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Abstract

Constructing statistical models using personal sensor data could allow for tracking health status 

over time, thereby enabling the possibility of early intervention. The goal of this study was to use 

machine learning algorithms to classify patient-reported outcomes (PROs) using activity tracker 

data in a cohort of patients with stable ischemic heart disease (SIHD). A population of 182 

patients with SIHD were monitored over a period of 12 weeks. Each subject received a Fitbit 

Charge 2 device to record daily activity data, and each subject completed eight Patient-Reported 

Outcomes Measurement Information Systems (PROMIS®) short form at the end of each week as 

a self-assessment of their health status. Two models were built to classify PRO scores using 

activity tracker data. The first model treated each week independently, while the second used a 

Hidden Markov model (HMM) to take advantage of correlations between successive weeks. 

Retrospective analysis compared the classification accuracy of the two models and the importance 

of each feature. In the independent model, a random forest classifier achieved a mean area under 

curve (AUC) of 0.76 for classifying the Physical Function PRO. The HMM model achieved 

significantly better AUCs for all PROs (p<0.05) other than Fatigue and Sleep Disturbance, with a 

highest mean AUC of 0.79 for the Physical Function-short form 10a. Our study demonstrates the 

ability of activity tracker data to classify health status over time. These results suggest that patient 

outcomes can be monitored in real time using activity trackers.
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I. Introduction

There has been significant effort in developing monitoring devices and protocols to diagnose 

patients remotely. However, device fatigue has been shown to be a barrier to adherence [1]–

[3]. Commercially available devices, such as passive accelerometry, have been shown to 

overcome this barrier by reducing the burden of human intervention [4], and activity tracker 

accuracy has been demonstrated to be sufficient for documenting health indicators in real-

time [5]–[7]. With wireless connections to portable electronics, such as smartphones or 

tablets, monitoring by activity tracker is an easy-to-use, accessible means of providing 

personalized information to peoples’ health and daily activities [8]. This approach creates a 

feedback loop that is capable of positively impacting health interventions with the goal of 

lifestyle change [9], [10]. However, analysis of this data has largely been limited to simple 

correlations, and the ability to use this information to classify patient health status has not 

been explored [11], [12].

Patient-reported outcome (PRO) questionnaires are designed to capture a patient’s 

perspective and experience of their own health and to provide valid and reliable data [13]–

[15]. However, response fatigue is a common problem that can result in missing data due to 

an incomplete response from the subject, resulting in misclassification [16], [17]. Response 

fatigue can be common when an administered survey is too long, or when a survey is short, 

but administered too frequently. Because of these drawbacks, data collected from a less 

invasive method could potentially provide more reliable estimates of patient health status 

over time. Previous studies have shown high compliance in activity trackers, indicating that 

they may be more reliable methods for tracking continuous patient data [4], [18].

In this study, we explore the use of machine learning methods to classify PRO scores over 

time [14]. Machine learning algorithms have been widely used in biomedical research for 

tasks such as disease detection [19] and outcome prediction [20]. These methods 

traditionally use a set of demographic variables and baseline data as a feature vector to make 

a classification using a machine learning algorithm such as gradient boosting regression tree 

(GBRT) [21], AdaBoost [22], or random forests (RF) [20], [23]. However, traditional 

machine learning methods are effective for making single decisions, but do not allow for 

adjusting as more information is learned. Temporal models are appropriate in the case of 

sequential observations where the value of the outcome may need to be adjusted over time. 

In particular, hidden Markov models (HMMs) are well-established temporal models that use 

sequential data to predict events such as patient state changes, such as estimating mean 

sojourn time of lung cancer patients using screening images [24], detecting homologous 

protein sequences [25], and gene finding [26].

The goal of this study was to investigate the feasibility of using machine learning models to 

classify PRO scores based on data collected using one type of activity tracker, the Fitbit 

Charge 2. In this study, we tested this goal within a population of patients with stable 
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ischemic heart disease (SIHD). The rest of this article describes an approach for data 

preprocessing and constructing a model that treats weeks independently, as well as an HMM 

that takes temporal information into account. Performance of the classification algorithms is 

then evaluated for each PRO measure and feature importance in classification is analyzed. 

