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ABSTRACT

The purpose of this report is to present a method of analysis
and a computer program for the determination of stresses and displace-
ments within two-dimensional structures involving incremental con-
struction and creep. The finite element method utilizing linear
variation of strain within each triangular element is used for the
analysis of complex two-~dimensional structures of arbitrary geometry
composed of bimodular material, A mathematical model has been
developed which represents the influence of creep, thermal and
residual stresses. The procedure is illustrated by a thermal stress

analysis of a section of a gravity dam constructed incrementally.
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NOTATION AND LIST OF SYMBOLS

Matrix notation is used throughout the report. Column vectors

are represented by alphabetic characters or expressions enclosed in

parentheses of the type {»} ., Wherever the elements of a vector are
themselves vectors, they are underlined ~ , Square matrices are
represented by [.] and diagonal matrices by [ . ] . In many cases,

the elements of a square matrix may themselves be vectors or square
matrices, No symbolism is used to distinguish these as their nature

is obvious in the context. Subscripts i, j, k, m, n have been used

to define summations. Subscripted zero represents the initial value.
Wherever necessary, the independent variables of a function have been
parenthetically associated with it e.g. £(x,t) denotes the function f
of vector x and scalar t., Special notations, wherever introduced,
have been defined in the text. Some of the more common symbols are

listed below:

u, v = displacements of a point in the x and ¥y
directions
ui,vi = displacements of nodal point i in the x

and y directions

Gi = the ith interpolation function

a = 00/3x, @_ = 3B/dy

X y

ex’ €y,~ny = strain components at any point

€xi = strain in direction x at nodal point i
eyi = strain in direction y at nodal point i
xyi = shearing strain at nodal point i

GX, cy’ Txy = stress components at any point

g . : . . ) . .
xi = stress in direction x at nodal point i

o . = gtress in direction y  at nodal point i




xyi

i3

viii

shearing stress at nodal point i

elements of the strain stress transformation
matrix [C]

natural or triangular coordinates
global dimensions of an element
areas of subtriangles in a triangular element

volume of the spatial domain under consideration,
bounded by the surface A

surface bounding the spatial domain N. Also
used to denote area of a triangular element

thickness of the two-dimensional element,
assumed unity throughout

increment of stress in principal direction r
applied during the jt time interval

temperature history



I, INTRCDUCTION

The Finite Element Method

The finite element method of analysis as applied to continuous
structures was introduced by Clough (1,2). Within the past ten vears,
the method has developed into a powerful tool for the analysis of
various field problems in structural and continuum mechanics., Many
excellent papers and feports have been published (2,3,4,5,8) and
therefore, the historical development of method will not be discussed
in this report, .

Essentially, the finite element method involves the replacement
of the actual continuum by a finite number of discrete elements or
sub-regions., These elements generally have planar or rectilinear
boundaries, though recent developments permit the consideration of
curved boundaries.J In all cases, the geometry of the elements is
defined completely by their nodal points ~-- points on the element §~
boundary. For the analysis of two-dimensional problems, triangular
and quadrilateral shapes are most commonly used,

For the analysis of a field problem, a spatial distribution pattern

for the unknown field is assumed within each element as a function of

the values at the nodal points, Constitutive relationships within

each element and balance laws on the complete system of elements are
then applied to develop a matrix equation relating the set of known
nodal point force quantities to the set of unknown nodal point field

variables,



The spatial distribution patterns are generally polynomials, and
their order depends on the requirements of compatibility and the
accuracy desired. The development of the matrix equations may be
achieved from a direct physical equilibrium approach or from a vari=-

ational formulation of the problem,.

Two~dimensional Stress Problem

In the analysis of the stress problem, an assumption is made
regarding the displacement pattern in an element as a spatial function

"in-plane' problem,

of the set of nodal point displacements, For the
strains are defined in terms of displacements and hence as functions
of the nodal point displacements, Equilibrium of the system is
satisfied by a minimization of the potential energy. In this case,
the nodal displacements act as Ritz parameters for the system, Solu-
tion of the set of resulting equilibrium equations gives the nodal

point displacements. From these displacements the strain field, and

hence the stress field for the system is then defined.

Incremental Construction

In the case of a structure constructed incrementally, the analysis
is carried out in the usual fashion for the changes in the loads during
a stage of construction, and the resulting stresses and displacements
are stored by the program, ’Ag each new increment is added, the new
structure is analyzed fof its response to the load increment, Super-
position of the sequence of incremental loads on an incrementing
structure gives the history of the element stresses and the nodal
displacemenﬁs. Therefore, the method does predict "locked in" con-

struction stresses,




Bimodular Material Properties

Many materials -~ notably concrete, rock and soil -~ even when
fairly isotropic, behave differently under tensile and compressive
stresses, Ambartsumyan (7,8) has shown that for linear, isotropic,
bimodul ar materials, Clapeyron's law and Green's theorem are applicable.
In this report, stress-strain relationships for bimodular behavior

have been developed for plane strain as well as for plane stress,

Thermal and Initial Stresses

The analysis presented incorporates the effect of thermal and
initial stresses, Thermal stresses arise in the case of temperature
changes under restrained geometry énd in the case of steep temperature
gradients, Initial stresses can be of predominant importance in applica-
tion of the method to excavation problems -- this is the reverse of the

incremental construction problem,

Creep Effects

Assumption of linear viscoelasticity has been made in considering
creep effects, McHenry's formulation (9) has been used with minor

modification. In allowing for creep, it is assumed that relaxation of

stress takes place without nodal displacements over a small time incre-

ment,during which the material properties do not change. This change

in stress is then neutralized by releasing the constraints and treating
the stress changes as residual stresses. It is assumed that during
relaxation the principal stress direction does not change significantly

during the time interval.




The analysis presented allows for change in elastic and creep
characteristics with time or with temperature. Thus, aging and temper-
ature-dependent materials can be considered. Also, linearity of creep
formulation assumed in the analysis is not essential. King (10} has

shown that certain types of non~linearity can be treated,

Selection of Element Type and Displacement Pattern

The constant strain triangle usingylinear displacement functions has
been extensively used (3,4,11) in the solution of two-dimensional and
axisymmetric problems., However, in many cases, this element fails to
give satisfactory definition of stress because of lack of continuity of
the strain field across element boundaries, Averaging techniques (3)
have been employed along with careful selection of element shapes to
obtain acceptable results, Quadrilateral shape elements of various
types have been tried to improve the analysis,  Wilson (4) used a quadri-
lateral element composed of four constant strain triangles and reduced
the degrees of freedom to eight by using ''condensation process' to
eliminate the additional nodal point. Recent work (5) has demonstrated
the use of eight and sixteen degrees of freedom elements, In this report,
an element composed of two 4-nodal point linear strain triangles is used,
This element has linear displacement along edges of the element insur-
ing compatibiiity of displacements between adjacentvelements and has a

quadratic displacement form within the element,




II. THE DISPLACEMENT METHOD OF ANALYSIS

Consider a polygonal element defined by a set of n nodal points.

Assuming two degrees of displacement freedom at each nodal point, the

v

~

nodal point displacement vector for the element can be written as %E§
where ug and vi are components of displacement along mutually
independent axes of reference,

Assuming a displacement pattern, the displacement components for

any point in the element are

=
i

= (9,00, . > ()= {0} (u] (11-1)

and
T
v = {8} {v]
Here ﬁi represents the interpolation functions.

Strain-Displ acement Equations

Assuming infinitesimal strains, the strain field in a cartesian

system of coordinates is given by

; ]
(e 4 g7 o
X ox b
i
‘ oV T
< e, = P =10 ay (I11-2)
‘ ~
v du T T
k.yxy = "oy ij gx .

where subscript x denotes differentiation with respect to x etc,

Symbolically {e} = [ﬂejT {r} where {r} = {%} .

o

Stress Strain Law

Assuming linear stress strain relationship for a given time or

temperature, the general anisotropic relation is:




™ 1
%% 11 G2 G| (%
o, 1= [Cxa  Cap Casl (e (11-3)
Ty £3»1 C30  C33 | Vxy
or symbolically
{o} = [c] {e}

Potential Energy of the System

The potential energy for an elastic solid is given by the formula
U = %_é{G}T {c)av iz;u}T {F}dv i/{u}T {Plaa (11-4)
' A

where F 1is the body force function and P is the boundary force
function, For a finite element system, composed of M arbitrary ele-

ments, the above equation can be written as a sum of integrals, each

integral covering one element., Thus,
M ‘
1 m,T m m4T m m,T m
U:Z -éf{o-] {e }clvm -f{u} {F }dvm —f{_u} {p }dAm
me=l \'s v A
m m m

(11-5)

The surface integral exists only if the mth element is on the boundary
of the structure and subjected to surface tractions P,
Substituting for stresses and strains and displacements in terms
of nodal point displacements, we have
M 7" o
1 T ., m m m.T ) T m Tem
o= S [T M1 M ey, <[ 3T e, [T e e,
v % 0 @ A
m=1 m m m

(11-6)




If thermal and initial stresses are present, these will do work in

going through the mechanical displacements., These can be included in

the expression for potential energy:

m

, g" 0
1 T m m m.T T m
v= -§~L{r} (9, 10c" 108" 1" {rlav, -j;{r} [O gl
m=1 n m
..f{ r}T[ﬂem]{O‘tm}de +f{r}T[Q§€m]{com}de (11-7)

m m

<[t ",
Am .

where {ctm}isthe stress vector due to temperature rise under complete
constraint and {com} is the initial stress vector existing in the
element prior to application of the external forces and displacements,

Total stress is then defined as
(6"} = €"1{e"} - {0} + {0} (11-8)

Treating the nodal point displacements fr} as Ritz parameters
and selecting them such that the change in potential energy is an

extremum, we obtain the set of equations

au_

St = 0 , i=1,2,,,., N ' (11-9)
i

where N is the total number of unknown nodal point displacements,
These equations give the following relationship for the equilibrium of

a finite element system:




M

m=1 m

" o

Ly

m=1

v M
z fvwem][cm]mem]rr{r}dvm - va [o gm] 7'} + 10,7200, -0} | av,
m

(11-10)

+ i[A{Pm}dAm

m=1

m

As displacements {r} are the only variable set for a given systenm,

we have, symbolically,

{Q} = [k1{r} (II-11)

where [K] 1is the stiffness matrix for the complete finite element

system, given by

M
[K] = > ,[Km] (11-12)
| le | |

where the element stiffness [Km] is

m m m m-T |
K™] =fv[g€ 1™ "1 av, (II-13)

m

The load vector {Q} is defined as

{Q}

where the body force matrix is

gm
" = A,m L

and the load vector due to surface forces is

Solution of the equation

M M |

i Z{Lm} ¥ Z~{Rm} (11-14)
m=1 m=1 ,

° m m m m-

gf"] {F b+ [0, o -0l avy (1115
T m ’

(=3 =fAm{P L (11-186)

{Q} = [Kj{r} gives the nodal point displace~

ments, These are resubstituted in the equation for stress, 1i.e,

" = [cm][gem]qir} - {o,"-0 "} to evaluate the stress field,




I1I, THE LINEAR STRAIN QUADRILATERAL

As the quadrilateral element is composed of two triangles, properties

of the linear strain triangle will first be examined,

The Linear Strain Triangle

For linear variation of strain with a triangular element, the dis-
placement pattern has to be quadratic, For a complete quadratic
expression, including rigid body displacements and the state of constant
strain, six generalized coordinates are needed to define each of the

two displacement components,

Using nodal point displacements as the generalized coordinates, an

element with six nodal points is selected., Three nodal points are the
three corners of the triangular element, The additional nodal points
are, for convenience, located at mid points of the three edges (Fig. 1).

To define the displacement along an edge completely in terms of

displacements at corners, it is necessary to have linear variation of

displacement along the boundary of the quadrilateral. Thus, for the

linme ar strain triangle to be part of a quadrilateral element, it will be
assumed that displacements at the nodal point 4 are the average of those
at nodal points 1 and 2, and, similarly, the displacements at nodal
point 6 are the average of those at nodal points 1 and 3, With these
assumptions, the generalized coordinates associated with nodal points

4 and 6 are eliminated, and the number of degrees of freedom for the

triangular element is reduced to eight,
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FIG.I LINEAR STRAIN TRIANGLE

~ 0,10

Ei =A; /A
3E =

FIG.2 TRIANGULAR (NATURAL) COORDINATES
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Interpolation Functions

For a linear strain triangle, using quadratic interpolation, we
have the following relationship between displacement within the element

to nodal point displacements:
f;lml-lﬂ
: §2(2C2~1) ,
{u} v vy ug v, ug ug <§3(2C3—1) ‘ (1T1-1)
1 V2 V3V Y5 Y 466 ?

