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A New Principle for Tuning-Free Huber Regression

Lili Wang[, Chao Zheng], Wen Zhou†, and Wen-Xin Zhou¶

[Zhejiang Gongshang University, ]University of Southampton

†Colorado State University, ¶University of California San Diego

Abstract: The robustification parameter, which balances bias and robustness, has played a crit-

ical role in the construction of sub-Gaussian estimators for heavy-tailed and/or skewed data.

Although it can be tuned by cross-validation in traditional practice, in large scale statistical

problems such as high dimensional covariance matrix estimation and large scale multiple testing,

the number of robustification parameters scales with the dimensionality so that cross-validation

can be computationally prohibitive. In this paper, we propose a new data-driven principle to

choose the robustification parameter for Huber-type sub-Gaussian estimators in three fundamen-

tal problems: mean estimation, linear regression, and sparse regression in high dimensions. Our

proposal is guided by the non-asymptotic deviation analysis, and is conceptually different from

cross-validation which relies on the mean squared error to assess the fit. Extensive numerical

experiments and real data analysis further illustrate the efficacy of the proposed methods.

Key words and phrases: Data adaptive, heavy tails, Huber loss, M -estimator, tuning parameters

1. Introduction

Data subject to heavy-tailed and/or skewed distributions are frequently observed

across various disciplines (Cont, 2001; Purdom and Holmes, 2005). Rigorously, a ran-

dom variable X is heavy-tailed if its tail probability P(|X| > t) decays to zero poly-
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Data-Adaptive Huber Regression 2

nomially in 1/t as t → ∞, or equivalently, if X has finite polynomial-order moments.

The connection between moment and tail probability is revealed by the property that

E(|X|k) = k
∫∞
0
tk−1P(|X| > t) dt for any k ≥ 1. When the sampling distribution has

only a small number of finite moments, with high chance some observations will deviate

wildly from the population mean. Such observations are known as outliers caused by

a heavy-tailed noise. In contrast, samples generated from a Gaussian or sub-Gaussian

distribution (Vershynin, 2012) are strongly concentrated around the expected value, so

that the chance of having extreme observations is much smaller.

Heavy-tailed data bring new challenges to conventional statistical methods. For

linear models, regression estimators based on the least squares loss are suboptimal,

both theoretically and empirically, in the presence of heavy-tailed errors. We refer to

Catoni (2012) for a deviation analysis, showing that the deviation of the empirical mean

can be much worse for non-Gaussian samples than for Gaussian ones. More broadly,

this study exemplifies the pitfalls of asymptotic studies in statistics and inspires new

thoughts about the notions of optimality commonly used to assess the performance

of estimators. In particular, the minimax optimality under mean squared error does

not quite capture the influence of extreme behaviors of estimators. However, these

rare events may have catastrophically negative impacts in practice, leading to wrong

conclusions or false discoveries. Since Catoni (2012), the non-asymptotic deviation

analysis has drawn considerable attention and it is becoming increasingly important

to construct sub-Gaussian estimators (see Section S1.2 in the supplementary file) for
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Data-Adaptive Huber Regression 3

heavy-tailed data; see, for example, Brownlees, Joly and Lugosi (2015), Minsker (2015,

2018), Hsu and Sabato (2016), Devroye et al. (2016), Lugosi and Mendelson (2016),

Fan, Li and Wang (2017), Lugosi and Mendelson (2019), Lecué and Lerasle (2017), and

Zhou et al. (2018), among others.

For linear models, Fan, Li and Wang (2017) and Zhou et al. (2018) proposed Huber-

type estimators in both low and high dimensional settings and derived non-asymptotic

deviation bounds for the estimation error. To implement either Catoni’s or Huber-type

method, a tuning parameter τ needs to be specified in advance to balance between

robustness and bias of the estimation. Deviation analysis suggests that this tuning

parameter, which we refer to as the robustification parameter, should adapt to the

sample size, dimension, variance of noise and confidence level. Calibration schemes are

typically based on cross-validation or Lepski’s method, which can be computationally

intensive especially for large-scale inference and high dimensional estimation problems

where the number of parameters may be exponential in the number of observations.

For example, Avella-Medina et al. (2018) proposed adaptive Huber estimators for es-

timating high dimensional covariance and precision matrices. For a d × d covariance

matrix, although every entry can be robustly estimated by a Huber-type estimator with

τ chosen via cross-validation, the overall procedure involves as many as d2 tuning pa-

rameters and therefore the cross-validation method will soon become computationally

intractable as d grows. Efficient tuning is important not only for the problem’s own

interest, but also for applications in a broader context.
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Data-Adaptive Huber Regression 4

This paper develops data-driven Huber-type methods for mean estimation, linear

regression, and sparse regression in high dimensions. For each problem, we first pro-

vide sub-Gaussian concentration bounds for the Huber-type estimator under minimal

moment condition on the errors. These non-asymptotic results guide the choice of key

tuning parameters. Some of them are of independent interest and improve the existing

results by weakening the sample size scaling. Secondly, we propose a novel data-driven

principle to calibrate the robustification parameter τ > 0 in the Huber loss

`τ (x) =


x2/2 if |x| ≤ τ,

τ |x| − τ 2/2 if |x| > τ.

(1.1)

Huber proposed τ = 1.345σ to retain 95% asymptotic efficiency of the estimator for

the normally distributed data, and meanwhile to guarantee the estimator’s performance

towards arbitrary contamination in a neighborhood of the true model (Huber, 1981;

Huber and Ronchetti, 2009). This default setting has found its use in high dimensional

statistics even though the asymptotic efficiency is no longer well defined; see, for ex-

ample, Lambert-Lacroix and Zwald (2011), Elsener and van de Geer (2018), and Loh

(2017). Guided by the non-asymptotic deviation analysis, our proposed τ grows with

sample size for bias-robustness trade-off. For linear regression under different regimes,

the optimal τ depends on the dimension d: τ ∼ σ
√

(n/d) in the low dimensional setting

with small d/n and τ ∼ σ
√
n/ log(d) in high dimensions. Lastly, we design simple and

fast algorithms to implement our method to calibrate τ .