Finally, we provide a discussion and analysis of the results and suggest future directions for 

implementing such a classifier in a patient surveillance application.

II. Data Description

A set of 200 patients with SIHD were recruited for a feasibility study conducted by Cedars-

Sinai Medical Center from 2017 to 2018 to predict surrogate markers of major adverse 

cardiac events (MACE), including myocardial infarction, arrhythmia, and hospitalization 

due to heart failure, using biometrics, wearable sensors, patient-reported surveys, and other 

biochemical markers. This study population size is similar to several previous studies that 

used activity trackers for patient monitoring [27], [28]. The desired monitoring period was 

12 weeks for each subject, during which time subjects wore personal activity trackers to 

record their physiological indices, including steps, heart rate, calories burned, and distance 

traveled. At the end of each week, they were asked to fill out eight PROMIS short forms as a 

self-report assessment of their health status [4].

A. Activity Data

The Fitbit Charge 2 (Fitbit Inc., San Francisco, CA, USA) is a popular commercially 

available activity tracker that can record a person’s daily activities and health indices like 

heart rate, steps, and sleep (Table I). Previous work has validated the accuracy of heart rate 

monitoring specifically in the Fitbit Charge 2 [29]. The Fitbit hardware and its 

computational algorithms for calculating step counts and physical activity have been 

validated using other Fitbit devices [30], [31]. The Fitbit Charge 2 estimates activity using 

metabolic equivalents (METs), which are calculated based on heart rate and distance 

traveled [32]. Heart rate during activity is also provided, however it has been shown to be 

inaccurate during activity [33]. Data quality was assured by verifying that there were no 

extreme outliers based on subject-specific inter-quartile range [34]. We aggregated the data 

for each day to compensate for noise and redundancy. After data preprocessing, tracker 

distance was eliminated because it was identical to total distance, and logged activity 

distance and sedentary active distance were also deleted because of high sparsity. As a 

result, there were 14 features per day for each patient in our model.

B. Patient-Reported Outcome Measures

Patient-Reported Outcomes Measurement Information Systems (PROMIS®) questionnaires 

are a library of instruments developed and validated to measure many domains of physical 

and mental health [15]. This analysis uses data from eight PROMIS instruments: Global 

Physical Health and Global Mental Health, which are two composite scores from the 

Global-10 short form [35]; Fatigue-Short Form 4a; Physical Function-Short Form 10a; 

Emotional Distress-Anxiety-Short Form 6a; Depression-Short Form 4a; Social Isolation-

Short Form 4a; and Sleep Disturbance-Short Form 4a. Each questionnaire either asks about 

current health or has a recall period of the previous seven days, so they are appropriate for 
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weekly administration. The T metric method was used to standardize scores for each type to 

a mean of 50 and a standard deviation of 10, with a range between 0 and 100 [15], [36]. 

Symptom (i.e., Fatigue, Anxiety, Depression, Social Isolation, and Sleep Disturbance) scores 

of 60 or higher are one standard deviation above the average, which is defined as moderate 

to severe symptom severity. For function (i.e., Global Physical Health, Global Mental 

Health, and Physical Function), scores less than 40 are classified as moderate to severe, 

meaning less functional ability than normal. For this study, PRO scores were predicted in 

two ways: regression was used to predict PRO scores from patient activity tracker data, and 

classification was used to determine whether subjects’ PRO scores were above the threshold 

for at least moderate severity. The distributions of PRO scores are shown in Fig. 1. Because 

of a lack of moderate or severe cases for social isolation (<2%), this variable was eliminated 

for analysis in our model.

III. Methods

Missing data is a common concern when dealing with activity tracker data and can result 

from subjects either forgetting to wear their devices or removing them for charging. Patients 

were asked to fill out eight PROMIS questionnaires at the end of each week for a 12-week 

monitoring period. In total, 19.1 percent of weeks had missing PRO data and 16.6 percent of 

weeks had missing values from the activity tracker in four or more days. If data was 

available for at least four days in a week, missing values were permuted by using the average 

value of the rest of the week for steps or resting heart rate. Weeks with missing survey 

scores, as well as those without step and resting heart rate data for more than three days, 

were removed from the analysis.