4[;2(‘:3
4C3€1

/

where Ql, Cz, C3 are ""triangular"” or "natural’ coordinates of any
point. These coordinates are illustrated in Fig. 2 and have the follow-

ing properties:
A

i
i A
C2
3C . (I11-2)

b
i
2A
a
—r __L
oy 2A

where A A

1 A are the areas of three sub-triangles in Fig. 2; A

2’ 73

is the area of the element, and a, bi are the global dimensions of

the element shown in Fig. 3., Using the assumptions

1
u, =3 (u1 + u2)
1
Vg =3 (v1 + v2)
1 (I11-3)
ug =3 (u + uy)
1
Vg =5 (v + Vy)

we have for the four nodal point linear strain triangle shown in Fig. 4

the following expressions for displacements




FIG.3 GLOBAL DIMENSIONS

FIG. 4 FOUR-NODAL- POINT TRIANGLE
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r
o)
u i u; u, ug ug g2(1—2g3)$ (1110
v V1 Vg V3 V| |63 %y
Lebs

Strain - Displacement Relationship

For the two-=dimensional problem the infinitesimal strains are

related to the displacement field by

3 o]
€x ox ©
3 u
= [0 J— -
€y Sy . (I11-5)
3 9
’\{ — oxmcm—
xy L.ay BX.J

Substituting for displacements {3} in terms of nodal displacements

we obtain

ex é% 0 ] . } ?
e = Q P :
y dy
) o o o o 6907200 3(1-20y) 4C, 0ol (Y

YXY LS§ S;” :

gr o]

x u

= 0 gr ’”} (I11-6)
y A\
T T ~
ﬂy ﬂx

where {u}, {z} are the nodal point displacement vectors.
Carrying out the differentiation and evaluating ﬁz, ﬂg for the
nodal points 1, 2, 3 having natural coordinates (1,0,0); (0,1,0); (0,0,1),

the nodal point strains are:



o
exl
€x2
€x3
¢ € U 0
~x yl
X
€ € 0 A%
NS ? } {x}
ﬁxy €y3 LV U_
€xyl
€xyz
°xy3
where,
{%l b2 b3
1
[U:I = -2*’A— bl b2_2b3 b3
LPl “hy  bg-2b,
{;1 ) %3
V] = — a,-2 -
%R |1 #2783 a3
al ~a2 a3~-2a2

14

(I11-7)

Linear variation of strain within the element implies the follow-

ing relationship

= b
€x lexl + C2€x2 + g2 €x3

or in matrix notation

x1
e, = (€68 Ly 0= {6} {e,

x3

}

(111-8)




and similar relationships for ey and ny . Thus, the strain at

any point (Cl, Qz, QS) is given by

(e ‘ QT 0 0-1 e
X ~X
T
led = Qe - Sy
T
My ,f 0 ¢ ) Exy
(1I1-9)
-
[’T 0 07 U 0
u
- T ~{ _ T
= |0 ¢ O 0 Vv e [e.1 ir}
T o~
0 o0 vV U
L. » L

where {r} ={§}

e

Stress~Strain Relationship

For the two-dimensional problem, the linear stress-strain relation-

ship is adequately represented by

Ty 1 G2 G3) (% ?

o, ) = [Cy Chy Coa| sy (111-10) .

Txy €31 Cag ngJ Yy |
L ,

or, symbolically
{0} = [c]{e} = [c18,T {x)

Here [C] is a symmetric matrix, For the case of linear viscoelasticity,
Cij will be functions of time,

It is possible to assume a variation of material properties with
each element. 1In that case, a suitable interpolation formula can be

used to express Cij for any point (Ql, Cz, QS) in terms of the



constitutive relationships for the nodal points,

material property matrix

element.

[c]

Calculation of Stiffness of Triangular Element

We have already shown

by

m m Jn m.T
") =f 1001 1" (71" awm

Substituting from Egq, (III-9) for [ﬂej

vt 0 va (c

K" = 0
~j; T T 'i?

In this equation

(Eq.
m

o o
g o
0 ¢

16

In this report the

is assumed to be constant within each

11-13) that element stiffuess is given

ot

m
Qll

]
C21
i
031
-

m.-T

m
C12

gtk

022

Jn
£32

we obtain

~13

il
C23

i
C
33

i

o |
Vm dVm
Um
(111-11)

[Um] and [Vm] are functions of the element dimensions

only and are not a function of spacesthus, the integration is confined

to

9
0
0

Ogy @

[ mj;m

=)

n
11

C21

n
CSl

by

m 1
€12 G3

i i1}
Caa Caz

T mn
< ¢

32 s3] [

o

T

€

o

dvVm

For homogeneous material properties over the element, the above integral

is

[9] =

g

m mn
CllQ ClZQ €

il

m m (i
CZlQ C?EQ 023Q

13

R
59




where
2 e,
Q] =
[Q] jc S
m
€36, E3C9
Lo

Volume integration yields (5,12)

1
S
)
1

where h 1is the thickness of the element and is assumed to be

gy

Clg3 '

Cals

2
C3
wd

dvm

Thus, the element stiffness, Eq. (ILI-1D, reduces to

o
13

Q

™ m m
m’ me €119 C1°
m Amhm U 0 v m m m
(K] =3 T T Co1@ Cpof Cp3@
o v' " _?alQ C399 C33€

Stiffness of the Quadrilateral Element

The stiffness matrix for the linear strain triangle relates the

17

(I11-12)

uniform.

o

m

(I11-13)

nodal forces at the four nodal points to the corresponding displacements,

In the quadrilateral element (Fig. 5), the element has five nodal points.

To add the stiffnesses of the two component triangles, the triangle

gtiffness is expanded to accommodate the additional nodal point.

Thus, for triangle dD
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a. TRIANGULAR SUBELEMENTS

)

l

b. ASSEMBLED ELEMENT

FIG. 5 QUADRILATERAL ELEMENT
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i}

where {rn}

i

[
Kll KlZ
KZl K22
K4l K42
K K
1
L 5 42
(X, 1(z)
u
o I
n

K14 KIJ
K24 K25
K34 K45
| K54 K5 SJ

and each K, .
1]

IR

11

21

41

51

12

22

42

52

is a 2 x 2 matrix

the two degrees of freedom at each nodal point,

Also for triangle

x &= G

K3

K43

K23

L..K5 3

K34

K44

K04

K54

- [k, 1(x)

These stiffness matrices

2

23

33

43

53

14

24

44

54

19

-
K15‘ frl‘\
Kos| | T2
0 < r3
Kesl | 74
KS?J \rsd

corresponding to

24
34
44

54

the total stiffness matrix for the quadrilateral element,

Elimination of Center Point

OT [r1'
Kos | | T2
K35 <r3
k45| |7,
K55 Us

[Klj and [K2] can be directly added to give

The central nodal point (No. 5) can be eliminated by standard

"condensation'' procedure (4) to obtain the 8 x 8 stiffness matrix,

Partitioning the stiffness and the load matrix, we can write
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i
K ¢+ K T Q
b
EE%{._RE- ;E} = {@é} (111-14)
ba! “bbj b b

From the above equations,

= ™ [0,

Substituting in the other equation, we have

[K*]{ra} = {Q:} (I1I-15)
where,
* -1 _
(K] = [ J-[X XK, 17 K] (I1I-16)
and,
* -1
{Q,} = {o}-x Ik, 1" {q} (111-17)

If desired, the stiffness calculation can be repeated with the other
diagonal of the quadrilateral as the common diagonal between subelement
triangles, and stiffness averaged. However, in most stress problems

this would be unnecessarily expensive in computer effort.

Calculation of Load Vector

The body forces are assumed to be uniform within each element and
lumped at the four nodal points of the quadrilateral. One~fourth of
the total body force on the element volume is assigned to each nodal

point. Actually, by carrying out the evaluation of the integral

/ 7" 0 | e v
Vﬁ 0 g

in Eq. (II-10), we obtain equal distribution of body loads over the four

nodal points I, J, K, and L of a quadrilateral, and twice that load
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at the center point, for the case of two triangular subelements having
equal area, Thus, it is often reasonable to assume equal distribution
of the body forces for all the four nodal points,

The boundary loads are replaced by equivalent nodal point forces
having the same resultant magnitude, direction and position as the
boundary loads.

The initial stresses {02} and thermal stress {02} contribute
to the load matrix the term

m m m m
{Lc} -.:j; [(256] {Ot - co} dVm (II1-18)

m

The stress values specified are assumed to apply to the mid-point of the
common diagonal. The coordinates of this point are (0, %, 3) in the
natural system, Thus, all the quantities under the integral are con-

stants, and we obtain

- g
T T t X0
. - ™ o V¢ ¢ o0 © o
{L}:Ah 0o ¢ O o - a
o] t yo
T o lo o
o V' U _m
Xyo
Substituting for { = (0, %, %) ,
m m
T T c, -0 ¢
m_mn (060 Ve a2
{L}:Ah o - o
o T t yo
o v'¢ uvteg) |-"
Xy o

where
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mT mT
n vig 0 Vo
[oh,1 =
mT mT
0 vV [ U
and
o m
b1
m
T -t
{Um Q} - 1 3
oa™ -p"
2
:me
r_m
&
m
T -a
NI A
2A —a,
m
\;-'Zal
Thus
m m
0
Py #
m m
b3 0 —aq
3 —n ™)
b2 0 a, mo_
o n t X0
-2b 0 -2a
"} = 1 ! <cm - > (111-19)
0 am bm t yo
1 1
m m -
0 ~aq —b3 \ xyo J
m m
0 —az —b2
m m
‘L 0 —Zal —Zbl
.

for each triangular subelement. For the quadrilateral, the load vector
is expanded to dimension 10 x 1 and then the vectors for the two sub-

elements can be added directly.
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IV. CREEP ANALYSIS

One~-Dimensional Creep

If a material that exhibits creep behavior is subjeéted to a con-
stant stress level ¢ , the strain response e(t) 1is a function of

time., Under uniaxial loading, the creep law can be written as
e(t) = oJ(t) (1Iv-1)

where J(t) 1is defined as the uniaxial creep compliance. The basic
assumption made in the field of linear viscoelasticity is that the

compliance J(t)’_is independent of the stress level ¢ ., This

v

assumption allows the principle of superposition to be used (Boltzmann,
Volterra). Therefore, if the stress is applied incrementally over a
period of time, the strain at some later time ''t" may be calculated
by summing the effects of each increment of stréss. Mathematically,

this can be stated as
e(t) =fde(t) (1v-2)
From Eq. (IV~l), the incremental strain is defined as

de(t) = J(t) do(r)

(1V-3)

= J(-‘t-) .a_O'-S.I)- dr
aT

where T and t are defined in Fig. 6,
Therefore, the total strain at time '"t" due to the initial stress
co and the incremental changes in stress is

‘ t 30(m)
e(t) = g J(t) +f J(t=7) Q01T e (I1v-4)
o o aT
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It is of interest to note that for statically determinate structures,
where the stress must be independent of time, the integral vanishes.
One possible representation for the compliance J(f) is the

following exponential form:

~ o ~mnt
J(t) = J(o) + z Jn e

n=1

For a material like concrete, which has properties that change with age,

the above equation is generalized to include the age dependence., Then

- o -mn(T)E
J(t,7) = J(o,T) + jg Jn(T) <1~e (IV-5)

The above equation represents McHenry's creep laws accoxding to which
the compliance function
N ‘mn(T)(t“T)
£(t, 1) = fo(t) -+ :S fn(T) (i—e > : (1v-8)
=],
where N is made sufficiently large to adequately represent the /

material ., -

For simplicity, including the initially applied stress under the

integral, for aging materials,

t
co <[ 2c,m 2202
t

3
© (IV-7)
Gt
= £(t, Ndo
S :
o
Or, expressing the integral as a rectangular sum
m ,
e(t ) = Z £0t,,t,) Ao, (1V-8)
=1

where

N -m_(t.)[t -t.])
_ I AN Ik "I -
£(t,t) = £ (6 z £,(6)) (1 e (1V-9)

n=1
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Three-Dimensional Creep

For the case of three-dimensional stress, the above formulation

may be generalized to include the influence of the other stress components.

If Poisson's ratio is assumed to be independent of stress level and.
time, and if the principal stress directions do not change significantly
during the time interval, the relationship between principal strains
and stresses is
m m m
CRDIRIDYRSD)
m,l m,2 m,3

where
m m ‘
A {r)
= AT =
z z £ (8,8 Ao (r =1, 2, 3)
n,r Jj=1

€2 and 63 are given by similar equations, The superscripts (r)
denote the principal stress direction and m 1is the number of time

steps at which stress increments are applied.

