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Understanding how multiple stressors interact is needed to predict the

dynamical outcomes of diverse biological systems, ranging from drug-resistant

pathogens that are combated and treated with combination drug therapies

to ecosystems impacted by environmental toxicants or disturbances. Never-

theless, extensive studies of higher-order (more than two component)

interactions have been lacking. Here, we conduct experiments using 20 three-

drug combinations and their effects on the bacterial growth of Escherichia coli.
We report our measurements of growth rates in single, pairwise and triple-

drug combinations. To uncover emergent interactions, we derive a simple

framework to calculate expectations for three-way interactions based on the

measured impact of each individual stressor and of each pairwise interaction.

Using our framework, we find that (i) emergent antagonisms are more

common than emergent synergies and (ii) emergent antagonisms are more

common and emergent synergies are more rare than would be inferred from

measures of net effects that do not disentangle pairwise interactions

from three-way interactions.
1. Introduction
Drugs are now a pervasive part of our everyday environment and have both

helpful and harmful effects on biological systems from the molecular up to

the individual, population and whole ecosystem level [1]. In the clinic, drugs

are used to combat pathogens but resistance to drugs such as antibiotics is

becoming more common, largely because these drugs are used so pervasively

throughout our environment, from hand soaps to agriculture. One strategy

for countering antibiotic resistance is to use drugs in combination to more effec-

tively kill pathogens, to combat drug-resistant strains and to help slow the

evolution of resistance [2–5]. Ideally, this strategy would be used in tandem

with the development of new drugs, but pharmaceutical companies are not

investing heavily in antibiotics [6]. Thus, there is a compelling case for the criti-

cal importance of devising effective antibiotic combinations for use in the clinic.

Past work has largely focused on two-drug interactions [2,3,7,8], but multi-drug

therapies in the clinic are increasingly moving in the direction of higher-order

combinations (those involving three or more drugs). Indeed, some of the

best-known drug treatments, including HIV drug cocktails [9] and treatments

for Mycobacterium tuberculosis infections [10], involve three-drug combinations.

To find effective higher-order drug combinations, one of the key challenges is

to correctly identify the type and magnitude of drug interactions because combin-

ing non-interacting drugs does not leverage the benefits of certain interaction

types. A useful categorization when two drugs are combined is: (i) synergis-

tic—the interaction of the two drugs enhances the effect expected based on

each drug alone with no interactions; (ii) antagonistic—the interaction reduces
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the expected effects; or (iii) additive—there is no interaction

and the combined effect matches the expected effect. Synergis-

tic drug combinations are useful because they kill bacteria

more effectively and are advantageous for individual patients,

while antagonistic drug combinations are useful because they

may be able to help slow the evolution of antibiotic resistance

[4,11,12]. In this paper, we extend ideas about these categoriz-

ations to higher-order interactions, including both net (arising

from either pairwise or three-way combinations) and emergent

(not arising solely from pairwise combinations) interactions.

Empirical studies of ecotoxicology and ecological disturb-

ances have examined the nature of interactions in the

laboratory [13–15] and in the wild [16,17]. Both synergistic

[18–25] and antagonistic [23,26–29] interactions have been

uncovered in a wide range of organisms, environments and sys-

tems that range from gene epistasis [30–32] to predator–prey

interactions [33]. Nevertheless, higher-order interactions that

involve more than two stressors are still poorly understood.

Moreover, because three-drug combinations have received

substantially less attention than two-drug combinations, there

are many basic questions about three-way and higher-

order interactions that remain, such as: Are there emergent

properties that arise in three-drug combinations that cannot

be predicted from the pairwise parts? As we increase the

number of drugs, do we increase the proportion of synergistic

or antagonistic interactions?

This lack of understanding and answers for three-way and

higher-order interactions is partly due to the difficulty of

obtaining measurements for the effects of all single, pairwise

and higher-order combinations and partly due to the lack of

a rigorous quantitative and conceptual framework that dis-

tinguishes between net and emergent interactions. Here, we

help address both issues by using a tractable, empirical labora-

tory system in which Escherichia coli is exposed to environments

of antibiotic combinations that allows measurements of effects

of all subsets of drug combinations, and by developing an

explicit and rigorous theoretical framework that encompasses

both net and emergent higher-order interactions.

Empirically, as a model system for studying and addressing

outstanding questions about interactions among stressors, anti-

biotics and bacteria offer several advantages: (i) the control of

levels of the drugs in the environment and of fluctuations in

concentration across time and space; (ii) the use of a specific

ordered set or randomized set of antibiotics; and (iii) knowl-

edge about the mechanisms of action for the antibiotics used

in this study, allowing the selection of specific pathways in

the bacteria that we want to disrupt. Moreover, the use of

well-designed experiments in highly simplified microbial

systems can make even complex problems tractable [34].

