partition P =
{P1,P2,P3,P4,P5}, where each cluster is color-coded. All oscillators have identical natural fre-
quency ω = 3 and all edges have unit weight. As illustrated in Fig. 6.11(b), the cluster synchro-
nization manifold associated to P is stable, showing that cluster synchronization is possible even in
networks of identical Kuramoto oscillators with identical edge weights.

configuration. �

Remark 35 (Cluster synchronization in networks of identical oscillators) This chapter

focuses on heterogeneous oscillators and leverages mismatches in the natural frequencies and the

network weights to characterize the stability of the cluster synchronization manifold. Yet, cluster

synchronization can also arise in networks of homogeneous Kuramoto oscillators, where all units

have equal natural frequencies and all edges have equal weight (e.g., see Fig. 6.11). With the

exception of Theorem 28, which is also applicable in the case of identical edge weights, our stability

118



results cannot predict cluster synchronization in networks of identical oscillators, a question that we

leave as the subject of future investigation. �

6.4 Approximate conditions for the stability of cluster syn-

chronization

In this section, we introduce approximate conditions for the stability of the cluster syn-

chronization manifold in networks of heterogeneous Kuramoto oscillators. Before proceeding, we

introduce a toy example to compare the exact stability conditions derived in the previous sections.

Example 36 (Comparison between stability conditions) Consider the network in Fig. 6.12(a)

with partition P = {P1,P2}, where P1 = {1, 2} and P2 = {3, 4}, and adjacency matrix as in Fig.

6.12(b). The parameters α1, α2 ∈ R>0 and β ∈ R>0 denote the intra- and inter-cluster couplings,

respectively. The matrix S in Theorem 25 becomes S=
[

4α1−2β −2β
−2β 4α2−2β

]
. In Fig. 6.12(c) we compare

stability conditions based on the matrix S in (7.3) and numerical conditions given by Floquet stability

theory.10 Notice that, for certain parameters, the synchronization manifold is unstable. Finally, Fig.

6.12(d) shows that, as the inter-cluster coupling β grows, the stability of SP is achieved by increasing

the difference of the natural frequencies, as predicted by Theorem 28. �

Stability of cluster synchronization is guaranteed by the stability of the time-varying in-

terconnected system (6.33), where the subsystems are identified by the isolated clusters. For inter-

connected systems with time-varying dynamics

ẏi = Ai(t)yi +
∑

j 6=i
Bij(t)yj , i = 1, . . . ,m, (6.19)

where Ai(t) and Bij(t) are time-varying matrices of suitable dimensions, a simplified version of the

small-gain theorem can readily be derived from [199] and reads as follows.

10This comparison is possible for the case of two clusters, as we are able to explicitly derive the trajectory of the
periodic inter-cluster difference.
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Figure 6.12: Fig. 6.12(a) illustrates the network of 4 Kuramoto oscillators in Example 36. We
identify the clusters P1 and P2 in blue and orange, respectively. Fig. 6.12(c) compares the stability
conditions of Theorem 25 and numerical stability via Floquet decomposition [197]. We fix α1 = ω1 =
1, ω2 = 8, and let α2 and β vary. The condition in Theorem 25 (dark green) identifies a subset of the
stable configurations (light green). Fig. 6.12(d) illustrates that stability is guaranteed for sufficiently
heterogeneous natural frequencies, as predicted by Theorem 28 (α1 = ω1 = 1, α2 = 0.001).

Theorem 37 (Small-gain stability test [199]) The origin of the system in (6.19) is (globally)

exponentially stable if:

(i) the origin of each isolated subsystem ẏi = Ai(t)yi is (globally) exponentially stable;

(ii) there exist ξij ∈ R≥0 ( gains) s.t., ∀ t ≥ 0, ‖yi,f (t)‖ ≤∑j 6=i ξij supτ∈[0,t] ‖yj(τ)‖, i = 1, . . . ,m,

where yi,f (t) is the forced response of the i-th subsystem;

(iii) the matrix Ξ , [ξij ] ∈ Rm×m ( gain matrix) satisfies

λmax(Ξ) < 1. (6.20)

As conditions (i)-(ii) in Theorem 37 are generally difficult to verify in systems with time-

varying dynamics, in what follows we propose and validate an approximation to the dynamics (6.33),
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which allows us to apply Theorem 37 and derive (approximate) stability conditions for the cluster

synchronization manifold. As we will show through numerical examples, our approximate stability

conditions are tight.

To simplify the derivation of our approximate stability conditions, we start with the case

of clusters with two nodes, so that the dynamics of the intra-cluster phase difference is scalar. This

procedure extends directly to the general case. To obtain our stability condition, we follow three

main steps.

(Approximate input-output response of the system (6.33)) The scalar intra-cluster dynamics of the

k-th cluster reads as

ẋ
(k)
intra = (Jk + Jinter,k)x

(k)
intra +

∑

` 6=k
Jinter,k`x

(`)
intra, (6.21)

where Jk, Jinter,k =
∑
` 6=k ηk` cos(x(k`)), Jinter,`z = ζ`z cos(x(`z)), ηk`, and ζ`z are scalar quantities

derived from (6.33). As ω(`z) , ωz − ω` grows, we have 11 x(`z)(t) ≈ ω(`z)t. Thus, Jinter,k ≈
∑
` 6=k ηk` cos(ω(k`)t), Jinter,`z ≈ ζ`z cos(ω(`z)t), and the approximate forced response of (6.21) to the

input x
(`)
intra becomes

x
(k)
intra,f ≈

∑

` 6=k

∫ t

0

eJk(t−τ)ζk` cos(ω(k`)τ)x
(`)
intra(τ) dτ, (6.22)

where we have approximated the transition matrix of the linear time-varying system (6.21) as (see

also [197]) e
∫ t
0
Jk+Jinter,kdτ ≈ e

∫ t
0
Jkdτ = eJkt. The last approximation is motivated by the fact that

Jinter,k is a high-frequency signal with zero mean, so that its integral over time becomes negligible

compared to the integral of Jk. Our approximation is validated in Fig. 6.13 for the network in

Fig. 6.12(a), where we see that the input-output responses of the original (6.21) and approximated

(6.22) systems remain close to each other for different values of the natural frequency.

(Computation of approximate input-output gains) Equation (6.22) can be viewed as the forced re-

sponse of a linear time-invariant system with matrix Jk to the modulated input ζk`cos(ω(k`)τ)x
(`)
intra.

11This approximation is reasonable for heterogeneous natural frequencies. The same approximation has been used
also in [181], although for a different analysis of cluster synchronization.
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Figure 6.13: In this figure we plot the maximum error between the forced response of (6.21) and
the proposed approximation in (6.22) as ω(12) increases. For the simulation, α1 = β1 = ω1 = 1,
α2 = 0.01, and ω2 varies as indicated. Initial conditions are chosen randomly in the interval (0, 0.001].

Following [200], each term in the sum in (6.22) can be expressed as a Taylor series about the natural

frequency of the modulating function. This yields

x
(k)
intra,f (t) =

∑

` 6=k
ζk`

∞∑

r=0

c(k`)r cos(ω(k`)t+ ψ(k`)
r )

drx
(`)
intra(t)

dtr

︸ ︷︷ ︸
Ck`

(6.23)

with Hk(s) , 1
s−Jk , c

(k`)
r =

∣∣∣ i−r

r!
drHk(iω)

dωr

∣∣∣
ω=ω(k`)

∣∣∣, and ψ
(k`)
r = angle

(
i−r

r!
drHk(iω)

dωr

∣∣∣
ω=ω(k`)

)
.

We propose the following first-order approximation of (6.23):

|Ck`|≈





|Hk(iω(k`))| |x(`)
intra(t)|, if Jk ≤ J`,

|Hk(0)|
|H`(0)| |H`(iω

(k`))| |x(`)
intra(t)|, if J` < Jk.

(6.24)

Loosely speaking, the former approximation is motivated by the fact that the modulated input

coming from the `-th system is “slower” than the k-th system. Instead, the second approximation is

valid when the input from the `-th system is “faster” than the k-th system, and it follows from [200].

Using (6.24), we define the approximate input-ouput gains ξk`, k 6= `:

ξk` =





|Hk(iω(k`))||ζk`|, if Jk ≤ J`,

|Hk(0)|
|H`(0)| |H`(iω

(k`))||ζk`|, if J` < Jk.

(6.25)

Our approximation is validated in Fig. 6.14 for the network in Fig. 6.12(a), where it can be seen

that, for the considered example, the proposed gains are accurate when J` > Jk, and they constitute
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Figure 6.14: In this figure we plot the gains ξ12 (left panel) and ξ21 (right panel) in a logarithmic
scale. For this comparison, we select β = α2 = 1 and α1 = 0.01; thus, ζ12 = ζ21 = β, J1 =
−2α1, and J2 = −2α2. In the left panel, the additional green line represents the approximate gain
obtained by truncating the series in (6.23) after the first term. Notice that, in such a case, the
approximation is accurate only for large frequencies ω(12). The red curve, instead, represent the
proposed approximation detailed in (6.25).

a reasonable upper bound when J` < Jk. Additional studies are required to further validate and

support the proposed approximate gains (see also Example 38).

(Approximate stability test) We define the gain matrix Ξ = [ξk`] ∈ Rm×m, with ξk` = 0 if k = `, and

ξk` as in (6.25) if k 6= `. Finally, our approximate stability condition for the cluster synchronization

manifold consists of applying Theorem 37 with the approximate gain matrix Ξ.

Example 38 (Tightness of approximate stability condition) Consider the network in Exam-

ple 36. In Fig. 6.15 we compare the proposed approximate stability condition with the numerical

outcomes from Floquet stability theory. In Fig. 6.15(a) we use the following quantities: ω∗sg is

the smallest frequency difference ω(12) such that condition (6.20) with gains as in (6.25) is sat-

isfied, and ω∗f is the smallest frequency difference ω(12) such that the largest Floquet exponent of

(6.33) is negative. Notice that the approximate condition in (6.20) closely reproduces the numerical

instability-stability transition in a reasonable region of intra- and inter-cluster parameters; namely,

for small values of β and α2−α1. In Fig. 6.15(b) we show that our approximate stability condition
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Figure 6.15: The heatmap in Fig. 6.15(a) represents the error between ω∗sg and ω∗f defined in
Example 38. We let α1 = ω1 = 1, and β, α2 vary as indicated. The white area contains stable
network realizations predicted by both the Floquet exponents and the condition (6.20). Fig. 6.15(b)
shows that, for the parameters in Example 36, the approximate stability condition based on Theorem
37 and (6.25) is much tighter than the condition in Theorem 25.

outperforms the analytical one derived in Theorem 25. �

Remark 39 (Extension to clusters with multiple nodes) When the clusters contain more than

two nodes, a gain matrix similar to (6.25) can be computed by using a suitable scalar approximation

of the transfer matrix Hk(s) = (sI − Jk)−1. We propose the following stability test, which relies on

using the mean singular value of Hk to compute input-output gains:

ξk`=





νk`σ(Hk(iω(k`))), if λ(Jk) ≤ λ(J`),

νk`
σ(Hk(0))
σ(H`(0))σ(H`(iω

(k`))), if λ(J`)< λ(Jk),

(6.26)

where νk` = ‖Jinter,k`‖ at time t = 0. We validate the approximate stability condition (6.20) on

random networks with 2N nodes that are generated as follows. First, we choose two weighted undi-

rected and connected Erdös-Rényi graphs G1 and G2 with cardinality N and edge probability p = 0.5.

To facilitate instability of SP for small natural frequency differences, we select small intra-cluster

weights in G2 (see Fig. 6.15(a)). Second, we connect G1 and G2 to satisfy Assumption (A2). Finally,

for each N , we compare the condition (6.20) with our approximate gains (9.2) and the condition

in Theorem 28 with the smallest value of the natural frequency ensuring stability, which is obtained
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Figure 6.16: This figure shows the error between ω∗sg and ω∗f defined in Example 38 and using the
approximate gain matrix (9.2), as the cardinality of the clusters increases. For each cardinality
N , we generate 100 random realizations of the graphs G1 and G2 described in Remark 39. The
intra-cluster weights of G1 (resp. G2) are uniformly distributed in [0, 1] (resp. [0, 0.01]), and the
inter-cluster weights are uniformly distributed in [0, 1]. The dashed blue line represents the mean
difference ω∗sg − ω∗f for the approximate gains in (9.2), and the dashed red line represents the mean
difference ω∗an − ω∗f for the analytical test in Theorem 28. The shaded area contains the maximum
and minimum values among all realizations.

using the Floquet exponents of (6.33). For different random realizations of G1 and G2, Fig. 6.16

shows that our heuristic test consistently performs better than its analytical counterpart. �

6.5 Conclusion

In this chapter we characterize conditions for the stability of cluster synchronization in

networks of oscillators with Kuramoto dynamics, where multiple synchronized groups of oscillators

coexist in a connected network. We derive conditions showing that the cluster synchronization

manifold is locally exponentially stable when (i) the intra-cluster coupling is sufficiently stronger

that the inter-cluster coupling, (ii) the differences of natural frequencies of the oscillators in disjoint

clusters are sufficiently large, (iii) a combination of the two, or, (iv) in the case of two clusters, if

the intra-cluster dynamics is homogeneous. To the best of our knowledge, our results are the first

to characterize the stability of the cluster synchronization manifold in sparse and weighted networks

of heterogeneous Kuramoto oscillators.
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6.6 Appendix

In this section we provide the proofs of the results presented in Section 9.3, together with

some instrumental lemmas.

6.6.1 Proofs of the results in Section 6.3.1

Proof of Lemma 24: Proof of statement (i). Notice that the block-diagonal form of the Jacobian

matrix Jintra follows directly from the form of F (xintra) in (6.8). Therefore, the stability of Jintra is

equivalent to the stability of the diagonal blocks Jk. Let θ(k) be the vector of θi, i ∈ Pk and, by

Assumption (A2), let ωk be the natural frequency of any oscillator in Pk. From (9.1), we write the

phase dynamics of the k-th cluster as (see [187])

θ̇(k) = ωk1−Bk diag({aij}(i,j)∈Ek) sin(BT
k θ

(k)).

Because the phase differences satisfy x
(k)
intra = BT

span,kθ
(k) and x(k) = BT

k θ
(k), we have

ẋ
(k)
intra = −BT

span,kBk diag({aij}(i,j)∈Ek) sin(x(k)), (6.27)

where we have used the property BT
span,k1 = 0. Using (6.5), the Jacobian matrix of (6.27) computed

at x
(k)
intra = 0 reads as

Jk = −BT
span,kBk diag({aij}(i,j)∈Ek)Tintra,k. (6.28)

Recall that the Laplacian matrix of the graph Gk satisfies LGk = Bk diag({aij}(i,j)∈Ek)BT
k , and

that, because Gk is connected, the eigenvalues of −LGk have negative real part, except one single

eigenvalue located at the origin with eigenvector 1. Define the matrix Wk = [Bspan,k 1]T and notice

that, because BT
span,k1 = 0 and Bspan,k being full column rank [42, Theorem 8.3.1], then Wk is

invertible and W−1
k = [(BT

span,k)† (1T)†]. Therefore we have

Wk(−LGk)W−1
k =



Jk 0

0 0


 ,
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where we have used that Tintra,k = BT
k (BT

span,k)† in (6.28). This shows that Jk contains only the

stable eigenvalues of −LGk .

Proof of statement (ii). Notice that, for any (j, z) ∈ E with j ∈ Pk, z ∈ P`, and k 6= `, the difference

diff(p(j, z)) in G
(k)
ij (xinter, xinter) in equation (6.6) can be rewritten as

diff(p(j, z)) = diff(p(j, k∗))+diff(p(k∗, `∗))+ diff(p(`∗, z)),

where k∗ and `∗ are such that p(k∗, `∗) is the shortest path on T connecting the clusters Pk and P`.

Then,

G
(k)
ij (xinter, xinter) =

m∑

`=1
` 6=k

∑

z∈P`
[ajzsin(diff(p(j, k∗))+diff(p(k∗, `∗))+diff(p(`∗, z)))

−aiz sin(diff(p(i, k∗)) + diff(p(k∗, `∗))+ diff(p(`∗, z)))].

Notice that diff(p(i, k∗)) and diff(p(j, k∗)) contain only differences in x
(k)
intra, and diff(p(`∗, z)) only

differences in x
(`)
intra.