Fm )

=

=]

1

. N
[0
&
—
il

H
<
H
H
i
<
[av}
. S
BM=
o
—

(1v-10)
. m
€ Y -\ 1
és) ™M1 V2t wf‘—’:%‘
or symbolically
m
{e} = [M] { } (IV-10a)
2

If the strain is kept constant and the stress allowed to relax,



m+l

{e} = [M] Z Z

m+l

Repeated application of this equality yields
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€ M e e e e M Iv-11
{e} = (] = [ ]z oy} (av-1D)
m+l
where {6(0)} is the matrix of initial strains, Noting that
m+1 m
(r) (r)
= c
25 zz + £ (tm+1’tm+1) b m+l '
m+l, 1 m+l,r
we can write the above equation as
m
] Jece ot ) Ao b = [M] (ECE,t) Ao, - z (IV-12)
m+1
These equations give the stress changes AC for the (m+1)th time

m+1

interval as a function of the stress changes for all the preceding

intervals,

Using the formulation in exponential form for f(tm,tj),

we have

m m N nmn(tj)[tm+l*tj]
z = Z £t )+ an(tj) (1-e : )Adj
n=1

m+1 J=1

Changing the order of summation, we obtain, for time invariant m

m N m -mn(t.)[t
Z“z £(t) - £ (t) e J
= nJj n-J

m+1 n=1 j=1

N m mmn tm 1 m m t,

z z:f(t.) AG, -e * £(t) e J

nJ J n Jj
n=1 J=1 j=1

o)
+ fo(tm+1) m

m+l"'tj:| -
bo + Zfo[tml o
j=1

(1v-13)

i
&
h
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Let
m
b = ES £ (t.) Ao,
nm n- J J
j=1
and (Iv-14)
m mn t.
C =zf(t.)e J o,
nm n j J
=1
then
b =b + £ (t) Mo
nm nm-1 n m m
and (IV-15)
mn tm
C = C + £ (t) e JiYej
nm nm=-1 n m m

Using the above symbolism, Eq. (IV-13) can be written as,

m N N -mn tm+l
= b - :2 e cC_+f(t )o -
nm nm o m+l m g
m-+1 n=l n=1 (IV-16)
Subgtituting (IV-16) in (IV~-12), we have
' N N -, el 5
o = o, - .
[M]{f(tm+l’tm+l) b m+1} [M] fo(tl) b 1l :E:bnm + 25 © Cnm o
n=1 n=1
(IV-17)
- fo(tm+1) oﬁ
Also, at any stage
3¢ | |
e = £(E L, T, f
o (t),) ( J’ J)
J ;
Hence, :
o = (1V- L
[M]{f(tm+1,tm+l) A m+1} [M]{fo(tm+l) Acm+l} (1V-18)

Substitution of (IV~18) in (IV-17) and transposition of the terms

fo(tm+l)cﬁ yields, on restricting summations to N = 2,
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M el "Myt
[M] {fo(tm+l)0m+1} = [M] (£ (t)A0) - b -b, +e Cip * © Co
(1V-19)
or, as Acl = 01, we can write symbolically
1 rF, dlo,  d=mipr 300} -} (1V-20)

where,

P F d = strain-stress or flexibility relationship at time
m+1

stage t ’

m+1
F F1 d = strain-stress or flexibility relationship at time
stage tl )
{Gm+1}’{cl} are the stress state vectors at time stages
tm+1’t1 respectively, and

{3}

b 4 b - e—mltm+l o - e-mztm+1 o
m im 2m 1m 2m

If {Oﬁ} is the stress vector at time stage tm’ then

] cF, J{o)=m]rr I} - i 3 (1v-21)
From (IV—20) and (IV-21),

my] pF, 3o 3 -0F {0} =- L -L 3} (1v-22)

For use in computer program, a stage for stress relaxation is
chosen small enough so that the stress-strain law and the creep func-
tions can be assumed constant during this small interval., Thus, for

m+ 1 = 2, we have, assuming m m for any direction to be time

17 72

independent,
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M] FF, 3 {cz} - BE {cl} = - [M] {Ll} - (1v-23)

For [F,]=[F,] and L, Jd = EFl Jnl , Wwe have

{a0,} = {o,-0,} = - p & ] {1} (1V-24)
Also using
-m, (t. ~t,) ~m., At
17721 = e 1 ~ (1 - mlAt)
and
-m_,(t,~t,)
e 2 21 ~ (1 - m At)
2
{Ll} ::{((fl(tl) + 1,0t - (l—mlAt) fl(tl) - (1-m At) fz(tl)> o
= {}fl(tl) m, + fz(tl)mz)cé} (Iv-25)

Thus, {02-—0"1} is completely defined in terms of {AOI}. In general,

for f F J practically equal to EFm+1 4, Wwe have

}

i

M] FF, ] {Acm+l}. - [M] {Lm—Lm

~1
and therefore, because [M] is a non-singular square matrix

{ao

m+1} =-TK ] {L - .} (1V-26)

m  m-1

For m = 2, a typical term in the column vector {Lm"L } is

m-1
Lé®—Ll®= [mlfl(tZ) + myf,(t) ] AczAt + (mlfl (tl) [1-m, At] +

+ mzfz(tl) [1-m2At]> AdlAt
and so oﬂ, in general, for equal intervals of time Nt
{Lm—Lm_l} =(fmy £y () + mzfz(tmﬂ Ao At + Ehfi(tm_l)[l—mlAt]

m-1
+ mzfz(tm_l) [1~—m2A1:]:l Adm__lAt oo [mlfl (tl) [l-mlAt] +

mzfz(tl) [l-mzAt]m-{l AG. Ot (IvV-27)
1 .




It is to be noticed that the three terms in the {L -L .} matrix

are mutually independent and can follow different laws.

Specialization for Plane Stress and Plane Strain

The relaxation of the three stress components is uncoupled because
of [K J being a diagonal matrix, Thus, reduction to cases of plane

stress and plane strain is direct and consists only in including the

effects of relaxation of only two stresses.

Noting that E‘Km g is a diagonal matrix of elastic moduli in the

three principal directions at time tm, we have both for plane stress

and plane strain the equality

D | 1
AT 0
m+1 Eiﬁ (tm)

re @ 0 =

i

m+l EEZS“: y |

gy

Thermal Creep

In case the coefficient functions in Eq., (IV-9) depend upon

temperature and are not time~dependent, the system can be analyzed as

follows:
t 30, ;
e(t) =[ (=1, 1) = at + B [T(1)]
where
t
g [T(N] = g(Ty)
T=0

represents the thermal strain at zero stress and equals free thermal

expansion, Also, the initial compliance is included in the integral.




In the above equ

tional of temperature history TS.

variation of strain with time,
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ation J is a function of (t-7) and is a func-

it would be reasonable to assume

analogously to Eq. (IV-5), taking m to be time and temperature

independent and Jn

J(t

to be temperature dependent

0 -1

™ = J(0,T) + 25 I (D) e

n=1

=]
ot

(Iv-30)

or, in a form analogous to McHenry's equation for aging materials

(1V-6)

£(t,T)

Thus, using

o

(1v-29)

m

25 £(t

j=1

i

e(tm)

N

*mn(t-T)
= £ (1) + 22 £ (T) <é~e

n=1

m-tj,T) ch + g(T)

-m_(t =t.)

(1v-31)

rectangular summation to replace the integral in

m N
- - n m J
= z £(1) + z £ (T) (1 e > bo, + g(T)

j=1

n=1

Changing the order of summation, we have

E(tm) = fO(T) +

If the strain is kept

N

z £ (D] o +g(T) - il £ (D) gle

hat 11}

n=1

constant and stress allowed to relax,

mpd
j; f(tm+1mtj,T) AUJ -+ g(T;
J=1

m
ji f(tmwtj,T) A@j + g(T)

Je=

il

n

(tm'tj)

(1V~32)

For constant temperature and exponential

Ao,

J
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and eventually

€ = fO(T) AO'l + g(TY

the initial strain due to first load application.

Writing
m+1 m
- AT = f - g -
I R Z (17t Boy + £ L=t 00D 80,
j=1 Jj=1

we have, for constant strain, from (IV-32)

£ (tm+l ﬂtm+1 ™) Ac’m+1

i

m
Z CHELIN I CH ~g (1)
;=1

m

£ (1) Ao - z £(t, 1=t D A0, (1V-33)
Jﬁl

il

Now

m m N ‘ "mn(tm+1"tj)
z f(tm+l—tj,T) AOJ = z fO(T) + z fn(T) (l«e > AGJ

J=1 J=1 n=1
N N 'mn m+ s 1’1 J
= £ (1) o + z £(1) g z £(D e Z Ao,
n=1 n=1 j=1
N N antm+1
= fg (@ + z £ (M| o - z £(T) e c_. (IV-34)
1=l =
where
m mntj
Cnm = Z e AO‘J
j=1

and




34

Cop = Copy * o po (1V-35)
Also
Cnl - " Adl
We also have
£Ct gt 0T = £ (T) (1V-36)

Hence (IV-33) becomes

[

N N
-m t
n m+l
fO(T)Acm+l fo(T)Ac1 - (%O(T) + ; fn(T9 cm o4 2 fn(T) e Cnm

n=1 n=1
(Iv-37)
Using N = 2,
—mltm+1
o = -
fo(T)A el fO(T)Ao1 fO(T) + fl(T) + fz(T) Gm + fl(T) e Clm
2 m+l .
+ fz(T) e sz
or transposing fo(T)Gh , ;
—mltm+l -
£ (Do o= £ (A0, - {£(D) + £,(D] o + £,(D) e c. .
"mztm+1 (Iv-38)
+ fz(T) e CZm
For the previous time interval, the above equation will give
-mltm
= T =
£ (Mo = £ (T)A0, 200 + fz(T)‘ O * 5 (Me Cl et
'mztm (1v-39)
+ fz(T) e CZm-l

Subtracting (IV-39) from (IV-38) yields for tm+1~tm = At
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m-1

wmltm =m2At
+ fz(T) e C2m e -CZm—l

-m_At
Using (IV-35), the above equation gives, on setting e o ﬁ‘(l—mnAt)

~m1tm —mlAt
fo(T)Acm+l = - <fl(T) + fz(T)> Adm + fl(T) e C1m e —C1

for sufficiently small value of At,

fO(T)AGm+1 = - (mlfl (T) + m2f2(T)> Adm + (mlfl (T) e Clm-l

+ mzfz(T) e’ C2m-1) At
Repeated use of (IV~35) gives eventually

m-1 m-2
fO(T)AGm+1 = - mlfl(T) ((1-mlAt) AGl + (l—mlAt) AGZ + .

m=2
+ (1~m1At) Acm_l + Acm> Atamzfz(T) ((1~m2At) A

m~2
+ (1~m2At) Acz

(IV-40)

This expresses the stress variation in the (m + 1)th time interval

as a function of the previous variations, The above analysis for
uniaxial thermo-viscoelasticity can be generalized exactly as in the
case of time-dependent creep, and, for a constant temperature, the
formulation is exactly the same, Thus, to allow for thermal creep over
a small interval of time, the temperature will be assumed to be con-
stant, For different stages of analysis of an incremental structure,
if temperature changes, the creep coefficients will change. However,

a significant difference from the time-dependent analysis is that, as

the structure is analyzed at each stage of construction for a stress

R - (1-m2At)AGm_1 o+ AGm) At

1
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increment, in the case of time-dependence, strain rate quantities
associated with the stored stresses from previous analyses are pre-
served and added to the influence of the stress change Acl , applied
as the increment in stress. For themmal creep, the total stress
stored, as well as the stress increment, is applied as the initial
stress change Adl, for calculation of relaxation of stress over a
number of small time intervals., This is because thermal creep is age-

independent and can be translated along the time axis,.
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V. BIMODULAR MATERIAL PROPERTIES

In the two~dimensional stress problem, the relationship between

strain and stress can be written in terms of principal stresses and

gtrain as
T 1o 2 _ s o )
1 El E2 E3 1
v
1 3
4 € > = |- = 1 - == < o > (v-1)
2 E1 EB 2
Vv v
1 2
€ - - == 1 g
S T T R 3

where 1, 2, 3 are the three principal directions or, symbolically,

{e} = [F] {d} | (V-2)
For [F] to be symmetrical,
v \Y v
1 2 3
For plane stress where C_ = 0, we have
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r v
1 2
€ = == 5}
1 E| E, 1
v
1 1
€ - = =1 \o
2 El E2 2
B
(V-4)
f2 s
U e T
T E
2 1= vz 1l 62

For a bimodular material exhibiting isotropy, but having different elastic

properties in compression and tension, the following three cases arise:

1, cl =z 0, 02 =0
2 o =z 0 , 9, <0
3 Gl <0, 02 <0
if Et’ Vi represent the elastic constants for tension and Ec’ Vo the

constants for compression, then for each of the three cases above, we have

respectively
Case El E, V1 Vo [F]
1 1 =Y
1 E E ) v e [ %
t t t t Et vt 1
\ . . 1 Ec/Et Ve
t c Ve Ve | T |-v 1
c c
1 -\
3 E E v v L [ C]
C c c c E -\, 1
C c

For the case of plane strain, €, = —(bl/El)cl -(QZ/EZ)OQ +-@/E3>03 =0

Hence

+ = Vg (01 + 02)

This gives




In this case, for the bimodular isotropic material, the following four

cases arise:

o

i 1
1 T (1—vlv3) -
1
\
2
€, - E2 (1+v3)

2

R (1+v3) 9
2

1

T (vovgdl A9

1. 0420, ¢,20
= < =
2, cl o, 02 0 but cl + 02 0
< <
3. cl z 0, o, 0] but op + 9, 0
< <
4, Oi 0, 02 0
The following tabulation for [F] results:
E
Case 1 E2 vl vg VS F
Y
1 2 t
( = (1-v_ ) = = (1+v)
Et t Et t
1. Et Et Vt vt vt Y
- Ay = Ay
- v
1 2 C
5 (l—vt ) - (1+vt)
2 E E vV Y v ¢ ¢
. t C t C t
vc 1
T (1+Vt) O (1-vcvt)
L. ¢ c
= Ve
% (1 vcvt) 5 (1+vc)
t C
3. Et EC vt vc vc Y . ,
-2 @A) = -y D)
E c E C
'''''''' . ¢ c
~ N -
1 2 C
l (1-~\)c )y - 7 (1+vc)
c c
4, E E Y Y Y
C c c c c v
- =2 (14+v) L (1-v 2)
E c E c
N c c N

