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Abstract

Two experiments using social stimuli tested a recurrent neural
network model’s predictions for cue competition for causes
and effects. The delta-rule based model predicts the presence
of cue competition for effects as well as for causes as a result
of an asymmetry in the bidirectional associative strengths
between the relevant cue-outcome pairs. This model can
capture cue competition for effects when cues are encountered
in the cause-effect direction, unlike associative and feed-
forward models. Results support the model’s prediction of cue
competition for both effects and causes. The implications of
these results for causal model theory and for various
associative accounts of cue competition are discussed.

Introduction
Since the advent of research on causal induction many re-

searchers have focused on causal models that explain the
competitive nature of learning cues that predict or indicate
the occurrence of an event (e.g., Rescorla & Wagner, 1972;
Gluck & Bower, 1988; Shanks, 1991; Waldmann &
Holyoak, 1992). The first account of competitive learning of
cues was the Rescorla-Wagner (1972) model. When
multiple cues are present preceding an event, these cues
compete with each other for predictive strength, resulting in
the competitive learning of cues.  A classic example of this
is blocking, whereupon learning that stimulus A predicts
outcome X during initial training, there is a deficit in
learning that B also perfectly predicts X when AB are
presented together preceding X in the second training phase.

Although cue competition of causes is well established in
both the animal and human causal learning literature, the
question of whether competition occurs among multiple
effects of a common cause has produced somewhat
inconsistent findings and has resulted in a heated debate
(e.g., Shanks, 1991; Waldmann & Holyoak, 1992; Van
Hamme & Wasserman, 1993; Price & Yates, 1995; Matute,
Arcediano & Miller, 1996; Shanks, & Lopez, 1996).  Cue
competition for effects describes a two-stage conditioning
phenomenon whereupon first learning that cause A perfectly
predicts the occurrence of effect X during Phase 1 of
training, there is a deficit in subsequently learning that cause
A also perfectly predicts the occurrence of effect Y when
the XY compound is presented together after the
presentation of cause A during the Phase 2 training.

A number of researchers have provided evidence for cue
competition for effects. Some researchers (e.g., Shanks,
1991; Shanks & Lopez, 1996; Price & Yates, 1995; Cobos,

Lopez, Cano, Almaraz & Shanks, 2002) interpret the find-
ings as consistent with associative learning theories. Others
(e.g., Matute et al., 1996; Miller & Matute, 1998) assert that
the findings are more consistent with contiguity theory,
which assumes that associations are learned noncompeti-
tively and bi-directionally through simple contiguity, and
that cue competition takes place at judgment.

In contrast, proponents of causal model theory (e.g.,
Waldmann & Holyoak 1992; Melz, Cheng, Holyoak &
Waldmann, 1993; Waldmann, 2000) deny the evidence for
cue competition for effects, suggesting that whereas causes
compete, effects do not.  They argue that multiple effects
should not compete with each other because they provide
new information about the effects of a common cause.   

The goal of this paper is to contrast the predictions of a
recurrent neural network, with associative learning theory,
causal model theory and contiguity theory’s predictions for
cue competition for causes as well as for effects. Two
experiments designed to test the different predictions for the
occurrence of cue competition between effects will be pre-
sented. These experiments use various social behaviors as
target stimuli for cues and outcomes in an attempt to extend
the research in multiple cue contingency learning beyond
the traditional settings of biological, physical or abstract
events and their consequences.

In addition, these studies assess both directions of rea-
soning between causes and effects.  Typical research in this
domain only investigates one direction of reasoning and
thus cannot say anything about the relative strength of the
forward link from causes to effects and the backward link
from effects to causes.

Cue Competition in Associative Models
The Rescorla-Wagner (R-W) model (Rescorla & Wagner,
1972) formally describes the change in associative strength
during learning by: ∆Vcs(n) = acsbus(n) (lus(n) – Vtotal(n)), where
∆Vcs(n) is the change in the associative strength (V) of CS as
a result of a pairing with US on trial n; acs is the learning
rate parameter of the CS; bus(n) is the learning rate parameter
of the US on trial n; lus(n) is the asymptote of learning or the
maximum associative strength that the US can support on
trial n; and Vtotal(n) is the sum of associative strengths of all
CSs present on trial n, or the extent to which the US is pre-
dicted on trial n. The basic principle behind the R-W model
is that associative learning is determined by the extent to
which an US is surprising,  represented by the difference
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between the US that is actually presented on  trial n and the
US that is expected on the basis of the summed predictive
value of all the cues that are present on trial n.

