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Abstract

Energy constrained systems such as sensor networks can increase their usable
lifetimes by extracting energy from their environment. However, environmental
energy will typically not be spread homogeneously over the spread of the network.
We argue that significant improvements in usable system lifetime can be achieved
if the task allocation is aligned with the spatio-temporal characteristics of energy
availability. To the best of our knowledge, this problem has not been addressed
before. We present a distributed framework for the sensor network to adaptively
learn its energy environment and give localized algorithms to use this information
for task sharing among nodes. Our framework allows the system to exploit its
energy resources more efficiently, thus increasing its lifetime. These gains are in
addition to those from utilizing sleep modes and residual energy based scheduling
mechanisms. Performance studies for an experimental energy environment show
up to 200% improvement in lifetime.

1 Introduction

Distributed autonomous systems such as sensor-actuator networks are being envisioned
to carry out complex task sets without human intervention [23, 21, 3]. The true auton-
omy of such systems depends on their reliable operation for extended times without
maintenance. Energy supply is a major design constraint in these systems and the life-
time is limited by battery supplies. The size of the battery exceeds most other system
components in many sensor nodes [12, 14]. One way to alleviate this problem is to
provide the network with capabilities to automatically feed itself from its environment,
which opens up the possibility of achieving significantly longer lifetimes and reducing
the battery size.

Mechanisms exist for compact devices to extract energy from the environment,
such as solar power, microbial fuel cells [9], vibrations and acoustic noise [13]. The
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naive approach would be for each node to scavenge its own energy. This is not enough
because the energy availability will typically not be homogeneous at all nodes. There
is a potential here to extract more work out of the same energy environment if the task
distribution among nodes is adapted to the detailed characteristics of environmental
energy availability. We explore this challenge.

1.1 Key Contributions

First, we observe the need to design new algorithms for scheduling and task allotment
within the sensor network when nodes are provided with recharging capabilities. Cur-
rent energy aware task allotment strategies base their decisions on residual energy at
each node and do not exploit the fact that energy replenishing capability may be present
at some nodes. As far as possible, tasks should be carried out using the environmental
energy (or energy from nodes which have ample recharging opportunity) rather than
consuming energy from a battery which does not have any recharging opportunity.
Specifically, the spatio-temporal properties of the energy supply across the deployment
terrain of the network must be exploited for task allotment within the network. We re-
fer to the problem of extracting the maximum work out of a given energy environment
as the “harvesting problem.”

Second, we make the first step towards solving the harvesting problem by providing
a distributed framework, referred to as the environmental energy harvesting framework
(EEHF), to

adaptively learn the energy properties of the environment and the renewal oppor-
tunity at each node through local measurements

make the information available in a succinct form for use in energy aware task
assignment such as load balancing, leader elections for clustering techniques,
and energy aware communication.

We also suggest modifications to existing load balancing methods to exploit the in-
formation provided by EEHF. The details of the energy environment can also be used
for incremental deployment in regions of scarcity and adjustment of performance con-
straints expected from the deployed system. We illustrate EEHF applied to a specific
task, that of routing, in an example energy environment.

1.2 Related Work

To our knowledge no ongoing or previous work has addressed the problem of learning
the energy environment of a sensor network for modifying the task sharing among net-
work nodes. Here, we mention previous work which helped in proposing a solution to
this new problem. Low power design techniques have been suggested for all aspects of
sensor network design [15, 10]. These techniques attempt to minimize the energy us-
age at all levels of system operation. The usability of the network does not depend only
on the total energy available in all its nodes but also on how this energy is distributed
among them. If a particular section of the network dies, while the remaining sections
have abundant energy, the network may no longer be able to provide the service it was
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deployed for. Thus, in addition to minimizing energy usage, the system lifetime can
be increased by modifying the task allotment according to the energy available at net-
work nodes. Some examples of such techniques can be found in [19, 20, 25, 7, 24]
for routing and data gathering. The first requirement for these techniques is to get the
information about energy availability at the nodes.The remaining energy in a battery
can be estimated from its discharge function and measured voltage supplied [20]. Net-
work wide energy scans can be collected [26]. These methods report residual battery
sizes and do not include the characteristics of environmental energy. Methods to pre-
dict energy consumption [11] have been proposed which can be exploited by EEHF. A
method to transfer energy from sources to depleted nodes was proposed in [16], using
mobile nodes. EEHF does not require mobile nodes and attempts to distribute the tasks
as per the energy availability. The algorithms in [16] can help improve EEHF when
mobile nodes are available.