We also develop a novel theoretical framework to under-

stand and to quantify which higher-order combinations of

stressors produce emergent interactions, meaning that the

interaction does not arise from single and pairwise interactions

alone. For example, in the system of drugs as stressors, a three-

drug synergy or antagonism may not actually be the result of

all three drugs in combination. Instead, such interactions may

come from an interaction of just two of the drugs. On the

other hand, it may be possible that synergy can arise in a

three-drug combination in which no two-drug interactions

show synergy, i.e. an emergent synergy. This is an important

distinction because true synergies—those that only emerge

with all three drugs—could provide novel treatments, whereas

a three-way synergy that merely arises from a synergistic
pairwise interaction would not be particularly novel. Such

superficial three-drug synergies may be detrimental to the

patient because additional drugs might be added that are in

actuality not needed for increased pathogen killing efficiency.

As a result, it is challenging to determine which specific drug

combinations are most clinically relevant [3,5,35].

Key advances were made in the few previous studies that

focused on three (or more) drug interactions. In particular,

Wood et al. [36] applied maximum entropy methods to six com-

binations of three antibiotics that varied across a range of

concentrations. In this way, they searched for three-way inter-

actions that could not be predicted from pairwise interactions.

As part of this study, they discovered a simple and highly

informative algebraic metric related to the one for emergent

interactions we derive below. More recently, Zimmer et al.
[37] used a framework that incorporates interaction coefficients

as part of a model based on Hill functions to show how to

increase predictive power for three-way interactions based on

limited information about pairwise interactions across a

range of drug concentrations.

Our work shares some core goals and similarities with these

previous approaches. Although our study is currently more lim-

ited with regard to understanding ranges of drug concentrations

as studied by Wood et al. [36] and Zimmer et al. [37], there are a

few central contributions represented by our approach. First, our

study provides a clear conceptual derivation for the simple alge-

braic measures presented below, and in so doing, further reveals

a way to differentiate between the emergent interaction (an inter-

action that only exists when all three drugs are present) and

the net interaction (the overall interaction in comparison to

single-drug effects). Second, in contrast to other higher-order

interaction studies, we also rescale the raw magnitude of our

metrics in order to compare information and categories that

correspond to baselines for synergistic and antagonistic inter-

actions, as previously done by Segre and colleagues for

pairwise interactions [38]. Third, we consider a much larger set

of three-antibiotic combinations (20 as opposed to six [36]),

though we only take measurements at fixed concentrations for

these combinations. We also identify higher levels of net and

emergent three-way (E3) interactions, including both synergy

and antagonism, than previous studies on higher-order inter-

actions, as explained in the Discussion section. As we will

demonstrate below, the distinction between net versus emergent

interaction provides compelling results, especially in the case of

antagonistic interactions for combinations of antibiotics.

More generally, for any system involving more than two

stressors, it is not obvious a priori whether the higher-order

combination will interact in ways that are easily predictable

from their single or pairwise effects. Although the theory and

experiments in this paper have been developed using anti-

biotics and bacteria as an example, we suggest the terms and

concepts developed here could be usefully translated, at least

as a starting point, to think about other stressors and systems.

For instance, studies of how multiple predators affect prey

population dynamics may provide a strong correspondence

because the survival rates of prey species are analogous to

the growth rates of bacteria in multiple drug environments

(e.g. [39]) and appear in the multiple predator effect (MPE)

metrics in the same exact form as in our metrics for net inter-

actions (i.e. the deviation from additivity (DA) measure)

below. Notably, MPE methods do not differentiate between

net and truly emergent interactions or rescale the magnitude

of their metrics to assess the information about interactions,



Table 1. List of all antibiotics used in the study, abbreviation, dose used and mechanism of action.

drug (abbreviation) dose range (mg ml21) main mechanism(s) of action

clindamycin (CLI) 31.5 protein synthesis, 50S

ciprofloxacin (CPR) 0.010 – 0.013 DNA gyrase

tobramycin (TOB) 1.3 aminoglycoside, protein synthesis, 30S

streptomycin (STR) 4.5 – 5.0 aminoglycoside, protein synthesis, 30S

cefoxitin (FOX) 1.16 cell wall

erythromycin (ERY) 12.0 – 14.0 protein synthesis, 50S
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which is why we think our framework might also be general-

ized to resolve questions about MPEs. In the Discussion, we

provide more details on how the framework with drugs as

stressors can be applied to MPEs and other systems that

cover similar concepts to those described in this paper.

In the remainder of the paper, we explain our approach

for quantifying and understanding higher-order interactions.