Notice that sin(a+ b) = sin(a) + δ, with |δ| ≤ |b|.12 Then,

G
(k)
ij (xintra, xinter) =

m∑

`=1
` 6=k

∑

z∈P`
[ajz (sin(diff(p(k∗, `∗)) + δjz)− aiz (sin(diff(p(k∗, `∗)) + δiz)]

=

m∑

`=1
` 6=k

(∑

z∈P`
[(ajz − aiz)sin(diff(p(k∗, `∗)))] +

∑

z∈P`
[ajzδjz − aizδiz]

)
(A3)
=

m∑

`=1
` 6=k

∑

z∈P`
[ajzδjz−aizδiz],

where δjz and δiz are upper bounded by
√
nintra,k‖x(k)

intra‖+
√
nintra,`‖x(`)

intra‖. Therefore, we have the

following bound:

|G(k)
ij | ≤

m∑

`=1
` 6=k

(∑

z∈P`
ajz|δjz|+

∑

z∈P`
aiz|δiz|

)

(A3)

≤ 2

m∑

`=1
` 6=k

∑

z∈P`
ajz

(√
nintra,k‖x(k)

intra‖+
√
nintra,`‖x(`)

intra‖
)

= 2

m∑

`=1

√
nintra,` γ̃

(k`)
ij ‖x

(`)
intra‖,

12Letting δ = sin(a+ b)− sin(a), we have |δ| = |2 sin( b
2

) cos(a+ b
2

)| ≤ |2 sin( b
2

)|, from which the inequality |δ| ≤ |b|
follows.
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where

γ̃
(k`)
ij =





m∑

`=1
` 6=k

∑

z∈P`
ajz, if ` = k,

∑

z∈P`
ajz, otherwise.

To conclude, ‖G(k)‖ ≤ √nintra,k max(i,j)∈Espan,k
|G(k)

ij |, and, due to (A3), γ̃
(k`)
ij = γ̃(k`) is independent

of i and j. Thus, ‖G(k)‖ ≤∑m
`=1 2 maxr nintra,r γ̃

(k`) ‖x(`)
intra‖, and this concludes the proof. �

Proof of Theorem 25: The system (6.8) can be viewed as the perturbation via G(xintra, xinter) of

ẋintra = F (xintra), which describes the dynamics of m disjoint networks of oscillators:

ẋ
(k)
intra = F (k)(x

(k)
intra). (6.29)

The origin of each system (6.29) is an exponentially stable equilibrium, which can be shown with

the Lyapunov candidate

Vk(xintra) = x
(k)T
intraPkx

(k)
intra,

where Pk � 0 is such that JT
k Pk + PkJk = −Qk for Qk � 0. In fact, the derivative of V along the

trajectories (6.29) is

V̇k(x
(k)
intra) = F (k)T(x

(k)
intra)Pkx

(k)
intra + x

(k)T
intraPkF

(k)(x
(k)
intra)

= x
(k)T
intra(JT

k Pk + PkJk)x
(k)
intra +O(‖x(k)

intra‖3), (6.30)

and the latter is strictly negative when ‖x(k)
intra‖ ≤ r and r ∈ R>0 is sufficiently small. Further, it

holds that: (i) ‖∂Vk/∂x(k)
intra‖ ≤ 2λmax(Pk)‖x(k)

intra‖, (ii) V̇k(x
(k)
intra) ≤ −λmin(Qk)‖x(k)

intra‖2, and (iii)

the perturbation terms G(k)(xintra, xinter) are linearly bounded in ‖x(k)
intra‖ following statement (ii)

in Lemma 24.

Consider now the following Lyapunov candidate for (6.8):

V (xintra) =

m∑

k=1

dkVk(x
(k)
intra), dk > 0.
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From [194, Chapter 9.5] we have:

V̇ (xintra) ≤ −1

2
(DS + STD)‖xintra‖2, (6.31)

where D = diag(d1, . . . , dm), and S satisfies

S = [sk`] =





λmin(Qk)
λmax(Pk) − γ(kk) if k = `,

−γ(k`) if k 6= `.

(6.32)

The origin of (6.8) is locally exponentially stable if S is an M -matrix [194, Lemma 9.7 and Theorem

9.2]. Finally, choosing Qk = I in (6.32) yields condition (7.3) in Theorem 25. �

6.6.2 Proofs of the results in Section 6.3.2

Let C be the set of connected clusters pairs, that is,

C = {(`, z) : ∃ (i, j) ∈ E with i ∈ P`, j ∈ Pz, and ` < z}.

With a slight abuse of notation, for any (`, z) ∈ C, we define x(`z) = xij , for any node i ∈ P` and

j ∈ Pz.

Lemma 40 (Linearized intra-cluster dynamics) The linearization of the intra-cluster dynam-

ics (6.8) around the trajectory xintra = 0 and xinter = xnom reads as follows:

ẋintra = (Jintra + Jinter)xintra, (6.33)

where Jintra is defined in Lemma 24, and

Jinter =
∂G

∂xintra

∣∣∣∣xintra=0
xinter=xnom

,
∑

(`,z)∈C
cos(x (`z)) J

(`z)
inter.

Proof. Linearization of (6.8) around the trajectory (xintra, xinter) = (0, xnom) yields ∂F/∂xintra =

Jintra and ∂G/∂xintra = Jinter. The remaining derivatives vanish. That is, ∂F/∂xinter = 0 because

F does not depend on xinter, and ∂G/∂xinter = 0 because of Assumption (A3). In fact, for any
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intra-cluster difference xij with i, j ∈ P`, ` ∈ {1, . . . ,m},

∂Gij
∂xintra

∣∣∣∣xintra=0
xinter=xnom

=
∑

(`,z)∈C
cos(x (`z))

∑

k∈Pz
[ajk − aik]

︸ ︷︷ ︸
=0

= 0.

This concludes the proof.

We next characterize an asymptotic property of the inter-cluster differences through the

following instrumental result.

Lemma 41 (Asymptotic behavior of the inter-cluster dynamics for large frequency dif-

ferences) Let i ∈ P`, j ∈ Pz, and ` 6= z. Then, the inter-cluster difference xij satisfies

lim
|ωj−ωi|→∞

xij(t)

ωj − ωi
= t. (6.34)

Proof. Let ω̄ij = ωj − ωi. We rewrite (6.4) as

ẋij = ω̄ij − (aij + aji) sin(xij) +
∑

k 6=i,j
[ajk sin(xjk)− aik sin(xik)] . (6.35)

From (6.35), let β =
∑
k 6=i,j [ajk + aik], and

ẋ ij = ω̄ij − (aij + aji) sin(x ij)− β, (6.36)

ẋij = ω̄ij − (aij + aji) sin(xij) + β, (6.37)

with x ij(0) = xij(0) = xij(0). Integrating (6.36) yields

∫ x ij(t)

xij(0)

dy

ω̄ij − (aij + aji) sin(y)− β =

∫ t

0

dτ. (6.38)

As |ω̄ij | grows, it holds that |(aij + aji) + β| < |ω̄ij |. Therefore,

1

ω̄ij − (aij + aji) sin(y)− β =
1

ω̄ij


 1

1− (aij+aji) sin(y)+β
ω̄ij


 =

1

ω̄ij

∞∑

k=0

[
(aij + aji) sin(y) + β

ω̄ij

]k
.

In view of the latter equality, (6.38) becomes

t =
x ij(t)− xij(0)

ω̄ij
+

1

ω̄ij

∫ x ij(t)

xij(0)

∞∑

k=1

[
(aij + aji) sin(y) + β

ω̄ij

]k
dy

︸ ︷︷ ︸
O(ω̄−1

ij )

,
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or, equivalently,

x ij(t) = ω̄ij t+ xij(0) +O
(
ω̄−1
ij

)
. (6.39)

Similarly, the solution of (6.37) has the form in (6.39). Finally, using the Comparison Principle [194,

Lemma 3.4], it holds that x ij(t) ≤ xij(t) ≤ xij(t) for all t ≥ 0. Hence,
xij(t)
ω̄ij
→ t as |ω̄ij | → ∞ and

this concludes the proof.

We are now ready to prove Theorem 28.

Proof of Theorem 28: Consider the Lyapunov candidate V (xintra, t) = xTintraΓ(t)xintra, and notice

that, using (6.33),

V̇ (xintra, t) = ẋTintraΓxintra + xTintraΓẋintra + xTintraΓ̇xintra

= xTintra


 JT

intraΓ + ΓJintra + Γ̇ +
∑

(`,z)∈C
cos(x (`z))

(
J

(`z)T
inter Γ + ΓJ

(`z)
inter

)

xintra+O(‖xintra‖3).

(6.40)

Let

Γ̇ = −
∑

(`,z)∈C
cos(x (`z))

(
J

(`z)T
inter Γ + ΓJ

(`z)
inter

)
. (6.41)

When the inter-cluster natural frequencies satisfy |ωi−ωj | → ∞ for all i, j, then Γ(t)→ Γ(0) for all

times t. In fact, integrating both sides of (6.41) and substituting Γ(t) = Γ(0) yields

∫ t

0

Γ̇ dτ= Γ(t)− Γ(0) = Γ(0)− Γ(0) = 0

=−
∑

(`,z)∈C

∫ t

0

cos(x(`z))
(
J

(`z)T
inter Γ + ΓJ

(`z)
inter

)
dτ

=−
∑

(`,z)∈C

(
J

(`z)T
inter Γ(0) + Γ(0)J

(`z)
inter

)∫ t

0

cos(x(`z)) dτ,

which holds true because
∫

cos(x(`z)) dτ = 0 due to Lemma 41. Because Jintra is stable, we conclude

that, when the inter-cluster natural frequencies satisfy |ωi − ωj | → ∞ for all i, j, Γ̇ = 0, and there

exists Γ(0) such that (6.40) is strictly negative. This concludes the proof. �
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Proof of Lemma 29: When xintra = 0, the differential equation (6.35) reduces to ẋinter = ω̄ −

ā sin(xinter), which is a separable differential equation with solution as in (6.15). To show that the

period of (6.15) is equal to T = 2π/
√
ω̄2 − ā2, we assume, without loss of generality, that τ = 0. It

is easy to see that, because tan(t) is π-periodic, xnom(t) = xnom(t+ 2π/
√
ω̄2 − ā2). Further, notice

that the variable substitution z = xnom in
∫ t

0
cos(xnom) dτ yields

∫ t

0

cos(xnom(τ)) dτ =

∫ xnom(t)

xnom(0)

cos(z)

ω̄ − ā sin(z)
dz =

1

ā
log

(
ω̄ − ā sin(x(0))

ω̄ − ā sin(xnom(t))

)
, (6.42)

which implies the bound (6.16). To prove that cos(xnom) has zero time average, it suffices to

substitute t = T in (6.42). �

Proof of Theorem 31: Consider the Lyapunov candidate V (xintra, t) = xTintraΓ(t)xintra, and notice

that, using (6.33),

V̇ (xintra, t) = xTintra[ JT
intraΓ + ΓJintra + Γ̇ + cos(xnom)(JT

interΓ + ΓJinter) ]xintra +O(‖xintra‖3).

(6.43)

Let Γ̇ = − cos(xnom)(JT
interΓ + ΓJinter) and notice that, following [197, Exercise 3.9 and Property

4.2], its solution satisfies

Γ(t) = exp

[
−
∫ t

0

cos(xnom(τ)) JT
inter dτ

]
Γ(0) · exp

[
−
∫ t

0

cos(xnom(τ))Jinter dτ

]
.

This implies that V (xintra, t) is a Lyapunov function for (6.33) because, by Lemma 29,
∫ t

0
cos(xnom(τ)) dτ

is bounded. Furthermore, notice that

exp

[
−
∫ t

0

cos(xnom(τ)) JT
inter dτ

]
= I +

∞∑

k=1

(JT
inter)

k

k!

(
−
∫ t

0

cos(xnom(τ)) dτ

)k

︸ ︷︷ ︸
∆

.

Thus, (6.43) can equivalently be written as V̇ = xTintra[JT
intraΓ(0)+Γ(0)Jintra+M ]xintra+O(‖xintra‖3),

where M = JT
intra∆Γ(0)∆T + ∆Γ(0)∆TJintra +JT

intra(∆Γ(0) + Γ(0)∆) + (∆Γ(0) + Γ(0)∆)Jintra. using
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the triangle inequality and Lemma 29, we obtain

‖∆‖ =

∥∥∥∥∥
∞∑

k=1

(JT
inter)

k

k!

(
−
∫ t

0

cos(xnom(τ)) dτ

)k∥∥∥∥∥

≤
∞∑

k=1

‖Jinter‖k
k!

∣∣∣∣
∫ t

0

cos(xnom(τ)) dτ

∣∣∣∣
k

= e|
∫ t
0

cos(xnom(τ)) dτ|‖Jinter‖ − 1 ≤ e 1
ā log( ω̄+ā

ω̄−ā )‖Jinter‖ − 1.

Because Jintra is stable, there always exists Γ(0) � 0 such that JT
intraΓ(0) + Γ(0)Jintra = −Q for any

Q � 0. Thus,

V̇ ≤ (−λmin(Q) + ‖M‖)‖xintra‖2 +O(‖xintra‖3). (6.44)

By a simple Lyapunov argument, the cluster synchronization manifold SP is locally exponentially sta-

ble if ‖M‖ < λmin(Q). In addition, ‖M‖ can be upper bounded as ‖M‖ ≤ 2‖Jintra‖‖Γ(0)‖‖∆‖(‖∆‖+

2) ≤ 2λmax(Γ(0))‖Jintra‖
(
e

2
ā log( ω̄+ā

ω̄−ā )‖Jinter‖ − 1
)
. Thus, a sufficient condition for local exponential

stability is 2λmax(Γ(0))‖Jintra‖
(
e

2
ā log( ω̄+ā

ω̄−ā )‖Jinter‖ − 1
)
< λmin(Q), and because the ratio λmin(Q)/λmax(Γ(0))

is maximized for Q = I [194, Exercise 9.1], we have

2λmax(Γ(0))‖Jintra‖
(
e

2
ā log( ω̄+ā

ω̄−ā )‖Jinter‖ − 1
)
< 1,

from which condition (6.18) follows. �

Proof of Theorem 32: From (6.43) and for β ∈ R>0 we have V̇ (xintra, t) = xTintra[ JT
intraΓ +

ΓJintra ]xintra + O(‖xintra‖3) = −βxTintraΓxintra + O(‖xintra‖3), which is negative in a small neigh-

borhood of the origin. �
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Chapter 7

Relay Interactions Enable Remote

Synchronization of Phase

Oscillators

In this chapter, we study remote synchronization, which describes a fascinating phe-

nomenon where oscillators that are not directly connected via physical links evolve synchronously.

This phenomenon is thought to be critical for distributed information processing in the mammalian

brain, where long-range synchronization is empirically observed between neural populations belong-

ing to spatially distant brain regions. Inspired by the growing belief that remote synchronization

may be prompted by intermediate mediating brain regions, such as the thalamus, in this chapter we

derive a novel mechanism to achieve remote synchronization. This mechanism prescribes remotely

synchronized oscillators to be stably connected to a cohesive relay in the network – a group of tightly

connected oscillators mediating the distant ones. Remote synchronization unfolds whenever the sta-

bility of the subnetwork formed by relays and remotely synchronized oscillators is not affected by the

rest of the oscillators. In accordance with our results, we find that remotely-synchronized cortico-
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thalamo-cortical circuits in the brain posses strong interconnection profiles. Finally, we demonstrate

that the absence of cohesive relays prevents stable remote synchronization in a large class of cases,

further validating our results. We refer the reader to the published work [201] for a comprehensive

discussion.

7.1 Introduction

Synchronization is a universal phenomenon intimately related to the functioning of many

natural and engineered systems [145]. In the brain, synchronization phenomena are thought to

constitute the neural basis of cognition, memory, and large-scale information processing [202–204].

Empirical evidence demonstrates that brain regions that are not physically interconnected are ca-

pable of synchronizing, giving rise to what is known as remote synchronization [205–207]. In this

context, the thalamus is believed to be an enabler of remote synchronization by functioning as a

central hub that relays information to distant cortical regions [205]. However, the mechanism un-

derlying this compelling phenomenon has not been fully characterized yet, and studies on remote

synchronization remain few and sparse.

To investigate this phenomenon, we model neural activity as the network-wide product of

interacting oscillators, where each oscillator represents a brain region [57]. Preliminary work has

probed remote synchronization in phase-amplitude oscillators, producing seminal results [208–210].