In this paper, we focus on the notion of tail robustness (Catoni, 2012; Minsker,
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2018; Zhou et al., 2018; Fan, Li and Wang, 2017; Avella-Medina et al., 2018), which

is characterized by the tight non-asymptotic deviation guarantees of estimators under

weak moment assumptions and evidenced by the better finite-sample performance in

the presence of heavy-tailed and/or highly skewed noise. It is inherently different from

the traditional definition of robustness under Huber’s ε-contamination model (Huber

and Ronchetti, 2009). Following the introduction of the finite sample breakdown point

by Donoho and Huber (1983), the traditional robust statistics has focused, in part,

on the development of high breakdown point estimators. Informally, the breakdown

point of an estimator is defined as the largest proportion of contaminated samples

in the data that an estimator can tolerate before produces arbitrarily large estimates

(Hampel, 1971; Hampel et al., 1986; Maronna et al., 2018). An estimator with a

high breakdown point does not necessarily shed light on its convergence properties,

efficiency, and stability. We refer to Portnoy and He (2000) for a review on classical

robust statistics. In contrast, a tail robust estimator is resilient to outliers caused by a

heavy-tailed noise. Intuitively, the breakdown point describes a form of the worst-case

robustness, while our focus corresponds to the average-case robustness.

The remainder of this paper is organized as follows. In Section 2, we revisit Catoni’s

method on robust mean estimation. Motivated by a careful analysis of the truncated

sample mean, we introduce a novel data-driven adaptive Huber estimator. We extend

this data-driven tuning scheme to robust regression in Section 3 under both low and

high dimensional settings. Extensive numerical experiments are reported in Section 4
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to demonstrate the finite sample performance of the proposed procedures. All the

proofs, together with technical details and real data examples, are relegated to the

supplementary files.

2. Robust data-adaptive mean estimation

2.1 Motivation

To motivate our proposed data-driven scheme for Huber-type estimators, we start with

revisiting the mean estimation problem. Let X1, . . . , Xn (n ≥ 2) be independent and

identically distributed (i.i.d.) copies of X with mean µ and finite variance σ2 > 0.

The sample mean, denoted as X̄n, is the most natural estimator for µ. However, it

severely suffers from not being robust to heavy-tailed sampling distributions (Catoni,

2012). In order to cancel, or at least dampen, the erratic fluctuations in X̄n which are

more likely to occur if the distribution of X is heavy-tailed, we consider the truncated

sample mean mτ = n−1
∑n

i=1 ψτ (Xi) for some τ > 0, where

ψτ (x) = sign(x) min(|x|, τ) (2.1)

is a truncation function on R. Here, the tuning parameter τ controls the bias and tail

robustness of mτ . To see this, note that the bias term Bias := E(mτ ) − µ satisfies

|Bias| = |E{X − sign(X)τ}I(|X| > τ)| ≤ τ−1E(X2). Regarding tail robustness, the

following result shows that mτ with a properly chosen τ is a sub-Gaussian estimator

as long as the second moment of X is finite.
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2.1 Motivation7

Proposition 2.1. Assume that v2 :=
√
E(X2) is finite. For any z > 0,

(i) mτ with τ = v
√
n/z for some v ≥ v2 satisfies P{|mτ − µ| ≥ 2v

√
z/n} ≤ 2e−z;

(ii) mτ with τ = cv2
√
n/z for some 0 < c ≤ 1 satisfies P{|mτ−µ| ≥ 2(v2/c)

√
z/n} ≤

2e−z/c
2
.

Proposition 2.1 shows that how mτ would perform under various idealized scenar-

ios, as such providing guidance on the choice of τ . Here z > 0 is a user-specified

parameter that controls the confidence level; see further discussions before Remark 2.2.

Given a properly tuned τ , the sub-Gaussian performance is achieved; conversely, if the

resulting estimator performs well, the data have been truncated at the right level and

can be further exploited. An ideal τ is such that the sample mean of truncated data

ψτ (X1), . . . , ψτ (Xn) serves as a good estimator of µ. The influence of outliers caused by

a heavy-tailed noise is weakened due to the proper truncation. At the same time, we

may expect that the empirical second moment for the same truncated data will provide

a reasonable estimate of v22. Motivated by this, we propose to choose τ > 0 by solving

τ = {
∑n

i=1 ψ
2
τ (Xi)}1/2

√
n/z, which is equivalent to

1

n

n∑
i=1

ψ2
τ (Xi)

τ 2
=
z

n
, τ > 0. (2.2)

We will show that under mild conditions, (2.2) has a unique solution τ̂z, which gives

rise to a data-driven mean estimator

mτ̂z =
1

n

n∑
i=1

min(|Xi|, τ̂z) sign(Xi). (2.3)
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2.1 Motivation8

To understand the property of τ̂z, consider the population version of (2.2):

E{ψ2
τ (X)}
τ 2

=
E{min(X2, τ 2)}

τ 2
=
z

n
, τ > 0. (2.4)

The following result establishes existence and uniqueness of the solution to (2.4).

Proposition 2.2. Assume that v2 =
√
E(X2) is finite.

(i) Provided 0 < z < nP(|X| > 0), (2.4) has a unique solution τz, which satisfies

[E{min(X2, q2z/n)}]1/2
√
n/z ≤ τz ≤ v2

√
n/z, where qα := inf{t : P(|X| > t) ≤ α}

is the upper α-quantile of |X|.

(ii) Let z = zn > 0 satisfy zn → ∞ and z = o(n). Then τz → ∞ and τz ∼ v2
√
n/z

as n→∞.

As a direct consequence of Proposition 2.2, the following result ensures existence

and uniqueness of the solution to (2.2), the empirical counterpart of (2.4).

Proposition 2.3. Provided 0 < z <
∑n

i=1 I(|Xi| > 0), (2.2) admits a unique solution.

Throughout, denote τ̂z the solution to (2.2), which is unique and positive whenever

z <
∑n

i=1 I(|Xi| > 0). For completeness, we set τ̂z = 0 on {z ≥
∑n

i=1 I(|Xi| > 0)}. If

P(X = 0) = 0 and 0 < z < n, τ̂z > 0 with probability one. With both τz and τ̂z well

defined, we investigate the property of τ̂z below.

Theorem 2.1. Assume E(X2) < ∞ and P(X = 0) = 0. For any 1 ≤ z < n and

0 < r < 1, we have

P(|τ̂z/τz − 1| ≥ r) ≤ e−a
2
1r

2z2/(2z+2a1rz/3) + e−a
2
2r

2z/2 + 2e−(a1∧a2)
2z/8, (2.5)
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2.1 Motivation9

where

a1 = a1(z, r) =
P (τz)

2Q(τz)

2 + r

(1 + r)2
and a2 = a2(z, r) =

P (τz − τzr)
2Q(τz)

2− r
1− r

(2.6)

with P (t) = E{X2I(|X| ≤ t)} and Q(t) = E{ψ2
t (X)}.

Remark 2.1. Here we give some direct implications of Theorem 2.1.