In doing so, we create a framework to classify higher-order

combinations of stressors by examining net three-drug

interactions and comparing them with all three pairwise

interactions for each three-drug combination. Next, we use

this framework to uncover interactions among a set of six

antibiotics by examining systematically all 20 of the possible

three-drug combinations. In experiments with wild-type

E. coli, we measure growth rates of bacteria in single, pairwise

and three-drug combinations, and we identify emergent

three-drug combinations that require all three antibiotics to

yield synergistic or antagonistic interactions.
2. Material and methods
2.1. Experimental data
2.1.1. Escherichia coli strain and growth conditions
The strain of E. coli used in these experiments is BW25113, the

wild-type strain (lacIq rrnBT14 DlacZWJ16 hsdR514 DaraBADAH33

DrhaBADLD78) [40] derived from the strain W1485 background

[41]. All experiments were conducted using LB media (10 g l21

tryptone, 5 g l21 yeast extract and 10 g l21 NaCl). Frozen glycerol

cultures, stored at 2808C, were made by inoculating from a culture

made from a single colony. Experiments were started by inoculat-

ing from a resuspension of this glycerol culture in MC buffer stored

at 48C and grown for 5 h in a 378C incubator before being used to

seed overnight cultures. Overnight cultures were seeded by inocu-

lating 975 ml cultures with 25 ml of a 1024 dilution of the over-day

culture. After 18 h of incubation at 378C in a shaker at 215 r.p.m.,

the optical density at 600 nm (OD600) was measured.

2.1.2. Antibiotics
Antibiotics included in this survey were chosen to cover a broad

range of biochemical classifications [42]. Drugs included are clinda-

mycin hydrochloride (Sigma C-5269), ciprofloxacin hydrochloride

(MP Biomedicals 199020), tobramycin sulfate (Sigma T-1783), strep-

tomycin sulfate (Sigma Aldrich S-6501), cefoxitin sodium salt (Fluka

C4786) and erythromycin (Sigma Aldrich E-6376). Mechanisms of

action, abbreviations and dosages are listed in table 1.

2.1.3. Growth measurements of no drug and single, double and
triple antibiotic combinations

A range of concentrations was first tested for each individual

drug to determine the appropriate non-lethal concentration
required to reduce growth by 15–35% compared with the no

drug control (LB). We choose this amount of reduction in

growth rate because larger reductions would yield lethality in

two-drug combinations, making three-drug effects irrelevant,

and also because smaller reductions may make it difficult to

tease apart additivity and antagonism. The range from 15 to

35% was necessitated by the variability in antibiotic sensitivity

of single-drug treatments in our empirical system, representing

a limit to our ability to choose the exact same reduction in

growth rate across all drugs and experiments. We use an additive

design, meaning that we test bacterial response to a set concen-

tration of X (denoted [X ]), a set concentration of Y (denoted

[Y ]), a set concentration of Z (denoted [Z ]) and all pairwise com-

binations, [X ] þ [Y ], [Y ] þ [Z ] and [X ] þ [Z ], and the triple

combination [X ] þ [Y ] þ [Z]. This additive design is standard

in the field of drug interactions [3], and we use the additive

design to standardize with other drug interaction studies.

To measure the effect of the triple combination of drugs

versus the pairwise and individual effects, each experiment was

performed using a no-drug control, a control for each individual

drug at the previously determined concentration, pairwise combi-

nations of the three drugs and a triple-drug combination

(electronic supplementary material, table S1). We also examine

dose dependence for ten different drugs, including the six drugs

used in the triple combination experiments. For each drug, we

measure effects of concentrations [X ], [2X ] and [3X ] (electronic

supplementary material, table S2) according to the metrics defined

here (equations (2.2) and (2.3)). These data show that our methods

usually classify drugs as additive with themselves, meaning that

the growth rates predicted by wXwX or wXwXwX based on con-

centration [X ] match with the measured effects from drug

concentrations of [2X ] and [3X ], respectively.

In all cases, drugs were added to appropriate concentrations

in 1 ml LB (inoculated as described above), and 100 ml was ali-

quoted into four to six wells of a 96-well plate. Cell densities

were then determined after 18 h of incubation (as described

above) using optical density analysis at 600 nm. Optical density

readings were used to calculate growth percentages as compared

to the no-drug control. Each three-drug combination experiment

was repeated at least three times, but due to minor changes in

drug concentrations across different experiments, the number

of replicates reported for each specific concentration of drugs

may be two in some cases. Data are represented as median, mini-

mum and maximum for repeated three-drug combination

experiments. Graphs of triple antibiotic interactions were

produced using Matlab v. R2013a.
2.2. Theoretical framework
2.2.1. Pairwise interaction measure
In previous work on pairwise interactions of drugs [35] and

metabolic genes [38], drug interactions have often been classified

using the definition of Bliss Independence (BI) [3]. BI defines

drugs to be independent (or additive) when the per cent
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change in bacterial fitness in the presence of one drug (X ) does

not depend upon the presence or the absence of the other drug

(Y ) (see equation (2.1)). The per cent change in fitness can be

measured by the relative fitness, defined as the ratio of growth

of the bacteria in the presence of a drug relative to the growth

when no drug is present. For instance, in the presence of drug

X, the bacteria has relative fitness, wX ¼ e�sX , where SX is the

selection coefficient that measures how a specific drug concen-

tration of X affects the bacterial fitness. We follow the same

notation for other drugs Y or Z or any combination of drugs.