Yet, there is compelling evidence that most of the information in brain-wide interactions can be

explained by the phases of brain signals, not their amplitude [202, 211]. Hence, phase oscillators

lend themselves as an ideal candidate for the modeling and analysis of remotely synchronizing brain

regions.

In this chapter, we utilize heterogeneous Kuramoto oscillators to investigate the role that

network topology and parameters play in the emergence of remote synchronization. Specifically, we

derive conditions to ensure stable remote synchronization that prescribe the existence of a strongly
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connected set of oscillators acting as intermediate relay between remotely-synchronized nodes. More-

over, by analyzing human brain structural and functional data, we find evidence that the brain may

enact a similar mechanism.

Related work. Kuramoto-like models, known for their rich dynamics and fascinating behaviors [28],

have been widely used for the study of neural synchronization phenomena [212–215]. Besides emerg-

ing in brain recordings, remote synchronization finds applications in climate research [216] and in

secure communication technologies [217]. In the latter, concurrent remote synchronization of distant

network nodes and asynchronous behavior of the intermediate ones allows for the secure distribution

of critical information. Despite its importance, the characterization of remote synchronization in

phase oscillators has remained elusive.

Early attempts at the characterization of remote synchronization in phase oscillators have

been made by employing phase shifts [218] and network symmetries (mathematically described by

graph automorphisms) [219,220]. Here, we present a different mechanism for remote synchronization,

and show that network symmetries, although beneficial, are not necessary for the emergence of

remote synchronization.

Chapter contribution. The main contribution of this chapter is the derivation of a mechanism that

guarantees the emergence of stable remote synchronization in networks of heterogeneous Kuramoto

oscillators. We demonstrate that stability of remote synchronization is guaranteed whenever there

exists a network partition where oscillators within the same group evolve cohesively, and at least one

group consists of remotely-synchronized oscillators with strongly connected neighbors – a cohesive

relay. We confirm the existence of a cohesive relay that enables remote synchronization in human

brain data using a publicly available dataset. The mechanism proposed in this chapter builds upon

and extends the results from the previous chapter (see also [142]), and complements previous work

on relay synchronization [221].

Furthermore, we reveal that the absence of cohesive relays hinders the stability of the

remote synchronization manifold in the class of networks comprising two groups of synchronized
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oscillators. This important result suggests that our condition may be (almost) necessary. Finally,

since Kuramoto oscillators are hard to analyze with the Master Stability Function formalism, our

findings shed light to the challenging analysis of exotic synchronization phenomena in this class of

oscillators.

Mathematical notation. R, R≥0, R>0, and S denote the real numbers, the nonnegative real

numbers, the positive real numbers, and the unit circle, respectively. The set Tn = S×· · ·×S is the

n-dimensional torus. We use 1 and ei to represent the vector of all ones and the i-th canonical vector,

respectively. The operation A† denotes the Moore-Penrose pseudoinverse of the matrix A. An M -

matrix is a real nonsingular matrix A = [aij ] such that aij ≤ 0 for all i 6= j and all leading principal

minors are positive. Finally, A � 0 indicates that A is positive definite, and D = diag(c1, . . . , cn)

represents a diagonal matrix with (i, i)-th entry ci, i = 1, . . . , n.

7.2 Problem setup and preliminary notions

In this chapter, we characterize the stability properties of remotely-synchronized trajecto-

ries arising in networks of oscillators with Kuramoto dynamics. To this aim, let G = {O, E} be the

connected and weighted graph representing the network of oscillators, with O = {1, . . . , n} being the

oscillator set, and E being the edge set. Let A = [aij ] be the sparse adjacency matrix of the network,

where aij > 0 whenever (i, j) ∈ E , and aij = 0 otherwise. The dynamics of the i-the oscillator reads

θ̇i = ωi +
∑

j 6=i
aij sin(θj − θi), (7.1)

where ωi ∈ R>0 and θi ∈ S denote the natural frequency and the phase of the i-th oscillator,

respectively, and aij represents the coupling strength of the undirected edge between oscillators i

and j. We assume that there are no self-loops (aii = 0).

In what follows, we distinguish between phase synchronization and frequency synchroniza-

tion of the oscillators.

Definition 42 ((Remote) phase synchronization) We say that oscillators i, j ∈ O are phase

137



synchronized if θi(t) = θj(t) for all t ≥ 0. Additionally, two phase-synchronized oscillators i, j ∈ O

are remotely-synchronized if aij = 0. �

Definition 43 (Frequency synchronization (manifold)) We say that oscillators i, j ∈ O are

frequency-synchronized if θ̇i(t) = θ̇j(t) for all t ≥ 0. Additionally, the frequency synchronization

manifold for G is MG = {θ ∈ Tn : ωi +
∑
k aik(θk − θi) = ωj +

∑
k ajk(θk − θj),∀i, j ∈ O}. �

Conditions for the oscillators in G to have an asymptotically stable frequency synchroniza-

tion manifold M can be found in [28, 222], and demand that the coupling strengths dominate the

heterogeneity of the natural frequencies.

Remote synchronization can be studied as a special case of cluster synchronization, where

the oscillators can be partitioned into clusters (possibly, singletons) so that the oscillators in each

cluster evolve identically. To formalize the treatment, consider a network partition C = {C1, . . . , Cp},

with clusters satisfying Ck ∩ C` = ∅ for all k, ` ∈ {1, . . . , p}, k 6= `, and
⋃p
k=1 Ck = O. The cluster

synchronization manifold is

SC = {θ ∈ Tn : θi = θj for all i, j ∈ C`, ` = 1, . . . , p}.

To focus on remote synchronization, we assume that the first m ≥ 1 clusters contain remotely-

synchronized oscillators:

(A1) there exists 1 ≤ m ≤ p such that aij = 0 for all i, j ∈ C` and ` ∈ {1, . . . ,m}.

Fig. 7.1 illustrates a network partitioned into clusters.

To be stable, the cluster synchronization manifold SC must be invariant. Sufficient condi-

tions on the network weights and oscillators’ natural frequencies for the invariance of SC have been

derived elsewhere, and read as follows [142]:

(C1) the natural frequencies satisfy ωi = ωj for every i, j ∈ Ck and k ∈ {1, . . . ,m};

(C2) The network weights satisfy
∑
k∈C` aik−ajk = 0 for every i, j ∈ Cz and z, ` ∈ {1, . . . ,m}, with

z 6= `.
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C1C2
C4

C3

Figure 7.1: A network with (remotely-)synchronized clusters of oscillators. The clusters C1
and C2 comprise remotely-synchronized oscillators. Clusters C3 and C4 contain connected phase-
synchronized oscillators. All the singletons C5, . . . , Cp are depicted in shades of gray.

In the following, we assume that (C1) and (C2) are satisfied for the partition C being

considered.

We conclude this section by stressing out that existing conditions for the stability of the

cluster synchronization manifold SC require each cluster in C to be connected internally [142, 143],

and do not cover the case of disconnected clusters. In the next section, we extend the results in [142]

to account for the case of remote synchronization.

7.3 Stability of remote synchronization through relay inter-

actions

In this section, we present a condition to ensure that remote synchronization emerges in a

network of heterogeneous Kuramoto oscillators. We focus on local stability because SC is, in general,

not globally asymptotically stable. As it is not clear where on the manifold the system stabilizes,

we are interested in any trajectory that converges to SC . Our condition reveals that the existence

of a strongly connected relay promotes the stability of remotely-synchronized trajectories.
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7.3.1 A sufficient condition for the stability of remote synchronization

via perturbation theory and relays

In order to derive our stability condition, we introduce the incremental dynamics of (9.1).

Let xij = θj − θi, so that ẋij = θ̇j − θ̇i. Stacking all the differences xij with i < j yields a vector of

phase differences x = BTθ, with B being the oriented incidence matrix of G.1

It is worth noting that n− 1 phase differences xmin encode all phase trajectories, and that

there always exists a full column-rank submatrix Bmin ∈ Rn×(n−1) of B such that

x = BT(BT
min)†xmin,

where xmin is a set of n − 1 phase differences that can be used to quantify synchronization among

all oscillators. To see this, let xmin = BT
minθ, with Bmin being any full column-rank submatrix of

B (e.g., the incidence matrix of a spanning tree of G [42]). Because ker(BT) = ker(BT
min) = 1 by

definition, it holds that x = BTθ = BT(θ + c1) = BT(BT
min)†xmin.

Let ẋ
(k)
min = gk(x

(k)
min) denote the incremental dynamics of (9.1) restricted to a subnetwork

Gk = {Ok, Ek}, with Ok ⊆ O and Ek = {(i, j) ∈ E : i, j ∈ Ok} ⊆ E , and let

Jk(x̄
(k)
min) =

∂gk

∂x
(k)
min

(x̄
(k)
min)

=−BT
min,kBk diag({aij cos(x̄ij)}(i,j)∈Ek)BT

k (BT
min,k)† (7.2)

be the Jacobian matrix computed at x̄
(k)
min (see Lemma 24), where each x̄ij can be expressed as a

function of x̄
(k)
min. The following theorem extends Theorem 25 to the case of disconnected clusters,

thus providing a condition for the stability of the remote synchronization manifold.

Theorem 44 (Stable remote synchronization through relay interactions and weak outer

couplings) Let SC be the cluster synchronization manifold associated with a partition C = {C1, . . . Cp}

of the network G, with {C1, . . . , Cm} comprising disconnected oscillators. The cluster synchronization

1The n × |E| oriented incidence matrix is defined entry-wise as Bk` = −1 if oscillator k is the source of the
interconnection `, Bk` = 1 if oscillator k is the sink of the interconnection `, and Bk` = 0 otherwise.
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manifold SC is locally asymptotically stable if there exists a partition F = {F1, . . . ,Fr} satisfying

the following conditions:

(i) C` ⊆ Fk, for all ` ∈ {1, . . . , p} and some k ∈ {1, . . . , r};

(ii) Gk = (Fk, Ek) is connected, for all k ∈ {1, . . . , r},

(iii) There exists a locally asymptotically stable MGk (see Definition 43) for the oscillators in the

isolated subnetwork Gk = (Fk, Ek), for all k ∈ {1, . . . , r};

(iv) the matrix S ∈ Rr×r, defined as

S = [sk`] =





λ−1
max(Pk)− c(kk) if k = `,

−c(k`) if k 6= `,

(7.3)

is an M -matrix, where Pk � 0 is such that Jk(0)Pk + PkJk(0)T = −I, with Jk as in (7.2),

and, for any i ∈ Fk,

c(k`) = 2 max
r
|Fr| ·





∑

j∈F`
aij , if ` 6= k

∑

` 6=k

∑

j∈F`
aij , otherwise.

(7.4)

Proof. We will use perturbation theory of dynamical systems [194, ch. 9] to prove the sta-

bility of SC . Here, the nominal systems are the isolated sets F1, . . . ,Fr, whose stability is perturbed

by the phase trajectories of the oscillators belonging to interconnected sets. We first show that,

because the oscillators in G1, . . . ,Gr have stable frequency synchronization manifolds, there exist r

quadratic Lyapunov functions for the linearized incremental dynamics of the isolated sets F1, . . . ,Fr.

Notice that the frequency-synchronized trajectories of the oscillators in F1, . . . ,Fr uniquely identify

equilibria x̄
(k)
min, k ∈ {1, . . . , r}, of their respective incremental dynamics on G1, . . . ,Gr. By applying a

change of coordinates y(k) = x
(k)
min− x̄

(k)
min such that the linearized incremental dynamics are centered

at the origin, we can define r Lyapunov functions that read as Vk(y(k)) = y(k) TPky
(k), with Pk � 0

such that Jk(0)Pk + PkJk(0)T = −I, and satisfy Vk(0) = 0, for all k ∈ {1, . . . , r}. Next, we define
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ỹmin = [y(1), . . . , y(r)]T as the minimum incremental variables for the entire partition C of G, so that

ỹmin = 0 implies cluster synchronization. Let the Lyapunov candidate for the incremental dynamics

˙̃ymin be

V (ỹmin) =

r∑

k=1

dkVk(ỹ(k)), dk > 0. (7.5)

By the invariance condition (C2) and Lemma 24, we can apply perturbation theory of

dynamical systems [194, ch. 9.5] to obtain that the derivative of (7.5) satisfies V̇ (ỹmin) ≤ (DS +

STD)‖ỹmin‖, where D = diag(d1, . . . , dr), and S is as in (7.3). Finally, [194, Lemma 9.7 and Theorem

9.2] define the constants c(k`) as in (7.4), the matrix S as in (7.3), and conclude on the origin of

˙̃ymin being locally stable if S is an M -matrix, thus proving the stability of SC .

Theorem 44 introduces an additional partition of the oscillators besides C, where the sets

F1, . . . ,Fr contain one or more clusters each, and whose oscillators are required to be coupled

strongly enough to achieve frequency synchronization when isolated from the other sets. That is,

while the partition C encodes which oscillators are phase- and which are remotely-synchronized, F

encodes the frequency synchronization behavior of the oscillators.

Remark 45 (Cohesive relays support stable remote synchronization) Conditions (i) and

(ii) in Theorem 44 require that any set Fk containing a cluster of remotely-synchronized oscillators

C`, ` ∈ {1, . . . ,m} must also contain one or more connected clusters from {Cm+1, . . . , Cp}, which in

turn act as a relay for the remote oscillators in Fk. Such relay is also cohesive, as all its oscillators

behave cohesively due to its internal weights being large enough to guarantee frequency synchro-

nization and the M -matrix condition. Taken together, these requirements reveal that stable remote

synchronization is ensured by the existence of cohesive relays, which provide sufficient “inertia” to

preserve remote synchronization despite the perturbations from other oscillator sets. �

Fig. 7.2 illustrates remotely-synchronized oscillators supported by cohesive relays in a par-

tition F for the network in Fig. 7.1. Finally, Fig. 7.3 presents an example for Theorem 44.
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{F3, . . . ,Fr}F2 F1

Figure 7.2: Remote synchronization through stable relay interconnections. This figure illustrates
a partition F = {F1, . . . ,Fr} of the network in Fig. 7.1 satisfying the conditions in Theorem 44.
Requiring that the matrix in (7.3) is an M matrix guarantees that the stable frequency-synchronized
trajectories in F1 and F2 are not perturbed by the rest of the oscillators.
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Figure 7.3: Fig. 7.3(a) illustrates a network partitioned into C = {C1, C2, C3} that displays stable
remote synchronization by satisfying Theorem 44 with F = {F1,F2}, where F1 = {C1, C2}. The
cluster C (in blue) being a cohesive relay for the remote cluster C1 (in green). In this example
F2 = C3 (in red). We fix the network weights as a13 = a24 = a34 = a56 = 10 and a35 = a46 = 1,
and the natural frequencies as ω1 = 0, ω2 = 0.5, ω3 = 2.1. It can be shown that the dynamics

ẋ
(1)
min = [ẋ13 ẋ24 ẋ34]T for F1 (in grey, dashed) has a stable equilibrium x̄

(1)
min = [0 0.025 0]T. The

matrix S = [[7.7139,−4]; [−4, 36]] in (7.3) is an M -matrix. Fig. 7.3(b) illustrates the phases evolution
starting from random initial conditions close to SC . The phases, which are color coded according to
Fig. 7.3(a), converge to SC , and the oscillators in C1 are remotely synchronized

.
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7.3.2 Remotely-synchronized brain regions possess strong relay intercon-

nections

While Theorem 44 does not provide a method to choose the partition F and, thus, which

oscillators constitute relays, empirical studies have identified candidate relay regions in the brain to

be the backbone of a set Fk ⊂ F . We interrogate the publicly available NKI Rockland dataset [223]

to verify whether there exists a relay whose connections with brain regions that display remote

synchronization are much stronger than the average connection strength across all brain regions.

More in detail, we analyze cortico-thalamo-cortical circuits [205], where disconnected cortical regions

synchronize via interconnections with the thalamus.

