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Abstract

Although natural languages are generally arbitrary in their
mapping of forms to meanings, there are some detectable bi-
ases in these mappings. For example, longer words tend to
refer to meanings that are more conceptually complex (what
we refer to as a complexity bias; Lewis, Sugarman, & Frank,
2014). The origins of this bias remain an open question, how-
ever. One hypothesis is that this lexical regularity is the prod-
uct of a complexity bias in individual speakers, and that it
emerges in the lexicon over the course of language evolution.
In the present work, we use an iterated learning paradigm to ex-
plore this proposal. Speakers learned labels of varying lengths
for objects of varying complexity, and then were asked to re-
call the learned labels. We then presented the labels that partic-
ipants produced to a new set of speakers, iterating this proce-
dure across generations. The results suggest the presence of a
complexity bias that guides language change but that interacts
with pressures for simplicity.
Keywords: lexicon; communication; language evolution; iter-
ated learning.

Introduction
A universal property of languages is that they contain units
of meaningful sounds—words—that vary in length. What ac-
counts for this variability? That is, why is the word for “can”
short but the word for “calculator” long? One class of expla-
nations for this variability appeals to properties of the linguis-
tic form itself, such as word frequency (Zipf, 1936) and pre-
dictability in linguistic context (Piantadosi, Tily, & Gibson,
2011; Mahowald, Fedorenko, Piantadosi, & Gibson, 2013).
Our recent work has revealed an additional factor influenc-
ing word length: conceptual complexity. Across 80 natural
languages, we find a bias for longer words to refer to concep-
tually more complex meanings (a complexity bias; Lewis et
al., 2014). This systematicity between word length and mean-
ing challenges the long-held assumption that the relationship
between form and meaning is entirely arbitrary (Saussure,
1916).

The origins of this bias in language are an open question.
One possibility is that the bias is due to a pressure in individ-
uals to map longer words onto more complex meanings. Un-
der this account, there is a psychological bias to map longer
words onto more complex meanings—a synchronic complex-
ity bias—and over time this bias leads to this same regularity
emerging in the structure of the lexicon—a diachronic com-
plexity bias. In the present paper, we consider the mechanism
through which a synchronic complexity bias in individuals
might lead to diachronic change in the lexicon.

There are several possible sources for a psychological, syn-
chronic complexity bias. For example, the bias could re-
flect a more general cognitive preference for iconicity (see
Schmidtke, Conrad, & Jacobs, 2014, for review). A second

alternative is that the bias is related to principles of com-
munication. As part of a broader theory of communication,
Horn (1984) suggested that a contrast in length between two
phrases with the same denotational value implies a contrast
in meaning, with the longer phrase getting the more unusual
or complex meaning. Thus, the complexity bias in the lex-
icon could reflect this in-the-moment communicative bias—
an appealing possibility given evidence that other features of
the lexicon also reflect principles of communication, like the
structure of semantic space (Regier, Kay, & Khetarpal, 2007;
Kemp & Regier, 2012; Piantadosi, Tily, & Gibson, 2012).

Critically, if the emergent diachronic bias is due to a psy-
chological synchronic pressure, we should be able to observe
this bias not only in the structure of natural languages, but
also in one-shot learning tasks with novel words. In previ-
ous work, we have found robust support for this prediction.
Across a range of stimuli, and both comprehension and pro-
duction tasks, we find that speakers are biased to map a longer
novel word onto a more complex novel referent, relative to a
shorter word (Lewis et al., 2014).

How does a synchronic complexity bias lead to diachronic
change in the lexicon? The causal mechanism for this type of
change would have to take place over multiple timescales: A
synchronic bias in the moment of language interaction would
have lead to changes in the lexicon over the course of lan-
guage evolution. We propose that a psychological bias causes
small changes in memory for complex phonological forms in
the moment of language interaction, and this pressure leads
to biases in linguistic transmission across generations. Over
the course of language evolution, these psychological, syn-
chronic biases result in a lexicon that magnifies these biases
(Griffiths & Kalish, 2007).

In the present work, we begin to test this hypothesis using
the iterated learning paradigm, a recently-developed method
for studying language change in the lab (e.g., Kirby, Cornish,
& Smith, 2008; Reali & Griffiths, 2009; Smith & Wonnacott,
2010). The critical feature of this paradigm is that the learn-
ing output of one speaker becomes the learning input for a
new speaker. This paradigm allows us to examine the evo-
lution of a language for a “chain” of speakers learning and
transmitting a language. The dynamics of these chains serve
as an approximation of the dynamics of generations of chil-
dren acquiring and then transmitting language to future gen-
erations.