According to BI, in the presence of two non-interacting drugs,

the fitness of the bacteria is wXY ¼ wXwY ¼ e�(sXþsY), where the

XY subscript denotes a combination of drugs X and Y (denoted

by X þ Y in our figures) and is consistent with previous notation.

This non-interacting case is called additive because the

selection coefficients add together, SX þ SY. Consequently,

1X,Y ; wXY � wXwY ð2:1Þ

measures the DA. By definition, this measure is zero when X and

Y are additive. When this measure is positive and sufficiently

large in magnitude (see below), the interaction is called antagon-

istic because the drugs are working against each other such that

the bacterial growth is higher than would be expected based on

the two single-drug effects and no interactions between the

drugs (i.e. additivity). When this measure is negative and suffi-

ciently large in magnitude, the interaction is synergistic because

the drugs are working together such that the bacterial growth

rate is lower than would be expected based on the two single-

drug effects and no drug interactions. The additive range defined

below in terms of the rescaled measure is based on conservative

values described by Yeh et al. [35]. When considering pairwise

combinations of X and Y with a third drug, Z, there are two

more pairwise DA measures that describe X interacting with Z,

1X,Z¼ wXZ2 wXwZ, and Y interacting with Z, 1Y,Z¼ wYZ2 wYwZ.

2.2.2. Three-way interaction measures
We now develop two interaction measures for three-drug combi-

nations. The first is the direct extension of the DA measure for

two drugs in equation (2.1) [36,43,44]. When the drugs do not inter-

act, the fitness of the bacteria exposed to the three-drug

combination should be equal to the product of the fitnesses of bac-

teria exposed to each single drug alone, i.e. wXYZ¼ wXwYwZ.

Therefore, DA, which measures the net interaction, is given by

1X,Y,Z ¼ wXYZ � wXwYwZ: ð2:2Þ

To characterize emergent interactions that arise when all three

drugs are combined, we need to assess how much of the three-

drug interaction does not originate from pairwise interactions.

To measure how much of the interaction arises from a single pair-

wise interaction, we recognize that a single pairwise interaction

creates the entire three-drug interaction when the third drug is

additive with the other two drugs. That is, the interaction between

drugs X, Y and Z is due solely to the interaction between drugs X
and Y when drug Z is additive with their combination (e.g. wXYZ ¼

wXYwZ). For this special case, 1X,Y,Z¼ wXYwZ2 wXwYwZ ¼

wZ(wXY2 wXwY)¼ wZ1X,Y based on equations (2.1) and (2.2). By

identical reasoning, the contribution coming solely from the inter-

action of drugs Y and Z is wX1Y,Z and from the interaction of drugs

X and Z is wY1X,Z. For three drugs, these three terms represent all

three of the possible pairwise interactions among single drugs.

Therefore, all three of these pairwise contributions need to be

subtracted from the overall three-drug interaction (electronic sup-

plementary material, figure S1) in order to introduce a new

measure that we term the E3 interaction

1̂X,Y,Z ¼ 1X,Y,Z � wX 1Y,Z � wY 1X,Z � wZ 1X,Y: ð2:3Þ

When all of the pairwise interactions are additive (i.e. wXY ¼ wXwY

etc.), no part of the three-way interaction could possibly originate
from pairwise interactions, and the E3 measure reduces to the DA

measure ð1̂X,Y,Z ¼ 1X,Y,Z), as it must. Substituting equations (2.1)

and (2.2) into equation (2.3) allows the E3 measure to be expressed

purely in terms of relative fitnesses

1̂X,Y,Z ¼ wXYZ � wXwYZ � wYwXZ � wZwXY þ 2wXwYwZ: ð2:4Þ

In summary, by construction our new E3 measure provides a simple

calculation for capturing the part of the three-drug interaction that is

emergent and not due to pairwise interactions, while the DA

measure captures whether there is an interaction at all.

2.2.3. Re-scaled three-way interaction measures
Following Segre et al. [38], we rescaled both of our interaction

measures, DA (1X,Y,Z in equation (2.2)) and E3 (1̂X,Y,Z in equation

(2.4)), by dividing them by the absolute value of the same functional

form as the unscaled metrics, but with wXYZ replaced by 0 when the

unscaled metric is negative (synergistic) and by the minimum value

of the single-drug fitnesses, min(wx, wY, wZ), when the unscaled

metric is positive (antagonistic) [43,44]. Effectively, this rescaling

allows us to characterize the degree of synergy relative to the extreme

lethal synergy case—when the combination of drugs completely

kills the bacteria so that fitness (wXYZ) is 0, even though no single

drug completely killed the bacteria. All positive interactions are

rescaled by the case of buffering antagonism—when drugs combine

to have the same effect as the single drug with the strongest effect.