In the considered dataset, the anatomical organization of the brain is encoded by adjacency

matrices Wi ∈ R188×188
≥0 . We analyze the first N = 20 subjects in the dataset, and find that

each subject possesses pairs of disconnected cortical regions whose activity is highly synchronous

(Pearson correlation coefficients ≥ 0.9). For each subject, we select the pair displaying the largest

mean coupling strengths with the thalamus. We find that, across all 20 subjects, the mean cortico-

thalamic interconnection of remotely synchronized regions is 4.079± 0.303 SEM (Standard Error of

the Mean) times the mean network weight. Fig. 7.4 illustrates the distribution of cortico-thalamic

interconnection weights divided by the average interconnection weight of each subject. Remarkably,

even the smallest among these values is larger than one. Because a partition F cannot be uniquely

identified from the available data, we cannot check whether Theorem 44 is satisfied. Nevertheless,

the above finding is in line with the theoretical requirement of strong relay interconnections, and

suggests that remote synchronization in the brain may be supported by strong interactions with a

cohesive relay.
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Figure 7.4: Distribution of cortico-thalamic interconnections of remotely synchronized cortical
regions in anatomical brain networks of N = 20 subjects. For each subject, we plot the the
cortico-thalamic interconnection weight of remotely-synchronized cortical regions aCT divided by
the subject-specific average interconnection weight mean(aij).

7.4 Unstable remote synchronization in the absence of cohe-

sive relays

In this section, we provide evidence that the absence of cohesive relays hinders the emer-

gence of stable remote synchronization in a large class of networks. To do so, we first assess whether

frequency-synchronized sets that include remotely-synchronized oscillators are necessary to enable

stable remote synchronization of a single cluster of disconnected oscillators. We focus on the case

of networks partitioned into two clusters (C = {C1, C2}), where θ̇i 6= θ̇j for all i ∈ C1 and j ∈ C2.

We set to zero all intra-cluster couplings in C1, so that C2 is a (non-cohesive) relay for the remote

oscillators in C1. In this configuration, there does not exist a partition F satisfying Theorem 44.

The next theorem shows that this specific configuration yields at best marginal stability of

SC – as phase trajectories that start in the vicinity of SC never converge to it as t→∞. To present

our result, we define ω̄ = ω2 − ω1, with ω1, ω2 being the natural frequencies of the oscillators in C1

and C2, respectively. Finally, let ā =
∑
k∈C2 aik +

∑
k∈C1 ajk, for any i ∈ C1 and j ∈ C2.

Theorem 46 (Instability of SC if common neighbors are not frequency-synchronized)

Consider the network G partitioned as P = {C1, C2}, with aij = 0 for all i, j ∈ C1 and aij = aik > 0

for any i ∈ C1 and all j, k ∈ C2. If ω̄ > ā, then the cluster synchronization manifold SC is not

asymptotically stable. Furthermore, for any initial condition θ(0) = θ̃(0) + αei, with θ̃(0) ∈ SC,

α ∈ T, and i ∈ C1, the solution to (9.1) is periodic and does not belong to SC.
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Figure 7.5: Fig. 7.5(a) illustrates a 2-cluster network where the remote oscillators in C1 are connected
to all the oscillators in C2, thus satisfying the condition in Theorem 46. Fig. 7.5(b) illustrates that,
due to the synchronization of all the oscillators in C2 (in red) whenever the oscillators in C1 share
common neighbors, the network in Fig. 7.5(a) can be reduced to a star network in order to analyze its
stability properties. When studying a specific perturbation of θ(0) ∈ SC so that only the oscillators
in C1 are outside of SC at t = 0, the star network in the top panel can be further reduced to a
3-node star. Fig. 7.5(c) depicts the periodic trajectories (in Cartesian coordinates) x12 = θ2 − θ1

and x23 = θ3 − θ2 of the 3-node star in Fig. 7.5(b) starting from θ1(0) = −1 and θ2(0) = θ3(0) = 0,
which satisfy Theorem 46.

Proof. We prove that there exist an infinite number of time instants t1, t2, . . . such that

θ(0) = θ(t1) = θ(t2) = . . . . Owing to Lemma 29, the condition ω̄ > ā implies that θ̇i 6= θ̇j for all

i ∈ C1 and j ∈ C2. Notice that any remote oscillator can equivalently be seen as a singleton cluster,

and that the phases of such clusters cancel out in the dynamics of ẋ
(2)
ij for all i, j ∈ C2. Hence, due

to (C1) and the fact that C2 is internally connected, it holds that |xij | → 0 for all i, j ∈ C2 [142].

In this case, we observe that any network akin to Fig. 7.5(a) can be conveniently analyzed as a

star network, where C2 is considered as the oscillator at the center of the star because its oscillators

synchronize (see Fig. 7.5(b)).

Let us reorder the oscillators so that the last one is the star center, and consider initial

conditions θ(0) = c1+[α 0 . . . 0]T; that is, all oscillators start at the same value c ∈ T and x1k = α,

for all k = 2, 3, . . . , |C1|. This choice of θ(0) allows us to further reduce the star network to a 3-

oscillator star, where synchronized oscillators 2, . . . , |C1| become a single oscillator, as illustrated in

Fig. 7.5(b). To see this, recall that the synchronized trajectories of 2, . . . , |C1| are invariant due to
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(C1), (C2). Finally, for simplicity, let us set aij = 1 for all aij .
2 We are left with studying a 3-

oscillator star obeying equations θ̇1 = sin(θ3−θ1), θ̇2 = sin(θ3−θ2), θ̇3 = ω3−sin(θ3−θ1)−sin(θ3−θ2).

We are now ready to demonstrate that there exist t1, t2, . . . such that θ(0) = θ(t1) =

θ(t2) = . . . . We first define γ = 1
2 (θ2 − θ1) and ϕ = ω3 − θ1+θ2

2 . On the unit circle, γ(t) represents

the evolution of half of the difference between the two outer oscillators, while ϕ(t) represents the

evolution of the difference between θ3(t) and the center of the difference between the outer oscillators.

Since θ3 − θ1 = γ + ϕ and θ3 − θ2 = γ − ϕ, the time evolution of γ and ϕ can be written as γ̇ =

1
2 [sin(ϕ− γ)− sin(ϕ+ γ)], ϕ̇ = γ3− 3

2 [ϕ− γ) + sin(ϕ+ γ)] . Notice that γ̇ = 0 for (γ, ϕ) = (α2 , k
π
2 )

with k odd. Next, we get rid of the dependence of γ from time by considering γ̇
ϕ̇ = ∂γ

∂t
∂t
∂ϕ = ∂γ

∂ϕ . By

recalling that ϕ is monotonically increasing (as ω̄ > ā implies that θ̇3 6= θ̇1), we can study γ(ϕ) and

∂γ
∂ϕ (ϕ) as a function of ϕ. In particular, showing that γ(−π2 ) = γ( 3π

2 ) is equivalent to show that x12

does not converge to zero. To do so, recall that γ( 3π
2 ) = γ(−π2 ) +

∫ 3π
2

−π2
∂γ
∂ϕ (τ)dτ.

It holds that the integral in the above equation is zero, as it can be shown that

∫ π
2

−π2

∂γ

∂ϕ
(τ)dτ = −

∫ 3π
2

π
2

∂γ

∂ϕ
(τ)dτ. (7.6)

Specifically, we prove by mathematical induction that, for any ϕ ∈ [−π2 , π2 ], ∂γ
∂ϕ (ϕ) = ∂γ

∂ϕ (π − ϕ).

This can be done by letting ϕ1 = π
2 , and considering for the base step of the induction ϕ+

1 = ϕ+ δ

and ϕ−1 = ϕ − δ. In the limit for δ → 0, it holds that ∂γ
∂ϕ (ϕ+

1 ) = ∂γ
∂ϕ (ϕ−1 ). The inductive step can

be proven analogously, thus concluding on the symmetry of ∂γ
∂ϕ in the unit circle with respect to the

axis (−π2 , π2 ), which implies the equivalence in (7.6) since we have that

∫ 3π
2

−π2

∂γ

∂ϕ
(τ)dτ =

∫ π
2

−π2

∂γ

∂ϕ
(τ)dτ +

∫ 3π
2

π
2

∂γ

∂ϕ
(τ)dτ

=

∫ π
2

−π2

∂γ

∂ϕ
(τ)dτ +

∫ π
2

−π2

∂γ

∂ϕ
(π − β)dβ = 0.

This concludes the proof that x12 circles back to x12(0) an infinite amount of times, thus implying

that the remote synchronization manifold is not asymptotically stable.

2The reasoning below can be extended to any weights aij ∈ R≥0.
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Figure 7.6: Fig. 7.6(a) illustrate a 2-cluster network with random inter-cluster coupling and no
common neighbors. Fig. 7.6(b) depicts consistently unstable Floquet characteristic multipliers of
a 2-cluster network for varying topologies and cluster sizes. We generated, for each cluster size
|Ci| = N and probability p of interconnection between two nodes, 100 Erdös-Rényi graph topologies
with weights drawn uniformly from [0, 1]. Each entry of the matrix plot represents the mean unstable
characteristic multiplier ρi averaged over 100 different network instances satisfying: (i) clusters C1
and C2 consist of N oscillators each, (ii) the conditions for the invariance of SR, (iii) aij = 0 for all
i, j ∈ C1.

Theorem 46 shows that if every oscillator i ∈ C1 receives the same “input”
∑
j∈C2 aij sin(θj−

θi) from all the oscillators in C2, as illustrated in Fig. 7.5(a), the cluster synchronization manifold

SC is at best marginally stable. Additionally, Theorem 46 demonstrates the existence of a family of

initial conditions, which can be arbitrarily close to SC , that yields periodic trajectories not belonging

to SC . Fig. 7.5(c) illustrates periodic trajectories as in Theorem 46.

We confirm by means of Floquet stability theory [224] that network topologies not as

accurately crafted as the ones in Theorem 46 yield an unstable SC . We remark that it is possible to

employ Floquet stability theory because the phase differences between the oscillators in C1 and the

ones in C2 are periodic whenever the two clusters are not frequency-synchronized (i.e., ω̄ > ā) [142,

Lemma 3.4].

We generated 104 2-cluster networks with varying size and connectivity profiles, where

aij = 0 for all i, j ∈ C1, and C2 is a random connected topology (Erdös-Rényi graphs with edge

probability p ∈ [0.1, 1]). Fig. 7.6 summarizes the stability analysis of SC in all these networks. While
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not excluding that remote synchronization may arise in specific instances where multiple phase-

unlocked clusters interact, our results suggest that the sufficient mechanism proposed in Section 7.3

may be (almost) necessary for the stability of SC .

7.5 Conclusion

We have studied remote synchronization in networks of heterogeneous Kuramoto oscillators.

Motivated by the hypothesis that remote synchronization in the brain is promoted by intermediate

brain regions that relay information between disconnected ones, we have proposed a novel mecha-

nism to achieve stable remote synchronization. Our main result prescribes the existence of cohesive

relays, which are required to be strongly coupled to remote oscillators and weakly perturbed by the

other ones. We have also analyzed brain data and found that regions that remotely-synchronize are

strongly connected to a common relay. Finally, we have demonstrated that the case of 2 clusters

where no cohesive relay exists does not admit stable remote synchronization. The latter result sug-

gests that our sufficient conditions may also be necessary. We leave the validation of this conjecture

as a topic for future research.
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Part III

Control of Synchronization in

Brain Networks
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Chapter 8

Feedback Linearization of

Nonlinear Network Systems

This chapter introduces the method of feedback linearization applied to network systems

with the goal of achieving desired synchronization patterns. Feedback linearization allows for the

local transformation of a nonlinear system to an equivalent linear one by means of a coordinate

transformation and a feedback law. Feedback linearization of large-scale nonlinear network systems

is typically difficult, as existing conditions become harder to check as the network size becomes

larger. In this letter, we provide novel conditions to test whether a nonlinear network is feedback-

linearizable. Specifically, given some dedicated control inputs injected to a set of network nodes, we

derive an easy-to-check algebraic condition that can be tested on the Jacobian matrix of the network

dynamics evaluated at some desired working point. Furthermore, our requirements are sufficient for

(local) controllability, and thus provide a testable condition for controllability of large-scale nonlinear

networks. Finally, we validate our findings by enforcing the formation of desired synchronization

patterns in networks of coupled oscillators. We refer the interested reader to the publication [225]

for a comprehensive discussion.
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8.1 Introduction

The ability to effectively control complex nonlinear systems is still an outstanding engi-

neering challenge. In fact, despite the ubiquitous presence of large-scale nonlinear network systems,

both in the technological [151] and the natural [10] fields, a full characterization of controllability

has remained elusive. This is due to the fact that, in general, checking the known sufficient con-

ditions becomes harder (intractable, even) as the size of the system increases [226]. In this letter,

we address this issue by providing algebraic conditions for nonlinear control problems that leverage

the system’s internal interconnection structure. Specifically, we resort to the theory of feedback lin-

earization, which allows for the local transformation of a nonlinear system into an equivalent linear

one by means of a coordinate transformation and a feedback loop [227]. This, in turn, enables the

extensive array of control-theoretic tools for linear systems to be used for the control of nonlinear

network systems.

While there exists a vast amount of literature on controllability of linear systems evolving

on networks, the line of work studying the nonlinear counterpart is much narrower (e.g., [35, 228]).

This letter complements the latter line of work and presents conditions to test whether a nonlinear

network system is feedback-linearizable from a set of dedicated control inputs. Our conditions can

be evaluated on the Jacobian matrix of the system computed at a desired working point, instead of

complex differential geometric quantities as in classical tests, which also consist of more restrictive

conditions. Finally, motivated by our interest in controlling the synchronization capabilities of

neuronal networks in biological systems, we illustrate how our results can be used to achieve cluster

synchronization in regular and multiplex networks of oscillatory neuronal ensembles [214,229].

Related work. This work aims at narrowing the gap between controllability of large-scale network

systems and the feedback linearization method. After the early theoretical developments, fewer

works have surfaced on the topic of nonlinear controllability, [230, 231]. Recent papers address

this problem for systems evolving on networks [31, 35, 228, 232–234]. For instance, [233, 234] study
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accessibility of network systems. However, accessibility is a weaker notion than controllability, and

thus may be of limited use in practice [235].

Feedback linearization is a classical topic in nonlinear control theory developed during the

decades between the 1960 and the 1990 [236,237]. Applications can be found in several engineering

systems, including robotic mechanisms [238] and power networks [239]. Some recent work promotes

the usage of data-driven methods to achieve feedback linearization whenever the model is not known

exactly [240, 241]. Relevant studies on model-based feedback linearization include [242], where the

authors give conditions based on differential geometry, and [243], where conditions are given for a

single-input–single-output system with delays. The work that is most closely related to ours is [239],

where the authors study feedback linearization of a chain network governed by a class of nonlinear

dynamics.

Chapter contribution. The contribution of this chapter is two-fold. First, by exploiting a sys-

tem’s interconnected structure, we provide sufficient algebraic conditions to test for the feedback

linearization of nonlinear systems controlled by linear vector fields. That is, given a set of dedicated

control inputs, we derive conditions that can be tested on the Jacobian matrix of the nonlinear sys-

tem. Our conditions can be used to test for (local) controllability of large-scale nonlinear network

systems. Additionally, the use of feedback linearization enables the evaluation of the state space

region in which the linearized system is defined; note that this is a computation not possible when

using Jacobian linearization.

Second, we exploit our results to address the challenging problem of controlling oscilla-

tory networks [214, 244, 245]. We show that a class of nonlinearly coupled oscillators is feedback-

linearizable and, through feedback linearization, we control the formation of desired synchronization

patterns.
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8.2 Problem setup and preliminary notions

In this chapter, we study feedback linearization and controllability of nonlinear systems

governed by the dynamics

ẋ = f(x) +Bu, (8.1)

where x = [x1, . . . , xn]T ∈ Rn is the the system state, f is a smooth vector field that describes the

dynamics of the system, and B ∈ Rn×m is the input matrix through which the control signals u

are administered to the system. We let K = {k1, . . . , km} ⊆ {1, . . . , n} be the control set, and let

B =

[
ek1

, . . . , ekm

]
, with ei denoting the i-th canonical vector. Without loss of generality, we choose

K = {1, . . . ,m}, thus B =

[
e1, . . . , em

]
. Finally, we assume that (8.1) has at least one equilibrium.

That is, there exists x̄ such that f(x̄) = 0.

In this chapter, we make use of a graphical representation of the dynamic interdependence

of the system’s components. Namely, the inference diagram [246] consists of a graph G = {V, E},

with V = {1, . . . , n} being the set of n nodes where each node corresponds to a state of the system,

and E ⊆ V×V being the set of edges connecting the nodes as follows. For all i, j ∈ V, there exists an

unweighted directed edge from node j to node i if i 6= j and xj appears in xi’s differential equation.