A correlation analysis between subjects’ missing Fitbit data and their average Global 

Physical Health and Global Mental Health scores shows a slight negative relationship (−0.11 

and −0.09, respectively) that was not statistically significant (p=0.13 and p=0.23, 

respectively). The correlation coefficient between number of missing PROs and the average 

global health scores are −0.17 (p=0.018) to −0.14 (p=0.048), respectively, indicating that the 

missing PROs are significantly related to patient health. Another correlation analysis was 

performed between subject’s age and number of missing values with r2 <0.001, which 

demonstrates no trend of more missing values for elder subjects. Finally, subjects with only 

one week of data were eliminated in order to ensure the continuity of transition of states 

from week to week when building the HMM model. After adopting this data preprocessing 

approach and using the classification criteria above, a total number of 182 subjects with a 

total of 1,640 weeks were collected, where the number of weeks of evaluable data for each 

patient ranged from two to 12 weeks as shown in Fig. 2.

A. Independent per week Model by Machine Learning Algorithms

Since survey scores were generated per week, a naive approach for using this data is to treat 

each week independently. The left plot in Fig. 3 illustrates the idea of the independent model 

as an example for one subject with a number of weeks of evaluable data of 12 weeks. The 

features for each of the seven days were appended into a single feature vector, which was 

then used as the input for binary classification of each PRO score. Ensemble methods like 
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Adaboost, GBRT (gradient boosting regression tree) and Random Forest (RF) are relatively 

robust over unbalanced dataset and is capable of generating better classification accuracy 

than other types of machine learning algorithms [37]. Each of these methods was applied to 

the dataset using tenfold cross-validation across subjects in conjunction with grid search to 

find the optimal parameters for each model. T-tests were applied to validate the statistical 

significance for each comparison of the result with different p values: 0.05, 0.01 as for 

different levels of significance. A sensitivity analysis was completed to investigate the model 

performance against missing values in feature vector by randomly withholding values from 

one to six days within a week.

B. Hidden Markov Model (HMM) with Forward Algorithm

In order to track changes in PRO responses over time, a model was built to incorporate 

temporal correlations of PRO scores across weeks. As shown in the right part of Figure 3, an 

HMM was used and formalized such that the state at each time point corresponded to the 

PRO score for that week, with the features collected for that week treated as observations. 

The transition matrix was derived by counting the s state transitions from week to week. The 

original number of states for each PRO was found by number of unique responses, ranging 

from 15 to 36. In order to make the transition matrix less sparse, we defined 10 states for all 

types of health status based on the score distribution of each PRO. The Forward algorithm 

computed the probability across states at time t, with the maximum probability representing 

the classified state,

S yt yt − 1, …, y1, xt, …, x1 = P xt yt * ∑P yt yt−1 * S yt−1 yt−2, …, xt−1, … (1)

where the weekly PRO score was treated as state yt, with observation of features xt. The 

emission probability, P(xt|yt), computed the probability of the observed feature vector yt 

given state xt, computed from the random forest classifier and P(yt):

P xt yt ∝ P yt xt
P yt

(2)

At the first-time step, the transition probability distribution is undefined, so the state 

probability was:

S y1 x1 ∝ P x1 y1 P y1 (3)

For analysis, states were binarized according to the criteria defined above. Because 

dichotomizing PRO score values loses some information and precision, a regression analysis 

was conducted between the median value of HMM stages and actual scores for the HMM. 