Our re-scaled E3 measure is similar to a term introduced

by Darroch [45] and Kroonenberg & Andersen [46], who con-

sidered regression models and interaction terms. Importantly,

our measure differs from these regression models because we

assume nonlinear exponential fitness functions rather than linear

approximations implied by linear dependencies for single-drug

effects in these previous regression models. This linear approxi-

mation will be especially problematic for drug interactions that

push growth rates more towards lethality (often synergy) or

wild-type (often antagonism) and correspond to the exact regions

where this linear approximation must break down. Moreover,

these previous studies always re-scale according to our synergistic

case, meaning they are using the wrong baseline or scale bar for

antagonistic interactions. Finally, they either assume or hypoth-

esize that their measure is always zero, meaning they assume

there is no interaction before even comparing with data.

2.2.4. Cut-off values for determining three-way interaction types
Because of the variability between different interaction measures,

and between fractional inhibitory concentration index data [47],

cut-off values for determining three-way interaction types must

be chosen cautiously. Our method for determining the type of

three-way interaction follows previous work [35,38]. To calculate

our rescaled three-way interaction measures, we use the median

of replicate measurements for each experiment at a single anti-

biotic concentration. We then use the conservative cut-off

values of rescaled 1X,Y,Z (or rescaled 1̂X,Y,Z) . 0.5 for antagonism

and rescaled 1X,Y,Z (or rescaled 1̂X,Y,Z) ,20.5 for synergy. Note

that rescaled interaction measures tend to range from values of

21 (synergistic lethality) to 1 (complete antagonistic buffering).

Hence, any value between 20.5 and 0.5 represents an additive

interaction. These cut-off values are also based on natural

breaks in the histogram distribution for the rescaled epsilon

value and are consistent with the conservative values described

for pairwise interactions by Yeh et al. [35].
3. Results
3.1. Identification of triple-drug interactions
Comparing the two distinct interaction measures, as depicted

using schematics with idealized data (figures 1 and 2) and
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of DA (black, additive; red, synergistic; green, antagonistic). Three possible triple-drug combination effects are depicted schematically for theoretical drugs X, Y and Z
according to measures of DA. (a) Strictly additive interactions of all pairwise combinations and three-drug combination. (b) Synergy of three drugs according to DA.
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combinations are shown as increasing from 0% growth in the centre to 100% growth (no-drug control) at the largest outer circle of the polar graph. For the E3
interaction measure, the single, two- and triple-drug combination growth rates, as well as pairwise interactions, are shown with the same colour coding as used for
the DA measure (figure 1), but with outline colouring of the inner circle indicating measure of E3 (black, additive; red, synergistic; green, antagonistic). Three
possible triple-drug combination effects are depicted schematically for theoretical drugs X, Y and Z according to measures of E3. (a) Interactions combine additively
according to E3, even though several pairwise interactions are synergistic. (b) Emergent synergy of three drugs according to E3. (c) Emergent antagonism of three
drugs according to E3.
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Figure 3. Emergent synergistic and antagonistic interactions in triple antibiotic combinations. Data for triple antibiotic figures are shown according to E3 interaction
measures. Figures are presented as described in figures 1 and 2. Data are represented as median+minimum/maximum. (a) The combination of ciprofloxacin
0.013 mg ml21 (CPR), clindamycin 31.5 mg ml21 (CLI) and erythromycin 14 mg ml21 (ERY) interacts synergistically in three-drug combinations according to
both DA and emergent (E3) measures. (b) The combination of ERY 14 mg ml21, cefoxitin 1.16 mg ml21 (FOX) and tobramycin 1.3 mg ml21 (TOB) interacts
antagonistically in three-drug combinations according to the E3 measure and additively according to the DA measure. Only data for one concentration of each
antibiotic are shown, although each three-drug combination was tested in a minimum of three independent experiments (see Material and methods).
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explained above we found that three-drug combinations can

in principle have several distinct effects—additive according

to either or both measures, synergistic according to either

or both measures, and antagonistic according to either or

both measures (electronic supplementary material, figure S2

and table S1). Experimental data are shown in triple-drug

combination figures for examples of both synergistic

(figure 3a) and antagonistic (figure 3b) interactions according

to our E3 interaction measure, which captures three-drug

interactions that do not arise from pairwise interactions.

Overall, examination of all 20 of our three-drug combi-

nations revealed that 35% exhibit emergent, higher-order

interactions, including two emergent synergistic interactions

(figure 3a and electronic supplementary material, figure S2)

and five emergent antagonistic interactions (figure 3b and

electronic supplementary material, figure S2).