With respect to blocking and cue competition, the R-W
model predicts the consequences of presenting multiple
causes. Cue competition for causes is observed in blocking
experiments because by the end of Phase 1 training, the
animal has learned that CS1 perfectly predicts the US.
During Phase 2 training, when CS1 and CS2 are presented
together with the US, no learning occurs for CS1CS2

because changing the associative strength of the CS2 cannot
improve the already perfect predictability of the US.

However, the R-W model is unable to naturally handle
cue competition between multiple effects of a common
cause, because it is a predictive model that assumes a cause-
to-effect directionality in learning associations. In other
words, the difference term (l– Vtotal) only applies to the
ability of cue (CS) to predict outcome (US), but not out-
come to cue.  However, several researchers have obtained
cue competition for effects and have provided associative
accounts for them (e.g., Shanks, 1991; Shanks & Lopez,
1996; Price & Yates, 1995; Cobos et al, 2002). In order to
do so, these researchers have had to resort to the somewhat
convoluted procedure of presenting participants with the
effects preceding the cause (for instance, where symptoms
predict the disease that caused them).  In other words, the R-
W model can accommodate cue competition for effects by
using a diagnostic learning procedure, where the multiple
effects can be presented as antecedent events, which are un-
derstood to occur after their cause, even though the effects
are presented prior to the cause. Thus the effects (antece-
dents) compete with each other in predicting the cause.
However, the R-W rule cannot handle the more typical
situation in which causes occur before effects.

Gluck and Bower (1988) and Shanks (1991) demonstrated
that a simple two layer feedforward network using the delta
rule, which is closely related to the R-W rule, correctly pre-
dicted competition of cues (symptoms) for a common out-
come (a rare disease). The delta rule is an error-correcting
learning rule that says that the changes in weights, ∆wij,
from input node i to output node j is given by the following
equation: ∆wij =  ∂ (tj – oj) ai, where a is the activation on
input node i; t is the target activation on output node j; o is
the observed or actual activation on output j; and ∂ is the
learning rate (constant). As in the R-W rule, the change in
weight between the input and output nodes, ∆w, depends on
the extent to which the target activation of the output differs
from the observed activation of the output.

However, this network can only learn forward links from
cues to outcomes.  Thus, as with the R-W rule they could
capture cue competition for effects only by assuming diag-
nostic learning where the effects precede the cause.

We will show that a recurrent network model with delta-
rule learning does not have this limitation, but can handle
cue competition for effects when causes precede effects.

Cue Competition in Causal Model Theory
Causal model theory argues that people use meaningful
world knowledge about the basic characteristics of causal
relations in conjunction with contingency information to

build causal models of the relations between causes and
effect (Waldmann & Holyoak, 1992). The causal model
theory uses a contingency rule to deal with a multiple cue
situation, where the contingency is the difference between
the proportion of cases in which the effect and cause co-
occur and the proportion of cases in which the effect occurs
in the absence of the cause.  When the causal model is pre-
dictive, cue competition between causes is expected in the
classic blocking paradigm because during Phase 2 training,
the new cue, Cue2, always co-occurs with first cue, Cue1.
Waldmann and Holyoak (1992) argue that because “it is
impossible to determine whether the observed unconditional
contingency between Cue2 and the effect is genuine or spu-
rious,” this should lead to uncertainty, which should further
lead to a lowered predictiveness of Cue2, or partial blocking
(p. 226). On the other hand, they assert that effects do not
compete with each other, because each effect provides fur-
ther information about the cause and there is no uncertainty
(Waldmann & Holyoak, 1992; Waldmann, 2000).

Waldmann has done a number of studies that fail to find
cue competition for effects (with the exception of Study 2 in
Waldmann and Holyoak (1992)). However, he typically
uses complicated learning tasks where effects temporally
precede causes (diagnostic learning). This has apparently
been motivated by the necessity of using diagnostic learning
to compare the predictions of the R-W rule.