The adjacency matrix that describes the interconnection structure of the inference diagram is the

sparse matrix A = [aij ], with aij = 1 if there is an edge between j and i, and aij = 0 otherwise.

Fig. 8.1 illustrates the procedure to generate an inference diagram, which describes the underlying

topology of the state interactions for the nonlinear system ẋ = f(x) in (8.1), but can equivalently

represent the interconnection structure of nonlinearly interacting agents in a network system.

Let A be the adjacency matrix of G, let path(i, j) denote a path on G from node i to

node j, and let |path(i, j)| be the number of edges of path(i, j). Notice that K represents the set

of control nodes in G. Define the distance between a subset of nodes S ⊆ V and the control set

K as dist(S,K) = min{|path(i, j)| : i ∈ K, j ∈ S}. Without loss of generality, we order the nodes

according to their distance from the set of control nodes. In particular, we define a positive integer
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ẋ3
ẋ4
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Figure 8.1: This figure illustrates the process of generating an inference diagram from a generic
nonlinear system described by the vector field f(x). The inference diagram depicted in this example
is a graph in which there is an edge from node j to node i if ẋi is a function of xj and i 6= j. Notice
that we do not allow self-loops in the inference diagram.

N so that V = ∪Ni=1Vi, with Vi ∩ Vj = ∅ if i 6= j, and dist(Vi,K) = i − 1 for all i ∈ {1, . . . , N}.

According to the partition {V1, . . . ,VN}, the adjacency matrix reads as

A =




A11 A12 0 · · · 0

A21 A22 A23 · · · 0

0 A32
. . .

. . .
...

...
. . .

. . . AN−1,N−1 AN−1,N

0 · · · · · · AN,N−1 AN,N




, (8.2)

where Aii ∈ R|Vi|×|Vi|, Ai−1,i ∈ R|Vi|×|Vi+1|, and Ai,i−1 ∈ R|Vi+1|×|Vi|, with |Vi| denoting the

cardinality of Vi.

In this chapter, we address the following problem, whose solution is intimately tied to

finding conditions for the local controllability of nonlinear systems.1 Given a nonlinear system in

the form (8.1), we investigate whether there exists a state feedback control law u = α(x) + β(x)v

and a change of coordinates z = Φ(x) that transform the nonlinear system (8.1) into an equivalent

controllable linear system of the form

ż = Alinz +Blinv,

where Alin ∈ Rn×n and Blin ∈ Rn×m.

1A system in the form (8.1) is locally controllable at x̄ if there exists a neighborhood Bx̄ of x̄ such that for all
xf ∈ Bx̄, there exist T > 0 and a control input u that brings x(0) = x̄ to x(T ) = xf .
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To answer this question, we will make use of some notions from geometric control theory

[226, 247]. Given two vector fields f(x) and g(x), both defined in an open subset of Rn, we define

the operation [f, g] as the Lie bracket between f(x) and g(x), which yields the smooth vector field

[f, g](x) =
∂g(x)

∂x
f(x)− ∂f(x)

∂x
g(x).

To avoid confusing notation such as [f, [f, . . . , [f, g]]], we use the following recursive definition:

adkfg(x) = [f, adk−1
f g](x),

where ad0
fg(x) = g(x). Note that the directions in which the state may be moved around an initial

condition are those belonging to the set of all vector fields that can be obtained by iteratively

computing the Lie brackets of the system’s dynamics and the control vector fields. Further, given a

real-valued function λ(x) and a vector field f(x), both defined in an open set of Rn, we define the

derivative of λ along f :

Lfλ(x) =
∂λ(x)

∂x
f(x).

If the function λ is differentiated k times along f , we write

Lkfλ(x) =
∂
(
Lk−1
f λ(x)

)

∂x
f(x).

For the sake of simplicity, we will omit the argument x when it is clear from the context.

A (smooth) distribution is the assignment of the subspace spanned by the values at x of some

smooth vector fields f1, . . . , fd that are defined in an open set X ⊆ Rn, and is denoted by G =

span{f1, . . . , fd}. In other words, a distribution assigns a vector space to each point x of the set X .

A distribution G is involutive if, whenever f, g ∈ G , also [f, g] ∈ G . Finally, the distribution G has

constant dimension in a set X ⊆ Rn whenever its dimension remains the same at all points in X .
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8.3 Structural conditions for feedback linearization

In this section, we show that if the inference diagram of a nonlinear system belongs to

a well-defined class of networks, then there exists a change of coordinates such that the original

controlled nonlinear system (8.1) can be transformed into a controllable linear system by means

of a feedback law. Clearly, these conditions constitute a sufficient test for local controllability of

nonlinear systems.

Before presenting our results, notice that the Jacobian J(x) = ∂f(x)
∂x of (8.1) reads as

J(x) =




D1(x) U1(x) 0 · · · 0

L1(x) D2(x) U2(x) · · · 0

0 L2(x)
. . .

. . .
...

...
. . .

. . . DN−1(x) UN−1(x)

0 · · · · · · LN−1(x) DN (x)




, (8.3)

where the blocks have the same size of the blocks in the matrix A in (8.2). We are now ready to

present our main result.

Theorem 47 (Condition for feedback linearization) Consider the dynamics (8.1). Let x̄ be

such that f(x̄) = 0 and let the Jacobian J(x) = ∂f(x)
∂x read as in (8.3). The system is feedback-

linearizable at x̄ if rank(Li(x̄)) = |Vi+1| for all i = {1, . . . , N − 1}.

Theorem 47 implicitly requires a certain network structure to hold true, as we elucidate in

the following remark.

Remark 48 (Necessary network structure for the condition in Theorem 47) Theorem 47

requires the subdiagonal blocks of J(x̄) to be full row rank. Note that a necessary condition for this to

hold true is that |Vi+1| ≤ |Vi| for all i ∈ {1, . . . , N − 1} (see Fig. 8.2 for an example). Furthermore,

every node in partition Vi+1 must have at least one incoming connection from nodes in Vi. Clearly,

this interconnection requirement prevents the network topology to produce zero rows in Li(x̄) for all

i ∈ {1, . . . , N − 1}. �
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Figure 8.2: Network system with tridiagonal adjacency matrix as in (8.2) and node partition satisfy-
ing |V1| ≤ |V2| ≤ · · · ≤ |VN |. Examples of networks with this topology are artificial neural networks,
multiplex networks and, in general, all grid-like networks with layers of equal or decreasing cardi-
nality.

Before proving Theorem 47 we introduce a lemma that relates the distribution of the Lie

brackets of the dynamics (8.1) to the image of a block triangular matrix.

Lemma 49 (Block upper triangular distribution) Consider the dynamics (8.1). Let Gk =

span{adrfe` : 0 ≤ r ≤ k, 1 ≤ ` ≤ m}, k ∈ {0, . . . , N − 1}. The distribution Gk(x) can be written as

Gk(x)=Im




E1,1(x) ⊗ · · · ⊗

0 E2,2(x) · · ·
...

...
. . .

. . . ⊗

0 · · · 0 Ek+1,k+1(x)

0 · · · 0 0




︸ ︷︷ ︸
Gk(x)

,

where Im denotes the image of a matrix, G0(x) = B, so that E1,1(x) = I, Ei,i(x) = Li−1(x)Ei−1,i−1(x) ∈

R|Vi|×|Vi|, ⊗ is any real matrix-valued function of x of suitable dimension, and 0 is a zero matrix of

suitable dimension.

Proof. Consider first G0(x), and notice that, since ad0
fe` = e`, for ` = 1, . . . ,m, G0(x) =

[e1, . . . , em] = B. Next, because of the definition of Gk(x), at each new step k ∈ {1, . . . , N − 1}, m
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new vector fields of the form

adkfe` =
∂adk−1

f e`

∂x
f − ∂f

∂x
adk−1
f e`, (8.4)

with ` = 1, . . . ,m, add to {adrfe` : 0 ≤ r < k, 1 ≤ ` ≤ m} to generate the distribution Gk(x).

The space spanned by these new vector fields corresponds to the space spanned by the last |Vk+1|

columns of Gk(x), which encompass the block Ek+1,k+1(x). In what follows we show that, because

of the (block) tridiagonal structure of A, only the second part of (8.4) contributes to the definition

of these columns, and, therefore, of the block Ek+1,k+1(x). To see this, consider the Lie bracket

adkfe`(x) and notice that its first term reads as

[
∂adk−1

f e`

∂x
f

]
(x) =






M1 0

0 0


 f


 (x)

= [⊗ · · · ⊗︸ ︷︷ ︸
ñ

0 · · · 0]T,

where M1 is ñ× ñ, with ñ =
∑k
i=1 |Vi|. Note that the definition of ñ follows from the node labeling

and the fact that, for all j ∈ {1, . . . , N−1}, the nodes in Vj can only be connected with at most |Vj+1|

nodes in Vj+1. Thus, since the first term of each Lie bracket (8.4) does not affect the last |Vj+1|

entries of the second term, the equation Ej,j(x) = Lj−1(x)Ej−1,j−1(x) follows by direct computation

of the second term in (8.4), and the claimed statement follows.

In brief, the result in Lemma 49 states that each new Gk(x) “discovers” |Vk+1| new columns

of Gk(x) containing the entries of the block Ek+1,k+1(x). We use this finding to prove our main

result.

Proof of Theorem 47: For some nonnegative integer k, we let Gk = span{adrfe` : 0 ≤ r ≤ k, 1 ≤

` ≤ m}. The system (8.1) is feedback-linearizable if and only if the following three conditions

hold [226, Theorem 5.2.3]:

(i) Gn−1 has dimension n at x̄;

(ii) for each 0 ≤ k ≤ n− 1, Gk has constant dimension in a neighborhood of x̄; and
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(iii) for each 0 ≤ k ≤ n− 2, Gk is involutive,

where n = |V|.

Condition (i) follows directly from Lemma 49 and from the assumption rank(Li(x̄)) = |Vi+1|

by noticing that each diagonal block Ei,i(x̄) is full rank for all i ∈ {1, . . . , k+ 1}. More in detail, let

P ∈ Rn1×n2 and Q ∈ Rn2×n2 ; the fact rank(PQ) = rank(P ) if rank(Q) = n2 implies the full rank of

Ei,i(x̄) = Li−1(x)Ei−1,i−1(x̄).

In regards to condition (ii), from the assumption rank(Li(x̄)) = |Vi+1|, the continuity of

singular values, and the definition of Ei,i in Lemma 49, it follows that the blocks Ei,i(x) are full row

rank in a neighborhood of x̄. Thus, in such a neighborhood, the definition of the matrix Gk ensures

that the dimension of Gk, for each 0 ≤ k ≤ n− 1, remains constant, and condition (ii) holds.

Finally, to show that condition (iii) holds, we observe that due to the structure of Gk(x)

in Lemma 49, the Lie brackets between any two vector fields in Gk(x), 0 ≤ k ≤ N − 1, cannot have

nonzero rows greater than ñ =
∑k+1
i=1 |Vi|. Thus, the Lie bracket adj−1

f e` can only contain states up

to ñ, and Gk(x) must be involutive for all 0 ≤ k ≤ N − 1. Note that, for k > N − 1, Gk clearly

remains involutive. This concludes the proof. �

A few comments are in order. First, Theorem 47 is constructive, can be used to check

whether a network is feedback-linearizable, and also to design networks that satisfy such a property.

Second, Theorem 47 implies that there exist a linearizing feedback of the form u = α(x) + β(x)v

and a diffeomorphism z = Φ(x) that solve the state-space exact linearization problem [226, §5.2].

That is, it is possible to transform (8.1) into an equivalent linear system ż = Alinz + Blinv with

rank
[
Blin AlinBlin . . . An−1

lin Blin

]
= n. Thus, being the pair (Alin, Blin) controllable, Theorem 47

can also be used to assess local controllability of (8.1) at x̄.

Corollary 50 (Condition for nonlinear controllability) Consider the dynamics (8.1), and let

x̄ be such that f(x̄) = 0. If the lower diagonal blocks Li(x̄), i = {1, . . . , N −1}, of the Jacobian (8.3)

have full row rank, then the system (8.1) is locally controllable at x̄.
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ẋ1 = x3(1 + x2) + u

ẋ2 = x1

ẋ3 = x2(1 + x1) 2

1

3

u
.

Figure 8.3: This figure illustrates the inference diagram obtained from the system in Example 52.
The controlled node, which corresponds to x1, is filled in black. Since |{2, 3}| > |{1}|, the condition in
Theorem 47 cannot be satisfied. Yet, the system is feedback-linearizable, as we show in Example 52.

Notice that, because the linear system ż = Alinz + Blinv is defined in an open set that

depends on the nonlinear feedback and change of coordinates, we can evaluate the size of the region

of the state space in which the linear transformation holds. In fact, if Φ(x), α(x), and β(x) are

defined in an open neighborhood U of x̄, then the linear system is defined in the open set Φ(U).

This fact enables the exact characterization of the operating regions for the feedback-linearized

system. Conversely, Jacobian linearization is only exact at the equilibrium point at which the

Jacobian matrix is computed. It is also worth noting that Jacobian linearization does not yield the

same system as the feedback-linearized one.

Example 51 (Difference in local controllability between Jacobian and feedback lineariza-

tion) Consider the system (8.1), with f(x) =

[
0 x1 x2 + x2

1/2

]T
and b = e1. It is easy to see

that the controllability matrix of the linearized system at the origin is full rank. Thus, the system is

locally controllable around x̄ = [0 0 0]T. Yet, since the distribution G1(x) = span{e1, [f, e1]} is not

involutive, by [226, Theorem 5.2.3], the system is not feedback-linearizable at x̄. �

Is should be noted that the condition in Theorem 47 enables a general structural approach

to assess feedback-linearizability of nonlinear systems with dynamics (8.1). Yet, it is only sufficient,

as we show in the next example.

Example 52 (Non-necessity of Theorem 47) Consider the system in Fig. 8.3 with control

vector b = e1. Notice that such a system does not satisfy Theorem 47 at x̄ = 0. Yet, it can
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be verified that the matrix2 G2(x̄) = {b, [f, b], [f, [f, b]]}(x̄) = diag(1,−1, 1), is full rank, and that x

G1 = span{b, [f, b]} =
[

1 0 0
0 −1 x2

]T
is involutive. Thus, by [226, Theorem 5.2.3], this system is feedback

linearizable at the origin. �

8.4 Application to cluster synchronization of nonlinearly cou-

pled oscillators

In this section, we apply the results developed in Section 8.3 to the important problem

of controlling the emergence of clusters of neural units with synchronized activity. Specifically,

we use feedback linearization to divide networks of nonlinear oscillators into distinct synchronized

groups. We achieve this goal without resorting to the prescriptive conditions required by previous

work [142,143].

8.4.1 Network of Kuramoto dynamics

Patterns of correlated activity among neural units play a role in the correct execution

of cognitive functions and in the abnormal dynamics of a class of neurological disorders, such as

Parkinson’s disease and epilepsy [161, 162]. A classical model used to represent the oscillatory

behavior of brain activity is the Kuramoto model of diffusively-coupled oscillators [147, 214]. The

dynamics of the i-th oscillator is

θ̇i = ω +
∑

j 6=i
hij sin(θj − θi), (8.5)

where ω represents the natural frequency of the oscillators, θi is the phase of the i-th oscillator, and

hij ∈ R>0 denotes the coupling strength between interconnected oscillators, with R>0 indicating the

set of positive real numbers.

Interconnected systems of diffusively-coupled oscillators evolve on a network that is de-

scribed by a weighted adjacency matrix H = [hij ], where hij ∈ R>0 if (j, i) ∈ E , and hij = 0

2We denote with diag(·) a diagonal matrix.
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Figure 8.4: This figure represents the network of oscillators studied in Section 8.4.1. Each node
represents an oscillator, whose dynamics are defined by the natural frequency ω and the interactions
with neighboring oscillators. The first node receives the control input u, and is filled in black to
represent K = {1}. We choose a simple topology because it allows us to easily illustrate the results
of Section 8.3, which can be extended to larger systems.

otherwise. Here, we choose the vector field

f(θ) =




ω + h12 sin(θ2 − θ1)

ω + h21 sin(θ1 − θ2) + h23 sin(θ3 − θ2)

ω + h32 sin(θ2 − θ3)



,

where h12 = h21 = 1, h23 = h32 = 2, and the control input is injected into the first oscillator through

a control vector field b = [1 0 0]T. It is worth noting that for all diffusively-coupled oscillators, the

inference diagram is also described by the adjacency matrix H after all weights are binarized.3 The

adjacency matrix for this illustrative example reads as A =

[
e2 e1 + e3 e2

]
. and the network is

depicted in Fig. 8.4.

