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By the use of phase perturbation theory we show that if a single realization of a one-dimensional randomly rough interface between
two dielectric media is illuminated at normal incidence from either medium by a broadband Gaussian beam, it produces a scattered
field whose differential reflection coefficient closely matches the result produced by averaging the differential reflection coefficient
produced by a monochromatic incident beam over the ensemble of realizations of the interface profile function.

1. Introduction

In theoretical calculations of some property of monochro-
matic light scattered from, or transmitted through, a ran-
domly rough surface, such as the angular or spatial
dependence of its intensity, what is actually calculated is the
average of that property over the ensemble of realizations of
the random surface profile. This procedure averages over
the speckles that would be produced if monochromatic light
were scattered by or transmitted through a single realization
of the random surface and produces a smooth angular or
spatial dependence of the property of interest.

In an experiment, this property is measured for a single
realization of the random surface. If the surface is illuminated
by a monochromatic source, the resulting speckles have to be
averaged in some way to produce the kind of smooth curve
that ensemble averaging yields. This can be done by rotating
or dithering the sample. However, in some cases, moving the
surface is not an option. In such cases, one can exploit the
fact that the speckle pattern depends on the wavelength of
the incident light [1] to average over the speckles by using a
broadband (polychromatic) beam to illuminate the surface
instead of a monochromatic one. In an earlier paper [2], it

was demonstrated that illuminating one realization of a
one-dimensional randomly rough perfectly conducting sur-
face by an s-polarized broadband Gaussian beam produced
an intensity profile of the scattered field that closely
matched the one produced by averaging the intensity of
the scattered field produced by a monochromatic incident
beam over the ensemble of realizations of the random surface
profile function.

In this paper, we explore the replacement of ensemble
averaging by the use of an incident broadband Gaussian
beam in the more realistic case where the one-dimensional
rough interface between two dielectric media is illuminated
at normal incidence from either medium and the differential
reflection coefficient of the scattered light is sought.

2. Scattering Theory

The system we study consists of a dielectric medium whose
dielectric constant is ε1 in the region x3> ζ(x1) and a dielec-
tric medium whose dielectric constant is ε2 in the region
x3< ζ(x1) (Figure 1). Both ε1 and ε2 are assumed to be real,
positive, and frequency independent. The interface profile
function ζ(x1) is assumed to be a single-valued function of
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x1 that is differentiable and constitutes a random process.
This interface is illuminated at normal incidence from the
region x3> ζ(x1) by a p- or s-polarized broadband Gaussian
beam of light of angular frequency ω, whose plane of inci-
dence is the x1x3 plane. The single nonzero component of
its electromagnetic field is a weighted superposition of
incoming plane waves,

Fv x1, x3 t inc

=
∞

−∞

dω
2π

ε1
ω
c

− ε1
ω
c

dk
2πW k, ω exp ikx1 − iα1 k, ω x3 − iωt ,

1

where Fν(x1,x3;t)inc is H2(x1,x3;t)inc when ν = p and is
E2(x1,x3;t) when ν = s. The function α1(k,ω) is defined

by α1 k, ω = ε1 ω/c 2 − k2
1/2

with Reα1(k,ω) > 0 and
Imα1(k,ω) > 0, where c is the speed of light in vacuum. The
weight function W(k,ω) has the factored form

W k, ω =G k F ω , 2

where

G k = 2 π

α1 k, ω ε1
wω
2c exp − ε1

wω
2c

2
arcsin2 kc

ε1ω
,

3

while F(ω) is a random function that possesses the properties

F ω F∗ ω′
F
= 2πδ ω − ω′ S0 ω ,

F ω F ω′
F
= 0

4

The angle brackets ⋯ F here denote an average over the
ensemble of realizations of the field [3]. An incident field of
this nature is produced by a superluminescent diode [4], for

example. We assume that the spectral density of the incident
field S0(ω) has a Gaussian form with a central frequency
ω0 and a 1/e halfwidth Δω,

S0 ω = 1
πΔω exp −

ω − ω0
Δω

2
5

In the following, it will be assumed that the halfwidth is small
enough that the spectral density of the incident light can be
regarded as zero when ω< 0. Moreover, for convenience,
the function F(ω) will be regarded as zero when ω< 0.