A secondary goal of the present work is to examine how
psychological pressures influence the structure of the lexi-
con, independent of conceptual pressures. Forms that are
difficult to remember are unlikely to survive in the language
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Object
1 (Q1) 2 (Q1) 3 (Q2) 4 (Q2) 5 (Q3) 6 (Q3) 7 (Q4) 8 (Q4) 9(Q5) 10 (Q5)

Gen. 0 damitobup nagir nid gimunobugup dunobax mikupudax bipag daganitobip nimimog gan
Gen. 1 nilobup niger nid runtunbug dunobug bipoxtog bipag dipentag nimimog gan
Gen. 2 nilobup niger nid runtunbug dunbug ripenbog bippenbog dipentag nimobop gan
Gen. 3 nilobop niger nid rittenbob dabop rudentag buttenbug dertag nimobop gar
Gen. 4 nilobop niger nid bittenbob dabop rittenbog buttenbop dertag nimbobop gar
Gen. 5 nilop niger nir girbop dabop dirbop bittenbop rittenbog nilobop dir
Gen. 6 nilop niger nir garbog dabop dabog bittenbop rittenbog nilop dir
Gen. 7 nilop niger hir garbop dabog dabog bittenbop rottenbog nilop dir

Table 1: A representative language chain. Words are presented for each of the 10 objects across 7 generations and the initial
input language. The complexity quintile of the object is noted parenthetically. Across generations, words tend to get shorter,
less unique, and phonotactically more probable. Words also become more likely to be remembered accurately.

(Christiansen & Chater, 2008), and there may be an addi-
tional communicative pressure for economy of expression
(Zipf, 1949). Both of these pressures might lead to a prefer-
ence for shorter words over longer, harder-to-produce words,
biasing the ultimate structure of the lexicon towards shorter,
more memorable words.

We used an iterated learning paradigm to study the dynam-
ics of these two aspects of the lexicon: how words change
over the course of language evolution and how conceptual
complexity interacts with these changes.1 As predicted, we
find that forms in the lexicon converge to a more stable state
and that a complexity bias emerges in the mappings between
words and referents. We also find, contra our hypothesis, that
the complexity bias is attenuated over time. A post-hoc analy-
sis suggests that this change in the complexity bias over time
is related to the degree of cross-generational change in the
lexicon.

Experiment
Given existing evidence that a complexity bias is present in
one-shot learning games (Lewis et al., 2014), our experiment
was designed to test how conceptual pressures influenced the
lexicon over the course of transmission. We asked speakers
to learn a novel language that contained meanings of vary-
ing complexity and words of varying length. Critically, the
language we asked participants to learn contained no system-
atic relationship between complexity and word length. Af-
ter studying these mappings, participants were asked to recall
them. The measure of interest was the relationship between
the errors participants made and the complexity of the refer-
ent. If participants show a complexity bias, they should be
more likely to add characters for more complex objects and
remove characters for less complex objects.

This design characterized the first generation of our task.
We then gave the labels that participants produced in the test
phase of this first generation to a new set of speakers and
asked them to complete the exact same task. We iterated 7
generations of this task in total.

1For ease of measurement, we operationalize word length in
terms of number of orthographic characters. However, this measure
is highly correlated with measures of length with greater psycholog-
ical reality, such as phonemes and morphemes (Lewis et al., 2014).

Method
Participants We recruited 350 participants from Amazon
Mechanical Turk. Each generation was composed of 50
learners.

Stimuli The referents were a set of 60 real objects that did
not have common labels associated with them. These ob-
jects had been normed for their complexity in previous work
(Lewis et al., 2014, Figure 1). Norms were obtained by ask-
ing participants to indicate “How complicated is this object?”
using a slider scale. Norms were highly reliable across two
samples of 60 participants. Based on these norms, we divided
the objects into quintiles of 12 objects each. Each participant
saw 2 objects from each quintile.

In the first generation, the words were composed of ran-
domly concatenated syllables of 3, 5, 7, 9 or 11 charac-
ters in length. Words contained CV syllables and ended in
a consonant (e.g., “gan,” “panur,” “pugimog,” “tigadogog,”
and “mogonokigan”). Each participant saw 2 words of each
length. The assignment of word lengths to objects was arbi-
trary.