With the aid of a rotating reference frame with angular velocity ω, we can study the

equilibria of (8.5) as fixed points. We choose to stabilize the unstable equilibrium θ̄ = [π π 0]T,

but we remark that this network satisfies Theorem 47 at all equilibria. We start the deriva-

tion of the linearizing feedback law from the Lie brackets adfb and ad2
fb, which read as adfb =

3That is, the weight associated with the edge (j, i) in the inference diagram adjacency matrix is set to 1 if hij > 0,
and zero otherwise.
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[
h12 cos(θ2 − θ1) −h21 cos(θ1 − θ2) 0

]T
, and

ad2
fb =




h12(h12 + h21 − h23 sin(θ2 − θ1) sin(θ3 − θ2)

?

−h32h21 cos(θ1 − θ2) cos(θ2 − θ3)



,

with ? = h21(h12 sin2(θ2 − θ1) + h21 + 2h23 sin(θ1 − θ2) sin(θ3 − θ2)− h12 cos2(θ2 − θ1)). To linearize

the Kuramoto network around θ̄, we must compute the linearizing feedback u = α(θ) + β(θ)v,

where α(θ) and β(θ) can be derived from [226, §4]: α(θ) = − LnfΦ1

LbL
n−1
f Φ1

, β(θ) = 1
LbL

n−1
f Φ1

, with

Φi(θ) = Li−1
f Φ1(θ), and Φ1(θ) is such that

∂Φ1

∂θ
b = 0,

∂Φ1

∂θ
adfb = 0, and

∂Φ1

∂θ
ad2
fb 6= 0. (8.6)

The choice Φ1(θ) = z1 = θ3 satisfies (8.6), and yields LbL
2
fΦ1 = h21h32 cos(θ1−θ2) cos(θ2−

θ3). From the latter, we derive α(θ) and β(θ), which we omit here in the interest of space. As a

proof of concept, we can easily compute the state space region where the feedback-linearized system

is defined. Such a region corresponds the open set {θ : |θi− θ̄i| < π
2 for all i}, the boundary points

of whose closure are the only coordinates for which α(θ) and β(θ) are not defined. Finally, we can

assign the poles of ż = Alinz +Blinv via classical static feedback v = −Kz (see Fig. 8.5).

8.4.2 Multiplex network with multi-body interactions

Multiplex networks explicitly incorporate multiple channels of connectivity in a system. In

the following, we study a 2-layer multiplex network where the two layers contain neurons with three-

and two-body interaction, respectively [248, 249]. Importantly, three-body interactions are thought

to play a crucial role in heterosynaptic plasticity [250]. We represent neurons as oscillatory units
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Figure 8.5: These figures show the phases evolution for the three oscillators in Fig. 8.4 in a reference
framework that rotates with natural frequency ω. Fig.8.5(a) illustrates the convergence of the phases
to the equilibrium θ̄ = [π π 0]T after a stabilizing feedback v = −Kz is applied to the system. The
eigenvalues for the matrix Alin +bK are −1, −2, and −3, which are obtained with the feedback gains
K = [6 11 6]. Fig.8.5(b) illustrates different convergence rates associated with different eigenvalues
of Alin + bK. The dotted lines represent the phases of the three oscillators when the eigenvalues are
the same as in Fig.8.5(a), whereas the solid lines are associated with eigenvalues −0.6, −0.7, and
−0.8, and hence with slower dynamics.

that obey the dynamics

θ̇i = ω +
κ1

m2

m∑

j=1

m∑

k=1

sin(θj + θk − 2θi),

ϕ̇i = ω +
κ2

m

m∑

j=1

sin(ϕj − ϕi) + d sin(θi − ϕi),
(8.7)

where ω is the natural frequency, and κ1, κ2, d ∈ R>0 are coupling strengths. We choose m = 3

and we apply a control input to the θ layer of the network (see Fig. 8.6(a)), so that B = [e1, e2, e3].

Further, we fix the constants κ1 = κ2 = d = 1. By writing the state of the network as x =

[θ1 θ2 θ3 ϕ1 ϕ2 ϕ3]T, it can be shown that x̄ = [π π π 0 0 0]T is an unstable equilibrium point of

(8.7). It holds that J(x̄)=
[

⊗ 0
diag(−d,−d,−d) ⊗

]
.

Hence, the condition in Theorem 47 is satisfied and the system is feedback-linearizable

at x̄. Along the lines of [226, Proof of Lemma 5.2.2], we compute the dummy output functions

λ1(x) = ϕ1, λ2(x) = ϕ2, and λ3(x) = ϕ3, from which we obtain the local change of coordinates

φik(x) = Lk−1
f λi(x), 1 ≤ k ≤ 2, 1 ≤ i ≤ 3, and finally the linearizing feedback law [226, §5]. The code

for this simulation can be downloaded at [251]. In Fig. 8.6(b), the computed feedback partitions

the network into two distinct clusters. This result extends existing work on the control of cluster
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Figure 8.6: Fig. 8.6(a) illustrates the 2-layer multiplex network studied in Section 8.4.2. The θ layer
consists of neurons connected with three-body interactions, whereas the ϕ layer consists of neurons
connected with two-body interactions. We show in Fig. 8.6(b) the convergence of the system’s state
to the desired point after feedback linearization. The eigenvalues of Alin +BlinK are assigned to the
left half plane, thus making x̄ = [π π π 0 0 0]T locally stable in the reference frame rotating with
velocity ω.

synchronization in networks of nonlinearly-interacting oscillators (see, e.g., [214]) to more complex

types of interactions.

8.5 Conclusion and future directions

We have derived sufficient structural conditions to test for feedback-linearizability of large-

scale nonlinear network systems. These conditions also constitute a test for local controllability.

The results contained in this chapter are particularly suited for large networks, such as multi-agent

systems, neuronal networks, and artificial neural networks.

Because of striking topological similarities, future research could investigate the link be-

tween feedback-linearizable and strongly structurally controllable networks [252]. Finally, another

interesting research direction is the characterization of the gap between locally controllable and

feedback-linearizable systems [253].
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Chapter 9

A Framework to Control

Functional Connectivity

In this chapter, we propose a framework to control brain-wide functional connectivity by

selectively acting on the brain’s structure and parameters. Functional connectivity, which measures

the degree of correlation between neural activities in different brain regions, can be used to distinguish

between healthy and certain diseased brain dynamics and, possibly, as a control parameter to restore

healthy functions. We refer the reader to [214] for the complete work.

9.1 Introduction

The structural (i.e., matrix of anatomical connections between brain regions) and functional

(i.e., matrix of correlation coefficients between the activity of brain regions) connectivity of the brain

vary across healthy individuals and those affected by neurological or psychiatric disorders, and can

be used as biomarkers to detect or predict pathological conditions. While structural connectivity

changes rather slowly over time and can be measured accurately via diffusion imaging techniques [46],

functional connectivity depends on the instantaneous neural activity and is affected, for instance,
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by the tasks being performed and external stimuli [254]. Today, common measures of functional

connectivity rely on resting-state functional magnetic resonance imaging (rs-fMRI) timeseries to

quantify the level of correlated activity between brain regions. The relationships between structural

and functional connectivity have recently received considerable attention [59,255], and the tantalizing

idea of controlling functional states by leveraging or modifying brain structure has given birth to a

new, thrilling, field of research [10,12,114].

In this paper, we leverage the connection between structural and functional connectiv-

ity, and propose a framework to control functional connectivity by selectively modifying structural

connectivity and the regions’ intrinsic frequencies (see Fig. 9.1). In particular, building on prior

studies [147,165], we model the brain’s neural activity as the phases of a collection of interconnected

Kuramoto oscillators, and postulate that the level of functional connection between two regions is

proportional to the level of synchronization between the phases of the oscillators associated with the

two regions. Then, we derive conditions and methods to tune the oscillators’ interconnection weights

and natural frequencies so as to enforce arbitrary synchronization patterns and, consequently, brain-

wide functional connectivity. We remark that the control mechanisms used in our framework are

biologically plausible. For instance, changes in the spontaneous neural activity (i.e., oscillators’

frequencies) are typical of the brain, involve natural modifications in regional metabolism of the

neurons, and can alternatively be induced by a number of non-invasive stimulation techniques [256].

Changes to the structural interconnections (i.e., oscillators’ interconnections), instead, can arise from

different chemical or electrical mechanisms including, at the microscale, Hebbian plasticity [257] and

short-term synaptic facilitation [258].

Related work. The discovery of oscillatory or rhythmic brain activity dates back almost a century.

Yet, control-theoretic studies that exhaust the oscillatory nature of brain states have been sparse

and of relatively recent date. Some authors focus on localized desynchronization of neural activity

[173,259,260], which is desirable in individuals affected by epilepsy or Parkinson’s disease, and others
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Figure 9.1: This chapter proposes a framework to restore healthy patterns of brain-wide functional
connectivity by selectively acting on the brain’s structure and parameters. Using a network of
heterogeneous Kuramoto oscillators to model the brain’s neural activity, we design and validate a
minimally invasive method to correct the oscillators’ interconnections and frequencies to obtain a
desired and stable pattern of functional connectivity.

use synchronization phenomena to describe cognitive and functional brain states [182, 261,262]. To

the best of our knowledge, a framework to control the pattern of brain-wide functional connectivity

is still missing, and is proposed for the first time in this chapter.

At the core of our framework to model and control functional connectivity is the concept

of cluster synchronization in a network of oscillators, where groups of oscillators behave cohesively

but independently from other clusters. For the case of oscillators with Kuramoto dynamics as

used in this work, [181, 218] explore approximate notions of cluster synchronization in simplified

configurations, while [184] provides exact invariance conditions for arbitrary cluster synchronization

manifolds. Our recent work introduces rigorous [263] and approximate [143] stability conditions for

cluster synchronization, which are also used here. Compared to the above references, this chapter

focuses on the control of cluster synchronization, rather than on its enabling conditions.

Chapter contribution. The contributions of this chapter are twofold. On the technical side,

we formulate and solve a network optimization problem to enforce stable cluster synchronization

among interconnected Kuramoto oscillators (Section 9.3). We provide a two-step procedure to

compute the smallest (as measured by the Frobenius norm) perturbation of the network weights and

the oscillators’ natural frequencies so as to achieve a desired and arbitrary synchronization pattern.

Notably, the proposed algorithm allows for the modification of only a selected subset of the network

parameters, as typically constrained in applications. We also prove that cluster synchronization
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is robust to parameter mismatches and numerical inaccuracies, which complements the theoretical

derivations in [143,263], and strengthen the applicability of our control methods to work in practice.

On the application side, this work contains the first mathematically rigorous and neurolog-

ically plausible framework to control functional connectivity in the brain, and takes a significant step

to fill the gap between empirical studies on oscillatory neural activity [147, 165, 264] and the recent

technical body of work inspired by neural synchronization [143, 181, 184, 263]. In Section 9.5, we

apply our control technique to an empirically-reconstructed structural brain network, and validate

our results by computing the correlation of resting-state fMRI signals obtained through a realistic

hemodynamic model. As a minor contribution, our work extends [147] by allowing heterogeneous

Kuramoto dynamics.

Mathematical notation. The sets R>0, S1 and Tn denote the positive real numbers, the unit

circle, and the n-dimensional torus, respectively. We represent the vector of all ones with 1. The

Frobenius and `2 norms are denoted as ‖ · ‖F and ‖ · ‖, respectively, and A ◦ B is the Hadamard

product between matrices A and B. A (block-)diagonal matrix is denoted by (blk)diag(·). We let

i =
√
−1. Let A ≥ 0 represent an element-wise inequality on the entries of A, A+ the element-wise

nonnegative part of A, and A � 0 a positive definite matrix A. We let λi(A) and σi(A) denote the

i-th eigenvalue and the i-th singular value of A ∈ Rn×n, respectively, and λmax(A) = maxi |λi(A)|

and λmin(A) = mini |λi(A)|. Finally, we let λ(A) = 1
n

∑
i λi(A) and σ(A) = 1

n

∑
i σi(A).

9.2 Problem setup and preliminary notions

The aim of this work is to control network parameters so that groups of brain regions exhibit

a high degree of functional connectivity. In this context, functional interactions are defined as the

pairwise correlation between hemodynamic signals recorded in two brain regions. One model used

to simulate such hemodynamic signals is described by a set of nonlinear differential equations [190]

that can be approximated in the frequency domain as a linear low-pass filter [147]. Because the
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only input to such hemodynamic model is the oscillatory neural activity, the formation of strongly

(functionally) connected brain regions can be promoted by controlling the synchronization level of

their neural dynamics. We follow [147] to model such neural dynamics with a sparse network of

heterogeneous Kuramoto oscillators that are connected to each other according to the anatomical

architecture of the human brain, more specifically known as white matter tracts.1 Ultimately, the

problem of generating desired patterns of functional connectivity reduces to the one of controlling

cluster synchronization in a network of heterogeneous Kuramoto oscillators.

To be precise, let G = (V, E) be a weighted digraph, where V = {1, . . . , n} and E ⊆ V × V

represent the oscillators, or nodes, and their interconnection edges, respectively. The i-th oscillator’s

dynamics reads as:

θ̇i = ωi +
∑

j 6=i
aij sin(θj − θi), (9.1)

where ωi ∈ R>0 denotes the natural frequency of the i-th oscillator, θi ∈ S1 is its phase, aij ∈ R>0

is the weight of the edge (j, i) ∈ E , with aij = 0 when (j, i) 6∈ E , and A = [aij ] is the weighted

adjacency matrix of G.

To characterize synchronized trajectories among subsets of oscillators, let P = {P1, . . . ,Pm}

be a nontrivial partition of V, where each cluster contains at least two oscillators and its graph is

strongly connected.2 We say that a network exhibits cluster synchronization when the oscillators

can be partitioned so that the phases of the oscillators in each cluster evolve identically. Formally,

we define the cluster synchronization manifold associated with the partition P as

SP = {θ ∈ Tn : θi = θj for all i, j ∈ Pk, k = 1, . . . ,m}.

Then, the network is cluster-synchronized with partition P when the phases of the oscillators belong

to SP at all times. Without loss of generality, the oscillators are labeled so that Pk = {∑k−1
`=1 |P`|+

1, . . . ,
∑k
`=1 |P`|}, where |P`| denotes the cardinality of the set P`.

1We assume that at each node of a structural brain network there exists a community of excitatory and inhibitory
neurons whose dynamical state is in a regime of self-sustained oscillation. In other words, the neurons’ firing rates
delineate a limit cycle, and their dynamics can be approximated by a single variable, which is the angle (or phase) on
this cycle.

2As the brain is densely connected [265], this assumption is not restrictive.
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Because our control framework leverages conditions for the invariance and stability of the

cluster synchronization manifold to modify the network weights and oscillators’ natural frequencies,

we briefly recall useful preliminary results that have recently been established in [143, 184, 263].

Specifically, given a desired network partition P = {P1, . . . ,Pm}, invariance of SP is guaranteed by

the following conditions:

(C1) The natural frequencies satisfy ωi = ωj for every i, j ∈ Pk and k ∈ {1, . . . ,m}. Equivalently,

BT
spanω = 0,

where Bspan ∈ R|V|×|
⋃
k Espan,k| is the incidence matrix of

⋃m
k=1 Tk, with Tk = (Pk, Espan,k) being a

spanning tree of the digraph Gk of the isolated cluster Pk;

(C2) The network weights satisfy V̄ T
P ĀVP = 0,

where VP ∈ Rn×m is the characteristic matrix of the network defined as VP = [v1/‖v1‖, . . . , vm/‖vm‖],

with

vTi = [ 0, . . . , 0︸ ︷︷ ︸∑i−1
j=1 |Pj |

, 1, . . . , 1︸ ︷︷ ︸
|Pi|

, 0, . . . , 0︸ ︷︷ ︸∑n
j=1+1 |Pj |

],

V̄P ∈ Rn×(n−m) is an orthonormal basis of the orthogonal subspace to the image of VP , and Ā =

A−A ◦ VPV T
P is the matrix of inter-cluster connections only (see also [184]).