39

(V=-5)
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Writing vc =V, vt =V Et/Ec , We obtain the following inverse relation-
ship
{0} = [c] {€}
where
E XX~ 1
] - c vR v(1+R) _ C11 012
= 5 5 =
(XX~VR) (YY-VR) -V  (1+R) v(1+R) YY-VR Coy Cop
(V-6)

such that XX, YY, R have the following values for the four cases:

Case XX YY R
N R T
: E
t Et Ec
Ec Et
2. o 1 AV e
Et EC
Ec
3. -ﬁ— 1 Y,
t
4 1 1 v

For the shearing stress strain relationship, the shearing stress can be
replaced by a pair of equal and opposite stresses at * 45° angle to the
shearing stress direction, There is no difference between the plane
stress and plane strain case because shearing stresses in 1-2 plane do

not cause any dilatation. This analysis yields the relationship

T = (V-7)

1 = C
12 1 Y12 = C33V12
tE ot 2V

L
E C t ! &

The complete stiffness relationship for principal directions is then
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9 €1 G2 O €1
o, - 021 022 0 €, (v-8)
T2 [0 o C33 Y12

This relationship is transformed to the glohal coordinates using
the usual scheme for transformation of fourth rank tensors. In the
present case, if {Ob}, {ep}, [ij refer to the principal stress direc-

tions, and {c}, {e}, [C] refer to global coordinates, then

{o,} = [c,1 Le,) (v-9)
{o} = [c] {e} (V-10)
Rules for transformation of stress and strain are
{cp} = [37 {0} or {0} = [317} {cp} | (v-11)
{e,} = [T {e} | (V-12)
Then '
{0} = (977 {0} = (977 [c e, } = (317 [c,IITI(e) (v-13) |
Hence
[l = 017 [e, 1] = [11" [c,117] (v-10)
where
cos?6 sin2e sinfcos®
[r] = sin’e cos29 ~sinBcos8 (V-15)

2
-28in0cos6 2sin@cosd cos 9~sin26

represents the strain transformation from global to principal strains, ©
being the angle of major principal strain to the X-coordinate in the

global system,
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vI. EXAMPLE

The development presented in the foregoing chapters was applied
to the analysis of stresses in a concrete gravity dam constructed 1ift
by 1ift and subject to temperature rise due to hydration and to sur-

face exposure to the atmosphere, A typical cross—section of the danm

is shown in Fig, 7 and the typical cooling coil arrangement in Fig. 8.
Due to considerations of symmetry only a 30 inch wide slice was
analyzed as shown in Fig, 9. Typical creep test data are shown in

Fig. 10. The data were analyzed to obtain the coefficients in McHenry's

equation which are shown in Fig. 11, The air temperature and place~

ment schedule of 1lifts in dam are shown in Fig. 12, The temperature
history of the dam was obtained using Wilson's (13) heat conduction
analysis procedure and constituted the data input for this example.

The computer program given in Appendix C was used to solve the §
two~dimensional problem of incremental construction with creep. Fig, 13 |
shows a history of distribution of average horizontal stress on vertical
sections., The analysis successfully obtained the effect of cold new
concrete being placed on relatively warm old lift resulting in sudden
development of high tensile stresses and the gradual subsequent
dissipation of stresses on account of creep and temperature rise due

to hydration of cement,
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APPENDIX A. ORGANIZATION OF COMPUTER PROGRAM

The computer program described in this Appendix is based on the

theory presented in the previous sections of this report. The program
is written in Fortran IV language and may be used directly on com~

puters with 32 XK or greater storage,

The program is intended to furnish a stress and displacement

history for a two-dimensional structure constructed in increments, making
allowance for the boundary conditions, residual stresses, stresses due
to temperature change, varying pressure boundaries, bimodular behavior
of the material, time- or temperature~dependent elastic properties and

creep which may have time- or temperature-dependent characteristics.

Small deformations and linear material laws are assumed, The structure
may consist of several different materials, Creep properties may also
be bimodular, Thus, the program is quite general and applicable to a
wide class of problems. Examples of application would be thermal stress
analysis of a concrefe gravity dam constructed 1ift by 1ift allowing
for creep and including effects of temperature changes, varying
reservoir elevations and gravity loads. The program can be used for
changing displacement boundary conditions and also for problems of
incremental loading ~-—- e.,g., a beam subjected to a series of load
increments, with very small modification., For large scale specialized
use, some of the options in the program can easily be elimihated.

One-dimensional elements are permitted to accommodate planes of
low shearing resistance such as jointg, and also to permit sloping

boundaries,



The principal program called MAIN controls all the data input and
control information. It does the basic system initialization, and
prints out the control data and material and geometrical properties of

the structure, Stiffness formulation, equation solving, and creep

analysis is carried out by subroutines called by MAIN.

a. Formation of Stiffness and Load Matrix

Stiffness matrix for each analysis is computed in blocks by the sub-
routine STIFF. TFor element stiffness, it calls additiénal subroutines --
ONED for oﬁemdimensional elements and QUAD for the quadrilateral elements,
The element stiffness is added to the total stiffness using the direct

stiffness technique., Concentrated forces at nodal points are added for

the newly input nodal points and pressure boundary changes included in
the load matrix., Equations are modified for displacement boundary condi-~
tions by calling the subroutine MODIFY, The QUAD subroutine interpolates
the elastic properties for the material of the element, calculates the
principal stress-strain relationship, and then transforms it to global
coordinates, With the constitutive law thus defined, subroutine EDLST

is called twice to obtain the stiffness contribution of each of the two L
linear strain triangles and also to recover the strain displacement

transformation; Unbalanced forces due to residual stresses and temperature

changes are calculated using the material constitutive law and the force-~

stress relationship obtained from EDLST subroutine. Shear stiffness, if

any, of the foundation is added and the center point eliminated from

the stiffness and the load matrices, by condensation. Loads, due to

gravity, are added for the elements in the newly-placed increment, All

this load-stiffness information computed for the element is added to

the total load and stiffness in the subroutine STIFF,



b, Calcuiation of Displacements

After the stiffness and load matrices for a stage are computed, the
resulting equations are solved by calling the subroutine BANSOL, This
subroutine uses Gaussian elimination technique developed for banded
equations by Wilson (4). The displacements calculated are for the load
increment only and are added in the MAIN program to the total displace~
ments‘to obtain cumulative displacement history for all nodal points,

These total displacements are printed out,

¢. Calculation of Stresses and Creep Effects

With the displacements known, the next step is to calculate element
stresses, This is done by CREEP subroutine, It calls STRESS subroutine
for each element for evaluation of stresses which are printed out. The
STRESS subroutine calls QUAD to obtain the strain displacement law and
the stiffness for the element, This is used to obtain the element strains
and thence the stress due to diéplacements. To this stress are added
the previously stored element stresses and the unbalanced residual stresses
to obtain resultant stresses in the global system. Determination of
principal stresses is carried out in the usual manner, The principal
stress values are used in CREEP to define the stress state for the
bimodular material, If the material shows creep, the stresses are then
modified for relaxation without any strain for the interval of time up
to the next analysis. The creep parameters, if time-dependent, are
stored and the change in stress stored as residual stress to be included

in the next analysis,
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APPENDIX B. COMPUTER PROGRAM USAGE

Input Data

The first step in the structural analysis of a two-dimensional plane

strain structure is to.

select a finite element representation of the

cross~section of the body. Elements and nodal points are then numbered

in two sequences each starting with one, The following group of

punched cards numerically define the two-dimensional structure to be

analyzed,

a. JIdentification Card - (72H)

Columns 1 to 72 of this card contain information to be
printed with results,

b. System Control Card (4I5, 4F10,2)

Columns 1-5

11-15

16~-20

21-30

31-40

41 -50

51-60

Total number of nodal points in the structure
(450 max,)

Total number of elements in the structure
(400 max.)

Number of different materials in the structure
(8 max.)

Total number of lifts in the incremental
structure {20 max,)

Reference temperature (stress free temperature)
Time of first analysis
Time interval for creep analysis

= 0 implies temperature~dependent material
properties

# 0 implies time-dependent material
properties

d, Material Property Information

The following group of cards must be supplied for each different

material:




First Card -~ (3I5,F10,0)
Columns 1-5 Material identification - any number from 1 to 8

6-10 Number of different times/temperatures for which
elastic properties are given = 30 maximum

11~15 Number of different times/temperatures for which
creep properties are given - 15 maximum, Zero
in this column shows that the material shows no
creep

16~25 Unit weight of the material
Following Cards: These are in the following three groups:

i, Elastic Properties Cards (6F10,0). One card for
each time/temperature,

Columns 1-10 Time or Temperature

11-20 Modulus of elasticity in compression

21~30 Poisson's ratio in compression
31-40 Modulus of elasticity in tension

2
41~-50 Shear foundation factor G/H or the area
of a bar element

51-60 Coefficient of thermal expansion ¢

ii., Creep Cards (F10.0, 4E10.3) - One card for each time/ o
temperature, ' ﬁf

Columns 1-10 Time or Temperature

11-20
91-30 Al’ Az'for creep in compression
31-40

41“59} A3, A4 for creep in tension

iii. Creep Cards (6Fl0,0) - One card for each material,

Columns 1-10 . .
ml, m,, for creep in compression

11-20

21-30 ) .
Mg, M, for creep in teunsion

31-40



For creep, McHenry's equation is used taking only the first two
terms of the sequence and considering indexes of e to be time/temperature

invariant., Thus, the equation is for compression

€ (t) =m, (t=T) -m,_(t=T)
c 1 1 2
S = Ec(t) + Al(T)(l-e ) + AZ(T)(l-e )
for tension
e _(t) ~m,, (t=TF) -m, (t-T)
t 1 3 4 )
5 = Et(t) + A3(T)(1-e ) o+ A4(T)(1—e

d. Nodal Point Cards (I5,F5.0,4F10.0)

One card for each nodal point with the following information:

Columns 1-5 Nodal point number

6-10 Number which indicates if displacements or
forces are to be specified

11-20 X~ordinate
21-30 Y-ordinate
31-40 XR
41~50 XZ
If the number in Columns 5-10 is
0. XR 1is the specified X-load and
X is the specified Y~load.
1, ¥R 1is the specified X-displacement and
X igs the specified Y-load.

2, XR is the specified X~load and

X is the specified Y-displacement.
3. XR 1is the specified X-displacement and

X is the specified Y-displacement,



All loads are considered to be total forces acting on an element of
unit thickness., Nodal point cards must be in numerical sequence. If
cards are omitted, the omitted nodal points are generated at equal
intervals along a straight line between the defined nodal points. The

boundary code (Columns 6-~10), XR and XZ are set egual to zero.

e. Element Cards (615, 3F10,0)
One card for each element,
Columns 1-5 Element
6-10 Nodal point I 1. For a right-handed

11-15 Nodal point J coordinate system, order

nodal points counter-

16-20 Nodal point K clockwise around.

21~25 Nodal point L 2, Maximum difference between

dal point t be 1
26-30 Material identification nodal points must be less

than 27, .
31-40 Major initial stress

41-50 Minor initial stress

51-60 Angle of major initial
stress with X~-direction

Element cards must be in element number sequence, If element cards
are omitted, the program automatically generates the omitted information
by incrementing by one the preceding I, J, K, and L, and by linearly
interpolating the initial stresses. The material identification code
for the generated cards is set equal to the value on the last card. The
last element card must always be supplied,

Triangular elements are identified by repeating the last nodal point
number (i.e,, I, J, K} K). One~dimensional bar elements are identified

by a nodal point numbering sequence of the form I, J, J, I.




In 1ift by 1ift construction, elements must be numbered in liftwise

sequence,

f. Control Card for Stage Analysis (615,3F10,0)

This card is required to mark the change in size of the structure
on placement of additional 1ift.

Columns 1-5 Number of 1lifts in the analyses
6-10 Number of nodal points in the analyses
11-15 Number of elements in the analyses
16-20 Number of pressure boundary cards (100 max.)
21-25 Number of approximations for bimodular analysis
at each time stage
26-30 Number of analyses at this stage of construction
31-40 Time interval between successive analyses,
41-~50 Time of placement of last 1ift

51~60 Time of placement of next 1ift

This card is followed by sets of temperature and pressure boundary
cards for each analysis, (Number of sets = Number in columns 26-30
of Card F.)

i, Temperature loads (12F6.0)., Temperatures of all nodal points
in the analysis are input in the above format,

ii. Pressure changes (2I5,F10,0). One card for each boundary
element subject to a normal pressure, (Number of cards =
Number in Columns 16~20 of Card F.)