3.2. Deviation from additivity versus emergent three-
way interactions

Our data show that when we categorized interaction types

according to the DA measure, the distribution of interactions

was skewed towards synergistic effects (figure 4a, skewness ¼

0.71). Conversely, when we used the E3 measure, the distri-

bution skewed towards antagonistic effects (figure 4a,

skewness ¼ 20.98). We also compared the number of syner-

gistic and antagonistic interactions according to each method

(figure 4b,c). We found nine of 20 cases to be synergistic accord-

ing to the DA measure. That is, the growth of the triple

combination was often lower than the expected growth based

on single-drug effects. However, only two of these cases

were synergistic according to the E3 measure. Because the E3

measure leads to fewer synergistic classifications than the DA

measure, the synergistic effects measured by DA are often

the result of synergistic pairwise interactions, rather than an

emergent interaction of the three drugs. Conversely, only

three of 20 combinations were antagonistic according to the

DA measure whereas five of 20 cases were found to be antag-

onistic according to the E3 measure, meaning that the growth
of bacteria under triple-drug combinations was considerably

higher than the expected growth based on pairwise inter-

actions. Frequencies of specific antibiotics involved in

emergent synergistic and antagonistic three-drug interactions

are given in the electronic supplementary material, figure S3.

In the case of synergies, every emergent synergy was also

considered synergistic as measured by DA (figure 4b). This

was not true for antagonism, where most emergent antagon-

istic combinations (four out of five as measured by E3) were

not also antagonistic by the DA measure (figure 4c). In

addition, there were only two triple-drug combinations that

were antagonistic solely from the DA measure, compared

to seven triple-drug combinations that were synergistic

solely from the DA measure.
4. Discussion
In this paper, we have conducted comprehensive exper-

iments to measure all single, pairwise and three-way

interactions for a set of six antibiotics. We also developed a

metric to quantify whether there are interactions that arise

only when all three drugs are present and are not simply a

result of pairwise combinations, and we refer to this type of

interaction as an E3 interaction. Using these experiments

and theory, we systematically investigated three-drug inter-

actions for our set of six antibiotics and showed that our

new E3 measure is conceptually distinct and yields consider-

ably different results from the default method for analysing

interactions according to the DA measure. As we explained,

this DA measure quantifies net three-way interactions that

could be arising from interactions among either drug pairs

or all three drugs. Thus, the E3 measure can be used to ident-

ify three-component interactions that have emergent

properties—whether synergistic or antagonistic.

Notably, we find higher levels of emergent drug inter-

actions than previous work, including an impressive study

by Wood et al. that involved six three-way antibiotic combi-

nations at a range of concentrations (in contrast to our 20
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Figure 4. Comparing interaction measures for triple-drug combinations. Comparison of measures of DA and E3 interactions are based on 20 triple-drug combination
experiments. Of the 20 combinations, E3 is non-applicable in four cases because of both two-drug and three-drug lethality. Thus, it is impossible to see the effect of
the third drug. DA is applicable in all cases because this measure ignores two-drug effects. (a) Overlapping histograms for measures of DA (white bars) and E3
interactions (black bars) with bin size of 0.1. (b) Venn diagram comparing overlap between synergistic three-drug interactions according to measures of DA and E3
interactions. (c) Venn diagram comparing overlap between antagonistic three-drug interactions according to measures of DA and E3 interactions. In both (b) and (c),
the shaded area indicates the combinations which are fully synergistic or antagonistic, that is, synergistic in both DA and E3 measurements, or antagonistic in both
measurements.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160800

7

three-way combinations at fixed concentrations). Interactions

in these data were searched for by Wood et al. [36] using

maximum entropy methods and more recently by Zimmer

et al. [37] using a model based on Hill functions and inter-

action coefficients. Those studies concluded that the vast

majority of three-way interactions are additive or can be pre-

dicted from pairwise interactions. This important difference

in results and conclusions is likely because neither of these

previous studies performed a rescaling based on maximum

entropy or other methods to set a baseline expectation for

synergy or antagonism as done here or in previous pairwise

studies [35,38]. Indeed, some of us recently re-analysed Wood

et al.’s data using a few rescaling methods and did find the

existence of several higher-order emergent interactions [48].

In addition, these previous studies did not explicitly dis-

tinguish between net interactions and emergent interactions

as done here, and thus did not look for patterns that we find,

such as emergent (E3) higher-order interactions tending to be

more antagonistic than net (DA) higher-order interactions.

Indeed, our results suggest emergent synergies in three-drug

combinations are infrequent but do exist. Before further inves-

tigation of these emergent synergies, however, it is important

to note that there are cases of emergent synergies that may

not be clinically advantageous. From a clinical standpoint,

designing the most effective drug treatments requires using
three-drug combinations that have a net interaction—produ-

cing more effect than expected based on single drugs—and

that have an emergent interaction—all three drugs produce

more effect than expected based on pairwise interactions.