(i) Let z = zn ≥ 1 satisfy z = o(n) and z → ∞ as n → ∞. By Proposition 2.2,

τz →∞ and τz ∼ v2
√
n/z, which implies P (τz)→ v22 and Q(τz)→ v22 as n→∞.

(ii) With r = 1/2 and z = logκ(n) for some κ ≥ 1 in (2.5), the constants a1 =

a1(z, 1/2) and a2 = a2(z, 1/2) satisfy a1 → 5/9 and a2 → 3/2 as n → ∞. The

resulting τ̂z satisfies that with probability approaching one, τz/2 ≤ τ̂z ≤ 3τz/2.

We conclude this section with a uniform deviation bound for mτ . Uniformity of

the rate over a neighborhood of the optimal tuning scale requires an additional log(n)-

factor. As a result, we show that the data-driven estimator mτ̂z is tightly concentrated

around the mean with high probability.

Theorem 2.2. For z ≥ 1, let τ ∗z = v2
√
n/z. Then with probability at least 1− 2ne−z,

sup
τ∗z /2≤τ≤3τ∗z /2

|mτ − µ| ≤ 4v2(z/n)1/2 + v2n
−1/2. (2.7)

Therefore, let z = 2 log(n) and τ̂z be the solution to (2.2), we obtain the following

concentration inequality for the mean estimator mτ̂z given in (2.3).
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2.2 Adaptive Huber estimator10

Corollary 2.1. With probability at least 1−c1n−c2 for all sufficiently large n, we have

|mτ̂z − µ| ≤ 4v2
√

2 log(n)/n+ v2n
−1/2, (2.8)

where c1, c2 > 0 are absolute constants.

2.2 Adaptive Huber estimator

For the truncation method, even with the theoretically desirable tuning parameter

τ = v2
√
n/z, the deviation of the resulting estimator only scales with v2 rather than

the standard deviation σ. The optimal deviation, which is enjoyed by the sample mean

with sub-Gaussian data, is of order σ
√
z/n. To achieve such an optimal order, Fan,

Li and Wang (2017) modified Huber’s method to construct an estimator that exhibits

fast (sub-Gaussian type) concentration under finite variance condition.

The Huber loss in (1.1) is continuously differentiable with `′τ (x) = ψτ (x), where

ψτ (·) is defined in (2.1). The Huber’s estimator is obtained as µ̂τ = argminθ∈R
∑n

i=1 `τ (Xi−

θ), or equivalently, µ̂τ is the unique solution to

0 =
n∑
i=1

ψτ (Xi − θ) =
n∑
i=1

min(|Xi − θ|, τ) sign(Xi − θ). (2.9)

We refer to Catoni (2012) for a general class of robust mean estimators. The follow-

ing result from Theorem 5 in Fan, Li and Wang (2017) shows the exponential-type

concentration of µ̂τ when τ is properly calibrated.

Proposition 2.4. Let z > 0 and v ≥ σ. Provided n ≥ 8z, µ̂τ with τ = v
√
n/z satisfies

the bound |µ̂τ − µ| ≤ 4v
√
z/n with probability at least 1− 2e−z.
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2.2 Adaptive Huber estimator11

Proposition 2.4 indicates that a theoretically desirable tuning parameter for the

Huber estimator is τ ∼ σ
√
n/z. Motivated by the data-driven approach proposed in

Section 2.1, we consider the following modification of (2.4):

E{ψ2
τ (X − µ)}
τ 2

=
E[min{(X − µ)2, τ 2}]

τ 2
=
z

n
, τ > 0. (2.10)

According to Proposition 2.2, provided 0 < z < nP(X 6= µ), (2.10) admits a unique

solution τz,µ, which satisfies
√
E
[
min{(X − µ)2, q̄z/n}

]√
n/z ≤ τz,µ ≤ σ

√
n/z, where

q̄α = inf{t : P(|X − µ| > t) ≤ α}. From a large sample perspective, if z = zn satisfies

z →∞ and z = o(n), then τz,µ →∞ and τz,µ ∼ σ
√
n/z as n→∞.

In light of (2.9) and (2.10), a clearly motivated data-driven estimate of µ can be

obtained by solving the following system of equations:
f1(θ, τ) :=

∑n
i=1 ψτ (Xi − θ) = 0,

f2(θ, τ) := n−1
∑n

i=1 min{(Xi − θ)2, τ 2}/τ 2 − n−1z = 0,

θ ∈ R, τ > 0. (2.11)

Observe that for any given τ > 0, f1(·, τ) = 0 always admits a unique solution, and for

any given θ, f2(θ, ·) = 0 has a unique solution provided z <
∑n

i=1 I(Xi 6= θ). With ini-

tial values θ(0) = X̄n and τ (0) = σ̂n
√
n/z where σ̂2

n denotes the sample variance, we can

solve (2.11) successively by computing a sequence of solutions {(θ(k), τ (k))}k≥1 satisfying

f2(θ
(k−1), τ (k)) = 0 and f1(θ

(k), τ (k)) = 0 for k ≥ 1. For a predetermined tolerance ε, the

algorithm terminates within the `-th iteration when max{|θ(`)−θ(`−1)|, |τ (`)−τ (`−1)|} ≤ ε

and uses θ(`) as our robust estimator of µ.

In the case of z = 1, we see that the algorithm stops in the first iteration and
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2.2 Adaptive Huber estimator12

delivers the solution X̄n. According to the results in Section 2.1, for fixed z ≥ 1,

there is no net improvement in terms of tail robustness; instead, we should let z = zn

slowly grow with the sample size to gain tail robustness without introducing extra bias.

Specifically, we choose z = log(n) throughout the numerical experiments in this paper.

Remark 2.2. The proposed estimator is obtained by iteratively solving (2.11), which

mimics (1.6) in Bickel (1975) and can be viewed as a variant of (6.28) and (6.29) in

Huber and Ronchetti (2009) for joint location and scale estimation. The estimator in

Bickel (1975) solves the equation
∑n

i=1 ψσ̂(Xi−θ) = 0, where σ̂ is chosen independently

as the normalized interquartile range σ̂(1) = {X(n−[n/4]+1) −X([n/4])}/2Φ−1(3/4) or the

symmetrized interquartile range σ̂(2) = median{|Xi − m|}/Φ−1(3/4), where X(1) <

· · · < X(n) are the order statistics and m is the sample median. The consistency of

σ̂(1) or σ̂(2) is established under the symmetry assumption of X, but remains unclear

for general distributions. On the other hand, similar to Bickel (1975), our proposed

estimators of θ and τ are also location and scale equivariant (see Sections S1.7 and S1.8

in the supplementary files).