This method of predicting PRO scores was compared against multinomial logistic regression 

to evaluate the accuracy of predicting PRO scores over time.
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IV. Results

Table. II shows the mean AUC for binary classification of PRO scores for the seven 

PROMIS measures using GBRT, AdaBoost and RF. The highest mean AUC was 0.75 using 

RF for classifying Physical Function, while the lowest was 0.47 using AdaBoost for 

Depression. The results indicated that RF significantly outperformed other models in 

classification of Anxiety and Depression (p<0.05), and it was also significantly better than 

GBRT for Global Physical Health and Mental Health (p=0.01 and p=0.01, respectively). The 

RF model was selected for the remaining analyses because its performance was equivalent to 

or better than the other methods for classifying all PRO scores. Additionally, it was notable 

that the AUC related to self-reported physical health PROs such as Global Physical Health, 

Fatigue, and Physical Function were higher than those related to mental health such as 

Global Mental Health, Anxiety, and Depression.

We then looked at the importance factor of each feature contributing to the classification in 

the RF model. Table III displays the importance factor for the 14 feature types summed over 

seven days. Features that were significantly higher (p<0.05) than the average value for each 

classification were determined. Steps, total distance, calories, and calories BMR contributed 

to most of the PRO scores. The importance factor of light active distance was significantly 

better than other features for classifying Global Physical Health and Physical Function, 

which were both related to a subject’s physical health. On the other hand, resting heart rate 

contributed significantly more than other features for classification of mental health PROs 

such as Anxiety and Depression, while its importance factor was not significantly higher 

than other features in classification of PROs related to physical health.

The analysis was repeated using the RF classifier and only the significant features from 

Table III and are shown in Table IV. Because some studies such as [38] only used steps data 

to assess user’s health status, we also compared the model performance in the same manner. 

The result suggested that the RF model can generate significantly better classification 

accuracy with the selected features than all features from Fitbit for all PROMIS short form 

survey scores except for Global Mental Health (p=0.37), with the highest AUC of 0.76 for 

classification of Physical Function.

Fig. 4 illustrates the results of sensitivity analysis on missing feature data on RF 

classification by randomly censoring data from one day to six days per a week. The results 

show that ROCAUC decreased monotonically as days were removed. For Global Physical 

Health, the value at missing four days drops significantly compared to no missing data 

(p=0.03), while the difference at missing three days was not significant (p=0.11). This was 

why that cutoff was chosen for inclusion in our analysis.

Table V displayed the comparison of means and standard deviations of the AUC for each 

PRO measure using the independent model and HMM. AUCs derived using the HMM were 

significantly higher than those from the independent model in all domains other than Fatigue 

and Sleep Disturbance. Depression achieved the highest increase from 0.57 to 0.61. We also 

compared the R2 value of the regression analysis between HMM and multinomial logistic 

regression. The value were 0.079 and 0.1526 from HMM in Global Physical Health and 
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Physical Function. They were significantly better than the values achieved by the 

multinomial logit model (0.0016 and 0.0026, respectively; p<0.001 for both). This result 

suggested that HMM could also track the minor change of PRO score with higher precision 

over time than baseline models like multinomial logistic regression.

V. Discussion

In general, the AUCs related to classifying physical health were relatively higher than 

mental health PROs, such as Global Mental Health, Anxiety and Depression. This result 

makes intuitive sense, as collected data, such as steps, total distance, and calorie 

expenditure, are more directly related to physical health than mental health. It might 

therefore be useful to develop hardware to record data more related to mental health for 

future studies. For instance, there has been effort to develop non-invasive and continuous 

blood pressure tracking [39] using wearable devices, which may improve the performance of 

classifying mental health [40]. Also, only Anxiety and Depression measured by PROMIS 

instruments were used in this study, which lacks precision as mental health is a broad and 

complicated field. More thorough evaluations of subjects’ mental states could provide more 

descriptive labels for training machine learning models, which could further improve 

performance in predicting mental health status.

Our highest AUC was 0.79 from classification of Physical Function, which demonstrated the 

correlation between data collected from Fitbit and PROs. However, the AUC values also 

indicated that PROs cannot be completely determined by activity tracker data alone, 

suggesting that PROs, particularly those pertaining to mental health such as depression, 

contain additional information that was not captured in the tracking devices. While the 

current study demonstrates the use of activity trackers to capture information about patient’s 

health status, in some cases PROs could be a preferable method. Internet access enables 

PRO data collection to be done outside of clinic through web or mobile apps, which 

provides convenience and reduces time commitment for patients.