EEHF is a significant development over the methods suggested in the above works.
It incorporates the harvesting capability, and presents a unified framework for using
these methods according to the network environment.

1.3 Outline

The next section motivates why the framework is important and discusses the issues
in its design. Section 3 describes our proposed EEHF and presents modifications in
known power management strategies to incorporate its use. Section 4 studies the per-
formance of our framework for a particular task allotment application—routing, in a
specific energy availability environment, based on data collected from James Reserve
[6]. Comparisons are made with a residual energy based scheme. Section 5 concludes
the paper.

2 Design Challenges

We first discuss why there is a need to learn the environment. It seems at the first glance
that nodes which have higher environmental energy available will have higher residual
battery supplies and just looking at the battery should be sufficient for task allocation.
There are two reasons why the knowledge about the environmental energy is explicitly
needed.

The first is that the workload in the network may not follow the replenishment
cycles: over some time intervals it may happen that the energy consumed at a node
with recharging opportunity is more that the energy gained from the environment, thus
reducing its residual battery to a smaller size than a node with no recharging. This is
very likely once we start allotting more work to nodes with higher battery size. At the
instant that their battery depletes to the level of the battery in nodes without recharging
opportunity, knowing the environment becomes essential.

The second reason is that knowing only residual energy is not sufficient to decide
how much extra energy can be consumed at the energy-rich nodes to save energy at the
constrained nodes without jeopardizing the richer node’s own lifetime. Consider for
example the transmit energy used at every node for maintaining a connected topology.
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It is clear that nodes with more environmental energy should use higher transmit power
to save energy at other nodes. However, we need to know the environmental energy
available at a node to decide how much extra transmit energy can be used by this node
without unduely depleting its battery.

2.1 Design Issues

EEHF aims to provide a scalable solution to the harvesting problem. The design chal-
lenges here involve learning the environment locally, sharing the learnt information and
scheduling tasks for optimal lifetime.

2.1.1 Learning the Environment

The environmental energy at any time will typically be unequal at different points in
space and will vary with time. In the case of seismic energy for instance, the vibrations
may occur at different locations at different points in time, in an unknown pattern. Solar
energy will display diurnal and seasonal patterns. The network application is likely to
cause non-uniform energy usage, leading to energy discrepancies.

When taking a tasking decision, a node which is more likely to have excess energy
in the future has to be used. Hence, based on the availability (and consumption on tasks
beyond the control of the scheduler) till the present time, the future availability in terms
of amount of energy and the time duration over which it will be available, need to be
predicted. Depending on the patterns in available energy, the algorithm may determine
a period over which good predictions can be made. When no useful predictions can be
made, the scheme should reduce to residual energy based methods.

2.1.2 Sharing Network-wide Information

The system wide space-time characteristics of both the environmental energy and ac-
tivity cannot be learnt by a single node. The information has to be gathered and used
in a distributed fashion.

The complete environment observed by the network can be described by a set of
curves giving time variation of the energy availability at all nodes, for all times. How-
ever, considering the bandwidth limitations of low power nodes and scalability issues
in networks with a large number of nodes this description would be too large to com-
municate to and store at all nodes. Thus, appropriate metrics, retaining just the amount
of information required for the task sharing methods, are required.

These metrics have to be spread and updated in the network to the extent required
for useful task allotment.