In the limit that ε1wω/2c≫ 1, that will be assumed
here, (1) represents a Gaussian beam of 1/e halfwidth w that
is incident normally on the rough interface. To see this, one
will make the change of variable k = ε1 ω/c sin θ in (1)
which results in a Gaussian integral on the right-hand side
of this equation that is evaluated analytically to produce

Fv x1, x3 t inc =
∞

−∞

dω
2π F ω exp −

x1
w

2
− i ε1

ω

c
x3 − iωt

6

Due to the linearity of the scattering problem, the scat-
tered field can be written as

Fv x1, x3 t sc =
∞

−∞

dω
2π F ω

ε1
ω
c

− ε1
ω
c

dk
2πG k

∞

−∞

dq
2πRv q∣k exp iqx1 + iα1 q, ω x3 − iωt ,

7

where Rν(q|k) is the scattering amplitude that is obtained when
the incident field is given by exp ikx1 − iα1 k, ω x3 − iωt or

�휃s
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�휃0

x3 = �휁(x1)

x1

�휀2

�휀1
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Figure 1: Schematics of the scattering geometry.
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Fv r, θs t sc

=
∞

−∞

dω
2π F ω

ε1
ω
c

− ε1
ω
c

dk
2πG k

∞

−∞

dq
2πRv q∣k exp iqr sin θs + ia1 q, ω r cos θs − iωt ,

8

where r = x21 + x23 and x1 = rsin θs, x3 = rcos θs. It can be
calculated by any of the several approaches such as small
amplitude perturbation theory [5], the Kirchhoff approxima-
tion [6], phase-perturbation theory [7], and by rigorous
numerical solutions of the equations of scattering theory
[8]. We will use here the first-order phase perturbation the-
ory expression for Rv q∣k , due to its simplicity and because
it interpolates between small-amplitude perturbation theory
and the Kirchhoff approximation.

In small-amplitude perturbation theory, the expression
obtained for Rv q∣k to the lowest nonzero order in the inter-
face profile function ζ(x1) is

Rv q∣k = Rv k 2πδ q − k + iΦv q∣k ζ̂ q − k +⋯ , 9

where

ζ̂ Q =
∞

−∞
dx1ζ x1 exp −iQx1 , 10

while

Rp k = ε2α1 k, ω − ε1α2 k, ω
ε2α1 k, ω + ε1α2 k, ω ,

Φp q∣k = ε2 − ε1
ε2α1 q, ω + ε1α2 q, ω ε2qk − ε1α2 q, ω α2 k, ω

2α1 k, ω
ε2a1 k, ω − ε1α2 k, ω ,

11

and

Rs k = α1 k, ω − α2 k, ω
α1 k, ω + α2 k, ω ,

Φs q∣k = α2 q, ω − α1 q, ω 2α1 k, ω
α1 k, ω − α2 k, ω ,

12

with α2 k, ω = ε2 ω/c 2 − k2
1/2
, Re α2 k, ω > 0, and Im α2

k, ω > 0. We can rewrite the right-hand side of (9) as a
Fourier integral,

Rν q∣k

= Rν k
∞

−∞
dx1 exp −i q − k x1 1 + iΦν q∣k ζ x1 +⋯

13

On exponentiating the expression in brackets in the
integrand in this expression, we obtain the first-order phase
perturbation theory expression for Rv q∣k ,

Rv q∣k = Rv k
∞

−∞
dx1exp −i q − k x1 exp iΦv q∣k ζ x1

14

We will use this expression here due to its simplicity. After
interchanging the order of the k and q integrations in
(7), it follows that the scattering amplitude for a Gaussian
monochromatic beam of frequency ω can be expressed as

Rv q, ω =
ε1

ω
c

− ε1
ω
c

dk
2πRv q∣k G k , 15

so that the scattered field becomes

Fv x1, x3 t sc =
∞

−∞

dω
2π F ω

∞

−∞

dq
2πRv q, ω exp iqx1 + iα1 q, ω x3 − iωt

16

The scattering amplitude Rv q, ω enters the definition of the
differential reflection coefficient which is defined as the frac-
tion of the power flux incident onto the rough interface that
is scattered into an angular interval of width dθs about the
scattering angle θs [9]. For an illumination of the random
interface by a normally incident Gaussian beam of frequency
ω, the expression for the differential reflection coefficient in
the wide beam limit ε1wω/2c≫ 1 reads [8, 10]

∂Rv

∂θs
θs = ε1

2π3/2
ω

cw
cos2θs R q, ω 2, 17

where q = ε1 ω/c sin θs. When the differential reflection
coefficient from (17), for monochromatic illumination at fre-
quency ω0, is averaged over an ensemble of realizations of the
random interface, the mean differential reflection coefficient
is obtained and we denote it ∂Rv/∂θs in the following.
On the other hand, if the illumination of the random
interface is done by a broadband source and characterized
by the center frequency ω0 and the halfwidth is Δω, the
“broadband” differential reflection coefficient ∂Rv/∂θs F
is obtained.