Cue Competition in Contiguity Models
Some researchers propose that a noncompetitive, contiguity
theory of learning may better accommodate cue competition
for effects by asserting that cue competition does not arise
during learning, but during later judgment (e.g., Matute et
al., 1996).  Further, Matute et al. (1996) found that the
wording of test questions moderates the observance of cue
competition for effects. They obtained cue competition for
causes when they used test questions that implicitly probed
the conditional probability of an effect given a cause
compared to its probability given an alternative cause
(p[E|C] with p[E|C’]), and they found cue competition for
effects when they probed the conditional probability of a
cause given an effect compared to its probability given an
alternative effect (p[C|E] with p[C|E’]).  Their work seems
to suggest that the direction of the relationship queried may
be related to whether evidence is found for cue competition.

Cue competition in Recurrent Neural Networks
Recently, Read (2003) demonstrated that a recurrent
network, based on McClelland and Rumelhart’s (1988)
auto-associator, with bidirectional links between the input
and output nodes and using a modified version of the delta
rule, can predict cue competition for both causes and effects.
Unlike a feed-forward model, the recurrent model acquires
bidirectional links or associations between the input and
output nodes, and thus is able to accommodate cue
competition for effects with predictive learning, where the
cause precedes the effects.

One of the reasons this literature has become so confusing
is that in order to use the R-W rule or a feed-forward net-
work as a model of cue competition for effects, one must
test cue competition for effects with diagnostic learning,
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where effects are encountered before causes.  However,
with the recurrent network with delta-rule learning, this is
not necessary.  The current model allows one to test an
associative model, closely related to R-W, with the more
natural situation in which causes temporally precede effects.

In a recurrent neural network, the associative strengths of
the bidirectional links between any two events may differ,
and this possible asymmetry can be illustrated in the classic
blocking paradigm. In the recurrent model, the observation
of blocking depends on the direction of the association
between the redundant cause B and the common effect X. If
the association between cause A and X is trained in phase 1,
then when A and B are subsequently paired preceding X, the
link from Bfi X should exhibit competitive learning
because, when B is activated, X is already activated due to
the simultaneous presence of the previously trained cause A,
which is a perfect predictor of X. Thus, there is little change
in the link from BfiX during Phase 2 training because B
does not provide any new information about X. However,
the link from XfiB should not exhibit cue competition dur-
ing Phase 2 training, as activating X does not predict B
because B is not initially predicted by anything. Therefore,
there is a great discrepancy between the target activation of
B and the actual activation of B, which results in a greater
weight change in the link from XfiB. The result is that the
link from XfiB will be stronger than the link from BfiX,
suggesting that cue competition should only be observed in
the link from BfiX. As seen in Figure 1, Read demonstrated
this asymmetry in weights using the recurrent model, with
delta rule learning, with a learning rate of .15, with 10
passes through 10 learning instances with the same
contingencies as in the current experimental stimuli.

Figure 1: Weights demonstrating cue competition for causes
after Phase 1 and 2 training (but not after Phase 2 only
training). A and B are causes, X is the common effect.

Similarly, the recurrent model predicts cue competition
for effects using the same rule. Again, the model predicts an
asymmetry between the associative strengths of the links
from AfiY and YfiA. The associative link from YfiA
should exhibit competitive learning because when Y is acti-
vated during Phase 2 training, A is already highly activated
from the simultaneous presence of X, which is a perfect
predictor of A. Thus, there is very little weight change in the
link from YfiA. However, the link from AfiY should not
exhibit cue competition in learning because when A is acti-
vated during Phase 2 learning, Y is not initially predicted by
anything. Therefore, the discrepancy between the target and
the actual activations of Y are large, resulting in a bigger

weight change in the link from AfiY. Thus, the associative
strength from AfiY should be stronger than the associative
strength of YfiA. Read’s simulation results in Figure 2,
with the same parameters, reflect this as well.

Figure 2: Weights demonstrating cue competition for effects
after Phase 1 and 2 training (but not after Phase 2 only
training). A is the cause and X and Y are the effects.

Purpose. Our purpose is threefold. First, we will provide
further evidence that cue competition for effects occurs.
Second, we will demonstrate that this effect can be obtained
using social stimuli. Finally, we will test the predictions of
the recurrent network model for cue competition and the
asymmetry in the associative strengths of the bidirectional
links between the cue and the target outcome. We will ask
subjects to make judgments about the associative strengths
of each of the two possible links between a cue and an out-
come. Doing this in the same study has not previously been
done. It is expected that cue competition for effects will be
observed as well as the asymmetry in the associative
strengths of the two possible links: the target outcome, Y,
will exhibit cue competition with outcome, X, for the
weight from YfiA, but not for the weight from AfiY.