We assume that the isolated clusters are locally stable:

(A1) The dynamics (9.1), with aij = 0 when i, j belong to different clusters, converges exponentially

fast to SP .

Notice that Assumption (A1) is satisfied when Gk has symmetric weights and condition (C1) holds

[263, Lemma 3.1] [28, Theorem 5.1]. In our case, (A1) is not restrictive because structural brain

networks are typically symmetric [10].3

3In a general case, one can ensure that Assumption (A1) is satisfied simply by pairing the control mechanism
developed in the next session with an independent one that makes intra-cluster connections symmetric.
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Let ω(k`) denote the natural frequency difference between any two nodes in disjoint clus-

ters Pk and P`. If (C1) and (C2) hold, then a tight approximate condition for SP to be locally

exponentially stable is [143]:

(C3) The natural frequencies and the network weights are such that λmax(Ξ(A,ω)) < 1, with Ξ =

[ξk`] and

ξk`=





νk`σ(Gk(iω(k`))), if λ(Jk) ≤ λ(J`),

νk`
σ(Gk(0))
σ(G`(0))σ(G`(iω

(k`))), if λ(J`)< λ(Jk),

(9.2)

where Gk(s) = (sI − Jk)−1, Jk is the Hurwitz stable Jacobian matrix of the intra-cluster phase

difference dynamics and νk` is a function of the inter-cluster weights. We refer the interested reader

to the previous chapters (Section II of this thesis) for a detailed discussion on conditions (C1), (C2),

and (C3).

9.3 Control of cluster synchronization

In this section, we propose a control mechanism to obtain a prescribed and robust config-

uration of synchronized oscillatory patterns. Towards this aim, we consider a network G = (V, E)

and an arbitrary partition P = {P1, . . . ,Pm} of V. The proposed control technique is minimally

invasive in the sense that it looks for the smallest correction (in the Frobenius norm sense) of inter-

cluster network weights and oscillators’ natural frequencies that renders the cluster synchronization

manifold SP invariant and locally stable. In practice, a modification of the network parameters will

require either the exploitation of neural plasticity or localized surgical intervention for the modifi-

cation of the network weights and structure, and pharmacological or electromagnetic influence for

the refinement of the brain regions’ natural frequencies. In mathematical terms, the approach is
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encoded into solving the following constrained minimization problem:

min
∆,µ

‖[∆, µ]‖2F (9.3)

s.t. V̄ T
P (Ā+ ∆)VP = 0, (9.3a)

BT
span(ω + µ) = 0, (9.3b)

Hc ◦∆ = 0 (9.3c)

Ā+ ∆ ≥ 0, (9.3d)

ω + µ ≥ 0, (9.3e)

λmax(Ξ(A+ ∆, ω + µ)) < 1, (9.3f)

where ∆ is the correction of the network matrix, µ is the correction of the natural frequencies vector,

and the (i, j)-th entry of ∆ is zero if i, j belong to the same partition Pk, k ∈ {1, . . . ,m}. Further,

H is the 0-1 adjacency matrix of H = (V, EH), which is the graph encoding the set of edges EH ⊆ E

that is allowed to be modified, and Hc = 11T −H. That is, the (i, j)-th entry of a solution ∆∗ to

problem (9.3) is zero when the corresponding (i, j)-th entry of H is zero. The optimization problem

(9.3) is illustrated in Fig. 9.2.

Constraints (9.3a) and (9.3b) are equivalent to conditions (C2) and (C1), respectively, for

the invariance of SP . Constraint (9.3c) restricts the corrective action to a subset of all the possible

interconnections, in affinity with the practical limitations of localized interventions. Constraints

(9.3d) and (9.3e) are due to biological compatibility and require the inter-cluster weights of the

perturbed network and oscillators’ natural frequencies to be nonnegative. Finally, Constraint (9.3f)

corresponds to (C3) and guarantees the (local) stability of SP . In particular, the latter constraint

makes the above problem non-convex and, therefore, potentially intractable from a numerical view-

point. To overcome this issue, we next propose a suboptimal, yet numerically more tractable, control

strategy. Specifically, we decouple (9.3) into two simpler subproblems. The first one solves for the
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Figure 9.2: The left depicts a network of oscillators. The coupling strength between the oscillators
depends on the network weights and the differences of their natural frequencies [143]. The optimiza-
tion problem (9.3) seeks for the smallest modification of the network weights and the oscillators’
natural frequencies to ensure a desired stable pattern of cluster synchronization (right panel). We
remark that the techniques used in this chapter for cluster synchronization in frequency-weighted
networks of Kuramoto oscillators, are applicable to a broad class of network optimization problems,
e.g., [51].

smallest correction of inter-cluster weights satisfying (9.3a), (9.3c), and (9.3d), whereas the second

one solves for the smallest correction of the oscillators’ natural frequencies satisfying (9.3b), (9.3e)

and (9.3f).

9.3.1 Inter-cluster structural control for invariance of SP

We first address the problem of computing the smallest correction of inter-cluster weights

such that constraints (9.3a), (9.3c), and (9.3d) are satisfied. Specifically, we focus on the following

minimization problem:

min
∆
‖∆‖2F (9.4)

s.t. V̄ T
P (Ā+ ∆)VP = 0, (9.4a)

Hc ◦∆ = 0, (9.4b)

Ā+ ∆ ≥ 0. (9.4c)

The optimization problem (9.4) is convex and, when feasible, it can be efficiently solved by means

of standard optimization techniques. Feasibility of (9.4) depends on the constraint graph H (see

Remark 55). In what follows, we present a simple and efficient projection-based algorithm to solve
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this problem.

Theorem 53 (Smallest sparse inter-cluster correction) Assume that the problem (9.4) is

feasible, and consider the matrix sequence {Zk}k≥0 generated via the following iterative procedure:

Yk = H ◦ (Zk + Tk)+ +Hc ◦ Ā,

Tk+1 = Zk + Tk − Yk,

Zk+1 = Yk +Qk − V̄P V̄ T
P (Yk +Qk)VPV

T
P ,

Qk+1 = Yk +Qk − Zk+1,

(9.5)

where Z0 = Ā, and T0 = Q0 = 0. Then, the sequence {Zk}k≥0 converges to a matrix Z∗, and a

minimizer of (9.4) subject to (9.4a), (9.4b), and (9.4c), has the form ∆∗ = Z∗ − Ā.

Before proving Theorem 53, we introduce the following instrumental lemma.

Lemma 54 Consider a network G = (V, E), and an arbitrary (nontrivial) partition P = {P1, . . . ,Pm}

of V. Let W ∈ Rn×n and consider the minimization problem

min
Z
‖Z −W‖2F (9.6)

s.t. V̄ T
P ZVP = 0, (9.6a)

The minimizer of the problem (9.6) subject to (9.6a) is

Z∗ = W − V̄P V̄ T
PWVPV

T
P . (9.7)

Proof. We prove the result via the method of Lagrange multipliers. The Lagrangian of (9.6) subject

to (9.6a) is L(Z,Λ) = ‖Z −W‖2F + 1T(Λ ◦ V̄ T
P ZVP)1 = tr((Z −W )T(Z −W )) + tr(ΛTV̄ T

P ZVP),

where Λ ∈ R(n−m)×m is a matrix of Lagrange multipliers associated with Constraint (9.6a), and in

the last equation we used that 1T(A ◦B)1 = tr(ATB). Equating the partial derivatives of L to zero

yelds:

∂L
∂Z

= 2(Z −W ) + V̄PΛV T
P = 0, (9.8)

∂L
∂Λ

= V̄ T
P ZVP = 0, (9.9)
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We next pre- and post-multiply both sides of (9.8) by V̄ T
P and VP , respectively, and obtain

2V̄ T
P ZVP = 2V̄ T

PWVP − V̄ T
P V̄PΛV T

P VP

⇒ 2V̄ T
P ZVP = 2V̄ T

PWVP − Λ ⇒ Λ = 2V̄ T
PWVP , (9.10)

where in the second implication we used V T
P VP = In, V̄ T

P V̄P = In−m, and V̄ T
P VP = 0, and in the last

one we used (9.9). Finally, (9.7) follows by substituting (9.10) into (9.8).

We are now ready to prove Theorem 53

Proof of Theorem 53: Let ΠZ(W ) = arg minZ∈Z ‖Z−W‖2F denote the projection (in the Frobenius

norm sense) of W onto a convex set Z, and define the closed convex sets Z1 = {Z ∈ Rn×n : Z ≥

0 and Hc ◦ Z = Ā} and Z2 = {Z ∈ Rn×n : V̄ T
P ZVP = 0}. Note that ΠZ1

(W ) = H ◦W+ +Hc ◦ Ā

and, by Lemma 54 in the Appendix,

ΠZ2
(W ) = arg min

Z∈Z2

‖Z −W‖2F = W − V̄P V̄ T
PWVPV

T
P ,

for any W . Hence, the sequence {Zk}k≥0 generated by (9.5) coincides with the sequence generated

by Dykstra’s projection algorithm [266] applied to the projections onto Z1 and Z2. Since the problem

(9.4) is feasible, Z1 ∩ Z2 6= ∅, and the latter sequence converges to a matrix Z∗ = ΠZ1∩Z2
(Ā) =

arg minZ∈Z1∩Z2 ‖Z − Ā‖2F [266]. Finally,

Z∗ = arg min
Z∈Z1∩Z2

‖Z − Ā‖2F = Ā+ arg min
∆ s.t. (9.4a), (9.4b), (9.4c)

‖∆‖2F,

and the statement follows. �

Remark 55 (Sufficient condition for the feasibility of (9.4)) Recall from [184] that condition

(C2) is equivalent to:

∑

k∈P`
aik − ajk = 0 (9.11)

for every i, j ∈ Pz and for all z, ` ∈ {1, . . . ,m}, with z 6= `. Notice that, if for every i ∈ Pz there

exists at least one (k, i) ∈ EH, k ∈ P`, a solution to (9.11) can always be found and problem (9.4) is

feasible. �
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9.3.2 Frequency tuning for local stability of SP

We now turn to the problem of computing the smallest correction of natural frequencies

such that constraints (9.3b), (9.3e), and (9.3f) are satisfied. That is,

min
µ
‖µ‖2F (9.12)

s.t. BT
span(ω + µ) = 0, (9.12a)

ω + µ ≥ 0, (9.12b)

λmax(Ξ(A,ω + µ)) < 1. (9.12c)

Theorem 56 (Feasibility of problem (9.12)) There always exists a correction µ satisfying (9.12a),

(9.12b), and (9.12c).

Proof. Consider the vector µ = [µ1, . . . , µn]T. Note that we can find some µi such that (i) ωi+µi =

ωj + µj > 0 for all i, j ∈ Pk, k ∈ {1, . . . ,m}, and (ii) |ωi + µi − (ωj + µj)| > η, for all i ∈ Pk,

j ∈ P`, k, ` ∈ {1, . . . ,m}, k 6= `, and η > 0 arbitrarily large. From (i), µ satisfies (9.12a) and (9.12b).

Further, since each nonzero entry of Ξ(A,ω + µ) in (9.2) behaves as a low-pass filter, by fact (ii)

λmax(Ξ(A,ω + µ)) can be made arbitrarily small. This implies that there always exists a vector µ

satisfying (9.12c) and concludes the proof.

An optimal solution to (9.12) is typically difficult to compute, because of the eigenvalue

constraint (9.12c). However, several heuristics can be used to compute a suboptimal correction in

(9.12). For instance, we next outline an effective procedure to find a suboptimal solution to (9.12).

Let ω
(k)
av = 1

|Pk|
∑
i∈Pk ωi denote the average frequency within each cluster, and let

ωav = [ωav,1, . . . , ωav,n]T = [ω(1)
av , . . . , ω

(1)
av︸ ︷︷ ︸

|P1|

, . . . , ω(m)
av , . . . , ω(m)

av︸ ︷︷ ︸
|Pm|

]T.

Further, define the quotient graph Q = (V ′, E ′) where each node in V ′ represents a cluster and

each edge in E ′ an interconnection between two clusters. Our procedure leverages Theorem 56 and

increases the frequency differences between pairs of connected clusters until constraint (9.12c) is

satisfied. The procedure consists of four steps:
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1. If λmax(Ξ(A,ωav)) < 1, then µ∗ = [µ∗1, . . . , µ
∗
n], with µ∗i = ωav,i − ωi is an optimal correction

to (9.12). Otherwise, proceed to the next step.

2. Construct a depth-first spanning tree TQ of Q rooted at r = arg mink ω
(k)
av .4

3. Assign the frequency ω(k, α) = ω(r) + kα, α > 0, to each node of each cluster in TQ of depth

k, k = 1, 2, . . . , kmax, where kmax denotes the height of TQ.5 Let ω(α) = [ω1(α), . . . , ωn(α)]T

denote the resulting vector of modified frequencies.

4. Find the smallest α∗ satisfying λmax(A,ω(α∗)) < 1. Then, µ∗ = [µ∗1, . . . , µ
∗
n], with µ∗i =

ωi(α
∗)− ωi, is a (suboptimal) solution to (9.12).

9.4 Robustness of the control framework

In this section, we show that the control framework described in Section 9.3, and in fact

the stability property of the cluster synchronization manifold SP , is robust to perturbations of the

network parameters. That is, small changes in the oscillators’ natural frequencies and network

weights yield a small deviation from cluster-synchronized trajectories. In light of this, the proposed

control mechanism lends itself to practical applications, where the network parameters are not known

exactly and the neural dynamics is subject to noise.

Consider the dynamics (9.1) with perturbed parameters:

θ̇i = ω̃i +
∑

j 6=i
ãij sin(θj − θi), (9.13)

where ω̃i = ωi+δωi and ãij = aij +δaij . Notice that, if δωi = 0 and δaij = 0, the dynamics (9.13) is

equivalent to (9.1). From (9.13), the perturbed intra-cluster difference dynamics of nodes i, j ∈ Pk,

4Notice that such a spanning tree always exists, since Q is connected.
5Given a connected graph G = (V, E) and a spanning tree T of G rooted at r ∈ V, the depth of a node v ∈ V is the

length of the path in T from r to v, and the height of T is the maximum depth among the nodes in V.
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with k ∈ {1, . . . ,m}, reads as:

θ̇j − θ̇i = ωj + δωi − ωi − δωj

+

n∑

z=1

[(ajz + δajz) sin(θz − θj)−(aiz + δaiz) sin(θz − θi)]

= ωj − ωi +

n∑

z=1

[ajz sin(θz − θj)− aiz sin(θz − θi)] + δij , (9.14)

where δij = δωj − δωi +
∑n
z=1[δajz sin(θz − θj) −δaiz sin(θz − θi)]. Finally, let δ be the vector of all

δij that affect the nominal intra-cluster dynamics as in (9.14).

We are now ready to present the main result of this section, which resorts to the prescriptive

stability condition derived in [263].

Theorem 57 (Robustness of cluster synchronization) Assume that the network weights sat-

isfy Theorem 25, and consider any pair of nodes i, j ∈ Pk, k ∈ {1, . . . ,m}. Then, for some finite

T > 0 and for all initial conditions such that |θj(0) − θi(0)| < ε, with ε > 0 sufficiently small, the

solution to the perturbed dynamics (9.13) satisfies

|θj(t)− θi(t)| ≤ c γ ∀t ≥ T, (9.15)

where γ = maxθ∈[0,2π) ‖δ‖, and c is a constant that depends only on the network weights.

Proof. In the first part of the proof, we combine the Lyapunov functions for the isolated

clusters Pk, k = 1, . . . ,m, into a Lyapunov function for the intra-cluster differences dynamics of

the whole network. In the second part of the proof, we show that such Lyapunov function satisfies

certain bounds, so that the application of [194, Lemma 9.2] suffices to prove the claimed statement.

We let xij = θj − θi, and S, xintra and Jk be as in the Appendix ??. To combine the

Lyapunov functions of the isolated clusters, we note that if S is an M -matrix, then, along the lines

of [263, Proof of Theorem 3.2], the origin of the nominal intra-cluster dynamics of xintra is locally

exponentially stable with Lyapunov function

V (xintra) =

m∑

k=1

dkx
(k)T
intraPkx

(k)
intra, (9.16)
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where Pk � 0 satisfies JT
k Pk + PkJk = −I, and dk > 0 are such that DS + STD � 0, with

D = diag(d1 . . . , dm) [194].