Participants in Generation 2 were yoked with a participant
from this first generation. This meant a participant in Gener-
ation 2 would see the exact same set of pictures as the yoked
participant from Generation 1, but would learn the labels for
those objects that the yoked participant had produced in the
testing phase of Generation 1. Order of presentation in the
training phase was randomized across generations. We iter-
ated this procedure for a total of 7 generations.

Figure 1: Object stimuli used in the Experiment. The ob-
jects are sorted from least complex (top left) to most complex
(bottom right) based on the complexity norms in Lewis et al.
(2014). Each row corresponds to a quintile.
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Figure 2: Changes in lexical features across generations. Error bars represent 95% confidence intervals computed via non-
parametric bootstrap across chains.

Procedure Participants viewed a webpage that informed
them they would be learning the names of 10 objects in an
alien language. They were told they would see the names for
each object four times and then their memory for the name
of each object would be tested. Participants next viewed a
screen displaying an object and the associated label below it.
Participants pressed the space bar to advance to the next pic-
ture. Each picture-word pair was shown four times.

In the test phase, participants saw a screen with a picture
and were asked to type the learned label in a text box below
the picture. Memory for each of the 10 objects was tested.

Results
We conducted three analyses exploring how iterated learning
influenced the structure of lexicons.2 In Analysis #1, we ex-
amined the evolution of lexical forms. In Analysis #2, we
considered the relationship between word length and referent
complexity. This was the key analysis because it allowed us
to test for a complexity bias in the lexicon and how this bias
changed over time. Finally, in Analysis #3, we conducted a
post-hoc analysis to understand the source of variability in
cross-generational change in complexity bias across chains.

Across generations, 1% of object labels were excluded be-
cause they contained more than one word or no word was
produced. In these cases, the object was re-assigned a label
from a different participant in that generation. The label was
selected from a trial that had both the same initial word length
and an object from the same quintile.

Analysis #1: Word forms Table 1 presents a representa-
tive language chain. We analyzed four features of the lexical
forms, averaging across each of the 50 chains at each gener-
ation: mean word length, number of unique words, transition
probability, and accuracy. We also analyzed the degree of
lexical change at each generation using the Levenshtein edit
distance metric.

Across generations, mean word length decreased from an

2All code and data for the paper are available at
http://github.com/mllewis/iteratedRC.
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Figure 3: Edit distance across generations, normalized by
length of the longest word (guessed word vs. actual word).
The top line shows the Levenshtein edit distance. The lines
below reflect the components of this metric (substitutions,
deletions, and insertions). Error bars represent 95% confi-
dence intervals computed via non-parametric bootstrap across
chains. Number of edits decreased across generations.

initial length of 7 characters to 5.22 characters in Genera-
tion 7 (SD = 2.25; r = −0.22, p < .0001; Figure 2a). The
number of unique words also decreased across generations
(r = −0.35, p < .0001; Figure 2b). Lexicons tended to re-
duce in size by mapping the same word to multiple objects
(e.g., in the chain presented in Table 1, “nilop” refers to both
Objects 1 and 9).

Third, the mean orthographic transition probability of each
word increased across generations (r = .52, p < .0001; Fig-
ure 2c). Transition probabilities were calculated based on the
set of words in the lexicon for a particular participant at a
particular generation. This finding suggests that lexicons be-
came more phonotactically structured across time. We also
calculated the mean transition probability of each word us-
ing English transitions. Probabilities were estimated via or-
thographic bigrams from the Google Books corpus (Norvig,
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Figure 4: Cumulative characters removed as a function of complexity across all 7 generations. Points correspond to the quintile
means. Lines represent the best fitting linear model predicting word length from the complexity norm of the object. Negative
slopes indicate a bias to recall longer labels for more complex objects. Across generations, this bias decreased.

2013). In this analysis, the mean English transition probabil-
ity of each word also increased across generations (r = 0.18,
p < .001), suggesting that the orthographic structure of in-
dividual words became somewhat more similar to English
across generations.

Fourth, we found that participants became more accurate in
recall across generations (r = .46, p < .0001; Figure 2d). To
examine the relationship between accuracy and word forms,
we constructed a logistic mixed-effects model predicting ac-
curacy with word length, word uniqueness, and transition
probability.3 Only word length was a reliable predictor of
accuracy (β = 1.21, p < .0001), suggesting that perhaps the
increase in accuracy across generations was due to the shorter
length of the words in these languages.