According to Table III, steps and total distance have significantly higher importance for 

classifying the majority of survey scores, while calories BMR significantly contributes to 

mental health scores, like Anxiety and Depression. Their importance factor may due to data 

quality, as previous studies [5]–[7] have validated the data accuracy for step counts, distance 

travelled, and energy expenditure for activity trackers, while other features have not been 

validated in scientific work. As Fitbits are not sold as medical devices, many of their 

features are not validated or regulated like other medical devices. In our study, we found 

inconsistency in sleep data and sleeping stages for subjects. It was likely that Fitbit was 

taken off for charging during nights. Therefore, future studies should notice user not always 

charge it during nights to collect sleep data. Moreover, the data elements that have been 

validated are generally only tested in specific devices, rather than across all activity trackers, 

so it is not clear how these validation results translate to other devices. Future studies should 

be conducted to validate these features.

As indicated by the correlation between subject’s average PRO scores and the number of 

missing PRO values, patients with moderate to severe health status were less likely to 
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complete PRO questionnaires routinely, which may have introduced bias for data collection 

in this study. Future studies could try to provide incentives for continued participation, 

which may mitigate study attrition. Eight PROMIS instruments were used in this study, and 

some redundancy existed between the specific short forms such as Fatigue or Anxiety to the 

general Global-10 short form. Our current approach treated each score independently 

without considering this overlap. A possible future study could predict PRO scores 

simultaneously in a joint model such as Bayesian network, which considers the correlations 

between PRO scores.

In our dataset of patients with SIHD based on adjudicated clinical data, HMMs achieved 

significantly higher classification accuracy than treating weeks independently because they 

took advantage of correlations in subjects’ survey scores from week to week. In our data-

driven approach, the model states were determined based on the distribution of PRO scores 

in the clinical study [41]. Score bins for the states were defined to limit the sparsity during 

training and make the number or states consistent across all of the PROMIS PROs tested. 

However, this may not be the optimal way to define the number of states for clinical 

representation of health status. Future studies could conduct some analysis to find out the 

optimum number of states, which may further increase the classification accuracy. In 

addition, another future direction would approach this as a regression problem to predict 

actual PRO scores with high precision over time.

Sequential deep learning models, such as recurrent neural networks (RNNs) and long-short-

term-memory (LSTM) networks have also demonstrated strong performance when dealing 

with sequential data [42], [43]. Therefore, these techniques may hold potential for 

applications to sensor data to classify or predict health status. However, such methods 

generally require a large amount of training data, which was not available in the current 

study. In future studies, deep learning methods could be explored if a sufficiently large data 

set were collected.

While activity trackers are able to produce patient information within seconds or minutes, 

the sampling periods for PROs like PROMIS [13] are on the order of weeks, requiring 

down-sampling of the Fitbit data for comparison. Given that the PROs measured in this 

study are unlikely to vary significantly from day to day, this temporal resolution is 

appropriate for the application of PRO prediction. However, predicting more acute events 

might require more temporal resolution, which could be addressed by using the activity 

tracker data at a finer time scale. Long term follow-up with patients including recordings of 

clinical events such as rehospitalizations could also allow us to evaluate the effect of 

mHealth monitoring on clinical outcome, an important step in determining the efficacy of 

such an intervention.

VI. Conclusion

A temporal machine learning model can be used to classify self-reported physical health in 

patients with SIHD using physiological indices measured by activity trackers. By 

constructing an HMM with feature selection and an RF classifier, the resulting model can 

achieve an AUC of 0.79 for classifying Physical Function. Our result indicates data 
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generated from activity trackers may be used in a machine learning framework to classify 

validated self-reported health status variables. These techniques could play a future role in 

larger frameworks for remotely monitoring a patient’s health state in a clinically meaningful 

manner.
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Fig. 1. 
Distribution of normal and abnormal (moderate to severe) class for each PRO measure.
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Fig. 2. 
Histogram of number of weeks of evaluable data for the 182 subjects used in the dataset.
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Fig. 3. 
Illustration of independent week model (left) and Hidden Markov Model (right). For HMM, 

feature in each week was observed while the state of health status transits from week to 

week.
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Fig. 4. 
Plot of ROCAUC for each type of PRO after randomly withhold feature values from one day 

to six days within a week.
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Table I