Otherwise, there is little to be gained by using the three-drug

combination because more drugs would be used than may

really be necessary. Consequently, the optimal three-drug com-

binations are likely those that show the same type of interaction

according to both the DA and E3 measures, corresponding to

the shaded intersection region in the Venn diagrams in

figure 4b,c. We see that there are two such fully synergistic

interactions (and one such fully antagonistic interaction)

among the 20 combinations we studied.

This relative paucity of synergistic interactions can be better

understood by taking a wider perspective and by looking at the

entire histogram of the E3 measure that reveals the overall dis-

tribution of interaction types. Our study shows that when

taking into account pairwise (as opposed to single-drug) effects,

the amount of antagonism increases, as seen by the rightward

shift of the distribution in figure 4a. According to the DA

measure, it may appear that the addition of more drugs leads

to greater synergism. However, when we look for emergent

properties of three-component interactions according to the

E3 measure, we find that emergent interactions are in fact

more often antagonistic. Natural populations, such as soil
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environments, often have many different species, including

multi-drug-resistant strains that produce many different anti-

biotics [49,50]. It therefore seems likely that in the wild the

outcome of many interacting antibiotics would be antagonistic

to attenuate the effects suffered by natural bacteria. Given that

synergistic and antagonistic interactions are roughly equally

represented among pairwise interactions [35], there is no

obvious explanation for this potential paradox.

Interestingly, within the drug literature, synergistic inter-

actions appear to garner more attention and research than

antagonistic ones. In the clinic, the goal is to use the synergy as

a positive to eradicate the entire population of harmful bacteria

due to the greater killing efficiency of synergistic drugs. How-

ever, from a basic rather than applied perspective, there is

no reason to place primacy on synergism because the percen-

tage of antagonistic interactions, in both drug–drug and

ecological-driver effects, is roughly equal to the percentage of

synergistic interactions. (In drug studies, 26% were found to be

synergistic and 37% antagonistic [35]; in terrestrial systems,

35% synergistic and 42% antagonistic [39]; and in marine sys-

tems, 36% synergistic and 38% antagonistic [51]). Moreover,

our study suggests that antagonism becomes more frequent

than synergism when searching for emergent higher-order

interactions. Furthermore, antagonism itself is relevant and

interesting when examining drug combinations, given that

antagonistic drug combinations may be better at slowing

down the evolution of resistance [12] and decreasing the

likelihood of resistance evolving [11].

A natural extension of the methods and results in this paper

would be to allow stressors to be adjusted across a large gradi-

ent by changing drug concentrations, thereby covering cases

like those studied by others such as Wood et al. [36] and

Zimmer et al. [37], to determine whether our findings about

the prevalence of synergistic and antagonistic interactions still

hold. Dose-dependent interactions with three or more drugs

[37,52–54] have been studied by extending the Loewe additiv-

ity measure that classifies two-drug interactions based on lines

of equivalent growth rates (isobolograms) across a range of con-

centrations of the combined drugs. In this regard, a study by

Jonker et al. [55] uses Loewe additivity and provides a model

that can test whether the interaction type is independent of

the absolute concentrations of the combined drugs or depen-

dent only upon the dose ratios of the drugs. Further work is

required to extend our framework in order to identify emergent

interactions when there is a gradient of drug concentrations.

Another possibility to consider for combinations of drugs is

that stressors can occur in sequence, rather than simultaneously,

and with different timings [16]. If drug interactions depend on

the sequence and timing with which the drugs are administered,

these factors could be optimized for pathogen treatments

for patients. Therefore, sequential multi-stressor interactions

are a topic that could be explored in the future by using and

extending our new framework on emergent interactions.

This framework could also be generalized to other systems

with three or more component interactions that require quanti-

tative analysis. As an example of our framework applied to

more than three components, we derive the emergent four-

way interaction measure in the electronic supplementary

material text S1. Although our experiments were carried out

in a bacteria–antibiotics system, the questions addressed here

about interactions are also relevant to larger scale systems

in terms of ecological drivers and survival of populations,

species and biodiversity. Most of the core questions in ecology
revolve around how species interact with each other and the

environment. Although several meta-analyses of ecological

two-stressor interactions have been conducted, three-stressor

interactions have been examined much less frequently (but

see [51,56]). Crain and colleagues conducted a comprehensive

review of how a third stressor affects two-stressor interactions

in marine systems. In their paper, they quantified the pairwise

interactions in the presence and absence of the third stressor,

and they found that the addition of a third stressor often

caused the interaction between the first two stressors to

become more synergistic [51]. Similarly, Chen and colleagues

used three-way ANOVA to analyse an empirical study with

three stressors on zooplankton and amphibians. They found

that the three-stressor combination had synergistic effects

that harmed survival and reproduction of the two study

species [56]. However, in these studies, it is difficult to deter-

mine what an emergent interaction is, because the effects of

the three stressors combined together are not explicitly com-

pared with all single and all pairwise stressor interactions.