We will get directional measures of strength by asking
subjects to make conditional probability judgments between
all pairs of nodes. Interpreting these judgments depends on
the relationship between weights and conditional
probabilities.  As O’Reilly and Munakata (2000) show, in
neural networks, the weight from an input i to an output o is
a function of the conditional probability of the input given
the output (p [i|o]).  The output node can be thought of as
corresponding to a hypothesis and the input node to data
concerning the hypothesis.  Thus, the weight from input to
output captures the conditional probability of the data given
the hypothesis.  The critical implication is that judgments of
the conditional probability p[Y|A] will be sensitive to the
strength of the weight from Y to A whereas judgments of
p[A|Y] should be sensitive to the weight from A to Y.

Study 1
Stimuli were four unrelated behaviors that had no known
preexisting relationship with each other: breaking a glass
(cause A); shaving one’s head (effect X); lighting a tree on
fire (effect Y); and meditating (filler effect Z). Information
was presented simultaneously in list format (as Van Hamme
et al. (1993) and Matute et al. (1996) did) with a dashed line
break in between the antecedent and subsequent events to
separate the common cause from the multiple effects.
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Participants were instructed to learn the causal relationships
between the antecedent and subsequent events. Finally,
questions designed to assess the conditional probabilities
and probe the associative strengths between all four
behaviors were used (AfiX; XfiA; AfiY; YfiA; XfiY;
YfiX; AfiZ; ZfiA).

Method
Participants. 93 undergraduates from the University of
Southern California volunteered for extra credit. The study
was a between subjects design with repeated measures on
judgments, where the experimental group received both
Phase 1 and Phase 2 of training, and the control group only
received the Phase 2 training.

Materials and Procedure. Subjects were randomly as-
signed to the experimental or control group and seated in
front of a computer, on which the entire experiment was
done. The cover story asked subjects to imagine that they
were anthropologists in the distant future traveling to a long
lost human colony on a faraway planet to study their culture
and social customs. They were instructed that their goal was
to learn the various behavioral patterns of the colonists by
observing individual instances of sets of behaviors. They
were instructed to learn the causal relationships among the
behaviors.  Before seeing the behaviors, all subjects made
initial judgments about the extent to which the four stimulus
behaviors were related to each other to establish that they
had no known relationship. They were asked to rate the ex-
tent to which the occurrence of one behavior affected the
likelihood of another behavior on a scale from -10 to 10,
where -10 indicates “strongly inhibits,” 10 indicates
“strongly promotes”, and 0 indicates “no relationship.”
These questions and rating scale were also used for the
testing after the training phase(s).

After the initial ratings, subjects in the experimental con-
dition received Phase 1 training, where they saw 10
behavior sets exhibited by 10 individuals. Each set was
presented individually on separate screens along with the
name of the individual exhibiting the behaviors. Each set
was displayed until the subject pressed the space bar. Eight
of the 10 sets involved “breaking a glass” (cause A)
followed by “shaving one’s head” (effect X); 2 of the 10
sets involved “breaking a glass” (cause A) followed by
“meditating” (filler effect Z). The order of the 10 sets was
randomized for each participant. After Phase 1, subjects
started Phase 2 training, where they saw 10 more behavior
sets exhibited by 10 new individuals. Eight of the 10 sets
involved “breaking a glass” (cause A) followed by “shaving
one’s head” (effect X) and “lighting a tree on fire” (effect
Y). As in Phase 1, two of the 10 sets involved “breaking a
glass (cause A) followed by “meditating” (filler effect Z).

Subjects in the control condition only received Phase 2
training. Immediately after training, they made judgments
about the extent to which one behavior affects the likelihood
of another behavior, for all four behaviors in both directions.
Thus, subjects made judgments about the extent to which
“breaking a glass” affects the likelihood of “shaving one’s
head” (AfiX); “shaving one’s head” affects the likelihood
of “breaking a glass” (XfiA); “breaking a glass” affects the

likelihood of “lighting a tree on fire” (AfiY); “lighting a
tree on fire” affects the likelihood of “breaking a glass”
(YfiA); “shaving one’s head” affects the likelihood of
“lighting a tree on fire” (XfiY); “lighting a tree on fire”
affects the likelihood of “shaving one’s head” (YfiX);
“breaking a glass” affects the likelihood of “meditating”
(AfiZ); and “meditating” affects the likelihood of “breaking
a glass” (ZfiA).

