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ABSTRACT Stroke patients aremonitored hourly by physicians and nurses in an attempt to better understand
their physical state. To quantify the patients’ level of mobility, hourly movement (i.e. motor) assessment
scores are performed, which can be taxing and time-consuming for nurses and physicians. In this paper,
we attempt to find a correlation between patient motor scores and continuous accelerometer data recorded
in subjects who are unilaterally impaired due to stroke. The accelerometers were placed on both upper
and lower extremities of four severely unilaterally impaired patients and their movements were recorded
continuously for 7 to 14 days. Features that incorporate movement smoothness, strength, and characteristic
movement patterns were extracted from the accelerometers using time-frequency analysis. Support vector
classifiers were trained with the extracted features to test the ability of the long term accelerometer recordings
in predicting dependent and antigravity sides, and significantly above baseline performance was obtained
in most instances (P < 0.05). Finally, a leave-one-subject-out approach was carried out to assess the
generalizability of the proposed methodology, and above baseline performance was obtained in two out of
the three tested subjects. The methodology presented in this paper provides a simple, yet effective approach
to perform long term motor assessment in neurocritical care patients.

INDEX TERMS Accelerometers or wearable sensors, machine learning algorithms, neurology.

I. INTRODUCTION
Motor impairment monitoring in stroke patients admitted to
the Intensive Care Unit (ICU) is crucial for understanding
patient prognosis and recovery, as well as for identifying
critical times for the application of medications, such as
Tissue Plasminogen Activator (tPA), which can significantly
improve patient outcomes [1]. It is also relevant for detection
of early onset of Intensive Care Unit Acquired Weakness
(ICU-AW), which can persist for up to 2 years after patient
discharge [2].

The measurement of motor function is usually done
through standardized measurement tests. Of particular inter-
est for this study is the Oxford Grading system for hourly
neuroassessments [3], performed by a nurse or clinical
provider on the patient, whose strength is assessed and scored
0 to 5 on each limb. While such scoring is of clinical utility,
it is non-ideal for multiple reasons; firstly, the exams are labor
intensive and usually performed not more frequently than

every hour, leaving the possibility for major changes in motor
ability to remain undetected for long periods of time. Further-
more, interobserver variability still remains a problem, where
the accuracy of the assigned score is highly dependent on
external factors such as the provider’s expertise and time of
stroke onset [4]. Finally, frequent neurological exams during
a patient’s hospital stay disturbs sleep and may increase
delirium, which worsens morbidity and mortality [5], [6].

The use of accelerometers to monitor physical activ-
ity in critically ill subjects has been explored previously
with successful results [7]. In the Neurological Intensive
Care Units (Neurological ICU), the use of accelerome-
ters for patient monitoring has been explored to detect
agitation and sedation patterns [8], and to study sedentary
behavior [9]. The use of accelerometers, specifically to detect
changes in patient motor score in the Neurological ICU,
has been explored previously utilizing the NIHSS motor
score as a metric [10]–[12], as well as using different motor
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TABLE 1. Subject demographics.

score scales [13]. However, these studies only performed the
recordings over small time windows, with maximum record-
ing times consisting of 10 minute epochs [10] and 12 second
epochs [14] over 24 hours.

Machine learning algorithms have proven success-
ful in characterizing motor activities extracted from
accelerometers [15], [16]. Specifically, support vector
machines (SVMs) have been used for movement charac-
terization and activity recognition in accelerometers and
other activity monitoring devices with surprising success
rates [17]–[21]. While studies applying machine learning and
big data approaches for assessment in the ICU have been
explored before, they have been focused towards determining
agitation and sedation patterns, and delirium state, but not
motor impairment [22]–[24]. Additionally, in the studies that
do apply machine learning, they do so in controlled settings,
where accelerometer recordings are only done in the first days
after admission and in certain controlled time windows [10].

In the present study we assess whether long term moni-
toring of seven days or more, using accelerometers in uni-
laterally impaired stroke patients in the ICU, is useful in
determining motor impairment. An SVM classifier was cre-
ated and trained using accelerometer derived features to clas-
sify dependent and antigravity limbs. The usefulness of the
extracted features is also assessed through a recursive feature
selection approach. The methods and results of this study
serve as a proof of concept for the use of accelerometers
as a monitoring mechanism in a challenging clinical envi-
ronment, and as a way of translating acceleromtery based
machine learning models, widely used in other settings, into
the Neurological ICU.