Columns 1-5 Nodal point I
6~10 Nodal point J

11~-20 Change in normal pressure from previous input
value



HNormal Pressgurs

As shown above, the boundary element must be on the left as one
progresses from I to J. Surface tensile force is defined as a negative

pressure,

Output Information

The following information is developed and printed by the program:
a. Reprint of input data
b, Nodal point displacements

c. Stresses at center of each element
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$IBFTC MAIN DECK

ARBITRARY TWO-DIMENSIONAL STRESS STRUCTURE INCLUDING INCREMENTAL
CONSTRUCTION, MCHENRY CREEP, RESIDUAL STRESSES, THERMAL STRESSES,
VARYING PRESSURE BOUNDARY CONDITIONS, AND BIMODULAR MATERTAL
PROPERTIES.

aNeaEa N NA]

COMMON MNUMNP g NUMEL s NUMPC s NoVOL s TEMP s MTYPE s Qs NLAY s LAY s NUMN s NANAL o NP
1sNDT s NCOUNT 6 TT sDTsDTTeTlsTLaXCeYCsS5T(3410)sTIMLA(Z20)sNUME(20)sTIM,
2TTT{15) s NUMOL s TIME

COMMON /MATARG/ E(30:6358)sRO(B8)EE(5)¢HED{12)sCIC(155458) ¢
1CCL498) s NCREEP (8

COMMON /ELEARG/ IX(400+5)sMTAGIL400)sSTIGI4L40035)sTOLD(4N0])
1DE11{400YsDEL2(400)sDE21(400)sDE22(40014DSTGI6)CCO(4YCCC(4)

COMMON /PRSARG/ IBCL100)JBCL100YsPRL100)

COMMON JORDARG/ R(U450):72{450)sUR{I450)UZ(450)sCODF(450)+F(450)

COMMON /BANARG/ MBAND NUMBLK +B({108)sA(108s54)

COMMON /LS4ARG/ T1sJ3KaS(10510719C1353)3D03:3)1sH(3s3)sP(10)sLMiG),
1 F(343)

C
DIMENSION FF(900)

C ,

C********%%%*%*%**%*%*********%*%%%****%%*****%****************************;

C READ AND PRINT OF CONTROL INFORMATION AND MATERIAL PROPERTIES
C**************************************************************************
50 READ (551000) HEDsNUMNP s NUMEL s NUMMAT s NLAY sQsTTsDTT,T1
WRITE (642000) HEDsNUMNP ,NUMEL s NUMMAT ¢ NLAY sQoT14DTT

56 DO 59 M=1,NUMMAT
READ (551001) MTYPEsNUMTCsNCREEP(MTYPE) yRO(MTYPF)
WRITE (6+2011) MTYPESNUMTCsNCREEP(MTYPF) RO(MTYPE)
READ (5510051 ((E(lsJeMTYPEYsJ=196)s1=1sNUMTC)
WRITE (620101 ((E(TsJsMTYPE)sJ=1456)51=1,NUMTC)H
DO 58 I1=NUMTCs30
DO 58 J=1.6
58 E(T1eJeMTYPE)sE(NUMTCsJeMTYPE)
IF (NCRFEP(MTYPF1)Y 54459554
54 NCR=NCREEP(MTYPF)
READ (551003 {(TTTUT)e{CICtT s JsMTYPE}sJ=194)s1=1sNCR)
WRITE (5420133 MTYPEs (TTTUIY o {CIC{TsJsMTYPE s J=1s8)sT=1,NCR)
READ (5:100%) (CC{TeMTYPFYsT=1s84)
WRITE (652014) (CCLTIeMTYYPE)Y»I=1s4)
59 CONTINUFE
C .
C********%*****%*%*************%***%**%%******%***************************4:“

c READ AND PRINT OF NODAL POINT DATA
C%*******%*%%********%******%*%**%*%*%***%*********************************
WRITE (6+2004)
L=0 -
60 READ (551002) NsCODE(N) sRINYsZ{NYsURIN)Y 17 (N) .
NL=L+1 ;
ZX=N=
DR={R{N)=R(LY)/ZX
DZ=(Z(MNY=Z2{L))/ZX
70 L=L+1
IF(N=-L}) 10090580



80 CODE{lLYI=060
R{Lj=R(L-13+DR
2tLY=2(L-1)+D2Z
URIL)=0,0
UZ(L):OOO
GO 7O 70 ‘
90 WRITE (652002) (KeCODE(K)sR{K)sZ(KIsUR(K) oUZ (K} oK=NLsN)
TF {NUMNP-N) 100+,110,60
100 WRITE (6+2012) N
CALL EXIT
110 CONTINUE _
C********************%*************************************************f
C READ AND PRINT OF ELFEMENT PROPERTIES v ~
(********%%**************************%*******%**************%**********‘
WRITE (652001) '
N=0
130 READ (561006) MelIX(MeI)oI=195)s(SIG(MeT)sl=14s3) -
140 N=N+1
IF (M=N) 17061704150
150 IX{Ns1)=IX{N=1s1)+1
IX{N21=TX(N~1¢2}+1
IX{Ng3 =IX(N-1¢3)+41
TX{Ng&y=TX{N~1s4)+1
IX{NgB)1=IX{N-1¢5)
ZX=M=N+1
DR={(S51G(Mp1}=STIG(N=-151))/ZX
DZ=(51G{Me2)~SIG(N-142)Y/2X
DA=({SIG(Ms3)=STIGI(N=1s3))/ZX
SIGINs1)=SIGIN~-1.1)+DR
STGINs2)=SIGIN=-14234+D2
SIGINS3)=5IG(N=143)+DA
170 WRITE (652003) Noe(IX{(NelisI=155)s(SIGINsI)sl=143)
IF {M=~N) 18091805140
180 IF (MUMEL=N) 19051909130 L
190 CONTINUE f
p%**%****%*******************************************%*****************
C DETERMINE BAND WIDTH :
C**********%****%************************************%*%**************{
J=0 ;
DO 340 N=1,NUMEL _ ?
DO 340 1=1s4 |
DO 325 =144 P
KK=TABS{IX(NsI)=TX(NsL)) i
IF (KK=J}) 3254325,320
320 J=KK
325% CONTINUE L
340 COMTINUE .
MBAND=2#% Jj+2 l‘
C********************%************************************************% 

o SOLVE INCREMENTAL STRUCTURE BY LAYERS .
C**********************************************************************
NUMOL =0 ‘
NANAL =0
TIME=TI

TIM=T1



£=3

C%%*%ﬁ%%%%%%%%%%%%ﬁ%%ﬁ%*%%&*%*%ﬁ****&#*********%*%*************%********%%%;;
C DETERMINE TYPE OF STRESS STATE IN ELEMENTS
C*ﬁﬁ%*%%%%%%%**%*%%%%%***%%%**%*******%*********************%*******%******m
DO 450 N=1NUMEL
TOLDIN) =Q
S51G{N41=0,
S1GINe51=0.
MTAGINI=1
IF (51GINs1)) 445,445,440
440 TF (STG{H11+SIGING23) 44104414442
G631 MTAGINI=2
GO TO 450
442 MTAGINI=3
445 [F {(S1G{Nes2)) 450:450.448
448 MTAGI{N)I=&
450 COMTINUE

INITTALIZE DISPLACEMENTS

YT

D0 460 N=1sNUMNP
FF(2%N=1)=0,
460 FF(2%N)=0.
DO 600 LLL=1sNLAY g
C***%%%%**%%%%%%%*****%*%*%*****%*%%%*****%%********************%*******%*f

C INPUT OF LAYER INFORMATION é

et R e e S e e Ry e L S A S R e S L S e L
550 READ (551006) LAY sNUMNNUME (LAY) sNUMPCsNPsNDT sDTs TIMLA(LAY ) s TIMNL
WRITE (6+2008) LAY sNUMNSNUME(LAY) sNUMPCoNPoNDTsDT s TIMLACLAY) o TIMNL

NNAL=0 ;;
e e e e e S T S R gy
C READ AND PRINT OF DATA FOR EACH LOADING STAGE

C%**%**%*%ﬁ*%%%%%%%***************%**************************************%#;
400 NNALsNNAL+1 ;
FFI{NNAL=-NDT) 41094109590
410 NANAL=MANAL+1
READ (5510073 (T(KK)sKK=1sNUMN)Y
WRITE (6520097 NANALSLAYs (KKsT(KK) sKK=1sNUMN) z
C*%%%%%%%%%%%%%%%%%%****%**i***%****%%************%******%**%%%*%*%**%%*%i%

C READ AND PRINT OF PRESSURE BOUNDARY CONDITIONS
AR R R s R Rl R S R Rt s
IF (NUMPC) 29053105290
290 WRITE (6+2005)
DO 300 L=1sNUMPC
READ (510043 IBC(LYsJBC(LYoPRI(L)
300 WRITE {(6,2007) IBCIL)sJBCILYsPR(LY
310 CONTINUE
NUMNL =NUME (LAY)
IF (NP-1) 435,435,500
435 DO 350 N=1sNUMNL
350 MTAGIN)=1
500 CONTINUE
CHBRHRBURBSFEFRFFRAHARER R R R R R BN HRF R AR R R RN AR RH R ERRH W R R R RRRRRE R RS

C SOLVE BIMODULAR STRUCTURE BY SUCCESSIVE APPROXIMATION ‘
e e T R eSS TSy E g T s 3

NCOUNT=0




DO 570 NNN=1,NP
425 NCOUNT=NCOUNT+1

FORM STIFFNESS MATRIX

aNaRe!

CALL STIFF
SOLVE FOR DISPLACEMENTS

CALL BANSOL

a} [aNaNa!

IF (NCOUNT=NP) 525,510+510
510 DO 520 N=1,NUMN
FF{2%¥N~1)=FF(2%¥N-1)+B(2%N-1)
520 FF{2%#N)=FF(2%N)+B(2%N)
WRITE (6452006) (NsFF(2%N=1)sFF (2#N)4N=1,NUMN)

COMPUTE STRESSES ALLOWING FOR CREEP

[aEaka!

525 CALL CREEP

570 CONTINUE
NUMOL =NUME (LAY
TIM=TIME+DT /2,
TIME=TIME+DT
GO TO 400
590 IF(TIME~TIMNL) 550,600:600 %
600 CONTINUE .
SAEEE LRSS 2t I Ty R T R TR TR R I T T T T T TR
GO TO 5
C************2*************************************************************,
1000 FORMAT (12A6/4155,4F10.2)
1001 FORMAT (3155F10.0)
1002 FORMAT (1535F5.054F10.0)
1003 FORMAT (F10:0s4F10.73)
1004 FORMAT (2155,F10.0)
1005 FORMAT (6F1040)
1006 FORMAT (615,3F1040)
1007 FORMAT(18Xs6F6.1)
2000 FORMAT (1H1 12A6/

1 4NHN NUMBER OF NODAL POTNTS--=————mmm e e e 13/ g
2 40HO NUMBER OF FLEMENTQ-———m— e e e e e 13/ 1
3 40HO NUMBER OF DIFFERENT MATERIALS-—-=—==—- 13/

4 40HO NUMBER OF LAYERS IN THE STRUCTURE----- 13/ :
5 40HN REFERFNCF TFMPFRATHRF === e e e Flr,4/ ;
6 40HN TIME OF FIRST ANALYSIS-=—=————mem—me—e Flasb/ 1
7 40HO TIME INTERVAL FOR CREEP ANALYSIS=—===—- Flne4) .