Results and Discussion
The mean of the eight initial ratings was -.62 for the ex-
perimental condition, and -.49 for the control, indicating that
the four behaviors had no preexisting causal relationships.
The mean of the eight final ratings was 5.77 for the
experimental condition, and 6.19 for the control, indicating
that subjects learned the causal contingencies.

A between-groups comparison for each of the eight final
ratings found all of them to be non-significant with one ex-
ception. As predicted, the difference between experimental
and control group judgments of the YfiA rating (p[Y/A])
was found to be highly significant, t(91)=3.02, p=.003
(experimental M= 5.29 vs. control M=7.21) (See Figure 3).
This provides evidence for cue competition between effects
in the direction predicted by the recurrent network.

Figure 3: Mean ratings for cue competition for effects in the
AXY (control) and AX-AXY (experimental) conditions. A
is the cause, X and Y are the two competing effects.

Although the results of Study 1 were consistent with our
predictions, we wondered whether the test questions did a
good job of measuring conditional probabilities. After
learning the behavioral contingencies, subjects were asked
to make some “final estimates about the extent to which the
occurrence of the first behavior affects the likelihood of the
occurrence of the second behavior.” However, for the
backward reasoning test questions (e.g., XfiA, YfiA, and
ZfiA) the actual test questions asked subjects to indicate the
likelihood that an individual doing X (or Y or Z) had
previously done A. In other words, the task instructions im-
plicitly asked subjects to make forward casual judgments
from the first listed behavior to the second, while the actual
test questions asked subjects to make backward causal
judgments from the first listed behavior to the second (at
least for the backward reasoning questions). Thus, it is un-
clear whether we were successful in measuring the
bidirectional associative strengths among the four behaviors.

Study 2
Study 2 involved several changes. First, the wording of the
test questions was changed to more clearly measure
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conditional probabilities. Test questions probing the
associative strength of the link from Afi X were more
clearly phrased as the probability of A given X (p[A|X]),
XfiA was more clearly phrased as the probability of X
given A (p[X|A]), and so forth (The phrasing of the new
questions is presented later).  Next, because the recurrent
network model also predicts cue competition for causes as a
result of asymmetrical associative strengths in the links
between the redundant cue and outcome, the design from
Study 1 was used to investigate cue competition for causes
as well as for effects. For the Effects condition, the design
and stimulus behaviors (Cause A, Effects X, Y and Z) were
identical to those of Study 1. For the Causes condition,
Cause A and Effect X remained the same with the addition
of a new redundant Cause B, (“ringing a bell”) in the Phase
2 training portion, and changing the previous filler effect Z
to filler cause Z. Finally, Study 2 was conducted on the web.

Method
Participants.  168 adults ranging from ages 18 to 67 par-
ticipated in this study on the Internet. Mean age was 39.28
(SD = 12.792). Participants were from previous on-line
studies, unrelated to causal reasoning, who indicated that
they were interested in future on-line studies. They were
recruited by email and were residents of the US, with three
exceptions. They were entered into a lottery for a $50 cash
prize, with the odds of winning at 1/50. The study was a
between subjects design with repeated measures on
judgments. As before, the experimental groups for causes
and effects received both Phase 1 and Phase 2 training, and
the control groups only received Phase 2 training.

Materials and Procedure. Subjects clicked a link in their
email directing them to the study. Upon clicking the button
that initiated the experiment, subjects were randomly
assigned to one of four conditions: experimental and control
conditions for Causes and experimental and control
conditions for Effects. Subjects were presented with the
same cover story as in Study 1. Because Study 1 showed
that there were no preexisting relationships between the
behaviors, the initial judgments were dropped for Study 2.

The procedures for the Effects conditions were identical
to Study 1. Procedures for the Causes conditions were
identical to those for Effects, with the exception of changes
in the behaviors. In Phase 1 for the experimental group, 8 of
the 10 sets involved “breaking a glass” (cause A) followed
by “shaving one’s head” (effect X); 2 of the 10 sets involved
“meditating” (filler cause Z) followed by “shaving one’s
head” (effect X). In Phase 2, 8 of the 10 sets involved
“breaking a glass” (cause A) and “ringing a bell” (redundant
cause B) followed by “shaving one’s head” (effect X). As in
Phase 1, 2 of the 10 sets involved “meditating” (filler cause
z) followed by “shaving one’s head” (effect X). Control
subjects only received Phase 2 training.