More discussion on the comparison of three-way ANOVA

and our E3 interaction measure can be found in the electronic

supplementary material, text S2.

Within the field of ecology, analogous to the idea of emer-

gent properties from three-drug combinations is the idea of

emergent effects from multiple predators, known as MPEs.

There are very few empirical studies that examine higher-

order interactions that result from three or more predators,

and even fewer that examine the entire factorial of combi-

nations (single predator effects, all pairwise effects and a

three-predator effect). Indeed, we could find only three

such studies, and these studies involved a single prey species

[57–59]. In MPE studies that look for interactions among

three predators, multiplicative models are typically used

and are equivalent to the DA measure, where the fitness par-

ameters are survival rates [57–60]. However, as discussed

throughout this paper, DA is not capable of distinguishing

truly emergent interactions that require all three predators

and do not arise from pairwise interactions. Moreover,

these studies have no equivalent method to our E3 measure

for quantifying and identifying emergent interactions. In

this sense, the generalized emergent measure (E3) we pro-

pose here should be highly informative in deciding whether

complex predator–prey relationships are actually a result of

subsets of simpler interactions (with less components).

Indeed, recent work by Cheng et al. [61] shows the impor-

tance of subsets of three-way interactions for understanding

emergence in a five species predator–prey model and

suggests similar approaches may be fruitful.

Applying these ideas to ecological systems, however, will

also require additional considerations. For example, Barrios-

O’Neill et al. [62] examined how multiple predators affect

prey when the predators are of different trophic levels and

are allowed to evolve. They found that when there is a second-

ary predator one trophic level up, MPEs behave differently

when involving native versus invasive predators, demonstrat-

ing how predator–prey systems and food web dynamics are

often more complex than the interactions presented here

using drugs and bacteria. We recognize this as a limitation of

our system being applied to ecological questions that involve

multiple species and trophic levels because our study involves

only one species and one trophic level of ‘predator’ (anti-

biotics). Furthermore, antibiotics do not evolve in the ways

predators do, thus simplifying our system but also limiting



rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160800

9
its generality. Nevertheless, we suggest that the measure

derived here could aid in the quantification of interactions

among large numbers of species, but careful reasoning needs

to be applied to interpret the results for macro-organism

studies on predator–prey interactions that contain a larger var-

iety of behaviours and responses.

Although applying this framework across other systems

will require further work, we can already identify intriguing

connections between the E3 measure developed here and for-

mulae from other fields. It is analogous to theoretical physics

concepts such as the 3-point connected correlation or Ursell

function in quantum field theory, and the third joint cumu-

lant in statistical physics and statistics [56,57]. However, our

measure differs from these because it is not defined with

respect to expectation values, and the combination of two

variables is through addition and not multiplication. In the

previously mentioned work by Wood et al. [36], they insight-

fully noted that their maximum entropy calculations for

determining interaction type were well described by a

simple algebraic formula that they identified as the Isserlis

theorem. In the case of three-way interactions, this formula

can be re-expressed to show its equivalence to our emergent

interaction measure E3. However, these two approaches yield

substantially different interaction metrics for characterizing

four-way (or higher) interactions since our method naturally

includes all possible lower-order effects in the metric, whereas

Wood and colleagues considered only pairwise and single-

drug effects (see the electronic supplementary material, text

S1). Importantly, Wood et al. [36] found this formula phenom-

enologically by using a computational maximum entropy

method but did not provide a general derivation as above.

Lastly, based on our starting definition of no interaction

(i.e. BI), standard three-way ANOVA (even when log trans-

formed) is not equivalent to our correct measure of emergent

interactions (see the electronic supplementary material, text

S2 and table S3).
In summary, we provide a tool for defining emergent inter-

actions of multiple stressors. In the past, statistical methods,

such as ANOVA and maximum entropy [36,57,59,63,64],

have been used to search for interactions. The advantage of

our approach to understanding higher-order emergent inter-

actions by deriving a simple algebraic formula is that it:

(i) explicitly distinguishes between net and emergent inter-

actions, (ii) decomposes the interaction into its natural

component pieces with exactly specified and empirically mea-

surable coefficients (e.g. single-drug fitnesses) instead of an

increasing number of free parameters that require fitting,

(iii) greatly simplifies calculations, helping to avoid technical

mistakes and rounding errors while also taking less time com-

putationally, (iv) leads to re-scaling that allows consistency

with previous pairwise analyses [38] and clearer identification

of interactions, and (v) naturally generalizes to higher-order

interactions in a way that unambiguously incorporates

the effects of all combinations of subsets of components.

In conclusion, using our framework to analyse higher-order

interactions may be important for revealing emergent

properties in medical, environmental and ecological systems.
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