2001 FORMAT (92H1ELEMENT NO, I J K L MATERTAL ST

1G1-RESIDUAL SI1G2-RESIDUAL ANGLE )

2002 FORMAT (1129F1262+2F124342E24,7)
2003 FORMAT (111354165111252F17.35F9,3)

2004 FORMAT (97H1NODAL POINT TYPE X-~ORDINATFE Y-ORDINATE X LO
1AD OR DISPLACEMENT Y LOAD OR DISPLACEMENT )
2005 FORMAT (29HOPRESSURE BOUNDARY CONDITIONS/ 24H I J PRESS

1URE



7006 FORMAT (12H1Ne«Po NUMBER 18X 2HUX 18X 2HUY / (111252E20.7))
2007 FORMAT (216sF12.3)

2008 FORMAT (50H1 NUMRFR OF LAVFRS IN THE ANALYG{G==w—=mmmcmeee—e—=]5/
1 50H0 NUMBER OF NODAL POINTS IN THE ANALYS[S§——=wm=——- =15/
2 50HNM NUMBER OF FLFMFNTS [N THE ANALVG[Ge—m—mmem—— ez 1§
3 50H0 NUMBER OF PRESSURE CARDS FOR THF ANALYSTS——=—m—=—= =15/
4 50H0 NUMBER OF APPROXIMATIONS FOR STRFSS CALCULATION=1S/:
5 50HO NUMBER OF TIME INTERVALS FOR ANALYSIS-~——m—=——- =15/
6 50H0 TIME INTERVAL BETWFEN SUCCESSIVE ANALYSES====—===F1Nng3/
7 50HA TIME OF LAYTNG THFE TOP LIFT-——me e mo e ez £ ), 3/
B 50HNA TIMF OF LAYTNG THF NEXT LTF T oo oo oo e o o e o =F1n,3)

2009 FORMAT (42H1 NODAL TEMPERATURES FOR ANALYSTS NUMBER 15,
1 21H STRUCTURE UPTO LIFT I15//

2 120HM NP o TEMP, NP o TEMP, NP TEMP,
3 NP & TEMP . NP o TEMP ¢ NP TEMP o/ /
4 (T124F8e3s112sFBa3,5T112sF86351124FB8s3,1125F8e34531125F863))

2010 FORMAT (15HO TEMP./TIME 10X 5HE(C) 9X 6HNU 11X 4HE(T)

1 10X SHG/HZ 10X BHALPHA/
2 (Fl54354F15.5sFE1565)

2011 FORMAT (17HOMATERIAL NUMBER= 13, 30H, NUMBER OF TEMP,./TIME CARDS =
113,24Hs NUMBER OF CREEP CARDS=I3, 15H, MASS DENSITY= E12.4)

2012 FORMAT (26HONODAL POINT CARD ERROR N= 15)

2013 FORMAT (17HO MATERIAL NUMBER 15//
1111H COEFFICIENT FUNCTIONS A(T) IN MCHENRYS EQUATION STRAIN(T) =
ZSTRAIN(O)+ATI(TY(1-EXP(=MI%¥T))+A2(TH(1=-FXP(~M2%Ty)//
310Xs 10HTEMP./TIME 11X, 24HAl,A2 FOR COMPRESS.CREEP 12X, 23HA3,A4
4FOR TENSILE CREEP// 38Xs 2HAl 913X ,2HAZ2s18Xs2HA3 413X 4 2HAL,/
S5010XsF1l0e3510X5E10e355XsF1Ne3s10XsE104385XsE10.3))

2014 FORMAT (30HO INDEXES IN MCHENRYS EQUATION//
130H FOR COMPRESSIVE CREEP M1l =E10e346Xs4HMZ = E10e3/
230H FOR TENSILE CRFFP M3 = Fl0e3+6Xs4HML = E10.3)

END



C-6

$IBFTC STIF DECK
SUBROUTINE STIFF
C
COMMON NUMNP s NUMEL g NUMPC s Ny VOL s TEMP yMTYPE s Qs NLAY s LAY s NUMN s NANAL o NP
1sNDT o NCOUNT ¢TI sDTsDTTsT1sTLsXCsYCsST(3510)sTIMLA(Z20):NUME(20)sTIM,
2TTT(15) s NUMOL s TIME
COMMON /MATARG/ E(305658)sRO(8)EE(5)sHED(12)sCIC(15+4458),
1CC(4,58) s NCREEP(8)
COMMON /ELEARG/ IX(400:+5)sMTAG(400)sSIGI400s5)sTOLDI40OD) s
1DE11(4001sDE12(400)+sDE21(400) sDE22(400)sDSIG(6)sCCO(4Y),CCC4)
COMMON /PRSARG/ IBC(10Nn)sJBC(100)sPRLION)
COMMON /ORDARG/ R(450)5Z(450)sUR(450),UZ(450)sCODE(450),T(450)
COMMON /BANARG/ MBAND ¢NUMBLK sB(108)4,A(108,554)
COMMON /L S4ARG/ 14JsKsS(10s10)sC(343)sD(3s3)sH(353)P(10)sLM(4),
1 F(3+3)
C

C*********%*************%****%*%%*****%%**%**%%*****************%**%**%***

C INITIALIZATION
€3 H KK H K H KR KKK KUK R KK W RT3 H KM RN KRN R A KRR
REWIND 2
NB=27
ND=2#NB
ND2=2%ND
STOP=0.0
NUMBLK=0

DO 50 N=1,4ND2
B(N)=0.0 Z

DO 50 M=1,ND o

50 A(N,My=0.0 -~
C**************************************************************************g

C FORM STIFFNESS MATRIX IN BLOCKS L
(********************************************************%************%*%*n_
60 NUMBLK=NUMBLK+1 V
NH=NB#* (NUMBLK+1)
NM=NH-NB
NL=NM=-NB+1
KSHIFT=2%NL~2

N1l=1

DO 220 M=1sLAY
TL=TIM=TIMLA (M)
NZ2=NUME (M)

DO 210 N=N1gNZ

IF (IX(Ns5)) 2109210465
65 DO 80 I=1:4

IF (IX{NsT3~-NL)Y 80,7070
70 1F (IX(NsT)-NM) 90,590,80
80 CONTINUE

GO TO 210

90 IF (IX(Ns3)-IX(Ns2y) 92,591,927
91 CALL ONED



YD

aNaNA]

NN

92

164

165

166

175
180

195
200
210

220

225

250
252

255

260

GO TO 165

CALL QUAD

IF (VOL) 164,164,165
WRITF (6,2003) N

ADD ELEMENT STIFFNESS TO TOTAL STIFFNESS

IX{Ng5)==TX(Ns5)
DO 166 1=1,4 |
LM(T)=2%IX(NsT)=2

DO 200 I=1.4

DO 200 K=1,2
TT=LMUT)+K=KSHIFT
KK=2#1-2+K
B{I1y=B(T13+P({KK)

DO 200 J=1s4

DO 206 L=1,.2
JI=LMI)+L-TTI+1-KSHIFT
LL=2% =240

IF{JJy 200200175
IF({ND~JJ) 18051955195
WRITE (6,2004) N
S5TOP=1.0

GO 10 210
ALTTsJIN=ACTTsJJI+S(KK,LL)
CONT INUE

CONTINUE

Nl=N2+1

IF(N1-NUMEL) 22042205225
CONT INUE

ADD CONCENTRATED FORCES WITHIN BLOCK

DO 25% N=NL sNM
K=2%N-KSHIFT
BIK)=B(KI+UZ(N)
RIK=-1)=B({K-11+UR(N)

IF (NCOUNT—NP3Y 255,250+250
IF (N-NUMN) 25252524255
UZI{NY=0e

UR(N):Oo

CONT I NUE

BOUNDARY CONDITIONS
1, PRESSURE B.Ce.

IF (NUMPC) 26093104260
DO 300 L=1sNUMPC
I=1B8C(L)

J=JBCIL)Y

PP=PR(L) /2.
DZ=(Z(1)=2(J))#PP
DR=(R{JI-R{T))*PP




YO

N

N

264

265
270
271
272
280
285
290
291
292

300

310
315
316
317
318
370

380
390

400

420

11=2%1-KSHIFT

JJ=2% J-KSHIFT

IF (11} 2804+280+265

IF (11-NDy 270527045280
SINA=0.0

COSA=1.0

TF (CODE(TIY)Y 27152724272
SINA=SIN(CODE(T)/5T7.3)
COSA=COS(CODE{11/57+3)
B(II-1)=B(II-1)1+(COSA%#¥DZ+SINA*DR)
B{IT)=B(I1)-(SINA¥DZ-COSA#DR)
IF 1JJy 300,300,285

IF (JJ=ND} 29052905300
SITNA=N.0

COSA=1.0

IF (CODE(J)Y) 2919292,292
SINA=SINICODE(J}/57.3)
CO5A=COS(CODE(JY/573)
B(JJ=11=B(JJ-1)+(COSA*DZ+STINA*DR)
B(JJ1=B{JJ)~({SINA¥DZ~COSA#DR)
CONTINUE

2¢ DISPLACEMENT Bo.Ce , .
DO 400 M=NL sNH .
IF (M=NUMN) 315,315,400 *
U=UR (M}

N=2#M=1~KSHIFT

IF (CODE(M)) 3905400316

IF (CODE(M)=1e) 31753705317

IF (CODE(M)-2.) 318,390,318

IF (CODE(M)=3,) 39053804390
CALL MODIFY(A,BsND2sMBAND,NsU)
GO TO 400

CALL MODIFY(A,BsND2 sMBANDN,U}Y
U=Uz (M)

N=N+1

CALL MODIFY(A+BsND2sMBANDSN,U)
CONTINUE

WRITF BLOCK OF FQUATIONS ON TAPE AND sSHIFT UP LOWER BLOCK
WRITE (2) (BINY2{A(NsM) sM=1sMBAND) sN=1ND}

DO 420 MW=1sND
KaN+ND
B{N)Y=R{K)
BIK¥=0.0

DO 420 M=1.ND
A{NsMy=A{KsM)
A{KsM1=0,0

CHECK FOR LAST BLOCK

IF {NM-NUMN) 60+480+480



480 CONTINUE .
CH M R IR I H I IR AR IR N RN
IF{STOP) 49035005490
490 CALL EXIT
500 RETURN
C
2003 FORMAT (26HONEGATIVE AREA ELEMENT NO, 14)
2004 FORMAT (29HOBAND WIDTH EXCEEDS ALLOWABLE 14)
END :
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SIBFTC QUDF DECK

C

T OYTY DY

y

40

103
104

70
50
55
60

64
71
105

76
80

81
82

SUBROUTINE QUAD

COMMON NUMNP ¢ NUMEL s NUMPC s NoVOL s TEMP sMTYPE s Qo NLAY s LAY s NUMN s NANAL o NP
1oNDToNCOUNT s TT DT oDTToT1aTLeXCsYCoSTUB3310)sTIMLA(Z20) sNUME(20)sTIM,
2TTTE15) s NUMOL o TIME

COMMON /MATARG/ E(30s6:8)sRO(BYEE(D)sHED(12YsCIC(1564498)
1CC1448) s NCREEP(8)

COMMON /ELEARG/ IX{400s5) +MTAG(400)sSIGI400s5)Y.TOLD(40O0O)Y
IDE11(400)sDE12(4001sDE21(£00YsDEZ22(400)+DSTIG(6YsCCOLLYCCCLLY

COMMON /PRSARG/ IBCI100).JBC(100)YsPRUINDY

COMMON /ORDARG/ R(QSO)’2(450)’UR(450)9UZ(450)QCODE(450’9T(450)

COMMON /BANARG/ MBAND sNUMBLK sB(108)YsA(108,54)

COMMON /LS4ARG/ T1+sJeKeS1103101sC{333sD(3e3)sHIB333sP(10)sLM(4y,
1 Fi3s3)

T=1X{Ns1)

J=TXA{Ns2)

K=1X{Ns3)

L=TX{Ns&)
IX{NsS5)i=TABS{IX{Ns5))
MTYPE=IX{Ns5)

FORM STRESS-STRAIN RELATIONSHIP INCLUDING TIME OR TEMPERATURE
DEPENDENCE OF ELASTIC CONSTANTS

TEMP=({T(I)+T(J)4+T(KY+T(L)Y) /4, o
TEM=({TEMP+TOLD(NYY /2,
IF (T1) 50640550

DO 103 M=2,30

IF (F(Ms1sMTYPE)=-TEM) 10351045104
CONT I NUE

RATIO=0,0
DEN=F{Ms 1 sMTYPE)~E(M~151,MTYPE)
IF (DEN) 705714570

RATI0= (TEM=F(M=141sMTYPEY)/DEN
GO TO 71

DO 55 M=2,430

IF (F{My1oMTYPEI-TL) 55,6060
CONT INUE

RATTIO=0,

DEN=E (Mp 1 s MTYPEY~E(M=151sMTYPE)
IF (DENY 64571564
RATIO=(TL~E(M=151sMTYPE}}/DEN

DO 10% KK=145

EE(KK)=F(M-13sKK+1sMTYPE)+RATTO¥(E(MeKK+1sMTYPE)-E (M~14KK+14MTYPE))
IF (MTAGIN}=2) 80580.81

RATIO=EE{2)

GO TO 82

RATIO=EE{ 2y *EE(3)/EE(])
XK= FE(I)/EE{B)

¥YY¥=1le

IF (MTAG(N)—-1) B83,83,84




aXaNaNal

83
84
85
86

87

88

89

Cc-11

XX=YY

IF (MTAG(N)=3) B65,86,485
YY=XX

CONT INUE
UU=YY~EE(2)*¥RATIO
YWaeXX-EE(2)#RATIO
UV=EE(2)#(1,+RATIO)
COMM=FE{ 1)/ {VV*UU-UV%R2)
Cl1ls1y=UU%COMM
Cl1s2)=UV*COMM
C(ls3)30-

Cl2s13=Cl1:2)
C(2+2)=VV¥COMM
Cl2e3)=0s

Cl{3:11=0,

C(342)1=0s
Cl3e3)=EE(L)/(EE(LY/EE(3)+1e+2e%EE(2))
THETA=SIG({N:31)/57.,296
SS=SIN(THETA)
CO=COS(THETA)

$52=55%5S

C2=c0%*CO

SC=55%C0O

DO 87 [1=1,3
DO 87 JJ=1,3
FEITeJJY=CLITeJJ)

Di1s1)=C2
D(1s2)=52
D(1s3y=5C
D(2,19=52 ;
D(252y=C2 .
D(243)=-5C ?
D(3s1)==26%SC ?
D(3s2)y==D(3s 1)

D(3,3)=C2~52

DO 88 I1=1,3
DO 88 JJ=1,3 .
H(ITsJJ)=0e0 @

DO 88 KK=1,3 ~
HOTT9JJ)=H(TTsJJ) +CUTTsKK)%DIKKsIJ)

DO 89 11=1,+3
DO 89 JJ=1s3
Cll1eJ4J1=0.0
DO 89 KK=193 ,
ClITsJd)=ClITsJJ)+D(KK,TTI*H(KK,JJ) L

FORM QUADRILATERAL STIFFNESS MATRIX

DO 100 I1=1,10
P(I11)=0,0



aTaNa!