We now turn to the calculation of a simple expression for
the scattering amplitude Rv q, ω . On substituting into (15),
the results from (14) and (3) and making the change of vari-
able k = ε1 ω/c sin θ in the resulting expression, one gets

Rv q, ω = ε1
π

wω
2c

π/2

−π/2
dθ exp − ε1

wω
2c

2
θ2 Rv ε1

ω

c
sin θ

×
∞

−∞
dx1exp −iqx1 + i ε1

ω

c
sin θx1

exp iΦv q∣ ε1
ω

c
sin θ ζ x1

18

On passing to the limit ε1 wω/2c ≫ 1, corresponding to
a wide Gaussian beam, one may take advantage of the
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approximations sin θ ≈ 0 and cos θ ≈ 1, with the conse-
quence that Φν becomes a linear function of the variable θ,

Φv q∣ ε1
ω

c
sin θ ≈ ϕ 0

v q, ω + ϕ 1
v q, ω θ, 19

with

ϕ 0
v q, ω =Φv q∣0 , 20

and

ϕ
1
p q, ω = 2ω

c
ε1ε2 ε1 + ε2

q
ε2α1 q, ω + ε1α2 q, ω

ϕ 1
s q, ω = 0

21

Moreover, in the limit ε1 wω/2c ≫ 1, the θ integral in (18)
takes the Gaussian form, due to the results in (19)–(21) and
can hence be evaluated analytically with the result that

Rv q, ω = Rv 0
∞

−∞
dx1exp −

x1
w

+ ϕ
1
v q, ω ζ x1

ε1 ω/c w

2

− iqx1 + iϕ 0
v q, ω ζ x1

22

This is the simplified expression for the scattering amplitude
derived from phase perturbation theory that we will use to
produce the results to be presented later in this paper. It
represents a significant simplification relative to, for
instance, obtaining the scattering amplitude by rigorous
means [8], which requires solving a linear system of equa-
tions that becomes time-consuming when the interface
becomes long.

The interface profile function ζ(x1) is assumed to be a
single-valued function of x1 that is differentiable and consti-
tutes a zero-mean, stationary Gaussian random process
defined by

ζ x1 ζ x1′ = δ2W ∣x1 − x1′∣ 23

The angle brackets here denote an average over the ensemble

of realizations of ζ x1 , δ = ζ2 x1
1/2

is the root mean-
square height of the interface, and W(|x1|) is the normalized
interface height auto-correlation function.

The power spectrum of the interface roughness, g(|k|), is
the Fourier transform of W(|x1|),

g k =
∞

−∞
dx1W x1 exp −ikx1 24

In the calculations carried out in this work, W(|x1|), will be
assumed to have the Gaussian form

W x1 = exp −
x21
a2

, 25

where the characteristic length a is the transverse correlation
length if the interface roughness. The power spectrum g(|k|)
in this case also has the Gaussian form

g k = πa exp −
k2a2

4 26

A single realization of the interface profile function is
given by [11]

ζ x1 = δ
2
L

〠
∞

m=1
g

2πm
L

1/2

ξ2m−1 sin
2πmx1
L

+ ξ2m cos 2πmx1
L

27

In this expression, the {ξm} are independent Gaussian
random deviates with zero mean and unit variance:

ξm = 0,  ξ2m = 1 28

The function defined by (27) is a periodic function of x1 with
a period L . To avoid edge effects, only the portion of this
function in the interval −L/2 < x1<L/2 where L =ℒ/2 is used
in calculations.

3. Results and Discussion

In Figure 2(a), we present a plot of the speckle pattern of the
scattered field as a function of the scattering angle θs pro-
duced by a monochromatic p-polarized Gaussian beam of
frequency ω0, given by (6) with F(ω) = 2πδ(ω−ω0), incident
on a single realization of a one-dimensional randomly rough
interface generated with the use of (27). In Figure 2(b), we
present the differential reflection coefficient of the scattered
field given by (16) when the realization of the interface profile
function used in obtaining Figure 2(a) is illuminated by a
broadband Gaussian beam whose center frequency is ω0 with
a halfwidth Δω = 0 2ω0. To obtain this result, calculations of
the differential reflection coefficient were carried out for
several values of Δω, ranging from 0.2ω0 to 0.4ω0. The results
did not differ in any significant way so we chose to use the
smallest of these Δω values. It should be remarked that when
a different realization of the surface was illuminated by the
same broadband beam used to produce the result in
Figure 2(b), the result was essentially ∂Rp/∂θs F

from the
same figure except for some small-amplitude fine details.
Finally, in Figure 2(c), we plot the mean differential reflec-
tion coefficient ∂Rp/∂θs obtained by averaging the results
from Np=10,000 realizations of the interface profile func-
tion generated by (27) when the interface is illuminated by
the same monochromatic Gaussian beam of frequency ω0
used in obtaining Figure 2(a). The values of the theoretical
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and experimental parameters assumed in obtaining these
results were ε1 = 1, ε2 = 2 25, λ0 = 2πc/ω0 = 632 8 nm, and
w = L/4 where L is the length of the surface. The parameters
defining the interface roughness were δ = 0 15λ0, a = 1 50λ0,
and L = 104λ0. The sampling interval used was Δx1 =λ0/10
so that the interface was discretized onto N=105 points.
Figure 3 presents corresponding results for s-polarized
incident beams.