After learning the environmental characteristics, the framework has to take schedul-
ing decisions such that the system lifetime is maximized. Apart from redistributing
tasks, the framework may provide for redistribution of energy itself, such as through
methods in [16] when mobility is available; this is not considered in the present work.
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Figure 1: Interactions between various EEHF algorithms

3 Detailed Framework Design

EEHF is a distributed framework for aligning the task distribution with energy avail-
ability. Finding the optimal set of parameters to describe the environment from a
scheduling perspective and the methods to utilize them is a difficult problem. To obtain
initial insights on the feasibility of EEHF, we work with a heuristic set and evaluate its
performance.

The following parameters are used to track the characteristics of energy availability:

: time epoch over which availability prediction is made

: mean energy expected in subsequent duration

: energy consumed in every interval on tasks not in control of the scheduler

: prediction confidence, a number between 0 and 1

: information regarding when the next recharging opportunity is expected within
next time

: current battery remaining

: maximum battery size, beyond which environmentally available energy cannot be
stored

The challenge is now reduced to finding a single cost at each node based on the
above parameters:

(1)

where is a function to be specified by EEHF. This function should be such that
scheduling decisions based on automatically select nodes with higher environmental
energy to the maximum extent required for optimizing the lifetime. For instance, when
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and are high at a node the scheduler may use this node even to its last
joule as this node will become alive within next , to save energy at nodes with low

.

3.1 EEHF Description

Figure 1 presents the EEHF block diagram. We discuss the purpose of each block for a
general environment. As an example, the specific algorithm used to fulfill this purpose
in the case of solar power is presented for each block.

3.1.1 Spectral Estimation

This is the first step in attempting to detect a pattern in the availability. The function
of this block is to learn the key spectral components in the availability waveform and
generate the parameter , the time duration over which is predicted. If only one
key spectral component, , dominates (is 3dB above the next highest component), we
may take . The waveform approximately repeats every duration and the av-
erage energy earned in this period can be predicted. Spectral estimation is a developed
field and numerous spectral estimation algorithms are available [22] for a wide variety
of signals. For the solar energy environment we use the fast fourier transform. This
block also keeps track of the phase within the major cycle discovered in the availability
waveform. The phase, , gives information regarding when recharging opportunity is
available within the duration.

3.1.2 Prediction Filter

Given , we attempt to predict for the duration in future. For this, the value
of in the previous intervals of duration may be used. A large variety of
adaptive filters such as least mean squares (LMS) filter, normalized LMS [5], and fixed
coefficient filters based on autoregressive methods is available for this purpose. For
solar energy, we use an autoregressive filter with order , to predict the average

, for the learnt. This block also tracks the error in prediction and assigns a
confidence value, to the prediction. Here, we use if and

otherwise, where is the error in prediction in the previous interval.

3.1.3 Stochastic Consumption Predictor

This block tracks the average consumption, , in every . Algorithms from [11]
may be used here.

3.1.4 Parameterize

This block combines the parameters learnt by the above blocks and the remaining bat-
tery into one cost metric. The choice of the function in equation 1 used for this
parametrization is critical.

For solar energy environment, we expect to be same for all nodes and assume ,
the battery size, is also same for all nodes. When all nodes are deriving energy from
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the same source, within would have only small variations based on location which
we neglect. Thus, an effective battery, , and the cost can be calculated as:

(2)

(3)

where and are assigned so as to give a much higher weight to replenishable
energy. The formula for is based the one proposed in [20] for residual energy based
schemes, , where is the amount of battery already used. This block
may be omitted if the scheduler uses the various parameters learnt by the previous
blocks directly for its decisions.