N NA!

100

150

160
170

190

200

500

DO 100 JJ=1,10
StITsJJ1=0.0

DO 150 11=143
DO 150 JJ=1,10
STE114J01=0.0

VOL*O&O

T=IX{Ns1)
J=IX{Ns2}
K=IX{Ns4}

CALL EDLST(1s357)
[=IX{Ns3)
J=IX{Ns&}y
K=IX(Ns2)
XC=(R{JI+RIKY) /2.
YC={2(JY+2(K)) /2
CALL EDLST(557+3)

C-12

CALCULATE UNBALANCED LOADS DUE TO TEMPERATURE CHANGE AND STRESS

RELAXATION -
TEMP=(TEMP-TOLD(N) }#EE(5) -
IF(TIM) 17051605170

TEMP=O.

CONTINUE
DSIG(1)=SIG(Ns1)*C2+STGINs2)I*S2
DSIG(2)=STIG(Ns1)*¥S2+5IG(Ns2)%*C2
DSIGE3)={SIG(Ns1)=STGI(Ns2))*SC

DO 190 JJ=1,3
DSIGLJIJI)==DSIGIIII+(C(JIs 11+C{JJs2) ) *¥TEMP
DO 200 11=1,10

DO 200 JJ=1,3
P{TT)=P{IT)+DSIG{JJ)*¥ST(JJ,11)%¥VOL

ADD SHEAR STIFFNESS OF FOUNDATION

COMM=VOL*EE( 4)
S(9s93=5(9+9)+COMM
S(10510)=5(10+10)+COMM

ELIMINATE CENTER POINT

DO 500 K=1s2

[H=10=-K

ID=1H+1

DO 500 I=1sIH

S(IDs 1 Y1=S{IDsI)/S(IDsIDY
P(I)=P{I)-P(ID)®S(T,1D}/S(ID,ID)
DO 500 J=1s1H

S{Js T 4=50Js 1) =S(JsIDIES{IDHT)

CALCULATE LOADS DUE TO GRAVITY

IF (N-NUMOLY 58045804540




540
550

560
580

130

IF(NNAL~-1) 55055504580
DO 560 I=1.4

P(2%#1)=P(2%])-RO(MTYPE)#VOL/4,
CONTINUE

RETURN

END




$IBFTC ONE DECK

C

3

100

SUBROUTINE ONED

C-14

COMMON NUMNP s NUMEL s NUMPC s N VOL s TEMP sMTYPE s Qs NLAY s LAY s NUMN s NANAL s NP
1sNDT e NCOUNT s TT oDT o DT T o T1eTLeXCeVCsSTI3:10) s TIMLA(ZO I sNUME(20)sTIM,

2TTTE15) s NUMOL » TIME

COMMON /MATARG/ E(306658)sRO(B)SEE(5)sHED(12)sCIC(155448)

1CCt448) s NCREEP(8)

COMMON /ELEARG/ IX{400+5)sMTAGI400)sSIG(400s5)sTOLD(40O0)

1DE11(400)sDE12(400) sDE21(400) sDE22(4001sDST1G(6)CCO(LY)4CCC(4)

COMMON /PRSARG/ IBC(100)sJBC{100)sPR(100)

COMMON /ORDARG/ R(450)+Z(450)sURt450) sUZ(450)sCODE(450),T(450)

COMMON /BANARG/ MBAND,NUMBLKsB(108)1,A(108,54)

COMMON /LS4ARG/ 13+JsKsS(10510)5C(353)sD(353)sH(353)sP(10)-LM(4),

1 Fi(3s3)

DO 100 1=1.8
P{1)=0.0

DO 100 J=1,8
S5(IsJ)=0.0

MTYPE=IX(Ns5)

I=IX{Ns1)

JEIX(Ns 2}

DX=R{Jy=R(1)

Dy=2(J)y-2(1)

XL=SQRT (DX*#2+DY*%2)

COSA=DX /XL

SINA=DY /XL

COMM=E (152 MTYPE)*E(1:5,MTYPE) /XL

$11:11=COSA#COSA*COMM
S{192)=COSA*#SINA®COMM
S{1e3)==5(151
S(1s4)y==5(142)
S{2+13=5(142)
S{242)=SINA*SINA¥COMM
5(293)==5(142)
S(2s8y==~5(262)
5(3519=5(1+3)
S5{(352)1=5(2+3)
5{3:33=5101s1)
S5(3:43=5(1+2)
S{4s13=50154)
S5(4e21=5(24¢4)
S(4,3)=5{3,4)
S(444)=5(2,2)

EP=SIG(Ns1)/E(152sMTYPE)
DX=DX*EP

DY=DY=®EP
P{1)=S{1+1)%¥DX+5(1,2)%DY
P(21=5(2+1)%*DX+S5{2,2)%DY
P{3)==P(1)
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Pla)==P(2)
RETURN

END




C-16

$IBFTC EDLS DECK
SUBROUTINE EDLST{N1,N2,4N3)

C
COMMON NUMNP,NUMEL’NUMPC’N,VOL,TEMPQMTYPEQO,NLAY’LAY9NUMN§NANALQNP
loNDT,NCOUNT,TI9DT;DTT9T19TL9XC9YCQST(3»10)9TIMLA(20)9NUME(20)9TIM9
2TTT(15) s NUMOL s TIMF
COMMON /MATARG/ E(3066+8)sRO(B)4EE(5)sHED(12)+sCIC{15s4581%,
1CC1448) s NCREEP(8)
COMMON /ELEARG/ IX{400+5)sMTAG(400)+sSIGI40065) +TOLD(4O0] »
lDEllfﬁOO)sDElz(QOO)90521(400’90522(400790516(6)sCCO(Q?sCCC(Q)
COMMON /PRSARG/ IBC{100)sJBC(100)sPR(100O)
COMMON /ORDARG/ X(450)sY(450)sUR(450)4UZ{450)sCODE(450)sT(450)
COMMON /BANARG/ MBAND s NUMBLK 3B(108)sA({108,54)
COMMON /LS4ARG/ ToJsKeS(1051015C{363)sD(353),H(3:31,RP(10).LM{4),
1 F(3,43)
DIMENSTON BA(3s2)5U(334)sVI(354)4UV(3s4,42)
EQUIVALENCE (UVeU) o {UV{13),V)
C

TH=100
BA(1s1)=Y(J)=Y(K)
BA(241)=Y(K)=Y(T)
BA(341)=Y(1)=Y(J)
RA(142)=X(K)=X{J)
BA(292)=X{1)=X(K)
BA(342)=X(J)=X{1) _
AREA=(X(J)*¥BA(25s1)+X (1) *BAL1s1)+X(K)%¥BA{3,1))/2, .
IF (ARFA) 40054005100
100 VOL=VOL+AREA
COMM=TH/ (48 . #AREA)
Cl1=C(1s1)*COMM
C12=C(142)*COMM
C13=C(153)*COMM
C22=C(242) *¥COMM |
C23=C(243)*COMM P
C33=C(353)#COMM ‘

C

C
DO 150 M=1,2
D1=BA(1sM)
D2=RA(2sM)
D3=BA(3sM)

UVilsleMy=D1
UVI2s1sM)=D1
UV(341sM)=D1
UVI1s2sM)=D2
UVI(252sM)=D2~2.%#D3
UVI(342sM)==-D2
UVIi1s3sMy=D3
UV(243sM)=-D3
UVI(393sM)=D3-2,#D2
UV(1e¢4sM)=0,
UVI{2s4sMy=4  #D3
150 UVI(3544My=4,%D2




8!

300

400

C=17

LM(1)=N1
LM(2)=N2
LM{3)=N3
LM(4)y=9

COMM=8,*AREA
DO 300 1=1+4%
11=LM(T)

UU=(U(2,T)4U(341))/COMM
VV=(V(2s131+V(3s1}3)/COMM
ST{ls113=5T{1,11)+0UU
ST(2114+1)1=8TU251T4+1)4VV
ST{3s11)=5T(3,11}+VV

PST(3,T141)=5T(3,11+1)+UU

SUM=U(1s1)+U(25114+U(3,1)

SUM1=SUM+U(141)

SUMZ2=5UM+U (251}

SUM3=zSUM+U(341)

SUM=V(1s1)+V(2s1)4+V(341)

SVM1=5UM+V(1s7)

SVM2=SUM+V (2,51)

SVM2=5UM+V (3,1)

DO 300 J=1,4

JJI=LM(J)

UQU=U{1sJ)#SUMI+U(2,J)*SUM2+U(34J)*5UM3

VQU=V (15 J) ¥SUMI+V (25 J)%#SUM24+V (35J)%#SUM3

VAV=V (14 J)2SYMI+V (2,4 J) ¥ SYM2+V (3, J)*5VM3
UQV=U(1,J)*#SUMI+U(2,J)%SYM2+U(3,J) *SVYM3
S(IT5JJ)=S(11sJJ)+ Cl1I%#UQU+C13%*(VQU+UQV)+C33%#VQY
S{IT+15JJ41)=S(1T+1,JJ+1)+ C22¥yQV+C23% (VQU+UQV)I+C33%UQU
SUITsJJ+1)=5(T1sJJ+1)4 C23%¥VQV+C13*¥UQU+VQU*C12+C33*%UQV
S(JI+1sT1)=5(T1T1sJJ+1)

RETURN

END




FTRFTC MODI1 NECK

C

C

230

235

240

250

SUBROUTINE MODIFY(A,B,NEQsMBAND,N,U)
DIMENSION A(108s54)5B(108)

DO 250 M=2 sMBARND
K=N-M+1

TFIKY 2353235,230
BIKYy=B(KI-A{KsM)*y
A{KsMI=0,0

K=N+M=1

IF(NEQ-K) 25042404240
BIK)=B(K)I=~A(NsM)*U
Al(NsMY=0,0
CONT I NUE
A{Ns131=1.0

BIN)=U

RETURN

END
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$IBFTC BAND DECK

C

C

(***********%*****%************************%*%*******%%****************

C

C
C
C

NN

(*******%*********%***%%*********%**%*%%****v‘(--)’r************************* ':

100

125

150

200

225

230

250

SUBROUTINE BANSOL
COMMON /BANARG/ MM,NUMBLKsB({108)4A(54,108)
DIMENSION NAB(34)

NN=54
CALL TIME (ZsNNN)

NCOUNT = NN*NN

JUMPA = NCOUNT/460 + 1
JUMPRB = NN/460 + 1
NTRACK=1

NL=NN+1

NH=NN+NN P
REWIND 2 i
NB=0

GO TO 150

REDUCF FQUATIONS By BLOCKS

le SHIFT BLOCK OF FQUATIONS E

NB=NB+1

DO 125 N=1sNN

NM=NN+N

B(N)=B(NM)

BI(NM)=n,0 ‘“
DO 125 M=1 MM ;
A(MsN) = A(MyNM) -
A(M,NM) = 0,0 i

2e READ NEXT BLOCK OF FQUATIONS INTO CORE Y

IF (NUMBLK-NBR) 150,200,150
READ (2) (B(N)s(A(M 4N)s M = 1, MM),s N
IF (NR) 20N,5100,200

H

NLs NH )

3. REDUCE BLOCK OF EQUATIONS

DO 30N N=1,NN

TF ( AUYleN) ) 2255 300, 225
B(NY = B(NY / A(1,N)

DO 275 L=2+MM

IF { A(LsN) 230, 275, 230
C = A(LsNY /7 A{1sN)

I=N+L~1

J=0

DO 250 K=L 4MM

J=J+1

AlJdeTy = AlJeIY — C #* ALK,MN)

BOI) = B(Iy - A(LsN} * B(N)

A{LsNy = C



275
300

375

CONTINUE
CONT INUE

4o WRITE BLOCK OF REDUCED EQUATIONS ON TAPE 2

IF (NUMBLK~NB} 375,400,375
IF(NCOUNT+NNoGT« { 39-MOD(NTRACK40)1%460) NTRACK=(NTRACK/40)*40+40
NABINB) = NTRACK

CALL WRDISK ({ NTRACKs As NCOUNT )

NTRACK = NTRACK + JUMPA

CALL WRDISK { NTRACK, B, NN

NTRACK = NTRACK + JUMPB

GO TO 100

C*************%******%***************************%%********%************

C

BACK~SUBSTITUTION

C*%%%*%***%**%*%%%%**%%%%*%*%**********%*%**%%***************%**********

400

425

450

475

DO 450 M=1,NN

N=NN+1-M

DO 425 K=2sMM

L=N+K=-1

B(Ny = BI(Ny — A(K,Ny * B(L)
NM=N+NN

B(NM) =B (N)

A{NByNM) = BI(N)

NB=NB~1

1F (NBR) 4755004475

NTRACK = NAB{NB)

CALL RDDISK ( NTRACK, As NCOUNT
NTRACK = NTRACK + JUMPA

CALL RDDISK ( NTRACK, Bs NN )
GO TO 400

(**************%%*****%%********%*%*%********%***************%**********
C%****%%%****%*%%***%*%%*%**%*********************%************%********