The results presented in Figures 2 and 3 show that the
use of a broadband beam in illuminating a single realization
of a one-dimensional randomly rough interface averages
over the speckles produced by a monochromatic beam. It
therefore produces a differential reflection coefficient that
closely matches the one produced by a monochromatic
beam when the resulting differential reflection coefficient is
averaged over the ensemble of realizations of the interface
profile function.

To facilitate the comparison of ∂Rv/∂θs F and ∂Rv/∂θs ,
in Figures 4(a) and 4(c), we plot simultaneously these
quantities on a semilogarithmic scale. It is observed that the
agreement between them is rather good even in the tails of
the scattered intensity distributions.

The results presented in Figures 2 and 3 were, for
convenience, all obtained under the assumption of phase

perturbation theory. In Figure 4, we compare the mean dif-
ferential reflection coefficients ∂Rv/∂θs from Figures 2(c)
and 3(c) to rigorous computer simulation results obtained
by solving the equations of scattering theory [8]. The agree-
ment between the two sets of results is rather convincing.
In passing, it should be noted that in performing the rigorous
simulations the length used for the rough interface was
L′ = 102λ0 and the width of the Gaussian beam was L′/4.
This length of the rough interface is two orders of magnitude
shorter than the length used in obtaining the results based on
phase perturbation theory.

We now turn to a scattering geometry where the
medium of incidence is the optically denser medium. Here,
we assume a glass-vacuum system characterized by ε1 =
2 25 and ε2 = 1. Physically, this corresponds to the light
being incident from the opposite side of the rough interface
relative to the system we previously studied. The results for
the differential reflection coefficients for the glass-vacuum
system are presented in Figures 5, 6, and 7. In these figures,
the angles for which θs ≥ θ∗s have been indicated as
shaded regions, where θ∗s = arcsin ε2/ε1 = 41 81° denotes
the critical angle for total internal reflection. Due to the
assumptions underlying phase perturbation theory, it is
expected not to work well when the angles of incidence
and/or scattering in absolute value are larger than this critical
angle. Hence, in Figures 5, 6, and 7, we have plotted the
results obtained on the basis of phase perturbation theory
only for θs < θ∗s .

On the basis of the results presented in Figures 5, 6,
and 7, it is concluded that also for systems where the
medium of incidence is the optically denser medium, one
finds that the differential reflection coefficients ∂Rv/∂θs F
and ∂Rv/∂θs match each other rather well in the angular
interval θs < θ∗s .
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Figure 3: Same as Figure 2 but for s-polarized incident beams,
the single realization of the rough interface used to obtain the
results of the first two panels of this figure is the same one
used in Figure 2.
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Figure 2: The differential reflection coefficient ∂Rp/∂θs defined by
(17) for a vacuum-glass system [ε1 = 1 and ε2 = 2 25] illuminated
from the vacuum side by different p-polarized incident beams: (a)
a Gaussian monochromatic beam of halfwidth w and frequency
ω0; (b) a broadband Gaussian beam of center frequency ω0 and
frequency bandwidth Δω = 0 2ω0; and (c) a monochromatic beam
as in Figure 2(a) but with an average performed over an ensemble
of Np= 10,000 realizations of the interface profile function. The
angle of incidence was θ0 = 0° and the wavelength was λ0 = 2πc/
ω0 = 632.8 nm. The randomly rough interface was characterized by
the parameters δ = 0 15λ0, a = 1 50λ0, and L = 104λ0, and the
sampling interval used to discretize the surface was Δx1 = λ0/10.
For the width of the Gaussian beam, the value w = L/4 was used.
The same random interface was used in producing the results of
the first two panels of this figure.
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4. Conclusions

The scattering of normally incident p- or s-polarized light
from a one-dimensional randomly rough interface between
two dielectric media is studied. Based on phase perturbation
theory, it is demonstrated that using a broadband Gaussian

beam to illuminate the surface produces a differential reflec-
tion coefficient that closely matches the one produced by a
monochromatic Gaussian beam when the resulting differen-
tial reflection coefficient is averaged over the ensemble of
realizations of the interface profile function. This result is
obtained since the broadband beam averages over the
speckles produced by a monochromatic beam.

The confirmation of the conjecture prompting the pres-
ent work by these proof-of-concept calculations encourages
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additional calculations using rigorous computer simulation
methods instead of the phase perturbation theory approach,
to explore the efficacy of a broadband source in calculations
of rough surface scattering phenomena and in experimental
studies of them.
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Figure 7: Same as Figure 4 but for a glass-vacuum system (ε1 = 2 25 and ε2 = 1).

7International Journal of Antennas and Propagation



International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/