Unlike this classical approach, we waive the symmetry requirement by allowing the

robustification parameter to diverge to reduce the bias induced by the Huber loss when

the distribution is asymmetric. Another difference is that Bickel’s proposal is a two-

step method that estimates the scale and location separately, whereas our procedure

estimates µ and calibrates τ simultaneously by solving a system of equations. In fact,

as a direct extension of the idea in Section 2.1, we may also tune τ independently from
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estimation by solving
(
n
2

)−1∑
1≤i<j≤n τ

−2 min{(Xi−Xj)
2/2, τ 2} = zn−1 for z > 0. Let

X ′ be an independent copy of X. Then the population version of this equation is

E [min{(X −X ′)2/2, τ 2}] τ−2 = z/n, whose solution is unique under mild conditions

and scales as σ
√
n/z.

Remark 2.3. In this paper, we assume the finite variance of errors. For more subtle

scenarios with finite (1+δ)th moment and 0 < δ < 1, the phase transition phenomenon

discovered by Devroye et al. (2016) and Sun, Zhou and Fan (2020) suggests that the

Huber’s M -estimator no longer admits sub-Gaussian type deviation bounds. Develop-

ing the corresponding data-driven principle for tuning Huber’s method when δ < 1 is

nontrivial and left as topic for future investigation.

3. Robust data-adaptive linear regression

In this section, we extend the proposed data-driven method for robust mean estimation

to regression problems. Consider the linear regression model

Yi = β∗0 +Xᵀ
i β
∗ + εi, i = 1, . . . , n, (3.1)

where Yi’s represent response variables, Xi’s are d-dimensional vectors of covariates,

β∗0 and β∗ ∈ Rd denote the intercept and vector of regression coefficients, respectively,

and ε1, . . . , εn are independent regression errors with zero mean and finite variance.

For ease of presentation, we write Zi = (1,Xᵀ
i )ᵀ and θ∗ = (β∗0 ,β

∗ᵀ)ᵀ. The goal is to

estimate θ∗ from observed data {(Yi,Xi)}ni=1.
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3.1 Adaptive Huber regression in low dimensions14

3.1 Adaptive Huber regression in low dimensions

We start with the low-dimensional regime where d � n. In the presence of heavy-

tailed errors, finite sample properties of the least squares method are suboptimal both

theoretically and empirically. Under such heavy-tailed models, we refer to Audibert and

Catoni (2011) and Sun, Zhou and Fan (2020) for non-asymptotic analysis of Huber-type

robust regressions; the former focused on the excess risk bounds and the latter provided

deviation bounds for the estimator along with non-asymptotic Bahadur representations.

Given τ > 0, Huber’s M -estimator is defined as

θ̂τ = (β̂0,τ , β̂
ᵀ
τ )

ᵀ ∈ argmin
θ∈Rd+1

n∑
i=1

`τ (Yi −Zᵀ
i θ), (3.2)

where `τ (·) is given in (1.1). By the convexity of Huber loss, the solution to (3.2) is

uniquely determined via the first-order condition:
∑n

i=1 ψτ (Yi − Z
ᵀ
i θ̂τ )Zi = 0. Most

desirable features of Huber’s method are established under the assumption that the

error distribution is symmetric around zero. In the absence of symmetry, the bias

induced by the Huber loss becomes non-negligible. To make this statement precise,

note that θ̂τ = (β̂0,τ , β̂
ᵀ
τ )

ᵀ is a natural M -estimator of

θ∗τ = (β∗0,τ ,β
∗ᵀ
τ )ᵀ = argmin

(β0,βᵀ)ᵀ∈Rd+1

n∑
i=1

E{`τ (Yi − β0 −Xᵀ
i β)}, (3.3)

whereas the true parameters β∗0 and β∗ are identified as argminβ0,β
∑n

i=1 E{(Yi − β0 −

Xᵀ
i β)2}. For any fixed τ > 0, though β̂0,τ and β̂τ are robust estimates of β∗0,τ and β∗τ ,

(β∗0,τ ,β
∗
τ ) differs from (β∗0 ,β

∗) in general. The following proposition provides an explicit

bound on the bias, complementing the results in Section 4.9.2 in Maronna et al. (2018).
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3.1 Adaptive Huber regression in low dimensions15

Proposition 3.1. Assume that ε and X are independent, and that the function α 7→

E{`τ (ε− α)} has a unique minimizer ατ = argminα∈R E{`τ (ε− α)}, which satisfies

P(|ε− ατ | ≤ τ) > 0. (3.4)

Assume further that E(ZZᵀ) is positive definite. Then we have β∗0,τ = β∗0 + ατ and

β∗τ = β∗. Moreover, ατ with τ > σ satisfies the bound

|ατ | ≤
σ2 − E{ψ2

τ (ε)}
1− τ−2σ2

1

τ
. (3.5)

Note also that the Huber loss minimization is equivalent to the penalized least

squares problem (She and Owen, 2011), (µ̂τ , θ̂τ ) = argminµ∈Rn,θ∈Rd+1{12
∑n

i=1(Yi−µi−

Zᵀ
i θ)2 + τ

∑n
i=1 |µi|}, where µ = (µ1, . . . , µn)ᵀ and θ̂τ here coincides with that in (3.2).

This loss function can be written as
∑n

i=1(Yi − µi − β0 −X
ᵀ
i β)2/2 + τ

∑n
i=1 |µi|. This

explains from a different perspective that the bias arises only at the intercept. The

larger the τ is, the sparser the µ̂τ is and therefore the smaller the estimation bias is.

The message delivered by Proposition 3.1 draws attention to intercept estimation,

a problem of independent interest that needs to be treated with greater caution. If the

distribution of ε is asymmetric, ατ is typically non-zero for any τ > 0; the smaller the

τ is, the larger the bias becomes and so is the prediction error. To balance bias and

tail robustness, in the following we propose two modifications, one-step and two-step,

of the Huber’s method that are robust against heavy-tailed and asymmetric errors and

meanwhile maintain high efficiency for the normal data.
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3.1 Adaptive Huber regression in low dimensions16

3.1.1 One-step method

As noted in Zhou et al. (2018), there is an inherent bias-robustness trade-off in the

choice of τ , which should adapt to the sample size, dimension and the variance of noise.

Theorem 3.1 below fine-tunes this statement. To begin with, we impose the following

moment conditions.