Finally, we analyzed word changes across generations us-
ing Levenshtein edit distance. This measure provides a for-
mal metric of the similarity between two strings. Levenshtein
edit distance is computed by counting the minimum number
of character edits necessary to transform one word into an-
other. For example, the edit distance from “can” to “cat” is
1 (1 substitution), while the edit distance from “can” to “cal-
culator” is 8 (1 substitution and 7 insertions). For each word,
we calculated a normalized measure by dividing the edit dis-
tance between the guessed word and the actual word by the
length of the longest of the two. This normalized measure
controlled for the decrease in word length across generations.
Across generations, the normalized edit distance decreased
(r = −.30, p < .0001; Figure 3). This decreasing trend also
held for each of the components of the Levenshtein metric:
number of deletions (r = −.18, p < .0001), insertions (r =
−.08, p < .0001) and substitutions (r =−.27, p < .0001).

Taken together, this set of analyses points to a lexicon that

3The model specification was as follows:
accuracy ∼ guessed label length × transition
probability × uniqueness + (guessed label
length | subject) + (1 | chain).

is evolving to become more regular and consequently easier
to learn.

Analysis #2: Complexity bias In Analysis #2, we exam-
ined the relationship between changes in word length and the
complexity of referents. If there is a complexity bias in the
lexicon, participants should be more likely to produce longer
labels for more complex referents.

We considered two metrics of word length: Label length in
characters and cumulative characters removed (CCR). CCR
is calculated by subtracting the word length at a particular
generation from the input generation word length. Though
slightly more complex, CCR provides a length metric that
controls for variability in input word length; this control is
important because words varied dramatically in their initial
length due to random assignment in the initial generation. We
calculated p-values based on an empirical distribution of r-
values, obtained by sampling from random pairings of words
and objects. This was done because changes in language
forms across generations change the distribution of possible
r-values.

Across generations, there was a reliable bias to map longer
words to more complex referents across both measures of
length (label length: r = .05, p < .05; CCR: r = −.11, p <
.0001). Figure 4 shows CCR as a function of object com-
plexity across generations. Qualitatively, the bias decreased
across generations. However, there was high variability
across chains both in the total complexity bias (label length:
SD = .27), and in how this bias changed across generations
(label length: M = .004; SD = .69).

A number of other exploratory analyses suggest a role for
complexity in language change. First, Levenshtein edit dis-
tance was systematically related to the complexity of refer-
ents: Participants were more likely to edit words referring to
more complex referents (r = .05, p < .01). Second, there was
systematicity in the kinds of errors participants made when
reusing words across multiple objects. Participants tended to
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Quintile #1
2 3 4 5

Q
ui

nt
ile

#2 1 86 78 64 52
2 84 63 34
3 41 59
4 58

Table 2: Contingency table of trials where participants re-
called the same word for multiple objects. Columns corre-
spond to the complexity quintile of the target object and rows
correspond to the complexity quintile of the object with the
same word. The diagonal is excluded because the experimen-
tal design restricted the number of possible confusions for
these cases (1 possible alternative vs. 2 for all other quin-
tiles). In cases of confusions, participants tended to reuse a
word from an object in a nearby quintile.

reuse labels from objects of nearby quintiles (Table 2), sug-
gesting that these labels were more conceptually confusable
and lead to more category-formation.

Together, this set of analyses replicates prior work suggest-
ing a complexity bias in the lexicon: Across both measures of
word length, participants tended to recall longer labels to re-
fer to more complex referents. They were also more likely to
edit words related to more complex referents and reuse labels
of objects from nearby quintiles. However, an unexpected
finding was the attenuation of this bias across generations. In
our last analysis, we try to understand this trend.

Analysis #3: Relationship between change in word forms
and change in complexity bias We conducted a post-hoc
exploration of the variability in the complexity bias across
chains. For each chain, we quantified the complexity bias at
each generation by calculating the correlation between met-
rics of length (label length and CCR) and the complexity
norms. We then calculated the correlation between these
coefficients and generation. This gave us a measure of the
change in the complexity bias across generations. We con-
sidered how this change in complexity bias related to the de-
gree of change in the forms of the lexicon. Two metrics of
lexical change were analyzed: accuracy and Levenshtein edit
distance.

Chains with greater cross-generational change in lexical
forms tended to show an increase in complexity bias over
time. Using raw label length as the length metric, there was
a reliable correlation between change in complexity bias and
accuracy (r = 0.29, p < .05) and between change in complex-
ity bias and normalized Levenshtein edit distance (r =−0.32,
p = .02). This same pattern also held for the CCR length
metric (accuracy: r =−0.37, p < .01; Levenshtein: r = 0.38,
p < .01; Figure 5).