Summary of 17 types of feature collected from Fitbit per day

Type (units) Mean ± Std

Steps (#) 6138 ± 4031

Total Distance (kilometers) 4.18 ± 3.00

Tracker Distance* (kilometers) 4.18 ± 3.00

Logged Activity Distance* (kilometers) 0.02 ± 0.56

Very Active Distance (kilometers) 0.71 ± 1.49

Moderate Active Distance (kilometers) 0.36 ± 0.60

Light Active Distance (kilometers) 2.69 ± 1.90

Sedentary Active Distance* (kilometers) 0.01 ± 0.08

Very Active Minutes 12.21 ± 22.29

Fairly Active Minutes 12.78 ± 21.89

Light Active Minutes 176.81 ± 99.73

Sedentary Minutes 823.24 ± 323.90

Calories 2032 ± 610

Floor (#) 5.1 ± 11.8

Calories BMR (basal metabolic rate) 1428 ± 254

Marginal Calories 372 ± 317

Resting Heart Rate (BPM) 61.81 ± 7.45

*
means that feature was eliminated for model input because it was highly sparse or redundant.
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Table II

Mean and standard deviation ROCAUC of difference Algorithms. Bold values are the highest for a given PRO

Type AdaBoost GBRT Random Forest

Global physical health 0.72 (0.03) 0.69 (0.04) 0.73 (0.01)*

Global mental health 0.53 (0.03) 0.51(0.03) 0.55 (0.03) *

Fatigue 0.59 (0.04) 0.60 (0.04) 0.61 (0.03)

Physical function 0.74 (0.03) 0.75 (0.03) 0.75 (0.01)

Anxiety 0.48 (0.03) 0.50 (0.03) 0.54 (0.02) †

Depression 0.47 (0.04) 0.50 (0.03) 0.53 (0.02) †

Sleep Disturbance 0.55 (0.06) 0.59 (0.05) 0.61 (0.03)

*
Significant improvement over GBRT.

†
Significant improvement over both GBRT and AdaBoost.
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Table IV

Mean and standard deviation ROCAUC of different Feature selection strategy. Bold values are the highest for 

a given PRO

Type Steps Only All Feature Selected Feature

Global physical health 0.73 (0.03) 0.73 (0.01) 0.73 (0.02)

Global mental health 0.52 (0.02) 0.55 (0.03)† 0.58 (0.02)*

Fatigue 0.60 (0.05) 0.61 (0.03) 0.64 (0.03)*

Physical function 0.76 (0.03) 0.75 (0.01) 0.76 (0.01)*

Anxiety 0.50 (0.04) 0.54 (0.02)† 0.57 (0.02)*

Depression 0.51 (0.02) 0.53 (0.02)† 0.56 (0.02)*

Sleep Disturbance 0.59 (0.03) 0.61 (0.03) 0.64 (0.03)*

*
Significant improvement from Selected Feature over All Feature.

†
Significant improvement from All Feature over Steps Only.

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meng et al. Page 20

Table V

Mean and standard deviation of AUC values between the independent week model and the hidden Markov 

model. Bold values are the highest AUC For a given PRO

Type Independent model HMM

Global physical health 0.73 (0.02) 0.76 (0.02)*

Global mental health 0.58 (0.01) 0.61 (0.02)*

Fatigue 0.64 (0.03) 0.65 (0.03)

Physical function 0.76 (0.01) 0.79 (0.02)*

Anxiety 0.57 (0.02) 0.61 (0.04)*

Depression 0.56 (0.02) 0.59 (0.02)*

Sleep Disturbance 0.64 (0.03) 0.66 (0.05)

*
Significant improvement over the independent model
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