Condition 3.1. The covariates X1, . . . ,Xn are i.i.d. random vectors from X. There

exists A0 > 0 such that for any u ∈ Rd+1 and t ∈ R, P(|〈u, z〉| ≥ A0‖u‖2 · t) ≤ e−t,

where z = S−1/2Z and S = E(ZZᵀ) is positive definite. The regression errors εi are

independent and satisfy E(εi|Xi) = 0 and E(ε2i |Xi) ≤ σ2 almost surely.

Theorem 3.1. Assume Condition 3.1 holds. For any z > 0 and v ≥ σ, the estimator

θ̂τ in (3.2) with τ = v
√
n/(d+ z) satisfies the bound ‖S1/2(θ̂τ−θ∗)‖2 ≤ c1v

√
(d+ z)/n

with probability at least 1−2e−z provided n ≥ c2(d+z), where c1, c2 > 0 are constants

depending only on A0.

This theorem establishes a sub-Gaussian concentration bound for θ̂τ under the

optimal sampling size scaling. Compared with Theorem 2.1 in Zhou et al. (2018),

there are two technical improvements: first, the moment condition on the random

predictor is relaxed from sub-Gaussian to sub-exponential; and secondly, the sample

size requirement is improved to n & d, which is in line with the classical asymptotic

consistency result that requires d = o(n). To achieve a sub-Gaussian performance under

the finite variance condition, the key observation is that the robustification parameter
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3.1 Adaptive Huber regression in low dimensions17

τ should adapt to the sample size, dimension, variance of noise and confidence level

for optimal trade-off between bias and robustness. Extending our proposal for mean

estimation, for θ ∈ Rd+1 and τ > 0, we estimate θ∗ and calibrate τ simultaneously by

solving the system of equations
g1(θ, τ) :=

∑n
i=1 ψτ (Yi −Z

ᵀ
i θ)Zi = 0,

g2(θ, τ) := (τ 2n)−1
∑n

i=1 min{(Yi −Zᵀ
i θ)2, τ 2} − n−1(d+ z) = 0.

(3.6)

With initial values θ(0) := θ̂ols = (
∑n

i=1ZiZ
ᵀ
i )−1

∑n
i=1 YiZi and τ (0) = σ̂n

√
n/(d+ z)

where σ̂2
n = (1/n)

∑n
i=1(Yi − Z

ᵀ
i θ̂ols)

2, for k ≥ 1, solve g2(θ
(k−1), τ (k)) = 0 to obtain

compute τ (k) and then compute θ(k) as the solution to g1(θ
(k), τ (k)) = 0. Iterate until

convergence and set θ̂ I := θ̂τ̂ as our one-step estimator, where (θ̂, τ̂) is the final output.

The main advantage of the proposed adaptive Huber regression over the traditional

one with τ = 1.345σ is that the estimation bias with respect to intercept is alleviated.

Examining the proof of Proposition 3.1, we find that the bias is of order 1/τ when the

second moment is finite, and is quadratic in 1/τ if the third moment is finite. The

statistical error, on the other hand, is determined by the `2-norm of the score function

evaluated at θ∗ which is of order σ
√
d/n + τd/n, see Theorem 3.2 below. The overall

error is then optimized at τ � σ
√
n/d. For the normal model, since max1≤i≤n |εi| ∼

σ
√

2 log(2n) . σ
√
n/d, the adaptive Huber estimator is almost identical to the least

squares estimator. Numerical results in Section 4 provide strong support for the tail-

adaptivity of our proposed data-driven Huber regression.

When τ scales as a constant, such as cσ, the corresponding Huber loss is Lipschitz
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3.1 Adaptive Huber regression in low dimensions18

with bounded score function, and since β∗τ = β∗ for any τ > 0, no sacrifice in bias will

incur for estimating the slope β∗. Again, constant c is typically tuned to ensure a given

level of asymptotic efficiency. Asymptotic properties of general robust M -estimators

have been well studied in the literature; see Avella-Medina and Ronchetti (2015) for a

selective overview. The next result further complements Theorem 3.1 by establishing

the deviations of the Huber estimator with fixed τ from a non-asymptotic viewpoint.

Theorem 3.2. Suppose Condition 3.1 and the assumptions in Proposition 3.1 hold.

Assume further that ρτ := P(|ε − ατ | ≤ τ/2) > 0. Then, the estimator θ̂τ in (3.2)

satisfies ‖S1/2(θ̂τ − θ∗τ )‖2 . ρ−1τ A0{σ
√

(d+ z)/n + τ(d + z)/n} for any z > 0 with

probability at least 1 − 2e−z provided n ≥ c3(d + z), where c3 > 0 is a constant

depending only on (A0, ρτ ).

3.1.2 Two-step method

Motivated by our bias-robustness analysis and the results of finite sample investigation,

we further introduce a two-step procedure that estimates the regression coefficients and

intercept successively.

In the first step, we compute the Huber estimator θ̂τ = (β̂0,τ , β̂
∗ᵀ
τ )ᵀ by solving (3.2)

with τ = cσ. We take c = 1.345 to retain the 95% efficiency for the normal model. For

σ, it can be estimated simultaneously with θ∗ by solving a system of equations as in

Huber’s “Proposal 2” (Huber, 1964; Huber and Ronchetti, 2009), or we can fix σ at an

initial robust estimate and then optimize over θ (Hampel et al., 1986). We follow the
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3.1 Adaptive Huber regression in low dimensions19

former route and consider an iterative procedure. Start with an initial estimate θ(0), at

iteration k = 0, 1, 2, . . ., we employ a simple procedure to obtain σ̂(k), based on which

to produce update θ(k+1). This step involves two procedures.

Procedure 1: Scale estimation. Using the current estimate θ(k), we compute the vector

of residuals r(k) = (r
(k)
1 , . . . , r

(k)
n )ᵀ and the robustification parameter τ (k) = 1.345σ̂(k),

where σ̂(k) denotes the median absolute deviation (MAD) estimator median{|r(k)i −

median(r
(k)
i )|}/Φ−1(3/4).

Procedure 2: Weighted least squares. Compute the n × n diagonal matrix W(k) =

diag((1 + w
(k)
1 )−1, . . . , (1 + w

(k)
n )−1), where w

(k)
i = |r(k)i |/τ (k) − 1 if |r(k)i | > τ (k) and

w
(k)
i = 0 if |r(k)i | ≤ τ (k). Then we update θ(k) to produce θ(k+1) via weighted least

squares, that is,

θ(k+1) = argmin
θ∈Rd+1

n∑
i=1

(Yi −Zᵀ
i θ)2

1 + w
(k)
i

= (ZᵀW(k)Z)−1ZᵀW(k)Y ,

where Z = (Z1, . . . ,Zn)ᵀ ∈ Rn×(d+1) and Y = (Y1, . . . , Yn)ᵀ.