II. METHODS
A. CLINICAL DATA ACQUISITION
1) SUBJECT RECRUITMENT
This study was designed to be HIPAA compliant and all
study procedures were reviewed and approved by the Insti-
tutional Review Board of the University of California, San
Diego. Study subjects were recruited from the Neurologi-
cal Intensive Care Unit at UC San Diego Medical Center -
Hillcrest hospital. A total of four unilaterally impaired adult
subjects were recruited, subject demographics are presented
in Table 1. All subjects had experienced a stroke which led to
severe unilateral impairment as determined by the practicing
clinician. The subjects were enrolled in the study under their
consent and remained enrolled in the study for up to 14 days

or until discharged from the Neurological ICU, whichever
occurred first.

TABLE 2. Oxford motor grading scale.

2) MOTOR ASSESSMENT
As part of the Physical Function ICU Test (PFIT) [25], mus-
cle movement grading was routinely performed using the
Oxford Grading Motor Scale (Table 2) by the medical practi-
tioner, and recorded on an hourly basis on the subjects’ med-
ical chart. The clinical motor score data were downloaded
from the electronic medical record after removing all identi-
fying information. Subjects 1 through 3 were recorded for the
duration of their stay in the hospital without interruptions in
the data collection procedure with hourly assessments. Sub-
ject 4 had some interruptions in the data collection procedure
and motor scores were often obtained every 1 to 4 hours to
mitigate the risk of experiencing delirium as determined by
the clinical team.

Information from the Oxford Grading Motor Scale was
used for this study since it has been shown to be the best
estimator of antigravity muscle strength [3]. Furthermore,
the Oxford Grading Scale is considered the gold standard for
determining ICU acquired weakness (ICU-AW) [26], which
early onset detection can aid in successful recovery post-ICU.

3) LIMB IMPAIRMENT CHARACTERIZATION
During each limb assessment a limbwas classified as ‘‘depen-
dent’’ if it had a motor score of 0-2 and ‘‘antigravity’’ if it had
a motor score of 3-5. A score of 3 is chosen as a threshold
since it separates those movements that can be done against
gravity (scores 3, 4, and 5) and those that cannot (scores 0, 1,
and 2), effectively giving a binary representation of impair-
ment. It also allows each limb classification to contain 3
motor scores. The creation of the two groups of limbs allows
the motor impairment assessment from the accelerometer
features to be treated as a binary classification problemwhich
can be analyzed with the proposed methodology. Motor score
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values and impairment information for each subject is shown
in Table 1.

4) ACCELEROMETER DATA COLLECTION
Upon enrollment, four tri-axial accelerometers (Axtivity
AX3 Accelerometers) were placed in the left upper extremity
(LUE = left arm), the right upper extremity (RUE = right
arm), the left lower extremity (LLE = left leg) and the right
lower extremity (RLE = right leg). All accelerometers were
attached to hospital bands and placed on the subjects’ wrists
and ankles as shown in Figure 1. Data were continuously
acquired at 100Hz for up to 14 days or until the subject was
discharged from the Neurological ICU, whichever occurred
first. After the study was completed, the accelerometers were
removed from the extremities and the data were downloaded
to a computer.

FIGURE 1. a) Illustration of experimental setup, where 4 accelerometers
are mounted onto hospital bands and placed around each of the patients
extremity. b) Raw tri-axial accelerometer measurements are performed
continuously across all 4 extremities. Changes in accelerometry are
detected, interpreted as movements, and counted per hour.

B. DATA PROCESSING AND ANALYSIS
All of the subsequent analyses were performed on a personal
laptop computer with 16GB of RAM and an Intel Core
i7 CPU with 2.80GHz running Windows 10.

1) SIGNAL PREPROCESSING AND MOVEMENT
EVENT EXTRACTION
The raw accelerometer data were down-sampled from 100Hz
to 50Hz, because significant signal power was only seen
below 25Hz. After down-sampling, the magnitude of each
accelerometer was calculated according to equation 1

A[t] =
√
x[t]2 + y[t]2 + z[t]2 (1)

whereA[t] corresponds to themagnitude of the accelerometer
signal at time t and x[t], y[t] and z[t] to the acceleration in
the x, y and z direction, at time t in the accelerometers’ frame
of reference. Subsequently, to eliminate the baseline normal
force (9.8m/s2), measured in the accelerometer as a constant
offset, the difference between subsequent timepoints, A′[t],
was taken. Matlab software was used to compute features.

To classify movement events, an empirically chosen
threshold was applied to the A′[t] of the signal. The param-
eters used to detect features were manually chosen and were
determined to be sufficient based on their ability to detect

events from an example window of data. Instances that lasted
longer than 1 sec and had a subsequent silent period of 0.5 sec
after the instance were then classified as movement events,
and stored with the corresponding timestamp. All extracted
movement events consisted of non-overlaping windows and
were specific to each limb.