The order of the eight test questions was randomized for
each subject. Immediately following training, subjects were
asked to make final judgments about the extent to which the
occurrence of one behavior affects the likelihood of the oc-
currence of another behavior in terms of conditional prob-
abilities for all four stimulus behaviors both directions.

They made their judgments by clicking on a radio button on
a rating scale from 0 to 10, where 0 indicates “No chance”,
5 indicates “50-50”, and 10 indicates “Certain”. The test
questions were phrased: for p[A|X],  “Assuming that
someone shaves their head, how likely is it that they had
broken a glass,” and  for p[X|A], “Assuming that someone
has broken a glass, how likely is it that they will shave their
head?,” and so forth.

Results and Discussion
As presented in Figure 4, the results for the Effects condi-
tion in study 2 replicate those of Study 1.

Figure 4: Mean ratings for cue competition for effects in the
AXY  and AX-AXY  conditions in Study 2.

Between groups comparison of the final ratings for the
experimental and control conditions showed a difference in
the critical variable of YfiA rating, (p [Y|A]) t(70)=3.75,
p=.00 (M=5.30 for experimental vs. M=7.36 for control).
No other comparisons were significant. Cue competition for
effects was asymmetric in the predicted direction.

For the Causes condition, there was a significant
difference between the experimental and control groups for
the critical variable of BfiX rating (p[B|X]), t(76) = 2.57, p
=.01. However, the difference for the non-critical variable
of XfiB (p[X|B]) was also significant, t(76) = 2.88, p =.00,
as presented in Figure 5. Cue competition for causes is
obtained, but contrary to the network model’s predictions,
there is no asymmetry in the associative strengths.

Figure 5: Mean final ratings for cue competition for causes
in the ABX and AX-ABX conditions in Study 2. A and B
are the competing causes, and X is the common effect.

General Discussion
These results replicate the well-established phenomenon of
competition between causes (e.g., Van Hamme et al., 1993;
Waldman & Holyoak, 1992) as well as the more controver-
sial competition between effects (Shanks, 1991; Price &
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Yates, 1993; Matute et al., 1996). Further, these studies
show that this effect can be obtained with social behaviors
and is not limited to biological or physical events.

The present study is the first to study cue competition for
causes and effects by systematically exploring all possible
directional links between causes and effects. Studies 1 and 2
demonstrated that cue competition between effects occurs
on the weight from the redundant effect Y to the cause A,
rather than on the weight from the cause A to the redundant
effect Y. However, Study 2 seemed to indicate that cue
competition between causes occurs on both the weight from
the redundant cause B to effect X as well as on the weight
from effect X to the redundant cause B.

The results clearly contradict causal model theory, which
states that effects do not compete. As for the associative
learning and the neural network models, the results support
their prediction of competitive learning and the presence of
cue competition between effects.   

One advantage of the recurrent model is that it provides
an account of cue competition for effects without the
necessity of requiring diagnostic learning (effects precede
causes).  Further, the recurrent model predicts and the
current results confirm that the extent of cue competition
depends on the direction of the weight or relationship
between cue and effect.  Previous models would have been
unable to make such a prediction.

The results for cue competition between effects are
consistent with the idea that the weights are sensitive to the
conditional probabilities between causes and effects. These
studies show that cue competition between effects occurs on
the weights from Y to A and not from A to Y after AX-
AXY training. This makes sense in terms of conditional
probability, in that, taking both Phase 1 and 2 into account,
every time Y was presented, it was always preceded by A,
and thus p(A|Y) is 100%. (note the weight from A to Y
should encode this conditional probability). However,
whenever A was presented, Y followed A only half the time
(during Phase 2), and thus p(Y|A) is 50% (the weight from
Y to A should encode this conditional probability). Thus,
the asymmetry in cue competition between effects is
consistent with the conditional probabilities.

However, with regard to cue competition for causes the
same does not seem to apply. A conditional probability
analysis should predict a similar asymmetry. Instead, the
results indicate no asymmetry in the bi-directional associa-
tive links between the redundant cause and the common
effect; cue competition occurs when reasoning both from
BfiX and from Xfi B. It is unclear why we do not get
weight asymmetry for cue competition for causes.
However, in further research, using different social stimuli,
we did find the predicted asymmetry, suggesting that the
current results may be specific to the current stimuli.

We note one other caveat.  Research in this area has not
separated the effects of learning from the judgment process.
Future studies in cue competition should be designed to
examine the various types of processes that participants may
use to arrive at their judgments of contingency.
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