3.1.5 Scalability-friendly Information Exchange

The above blocks learnt the temporal characteristics of the energy availability at each
node, locally. However, lifetime optimal scheduling requires global decisions to be
made based on this information. This block tries to provide the spatial characteristics
of the availability. The exact procedure used will depend on the scheduling algorithm
which uses the energy availability information. We propose two approaches for sharing
the local information which are both scalable with increasing network size and node
density:

1. In-network Averaging: A load balancing scheduler may want to assign loads in
proportion to the effective batteries at the nodes. For this, the calculated at
each node involved in the task being scheduled needs to be known to the sched-
uler. Rather than explicitly transferring the or calculated at each node to
a central scheduling entity, we propose to circulate the information about the
average and maximum of among all nodes, and respectively,
throughout the group among which load balancing is to be performed. Scalable
methods for calculating the network-wide averages or maxima via in-network
processing exist [8]. The nodes can then volunteer to accept a workload propor-
tional to , when is positive and go to sleep
mode otherwise. Scalability is achieved because instead of distributing the local

learnt at every node, only the network-wide average and maxima is calculated
and scalable methods exist for this.

2. Distributed Scheduler: Certain tasking algorithms learn the local costs on their
own as required. For a routing algorithm, for instance, we assign the cost
calculated at each node to all one-hop links coming into that node. A distributed
route discovery algorithm, such as distributed Bellman-Ford [2], then chooses a
minimum cost route without the framework having to explicitly provide for the
sharing of information. Such an approach can only be used when the scheduler
itself is distributed.

For the case of solar power and the example application studied in simulations –
routing, we use the second approach.

These methods put together provide a framework for utilizing the energy harvesting
capacity in a distributed fashion.
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3.2 Using the Framework

We illustrate the use of EEHF in several classes of schedulers below. The existing
versions either do not consider the energy properties of nodes or use only the resid-
ual battery information. We modify these to use EEHF for exploiting the harvesting
capability of the network.

1. Topology Management: One topology management scheme, STEM [18] duty
cycles the node radios between sleep and active states. The connection set-up
delay at each hop along a route depends on the duty cycle of the radio, since the
sender must wait for the receiver to become active. STEM allots the same duty
cycle to each node, dividing the tolerable latency equally among the number of
hops. However, it is possible to achieve the same latency if some radios sleep
for longer durations and others, with higher , compensate by sleeping shorter
durations. Thus, a topology management scheme like STEM can use the pro-
vided by EEHF to adjust sleep durations, to save batteries at energy constrained
nodes.

2. Clustering Algorithms/Load Balancing: Some algorithms form nodes into groups
and keep one node active within each group, based on the residual energy. One
example is GAF [24]. Extending this to use EEHF is straightforward — instead
of using the residual energy, GAF can choose the active node depending on the
calculated by EEHF. Hence when available, only the nodes with environmental
availability will be used within each group, increasing the lifetime.

3. Routing: Methods to choose routes based on residual energy can be modified to
use the effective battery calculated by EEHF; detailed discussion in section 4.

4. Transmission Power Control: Transmit power of radios can be changed [17] to
modify the topology to minimize the maximum power transmitted by any radio.
Such algorithms can use EEHF to minimize the maximum power transmitted
by nodes having lower by allowing transmit power to increase at nodes with
larger , thus increasing lifetime.

5. Leader Elections/Hierarchies: Data aggregation algorithms such as [4] form hi-
erarchies within the network where nodes higher up in the hierarchy process
more data. EEHF can help decide which nodes should be used for heavier com-
putations.

4 An example Application and Performance Study

4.1 The Energy Environment

We present the use of EEHF for a solar energy based sensor network. We recorded the
light intensity variations in a possible deployment region using a CCD camera. These
recordings were made in a small region of James Reserve [6] for 39 days (January 6 to
February 15, 2003). Intensity variation waveforms, sampled at 10 minute interval, for
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2 of these points are plotted in the first two subplots in Figure 2 for 5 days. The time
axis is in days. The maximum value is normalized to 1 and this value is assumed to
correspond to the charging intensity of the solar cells at noon.