Consider now the Lyapunov function (9.16), and notice that: c1‖xintra‖2 ≤
∑m
k=1 dkx

(k)T
intraPkx

(k)
intra ≤

c2‖xintra‖2, with c1 = mdmin mink λmin(Pk) and c2 = mdmax maxk λmax(Pk). Further, in the ball

of radius r of the origin Br = {xintra : ‖xintra‖ < r, V̇ (xintra) < 0}, it holds that V̇ (xintra) ≤

−c3‖xintra‖2, with c3 = λmin(DS + STD)/2. To see this, consider the derivative of the Lyapunov

function V (xintra) along the trajectories of the nominal system. Then, from [194, §9.5] and [263, proof

of Theorem 3.2], the following inequality holds in Br:

V̇ ≤ −1

2

[
‖x(1)

intra‖ . . . ‖x(m)
intra‖

]
(DS + STD)




‖x(1)
intra‖
...

‖x(m)
intra‖



≤ −1

2
λmin(DS + STD) ‖xintra‖2 ,

and c3 follows. Further, since ‖∂V/∂xintra‖ = ‖2xTintraPk‖ < 2λmax(Pk)‖xintra‖, we have ‖∂V/∂xintra‖ ≤

c4‖xintra‖, with c4 = 2c2. Finally, once the constants c1, c2, c3, and c4 are computed, the definition

of xintra and [194, Lemma 9.2] conclude the proof.

Importantly, Theorem 57 can be used to provide a quantitative bound on the asymptotic

value of |θj − θi|. In fact, we can compute the constant c in (9.15) by exploiting [194, Lemma 9.2]

and c1, c2, c3, c4 derived in the above proof.

9.5 Control of functional connectivity in an empirically re-

constructed brain network

We conclude this chapter with the application of the control mechanism presented in Sec-

tion 9.3 to the brain network estimated in [46], which is publicly available at:

http://umcd.humanconnectomeproject.org/umcd. In these data, structural connectivity is pro-

portional to large-scale connection pathways between cortical regions, and the gray matter is sub-

divided into n = 66 cortical regions (33 per hemisphere). To show the effectiveness of our proposed
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method in enforcing desired functional connectivity by means of arbitrary synchronization patterns,

we partition the structural brain network in 3 clusters, i.e. P = {P1,P2,P3}, each one comprising

22 regions that do not belong to any known functionally connected resting-state network. The three

clusters are highlighted with different colors in Fig. 9.3(a) and Fig. 9.3(b). Furthermore, following

our goal of providing a method to enhance the synchronization properties of a diseased or damaged

brain, we simulate the effects of brain damage, e.g., a stroke, by damping the connectivity of one

cluster [267]. That is, we weaken the intra-cluster connections of the first cluster by a scaling factor

10−2 to echo reduced structural connectivity, and we show that our technique can in fact recover

stability of the cluster synchronization manifold associated with the desired network partition.6

Before presenting our results, we describe the methodology used to simulate human rs-fMRI

functional connectivity.

9.5.1 Simulation of functional connectivity

The brain’s neural activity is simulated through a network of coupled Kuramoto oscillators,

where we randomly draw the natural frequencies of each oscillator from a uniform distribution in

the range [0, 60] [Hz] so as to include all meaningful neural frequency bands [190]. We set the initial

phases in the interval [0, 0.5] [rad]. The Kuramoto phases act as an input to the neurovascular

coupling, which is modeled by the Balloon-Windkessel hemodynamic process [268], and whose output

is the blood-oxygen-level dependent (BOLD) signal that is measured by rs-fMRI.

The neuronal activity zi of the i-th brain region produces an increase in a vasodilatory signal

si, which is subject to auto-regulatory feedback. The inflow fi responds in proportion to this signal

with concomitant changes in blood volume µi and deoxyhemoglobin content qi. Mathematically, the

6Specifically, weakening the intra-cluster connections of one cluster is likely to make SP unstable [143].
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Figure 9.3: Fig. 9.3(a) depicts an axial view of the structural connectivity estimated in [46], and
was obtained with BrainNet Viewer [52]. The edge thickness is proportional to the number of
white matter streamlines connecting different regions. Fig. 9.3(b) represents the adjacency matrix
of the structural brain network in Fig. 9.3(a), where the white entries correspond to zero, and
the intra-cluster connections in the first cluster (red nodes in Fig. 9.3(a)) have been weakened
to simulate the effect of brain damage. Fig. 9.3(c) represents the network matrix correction ∆∗

solution to the iterative procedure (9.5) in Theorem 53. Finally, Fig. 9.3(d) represents the matrix
Acorrected,SC = Aoriginal,SC + ∆∗, where the total change of the edge weights amounts to 17% (in the
Frobenius norm) of the original ones.

dynamics of these quantities reads as:

ṡi = zi − κisi − γi(fi − 1), ḟi = si,

τ µ̇i = fi − µ1/α
i , τiq̇i = fiE(fi, ρi)/ρi − µ1/α

i qi/µi.

The oxygen extraction is a function of the flow E(f, ρ) = 1 − (1 − ρf ) where ρ denotes the resting

oxygen extraction fraction. The biophysical parameters κ, γ, τ, α, and ρ are exhaustively treated

in [268]. Finally, the BOLD signal is described as a static nonlinear function:

yi = V0(k1(1− qi) + k2(1− qi/vi) + k3(1− µi)),

where V0 = 0.02 denotes the resting blood volume fraction, and k1 = 7ρi, k2 = 2, k3 = 2ρi − 0.2.
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Figure 9.4: Schematic illustrating the pipeline to obtain desired functional connectivity (FC) from a
structural connectivity matrix Aoriginal,SC, the original natural frequencies ω, and a desired network
partition P. The addition of noise to the synchronized neural dynamics θ represents the presence of
background noise. The output matrix depicts the brain regions’ functional connectivity simulated
by computing the correlations of filtered and regressed BOLD signals.

Following [147], we choose zi = sin(θi). Further, to account for the presence of background noise in

the brain, we add white noise to the neural activity zi with variance 10−2. We simulate 2 minutes

of BOLD signals and process the timeseries as explained below in order to compute functional

connectivity estimates that closely resemble that of human rs-fMRI recordings.

To reduce the effect of spurious correlations from small and non-physiological high-frequency

components, we filter the synthetic BOLD signals through a low-pass filter. Consequently, to im-

prove the correspondence between resting-state correlations and anatomical connectivity, we process

all of the simulated regional BOLD signals by a global signal regression [269] that averages the time-

series of all regions by removing spontaneous oscillations common to the whole brain. Next, we

discard the first 40 seconds of all timeseries to eliminate the effect of initial transients. Finally,

we compute the Pearson correlation of the filtered and regressed signals to obtain the synthetic

functional connectivity. A pipeline describing the above process is illustrated in Fig. 9.4.

9.5.2 Application of the clustering control mechanism

In the remainder of this section, we apply the control method proposed in Section 9.3. We

first solve the minimization problem (9.4) to find the optimal correction matrix ∆∗ to be applied

to Aoriginal,SC such that condition (C2) for the invariance of SP is satisfied. We choose to constrain

the corrective action on a set of edges EH = E ∪ Ẽ that includes the original set E and a minimal set

Ẽ of randomly selected edges such that problem (9.4) is feasible (see Remark 55). Fig. 9.3(c) and
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Figure 9.5: Fig. 9.5(a) depicts the quotient graph associated with the three clusters in partition P
and the natural frequencies that follow from the procedure in Section 9.3.2. Fig. 9.5(b) shows the
profile of λmax(Ξ) as a function of the tuning parameter α on a logarithmic scale. The thick red line
highlights the smallest value α∗ for which the local stability of the cluster synchronization manifold
SP is guaranteed according to condition (C3).

9.3(d) illustrate the corrective action ∆∗ and the network matrix Acorrected,SC = Aoriginal,SC + ∆∗,

respectively.

We proceed with the frequency tuning technique for invariance and stability of SP to

Acorrected,SC so that conditions (C1) and (C3) are satisfied. The first step involves computing the

mean natural frequency ω
(k)
av among all oscillators belonging to the same cluster Pk: ω

(1)
av = 199.2,

ω
(2)
av = 182.9 and ω

(3)
av = 115.4 [rad/s]. Next, we apply the procedure proposed in Section 9.3.2. We

plot in Fig. 9.5(a) the spanning tree of the quotient graph TQ, and in Fig. 9.5(b) the optimal α∗

computed in step (iv) of our procedure. The final natural frequencies are ω(1) = 131.8, ω(2) = 126.4

and ω(3) = 115.4 [rad/s]. Notice that, although our frequency tuning procedure is sub-optimal,

the outcome values remain well within the range of brain activity frequency bands and, based on

numerical results, outperform the results of Matlab’s fmincon function.

Finally, by following the pipeline described in the previous subsection, we compute the

desired functional connectivity pattern, which we show in Fig. 9.6. Notably, the functional connec-

tivity of the desired clusters is strong and the correlations between different clusters are negligible.

Thus, the proposed method to control synchronization patterns of oscillatory neural activity lends
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Figure 9.6: Fig. 9.6(a) represents the correlation matrix that encodes the output functional connec-
tivity (FC) obtained with our control mechanism. Notably, the three clusters are mostly functionally
disconnected. That is, there are very few functional connections between nodes belonging to dif-
ferent clusters. This implies that the outcome of our procedure is robust to noisy neural activity
and faithfully reproduces synchronized BOLD signals. Fig. 9.6(b),9.6(c) and 9.6(d) illustrate the
isolated functional connectivity of the desired clusters P1, P2 and P3, respectively, after the corre-
lation matrix has been thresholded to 0.5 to show only the meaningful functional interactions. The
functional edges are color-coded according to the colorbar of Fig. 9.6(a).

itself to a physiologically plausible framework and shows rather promising results.

9.6 Conclusion

In this work, we propose a minimally invasive technique to obtain robust synchronization

patterns in sparse networks of heterogeneous Kuramoto oscillators. To the best of our knowledge,

this is the first attempt at blending mathematically rigorous methods with physiological models of

brain activity with the goal of steering whole-brain synchronization dynamics. Specifically, we cast

a constrained optimization problem whose solution not only satisfies mathematical conditions for
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invariance and stability of an arbitrary cluster synchronization manifold, but also meets biological

constraints. We decompose the complete optimization problem into two simpler subproblems, and

provide efficient methods to solve them. When applying our technique to correct the network pa-

rameters of empirically-reconstructed anatomical brain data, we find that our solution, although

suboptimal, provides a result that is well within the range of physiologically plausible parameters.

Additionally, we show that cluster synchronization is robust to small parameter mismatches and

numerical inaccuracies. This result complements previous prescriptive studies on cluster synchro-

nization and enables the use of our framework in practical situations.
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Chapter 10

Conclusion

“There is nothing like looking,

if you want to find something.

You certainly usually find something,

if you look, but it is not always

quite the something you were after.”

J. R. R. TOLKIEN [270, Ch. 4]

More often than not, the process of scientific discovery of a graduate student shares many

similarities with the quest of the fictional characters in [270]. Bilbo Baggins has no idea that, by

leaving the comfort of his home to help the band of Thorin Oakenshield, he will come into possession

of immense riches and a magic ring that will set an extraordinary chain of events in motion. Akin

to Bilbo’s journey, this dissertation started with the rather “straightforward” goal of exploring the

complex nature of the structure-function relationship in neural systems. Yet, working towards this

goal, we have derived exciting theoretical results and discovered foundational working principles that

find application not only in neural systems, but also in many other engineered and natural systems.

In the first part of this manuscript, we have explored the manifest controllability properties

exhibited by state-of-the-art empirically reconstructed structural brain networks. By focusing on
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the structural properties of brain networks, we have laid the ground to motivate further exploration

of the structural backbone that supports brain functions, and to consider the brain as a dynami-

cal system whose dynamics obey network-wide principles. Next, we have turned our attention to

synchronization phenomena, which emerge ubiquitously in neural systems. Over short time frames,

the brain is capable of exhibiting a rich repertoire of synchronization patterns while its anatomi-

cal interconnection scheme remains essentially unaltered. Such synchronization patterns not only

underlie multiple cognitive processes, but can also be used as biomarkers for different psychiatric

and neurological disorders. These observations motivated the final part of this dissertation, where

we have designed control methods that allow us to optimally intervene on (neural) synchronization

phenomena. We conclude this manuscript with some final remarks on each of these topics, together

with a discussion of possible extensions.

10.1 Application of Control and Graph-Theoretic Methods

To Structural Brain Networks

In Chapter 3, we have used a mathematically grounded approach to analyze whether struc-

tural brain networks are controllable from any single region. By resorting to the notion of structural

controllability, we have demonstrated that networks with symmetric weights are structurally con-

trollable from any region if and only if they are structurally controllable with asymmetric weights.

We have applied our result to empirically reconstructed brain networks and found that they are all

structurally controllable from any region. This result has important consequences for the study of

cognitive control and exogenous interventions on brain states.

In Chapter 4, we have further investigated the controllability properties of structural brain

networks. In this chapter, we have focused our attention on the controllability radius of networks,

which measures how close the realization of a network is from uncontrollability. We have derived

a method to compute the controllability radius for networks with symmetric weights and applied
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our method to a set of empirically reconstructed brain networks. When compared with randomized

networks, we found brain networks to have a consistently smaller controllability radius. Such a result

may be compatible with substantial evidence supporting the hypothesis that the brain operates at

the edge of criticality [271]. A possible direction for future research would explore the connection

between criticality of the brain standard operating regime and its controllability properties.

10.2 Reverse Engineering Brain Network Dynamics Synchro-

nization

We have considered two complementary approaches to investigate different synchrony con-

figurations of brain activity: a bottom-up and a top-down explorations of the relationship between

data, models, and paradigms of neural synchronization. In the bottom-up approach (presented in

Chapter 5), we have inferred a data-driven dynamical model, used it to define brain dynamics finger-

prints, and assessed the quality of multi-site repositories of brain activity recordings. Instead, in the

top-down approach (presented in Chapter 6 and Chapter 7), we have made use of oscillator networks

and mathematical abstractions to reverse engineer the synchronization of oscillatory brain rhythms.

To do so, we have relied on previous extensive literature that promotes the use of Kuramoto phase

oscillators to model brain activity [147,166,211,213,272]. The interaction between static large-scale

structural architecture of the human brain and local oscillations of neural communities is a key

factor in the functional connectivity patterns that are empirically observed in brain data. Building

upon these assumptions and observations, we have explored the comprehensive framework of clus-

ter synchronization and derived conditions that guarantee the emergence of such a phenomenon in

networks of Kuramoto oscillators.

Possible extensions of our work may use higher-dimensional oscillators with a state that

comprises phase and amplitude. For instance, we have studied the mechanisms underlying cross-

frequency phase-amplitude coupling in Stuart-Laundau oscillators, which describes the phenomenon
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where the power of a high-frequency oscillation evolves with the phase of a low-frequency one [273],

and is relevant during memory and learning tasks. Further, the relationship between phase and

amplitude is significantly altered between conscious and unconscious (e.g., anesthesia) states [274].

Finally, another possible extension would be the investigation of cluster synchronization in oscillator

networks with asymmetric couplings.

10.3 Control of Brain Network Dynamics Synchronization

The final part of this dissertation relies on the insights from the previous chapters to derive

control methods that allow us to prescribed desired functional relationships between neural units.

Chapter 8 consists of a first attempt at dealing with the nonlinear dynamics of the Kuramoto

equation. We have contributed to the challenging area of nonlinear systems control by deriving

conditions for feedback linearization of network systems and applying our results to networks of

oscillators in order to achieve desired steady state regimes.

In Chapter 9 we have used use a collection of interconnected Kuramoto oscillators to model

oscillatory neural activity, and have developed an optimal control method to intervene on their

functional connectivity, which is essentially regulated by the degree of synchronization between

different clusters of oscillators. Our method computes the smallest adjustment of the network

parameters that enforces stable cluster-synchronized trajectories. As a proof of concept, we have

applied our procedure to an in silico model of whole-brain neural dynamics.

The above methods to control functional relations between components of a network have

motivated our present efforts, which involve holistic control of synchronization phenomena in multiple

domains [275]. Possible extensions in the area of synchronization control are multiple, and range

from the expansion of the developed techniques to more realistic (although more complex) models

of neuronal dynamics, to the engineering of exogenous signals to control state transitions.
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[272] P. Hövel, A. Viol, P. Loske, L. Merfort, and V. Vuksanović. Synchronization in functional
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