C

500

600

ORDER UNKNOWNS IN B ARRAY
K=0

DO 600 NB=1,NUMBLK

DO 600 N=1,NN

NM=N+NN

K=K+1

BIKY = A(NB, NM)

CALL TIME (2ZsMMM)

N = MMM - NNN

WRITE (6513 N

RETURN

FORMAT (17H4TIME IN BANSOL = 18, 13H MILLESECONDS///)

END




$1BFTC CRFF DECK

C

™

DYy

AN}

255

259
260

261
265
266

104
105

106

50

55

SUBROUTINE CREEP

COMMON NUMNP s NUMEL s NUMPC s NsVOL s TEMP yMTYPE 3 Qs NLAY s LAY s NUMN 4 NANAL 4 NP
1sNDToNCOUNT o TTIsDTsDTToT1aTLeXCoYCsSTI3310),TIMLA(ZO) sNUME(20)sTIM,
2TTT(O15) o NUMOL » TIME

COMMON /MATARG/ E(303638)sRO(B)ISEE(SIsHED(12)1sCTC (154489,
1CC14,8) s NCREEP(8)

COMMON /ELEARG/ IX1400+5) sMTAG(400)STGIA00s5),TOLD(4OO)Y
1DEL11(400)sDEL12(400)sDE21(400) «eDE221400)eDSTIGI6)CCOLLYCCC(4)Y

COMMON /PRSARG/ TIBC{100}5JBC{100)sPRI1ON)

COMMON /ORDARG/ R{450)s2(450)sUR(450)sUZ (4505 4CODE(450)sT(450)

COMMON /BAMNARG/ -MBAND,NUMBLK:B(108)sA(108,54)

COMMON /LS4ARG/ TsJsKsS(109103sC{3531sD10353)eH{3:3)sP(10)LM{4),
1F (343

MPRINT=0

N1=1

DO 600 M=1,LAY
N2=NUME (M)

DO 550 MM=N1,4N2
N=MM
TL=TIM-TIMLA (M)

EVALUATE ELEMENT STRFSSFS
CALL STRESS

IF (TX(Ns23-1X{Ns3)) 255,104,255
MTAGIN) =1

IF (DSIG(4)) 10451045259

IF (DSIG(4)Y+DSIG(5)) 260:260+261
MTAGIN) =2

GO TO 104

MTAGINI=3

IF (DSIG(5)) 10451045266
MTAGINY =4

IF (MPRINT) 1065105,106

WRITE(6:2000) LAY sNANAL s TIME s NCOUNT
MPRINT=50

MPRINT=MPRIMT—1

WRITE (6520011 NsXCsYCo(DSIGIT)sT=1s6)
MODIFY STRESSES FOR CREEP IF APPLICABLE

IF (NCOUNT-NP) 550,350,500
IF (IX{N,2)=-TX(Ns3)) 55,550:555

INTERPOLATION OF CREEP COEFFICIENTS

[=IX(Ns1}
J=IX{Ne2)




SRR NA!

O WA N

60

110
120

125

130 CCO(KK)=CIC(NN=-1KKy,MTYPEY+DIFF*(CIC(NN KK sMTYPEF)~CIC(NN=1,KK MTYP
1EYY/TM

140
150
155
160
165

170

175
180

190

K=1IX{Ns3)

L=1IX{(Ns4)
IX{NsS5)=TABS{IX(Ns5) )
MTYPE=TX(Ns5)
TEMP=(T(IY+T( ) +T{KY+T (L)) /4,
TOLD(N)=TEMP

IF (NCREEP(MTYPE)) 2504250560
NCR=NCREEP (MTYPE)

TF{T1y 120,110,120

TL=TEMP

DO 140 NN=2¢NCR

TF (TL-TTT(NN)) 125,150,140
TM=TTT(NNY-TTT (NN-1)

DIFF= TL-TTT{NN-1)

DO 130 KK=1l,4

GO TO 160

CONT ITNUE

DO 155 KK=1.4
CCOIKKY=CICINNsKKsMTYPE)
DO 165 KK=1s4
CCCURKY=CCIKKsMTYPE)

SELECT APPROPRIATE CONSTANTS

IF (DSIG(4)) 1701705175
KK=1

GO TO 180

KK=13

CCO1=CCO(KK)
CCO2=CCO(KK+1)

CCO3=CCO01

CCO4=CCO2

CCC1=CCC(KK)
CCC2=CCC{KK+1)

CCC3=CCC1

CCCa4=CCC2

IF (DSTG(5)) 18541855190
CCO2=CCOt 1)

CCO04=CCO(2)

CCC3=CCCtly

CCCa=CCC(2)Y

CONT I NUF

MODIFICATION OF STRESSES TO ALLOW FOR CREEP, RELAXATION OF STRESS
AT CONSTANT STRAIN ON THE APPLICATION OF A TIME INCREMENT

THETA=(DSIGI6)~SIGINS3)) /57296

CO=COS({THETA}

SS=SIN(THETA)

C2=C0%CO

52=55%55
SIGI=C2%(SIGINs4I+SIGINs 1)) +S2¥{SIGINsBY+STIG(N2)Y)
SIGZ2=82%#(SIGINs 4 +STGINSIYI4C2H(STGINSSY+STAING2Y)




191

192

198

220

Yy D

250
550

600

650
C

C
2000

TP (T1) 1

92s191.192

DELI(N)=DSIG{4)%CCC2%CCO2
DE12{NI=DSIG 4y *xCCC1%CCO1
DEZTINY=DSIG{5) ¥ CCC4%#CC04
DEZ22(Ny=DSIG(5)#CCC3*CCO3

GO TO 195
DET11= C2
DET12= C2
DET21= &2
DET22= 52

DE11(N)=
DE12(Ni=
DE21(N) =
DEZ22(N)=
CONTINUE
SIG{Nsly=
SIGIN.2) =

TR=0,
TR=TR+DTT

¥DELL(NI+S2#DE2L(N)
#DEIZINY+S2H#DE22 (N
#DET1(NY+C2%DEZT (N)
#DEIZ(NY+C2#DE22 (N}

DETI1+(DSIG(4)-SIGL )y ¥CCC2%CCO2
DET12+(DSIG{41~-S1G1)*CCC1*CCO1
DETZ14+(DSIG(5)~8162 1 ¥CCC4*CCO4
DETZ22+(DSIG{5)-51G2)y*CCC3*CCO3

0
O

DELTAL1={DE1I1(NI+DETIZ2{NY I *DTT
DELTA2=(DE21{(N)+DEDP2(N) ) *DTT

S1G1=DELT
SIG2=DFLT
SIG(Ns1Y=
SIGINgZ2Y=

CALCULAT

DE1Yt{N)=
DEI2(N)=
DEZ21(N)=
DE22(N)=D

ATHF{1s1
AZ¥F (2421
SIG{Ns11~516G1
ST1GIN2Y~S51G2

TON OF CREEP RATES FOR THE NEXT TIME INTERVAL

DETLINY*({1.-DTT#CCC2)
DEIZINI*{1.-DTT#CCCL)
DEZI(NI¥(1,~-DTTHCCC4H)
EZ22I{NY#{1,,-DTT*#CCC3)

DEII{N)=DELTI(N}~SIGL1*#CCC2¥CCO2
DE1Z2(NY=DF12{N}~SIG1*CCCI*CCOL
DE21(NY=DFZ1{NY-STG2¥CCCLHCCO4
DE22(N)=DEZ2Z2{N)~-51G2#CCC3*¥CCO3
IF (TR-DTY 2205250,250
STGINs31=D51G(6)
STGUIN.4)=D5IG14)
SIGIN.5)=D51G(5)

CONTINUE

Nl=NZ2+1

TF INI~-NUMEL) 600+:600,65n0
CONTINUFE

CONTTNUE

RETURN

FORMAT {(19H1 NUMBER OF LIFTS =

17H EL.NO. 7X 1IHX 7X 1HY 4X 8HX-STRESS 4X BHY~-STRESS 3X 9HXY~STRESS

15,18H ANALYSIS NUMBER =15/
116H STRESSES AFTER Fl0.3,24HTIME, APPROXIMATION NO,

2 2X 10HMAX-S5TRESS 2X 10HMIN=-STRESS 7H ANGLE)

157




C

2001 FORMAT

END

(17:2FB8e231P5E12e450P1F742)




FTRFTC STRES DECK
SUBROUTINE STRESS
C
COMMON NUMNP ¢ NUMEL s NUMPC o N VOL s TEMP sMTYPE o Qo NLAY s LAY s NUMN  NANAL s NP
1sMNDT s NCOUNT o TTeDToDTTaT1sTLeXCaYCsST(3,10)sTIMLAIZ20)NUME(20)TIM,
2TTTI15)  NUMOL 3 TITMF
COMMON /MATARG/ E(30:6:8)sRO(8)FEE(D)oHEDI12)sCIC{1544581),
1CC{48) s NCREEP(8)
COMMON /FLEARG/ IX(400:5) :MTAGIA0D1STGIAN045).TOLD(4DN)Y
1IDFE11{400)eDFE121400)sDF21(400) sDFE220400)1sDSTGIH)CCOL4LY,CCT14) %
COMMON /PRSARG/ IBCL100)sJBCLI00YPRIINAN) §;
COMMON /ORDARG/ RIU450):Z2{450)sURT450) U7 (450)CODECLBNY s TIA50 -
COMMON /RANARG/ MBANDSNUMBLKsB{108)sA(108+54) :
COMMON /LS4ARG/ T:JsKseS(105103sC13531sD(3:3)4H(3+31:P(10),LM04), ;
1 Fi343) §
f****%%**%%**%%%*%*%%%**%**%*%*%*****%%%**#*%***%%**%%%**%%%*%*%*%%*%%*%%%*?‘
C COMPUTE ELEMENT STRESSES é
(%%*%*%%*%***%%%%%%%*ﬁ%%%%%%%*%*%%%%%%%*%%*%%%%*%%%%*****%*%%*%%%%%*%%%*%%%;¥
DO 50 I=1s56 L
50 DSIGLTI=0,0
c

IF (IX{Ns3)=1X(Ns2})) 90580590
C%%%%%**%%%%%%%%%%%%%%%%%%%*%%%%%%%%%*%*%*%%%%%%%**%*m ONE«D ELEMENT E
BO T=I1X{Ns1)
JEIX(Ns2) L
DX=R{J)~R(T) .
DY=7(J)=7(1) .
XL=SORT (DX¥#%2+DY*%2 ) xe
DU=B(2#J-1)=B{2%1-1) |
DV=B(2%#J)~B(2%1)
DL=DV*DY /XL +DU*DX/XL
DSIG(1)=DL*¥F (152 sMTYPE) /XL+SIGINs1I+STGIN,4)
TF (NCOUNT=NP) 85,8484
B4t SIGINs&)=DSTGI1)
SIGIN;11=0. |
85 XC=0,0 |
YC=0,0
GO TO 320
(%%%%%%%%%%%%%ﬁ*%%%%%%%%%%%%%%***%%*%*%%%%%***%**%%*%* ONFmD ELEMENT # % W
;

9n CALL QUAD

DO 120 I=1s4

T1=2%7

JJ=2%IX(Ns 1)

PUIT=1)=R(JJ=1) ) .
120 PUITY=B(JIy ) .

DO 150 1=9510
F{11=0.0
KK=1-1
DG 150 K=1,KK
150 PLIi=RP{T1~5(1 KI1#P{K}



D(lsl)=0.
D(2,1)=0.
D(3411=0.0
DO 170 1=1,3
DO 170 K=1,10
170 D(191)=D(1,1)+ST([9K)*P(K)

THETA= SIG{(Ns3) /57296
CO=COS{THETA)
SS=STN(THETA)
C2=COx%xCO
$2=55%#55
SC=55%CO
DSIGU1)= SIGINsL)*C2+STGIN,5)Y*52~DSIG(1)
DSTGI2)= SIGINs&)*¥S24+51G(N+5)*#C2-DSTIG(2)
DSIG(3)=(SIGI{Ns4)=SIGIN,S5) ) *¥5C-DSIG(3)
DO 180 1=1,3
DO 180 K=1,3
180 DSIG(T)= DSIGII)+ C(T+K)%¥D(K41)
((;***********%***************%*********%****%*%*%*******************%%

C OUTPUT STRESSES
CH BRI AR R R AR R R R F IR R R IR AR AR LR R R B AR R R AR LR E R LR R E R LR R R R I RE R R RN R EHNE

i

C
C CALCULATE PRINCIPAL STRESSES
c

AA=(DSIG(1)+DSIG(2Y) /2,

BB= (DSIG(1)-DSIG(2))/2.

CR= SQRT(BB#%2+DSIG(3)*%2)

DSIG(4)=AA+CR

DSIG(5)=AA-CR

IF ((BBeEQeDe0)eANDS(DSIG(3)1.FQ4N40)) GO TO 320
DSIG(6)=ATANZ2(DSIG(3),BB) /2.
DSIG(6)=57+296%¥DSIG(6)

320 RETURN

END