0 1 2 3 4 5
0

0.5

1
In

te
ns

ity

0 1 2 3 4 5
0

0.5

1

In
te

ns
ity

0 2 4 6 8 10

0

0.5

1

D
FT

Figure 2: Energy availability waveforms and spectral analysis

The third subplot gives the magnitude spectrum of the first waveform for the first
50 indices. The frequency axis has been converted to . Neglecting the zero
frequency, a dominating frequency component is found at . This gives

, for use in prediction.
The simulation parameters mirror MICA motes [12] and a mote sized solar-cell,

Panasonic BP 376634C [1]. This cell generates about 100mW at noon-time intensity on
a clear day. We linearly scale the charging capacity for variations in light intensity, as
the charging current varies approximately linearly with intensity for a solar cell, while
the voltage stays approximately constant above a certain intensity threshold. Energy
is supplied to nodes as per the intensity waveforms recorded above and consumed in
data-forwarding. Motes consume 36 mW in active mode and are powered by AA sized
batteries having a storage capacity of 1850 mWh, about 50 hours of motes active time.

4.2 Example Application: Routing

We compare the performance of EEHF and a residual energy based scheme, for routing.
The simulated sensor network has nodes in a region, with
nodes having a radio range of . The nodes are assumed randomly placed in the
region for which light intensity variations have been collected, distributing a fraction
in well-lit regions and in dark regions. The light intensity waveforms at these
randomly chosen pixels are picked up from the CCD data mentioned in section 4.1.

Energy received in every (value of as found in section 4.1) is recorded. The
autoregressive prediction filter used to estimate is
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Figure 3: Lifetime improvement with EEHF, over residual energy based routing,
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with filter coefficient , where is the measured value of en-
ergy received in the current interval, and is the discrete time index (initial condition:

). In equation 2, and . These weights cause nodes
with more environmental energy to be used more frequently in EEHF. is assumed
same for all nodes across the network and hence not used in calculating the cost for
routing.

Traffic sources and destinations are chosen uniformly randomly among the nodes.
A traffic flow lasts between a chosen pair for a fixed duration. This duration is much
smaller than the maximum flow duration feasible with the battery size as we expect
battery sizes to be chosen to support more than one flow in most applications. The
route is chosen at the start of the flow and is not changed during the flow.

The residual energy based scheme [20] uses Bellman-Ford routing with costs as-
signed inversely proportional to residual batteries. Thus, nodes with high residual en-
ergy have lower cost and are used more often. EEHF uses the same routing scheme but
chooses nodes based on the from equation 2 instead of residual energy.

Figure 3, 4 and 5 present the simulation results for and respec-
tively. The results are averaged over 20 random topologies, to suppress any artifacts
due to a particular topology. We assume that the network loses utility after the first
nodes are dead, where depends on the application. We plot the lifetime in days for

. It can be observed that lifetime is more than doubled at low , as EEHF is
able to select nodes with higher environmental energy. The increase in lifetime here is
due to the first reason for the need of harvesting presented in the beginning of section 2.
At high (Figure 5), after nodes die, EEHF and residual energy based scheme
perform similar as all then nodes have similar environmental energy and residual bat-
teries dominates. These simulations are a sanity check for EEHF and illustrate that
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Figure 4: Lifetime improvement with EEHF, over residual energy based routing,
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using environmental energy aware algorithms has the potential to increase lifetimes
significantly.

5 Conclusions

This paper introduced the problem of energy harvesting in sensor networks. A frame-
work was presented for handling the major challenges involved and an example study
showed that the proposed framework is able to utilize the extra knowledge about the
environment to increase system lifetime.

EEHF makes the first step towards the development of an optimal set of methods
to completely align the task distribution in the network with the energy availability.
Future work includes determining the maximum work that can be extracted from a
given energy environment and estimating achievable bounds on quality of service in
terms of communication delay, sensing fidelity, and other performance measures, if the
network has to survive eternally on the available energy resources. Then, to solve the
harvesting problem, distributed methods to achieve the maximum lifetime need to be
developed and tested on a real system implementation. Facilities to redistribute energy
apart from tasks may also be incorporated into EEHF.
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