Starting with θ(0) = θ̂ols, we repeat the above two procedures until convergence.

Denote β̂ II ∈ Rd the vector of coefficients estimates extracted from the final solution.

In the second step, observe that β∗0 = E(δi), where δi = Yi −Xᵀ
i β
∗ = β∗0 + εi are

the residuals. To estimate β∗0 , defining fitted residuals δ̂i = Yi −Xᵀ
i β̂

II, we solve the

system of equations
f1(β0, τ) := (τ 2n)−1

∑n
i=1 min{(δ̂i − β0)2, τ 2} − n−1log(n) = 0,

f2(β0, τ) :=
∑n

i=1 ψτ (δ̂i − β0) = 0,

(3.7)
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3.2 Adaptive Huber regression in high dimensions20

in the same way as for solving (2.11) to obtain β̂ II
0 . Then, θ̂ II = (β̂ II

0 , β̂
II) is our

two-step estimator of θ∗.

The two-step procedure leverages the fact that, for the asymmetric regression er-

rors with potentially heavy tails, the Huber loss with a fixed τ only introduces bias

to the intercept estimation but not to the estimation on the slope coefficients. To al-

leviate the influence of skewness in the error, in the second step we use the adaptive

Huber method with a divergent τ to re-estimate the intercept. The two-step estimator

therefore achieves both high degree of tail robustness and unbiasedness.

3.2 Adaptive Huber regression in high dimensions

We now move to the high dimensional setting where d� n and β∗ = (β∗1 , . . . , β
∗
d)

ᵀ ∈ Rd

is sparse with ‖β∗‖0 :=
∑d

j=1 I(β∗j 6= 0) = s � n. Since the invention of the Lasso

(Tibshirani, 1996), a variety of variable selection methods have been developed for

finding a small group of response-associated covariates from a large pool. We refer to

Bühlmann and van de Geer (2011) and Hastie, Tibshirani and Wainwright (2015) for

a comprehensive review along this line.

The Lasso estimator is β̂lasso(λ) ∈ argminβ0∈R,β∈Rd{(2n)−1
∑n

i=1(Yi−β0−X
ᵀ
i β)2 +

λ‖β‖1}, where λ > 0 is a regularization parameter. Thinking of the noise variable as

being Gaussian, this can be interpreted as a penalized maximum likelihood estimate,

where the `1 penalty encourages sparsity in the estimation. However, least squares fit-

ting is sensitive to the tails of error distributions, particularly for ultra-high dimensional
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3.2 Adaptive Huber regression in high dimensions21

covariates as their spurious correlations with the noise can be large, and therefore is

not ideal in the presence of heavy-tailed noise.

Recently, Fan, Li and Wang (2017) modified Huber’s procedure to obtain an `1-

regularized robust estimator admitting the desirable concentration bound under finite

variance condition on the regression errors. According to the discussions in Section 3.1,

the intercept, albeit being often ignored in the literature, plays an important role in

the study of robust methods. To take into account the effect of intercept, we consider

the regularized Huber estimator of the form

θ̂H(τ, λ) ∈ argmin
θ=(β0,βᵀ)ᵀ∈Rd+1

{
Lτ (θ) + λ‖β‖1

}
, (3.8)

where Lτ (θ) := (1/n)
∑n

i=1 `τ (Yi −Z
ᵀ
i θ) = (1/n)

∑n
i=1 `τ (Yi − β0 −X

ᵀ
i β), τ and λ are

the robustification and regularization parameters, respectively.

Given εi with finite variance, Theorem 3.3 below reveals that the `1-regularized

Huber regression with properly tuned (τ, λ) gives rise to consistent estimators with `1-

and `2-errors scaling as s
√

log(d)/n and
√
s log(d)/n, respectively, under the sample

size scaling n & s log(d). These rates are exactly the minimax rates enjoyed by the

Lasso with sub-Gaussian errors.

Theorem 3.3. Assume Condition 3.1 holds and denote by λS the minimal eigenvalue

of S. Assume further that the unknown β∗ is sparse with s = ‖β∗‖0. Let σjj = E(X2
j )

for j = 1, . . . , d. Then the estimator θ̂H(τ, λ) given in (3.8) with τ = σ
√
n/ log(d) and
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3.2 Adaptive Huber regression in high dimensions22

λ scaling with A0 max1≤j≤d σ
1/2
jj σ

√
log(d)/n satisfies

‖θ̂H(τ, λ)− θ∗‖2 .
s1/2λ

λS
and ‖θ̂H(τ, λ)− θ∗‖1 .

sλ

λS
(3.9)

with probability at least 1− 3d−1 as long as n ≥ c1s log(d), where c1 > 0 is a constant

depending only on (A0,max1≤j≤d σjj, λS).

Theorem 3.3 above complements Theorem 3 in Fan, Li and Wang (2017). The

latter provides convergence rates of `1-penalized Huber’s M -estimator under the weakly

sparse setting that ‖β∗‖q ≤ Rq for some 0 < q ≤ 1. Their results, however, do not

directly apply to the sparse regime where q = 0. Moreover, the sub-Gaussian condition

imposed in Fan, Li and Wang (2017) is now relaxed to the sub-exponential condition.

Remark 3.1. The main purpose of using the Huber loss for data fitting is to gain

robustness against outliers from either contamination models (Huber, 1973) or heavy-

tailed models considered in this paper. For other purposes, different loss functions have

been proposed to replace the squared loss, such as the nonconvex Tukey and Cauchy

losses, the quantile loss and the asymmetric quadratic loss, among others. We refer to

Owen (2007), Loh and Wainwright (2015), Loh (2017), Zhou et al. (2018), Mei, Bai and

Montanari (2018), Alquier, Cottet and Lecué (2019), and Pan, Sun and Zhou (2019)

for more discussions on the regularized M -estimator with different loss functions.

In practice, it is computationally demanding to choose the optimal values of τ and

λ by a two-dimensional grid search using cross-validation. We consider the following

procedure that estimates θ∗ and tunes τ simultaneously. Given a random sample of
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3.2 Adaptive Huber regression in high dimensions23

size n, we use cross-validated Lasso as an initialization θ̂(0). At iteration k = 1, 2, . . .,

using the previous estimate θ̂(k−1) we compute τ (k) as the solution to

1

{n− ŝ(k−1)}

n∑
i=1

min{(Yi −Zᵀ
i θ̂

(k−1))2, τ 2}
τ 2

=
log(nd)

n
, (3.10)

where ŝ(k−1) = ‖β̂(k−1)‖0. Next, take τ = τ (k) and compute θ̂(k) by solving

min
θ

{
1

n

n∑
i=1

`τ (Yi −Zᵀ
i θ) + λ‖β‖1

}
, (3.11)

where λ is chosen via cross-validation. Repeat the above two steps until convergence

or until the maximum number of iterations is reached.