Discussion
In three analyses, we examined change in the structure of
lexicons across generations of transmission. Analysis #1 re-
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Figure 5: Complexity bias as a function of the normalized
Levenshtein edit distance of the chain. Complexity bias is cal-
culated here using number of cumulative characters removed.
Each point corresponds to an individual chain. Chains with
greater normalized Levenshtein distances tended to show a
greater increase in complexity bias across generations.

veals that lexical forms become simpler and more regular
over time. We find that words become shorter, less unique,
more phonotactically probable, and more likely to be remem-
bered. We also find that this structure facilities memory re-
call: lexicons with fewer and shorter words are more likely
to be remembered accurately. Analysis #2 examined the rela-
tionship between lexical forms and conceptual structure, and
found that a complexity bias emerges in the lexicons.

An unpredicted result was that the complexity bias does
not strengthen across generations. Analysis #3 suggests that
change in the complexity bias across generations is related
to the degree of change in lexical forms in the chain: Chains
with more change are more likely to show an increase in com-
plexity bias over time. The underlying mechanism supporting
this relationship is straight-forward: chains that make more
errors have more opportunity to deviate from the random in-
put mappings between words and referents. This direction of
this correlation suggests that when chains do in fact deviate
from these initials mappings, they do so in a systematic way.
That is, they tend to deviate in a way that is more likely to
map longer words onto more complex referents.

General Discussion
The iterated learning paradigm provides an opportunity to ex-
amine how in-the-moment psychological pressures influence
the structure of a language in aggregate, over time. We ex-
amined two aspects of this structure: lexical forms and the
mappings between words and objects. We hypothesized that
different psychological pressures would influence each type
of structure. In the case of lexical forms, we predicted there
would be a bias to simplify the language into shorter, fewer
forms. In the case word-object mappings, we predicted a bias
to map longer words onto more complex meanings (Lewis et
al., 2014). The question of interest was how these psycholog-
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ical pressures influenced the structure of the lexicon across
generations of transmission.

Our findings suggest that each of these pressures may have
influenced the structure of the lexicon—and critically—that
they interacted with each other. We found both a bias to
simplify the lexicon and a bias to map longer words onto
more complex meanings. But these pressures appear to have
pushed in opposite directions: The pressure to simplify the
language leads to less variability in word length, and this re-
duced variability suppresses the complexity bias.

If these dynamics reflect actual language evolution, how-
ever, an important question still remains—why do we in fact
see a complexity bias in natural language? That is, if there is
a strong pressure towards simplicity, then why does a com-
plexity bias emerge in natural language despite this pressure?

One possibility is that this discrepancy is due to the ab-
sence of an important feature in our task: communication
with a second interlocutor. Zipf (1949) argued that the equi-
librium that emerges in the lexicon is a product of both the
speaker’s desire to say less and the listener’s desire for a more
explicit, comprehensible message. Importantly, the common
desire for efficiency creates opposing pressures among inter-
locutors. For a speaker, the optimal solution to communica-
tion is to have a lexicon that contains a single, short word that
can be used to refer to all meanings. However, for a listener,
the optimal solution is to have a lexicon that maps a unique
word onto every possible meaning.

Thus, perhaps the absence of a listener pressure in our task
may have lead our participants (“speakers”) to simplify the
language. While our task was posed as a memory task, there
was no penalty for failure to remember a form. In contrast,
in a communicative task, the listener’s failure to comprehend
a label would have acted as an incentive for accurate repro-
duction, perhaps limiting the amount of compression the lan-
guage would undergo.

But we speculate that memory limitations also play another
role in the evolution of the lexicon: by introducing variation
into the representations of individual words, speakers’ mem-
ory constraints allow for change. In the absence of memory
constraints, speakers might simply reproduce the language as
is; thus, the interaction between cognitive and communicative
pressures may function to facilitate the emergence of a com-
plexity bias. This synergistic relationship between memory
and change is reminiscent of the “less-is-more” hypothesis
and its descendants (Newport, 1990; Hudson Kam & New-
port, 2005), in which cognitive limitations are invoked as
an important mechanism in language learning and language
change. In the case of the complexity bias, these propos-
als make testable predictions that can be explored by extend-
ing the present paradigm into a communicative domain with
varying demands on memory.
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