To implement the data-driven Huber regression in high dimensions, again, starting

with some initial guess we iteratively solve (3.10) and (3.11). For the convex optimiza-

tion problems in (3.11), the minimizer satisfies the Karush-Kuhn-Tucker conditions,

and therefore can be found by solving the following system of nonsmooth equations:
−n−1

∑
i ψτ (Yi −Z

ᵀ
i θ̂) = 0,

−n−1
∑

i ψτ (Yi −Z
ᵀ
i θ̂)Xij + λη̂j = 0, j = 1, . . . , d

β̂j − S(β̂j + η̂j) = 0, j = 1, . . . , d

(3.12)

where θ̂ = (β̂0, β̂
ᵀ)ᵀ ∈ Rd+1 with β̂ = (β̂1, . . . , β̂d)

ᵀ, η̂j ∈ ∂|β̂j| and S(z) = sign(z)(|z| −

1)+ is the soft-thresholding operator. Instead of directly applying the Semismooth

Newton Algorithm (SNA) to the entire system of equations, we adapt the Semismooth

Newton Coordinate Descent (SNCD) algorithm proposed by Yi and Huang (2017),

which combines SNA with cyclic coordinate descent to solve (3.12). More specifically, in
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SNCD we divide (3.12) into two parts in order to avoid cumbersome matrix operations

as in solving the entire system. In a cyclic fashion, we update the intercept only

using the first equation and update the coefficients with its subgradients using the

last two equations, therefore reduce the computational cost from O(nd2) to O(nd) at

each iteration. The gain in the computational scalability and efficiency is substantial

for large d. After obtaining a solution path of (3.11), we employ the cross-validation

method to select λ and then the associated θ̂(k).

Remark 3.2. The above regularized data-adaptive Huber regression method is a direct

extension of the one-step method proposed in Section 3.1 to high dimensions. Also, note

that Proposition 3.1 holds in high dimensions as long as the population Gram matrix

S is positive definite. Therefore, to further reduce the estimation bias of intercept,

we suggest the two-step procedure that estimates the regression coefficients using the

standard regularized Huber regression and then estimates the intercept by applying the

adaptive-Huber method to fitted residuals as in (3.7). Section 4.3 provides numerical

studies of both the one- and two-step regularized adaptive Huber estimators.

4. Empirical analysis

In this section, we examine numerically the finite sample performance of the proposed

data-adaptive Huber (DA-Huber) methods for mean estimation and linear regressions.

In the supplementary files, using three real data sets, we also demonstrate the desirable

performance of the proposed DA-Huber methods in terms of prediction accuracy.
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4.1 Mean estimation25

We consider the following four distribution settings to investigate the robustness

and efficiency of the proposed method in a wide variety of scenarios.

(1) Normal distribution N (0, σ2) with mean zero and variance σ2 > 0;

(2) Skewed generalized t distribution (Theodossiou, 1998) sgt(µ, σ2, λ, p, q), where

mean µ = 0, variance σ2 = q/(q − 2) with q > 2, shape p = 2 and skewness λ = 0.75;

(3) Lognormal distribution LN(µ, σ) with µ = 0 and σ > 0; and

(4) Pareto distribution Par(xm, α) with scale xm = 1 and shape α > 0.

All above settings but (1) are skewed and might be very heavy-tailed for some choice

of the distribution parameters, such as α < 2 for the Pareto distribution.

4.1 Mean estimation

For each setting, we generate an independent sample of size n = 100 and compute three

mean estimators: the sample mean, the Huber estimator with τ chosen via five-fold

cross-validation (CV-Huber), and the proposed DA-Huber mean estimator. Figure 1

displays the α-quantile of the estimation error with α ranging from 0.5 to 1 based

on 2000 simulations. Figure S1 in the supplementary files reports the boxplots of the

estimation error. The DA-Huber estimator and sample mean perform almost identically

for the normal data. For the heavy-tailed skewed distributions, the deviation of the

sample mean from the population mean grows rapidly with the confidence level, which

is in striking contrast to the CV- and DA-Huber estimators.

In Figure 2, we examine the 99%-quantile of the estimation error versus a distribu-
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Figure 1: Estimation error versus confidence level for the sample mean, CV-Huber and

DA-Huber estimators based on 2000 simulations.

tion parameter measuring the tail behavior and the skewness. Namely, for normal data

we let σ vary between 1 and 4; for skewed generalized t distributions, we increase the

shape parameter q from 2.5 to 4; for Lognormal and Pareto distributions, the shape

parameters σ and α vary from 0.25 to 2 and 1.5 to 3, respectively. The Huber-type

estimators show substantial improvement in deviations from the population mean as

the distribution tends to have heavier tails and become more skewed. In summary, the

most attractive feature of our method is its adaptivity: (i) it is as efficient as the sam-

ple mean for the normal model and is more robust for asymmetric and/or heavy-tailed
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Figure 2: Empirical 99%-quantile of the estimation error versus parameter measuring

tails and skewness for the sample mean, CV-Huber and DA-Huber estimators.

data; (ii) it performs as good as the cross-validation but with much less computational

cost. The latter is particularly important for large-scale inference with a myriad of

parameters to be estimated simultaneously.

4.2 Linear regression

We generate data {(Yi,Xi)}ni=1 from linear model (3.1) with n = 500 and d = 5.

The intercept and vector of regression coefficients are taken to be β0 = 5 and β∗ =

(1,−1, 1,−1, 1)ᵀ, respectively. The covariates Xi are i.i.d. random vectors that consist
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of independent coordinates from a uniform distribution Unif(−1.5, 1.5).
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Figure 3: Estimation errors of intercept under different settings.

We compare the DA-Huber regression estimator with the ordinary least squares

(OLS) estimator and classical robust M -estimators with Huber loss `τ (·) as in (1.1)

and Tukey’s biweight loss `Tτ (x) = {1− (1−x2/τ 2)3}I(|x| ≤ τ)+ I(|x| > τ). The tuning

parameter τ in `Tτ (·) and `τ (·) is taken to be 4.685 and 1.345, respectively, according to

the 95% efficiency rule. We carry out 1000 Monte Carlo simulations to: (1) evaluate

the overall performance of the DA-Huber methods comparing with three competitors,

OLS, Tukey, and Huber; see Figures 3 and 4, and (2) explore the robustness of different

methods with varying degrees of heavy-tailedness and skewness; see Figures 5 and 6.
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Figure 4: Total `2-errors under different settings.

Figures 3 and 4 display the boxplots of the estimation error of intercept |β̂0 − β∗0 |

and the total `2-error ‖θ̂−θ∗‖22, respectively, for a fixed distribution parameter as did in

Section 4.1. Both the one-step and two-step DA-Huber estimators outperform the other

methods across all examples. For estimating the intercept, the DA-Huber rectifies the

non-negligible bias in the traditional robust M -estimator, as predicted by theory. In

the normal case, the DA-Huber estimator performs almost identically to the OLS and

is therefore highly efficient. The `2-error of OLS tends to spread out (due to outliers)

and thus is not reported Figures 5 and 6 illustrate, respectively, the average estimation

error of intercept and the total `2-error versus distribution parameters controlling the
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Figure 5: Average estimation error of intercept versus distribution parameters con-

trolling tails for the OLS estimator, standard Tukey’s and Huber’s estimators, and

data-adaptive Huber estimators (one-step and two-step).

shape of tails. In the normal case, the one-step DA-Huber and OLS slightly outperform

the others; with heavy-tailed and skewed errors, the DA-Huber methods enjoy notable

advantage and the two-step approach is the most desirable since it strikes the perfect

balance between bias and tail robustness. Overall, the numerical results confirm that

the proposed methods have substantial advantages in the presence of asymmetric and

heavy-tailed errors, while maintaining high efficiency for the normal model.
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Figure 6: Average `2-errors versus distribution parameters controlling tails for the

OLS estimator, standard Tukey’s and Huber’s estimators, and data-adaptive Huber

estimators (one-step and two-step).

4.3 Sparse linear regression

Now we consider the sparse linear regression, Yi = β∗0 +Xᵀ
i β
∗ + εi with i = 1, . . . , n,

where β∗ ∈ Rd is sparse with s = ‖β∗‖0 � n and d � n. In simulations, we take

n = 250, d = 1000 and s = 20. We set β∗0 = 3 and β∗ = (3, . . . , 3, 0, . . . , 0)ᵀ, where the

first s = 20 nonzero entries of β∗ all equal to 3. As before, the covariates Xi are i.i.d.

random vectors whose independent coordinates are from Unif(−1.5, 1.5), and εi’s follow
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one of the four distributions: normal, skewed generalized t, Lognormal, and Pareto.

To implement the iterative procedure proposed in Section 3.2, at the k-th iteration,

we use the five-fold cross-validation to choose λ
(k)
1 and λ

(k)
2 in the optimization programs

in (3.11), producing θ̂
(k)
1 and θ̂

(k)
2 . We evaluate the proposed regularized DA-Huber esti-

mators by the following measurements: RG, the relative gain of the DA-Huber estimator

with respect to the Lasso in terms of `1- and `2-errors, RGq = ‖θ̂H − θ‖q/‖θ̂lasso − θ‖q

with q = 1, 2; FP, the number of false positives (selected noise covariates); and FN, the

number of false negatives (missed signal covariates).

Table 1 summaries the relative gains of the DA-Huber estimators under `1- and

`2-errors and the numbers of false positive and false negative discoveries. Across all

the four models, both one- and two-step DA-Huber estimators outperform the Lasso

with smaller `1-errors and fewer false positive discoveries, therefore are less greedy in

model selection. For the normal model, the proposed robust methods and Lasso perform

equally well; while in the presence of heavy-tailed skewed errors, the DA-Huber methods

lead to remarkably better outputs in regard of both estimation and model selection.

Similar phenomenon can also be observed from Figure S2 in the supplementary files,

which displays the empirical distributions of the `2-errors for all estimators.

5. Summary

In this paper, we have proposed a new principle to choose the robustification param-

eter adaptively from data for a variety of fundamental statistical problems, includ-
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Table 1: RG, FP and FN and their standard errors (in brackets) of the Lasso and DA-

Huber estimators under different models. The results are based on 200 simulations.

Lasso
DA-Huber DA-Huber

Lasso
DA-Huber DA-Huber

(one-step) (two-step) (one-step) (two-step)

Normal, N (0, 1) sgt(0, 5, 0.75, 2, 2.5)

RG1 × 100 100 93.4 (0.6) 91.4 (0.9) 100 87.5 (1.0) 86.2 (0.9)

RG2 × 100 100 100.3 (0.2) 102.7 (0.3) 100 98.3 (0.5) 98.1 (0.5)

FP 87.9 (1.7) 77.6 (1.4) 73.5 (2.0) 86.1 (1.8) 63.1 (1.8) 60.7 (1.5)

FN 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Lognormal, LN(0, 1.5) Pareto, Par(1, 2)

RG1 × 100 100 34.7 (0.7) 22.7 (0.5) 100 65.3 (1.1) 41.7 (0.8)

RG2 × 100 100 49.5 (1.0) 30.5 (0.7) 100 84.5 (0.9) 51.2 (0.9)

FP 80.8 (2.0) 21.9 (0.6) 26.6 (0.7) 85.1 (1.9) 34.5 (1.6) 44.2 (0.9)

FN 0.26 (0.1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

ing mean estimations, linear regression and the sparse regression in high dimensions.

Inspired by the censored moment equation approach, the proposed principle is gen-

uinely tuning-free and data-adaptive. It is conceptually different from the traditional

practice on selecting the robustification parameter based on cross-validation, which is
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not only computationally demanding but also lacks of the underpinning mathematical

guarantees. The proposed principle is guided by non-asymptotic deviation analysis

and paves a unified pathway for choosing robustification parameter for tail-robust es-

timation and inference. Particularly, the analysis guiding our method can be easily

extended to a broader class of robust convex loss functions including the pseudo-Huber

loss functions. The key is the global Lipschitz and local quadratic geometry of the loss

function `τ (x) = τ 2`(x/τ). In light of numerical evidences from both synthetic and

real data, our proposal outperforms those widely known procedures in terms of esti-

mation, variable selection, and prediction in the presence of heavy-tailed and skewed

errors. Finally, an R package that implements the DA-Huber method can be found at

https://github.com/XiaoouPan/tfHuber.

Supplementary Materials

The supplementary materials contain the proofs of all the theoretical results in the

main text and additional empirical studies.
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