It is important to note that some of the detected movement
events are not generated by the subject, but rather by clin-
icians who need to interact with the patient. The approach
to filter these movements out is discussed in the following
sections.

2) FEATURE GENERATION
The start and end timestamps for each detected event fol-
lowing the procedure from the previous section, were used
to extract the magnitude corresponding to that time window.
The time magnitude vector for each event window was sub-
sequently used to create 9 scalar valued features. The features
were selected on their ability to characterize movement on the
basis of smoothness, intensity and pattern behavior, and all
have been successfully used to characterize motor activity in
wrist and ankle worn accelerometers [17], [27]. Furthermore,
feature computation time was also considered in the selection
process to ensure translational applicability.

The features extracted for each event are shown in table 3.
From the time domain, the first feature consisted of the time
average of the magnitude vector as shown in Equation 2,

Aavg =
1

tf − ti

∫ tf

ti
A[t]dt (2)

for ti and tf corresponding to the initial and final timepoints
of the event. The maximum and minimum values of the
magnitude vector were also used. To characterize move-
ment smoothness, the jerk of the signal has been previously
used to characterize tremors in bradykinesia and Parkinson’s
disease [28], [29]. To convert the jerk into a scalar quantity
the Normalized Average Rectified Jerk (NARJ) was used
instead of the time average jerk since the NARJ has been
shown to be a consistent metric for movement smoothing
independent of signal duration [30]. The NARJ was com-
puted as follows

NARJ =
1

tf − ti

∫ tf

ti

∣∣∣∣dA[t]dt

∣∣∣∣ (3)

An FFT transform of the magnitude vector was used
to obtain frequency based features. The first and second

FIGURE 2. Flowchart presenting the pipeline used to generate the results.
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dominant frequencies (excluding DC) and their correspond-
ing FFT power were extracted as features, all of which have
been proven successful for accelerometer based movement
characterization [27]. The use of multiple combinations of
these features have also proven useful, but with minimal
improvements in the classification accuracy, therefore they
were excluded as a means of minimizing the number of
features [17].

After the above scalar features were computed for every
extracted event, the average of each feature for events taking
place in a single hour was computed, resulting in one feature
vector for every limb and for every hour. This allowed us
to include a final feature that consisted of the number of
events that took place in that given hour. The reason for com-
bining event features in an hourly fashion is twofold. First,
since motor assessments are performed every hour, the clin-
ical score between assessments is not accurately known and
assuming that every event within the hour has the same score
as the hour itself would be an oversimplification. Secondly,
some of the registered events will correspond to movements
induced by interactions between the practitioner and the sub-
ject. Under the assumption that those interactions only hap-
pen a small number of times within the hour, taking the hourly
average of the features will allow to minimize the effects
these confounding movements have on the performance of
the system.

The features were organized into a matrix where each
row corresponds to an hour where events were recorded and
columns correspond to the respective features for that hour.
A given row of the feature matrix was labeled to be from a
dependent limb if the motor score for that limb at that hour
was less than 3, and antigravity otherwise, in keeping with
the previously defined thresholds. The columns of the feature
matrix (feature vectors) were scaled to have zero mean and
unit variance, which is necessary to prevent uneven feature
scaling to affect the results. This normalization was done per
subject, per day. That is, the feature vectors corresponding to
the same subject for a given day were normalized under the
same distribution to zero mean and unit variance.

3) SUPPORT VECTOR MACHINE CLASSIFIER
The use of Support Vector Machines for the characterization
of movements using accelerometers has been successfully
explored before [17]–[21]. Furthermore, SVM’s suitability
for binary classification problems with small numbers of fea-
tures makes it an ideal choice of algorithm for this study [31].

The open source Python library scikit-learn [32] was used,
together with Python 3.6 to apply the classification analysis
to the data. Support Vector Classifiers (SVCs) were trained
to classify between dependent and antigravity limbs. In its
essence SVCs project the input feature space into a higher
dimensional features space in which a hyperplane described
by ‘‘support vectors’’ is used to classify the data [33]. A linear
kernel was chosen for all the trained SVCs. The choice of a
simple linear kernel prevents overfitting of the training set
in the presence of small datasets. The two hyperparameters

TABLE 3. Accelerometer derived features.

of the classifier, C and γ were determined using a coarse
parameter grid search with values C = 2−5, 2−3, . . . , 215

and C = 2−15, 2−13, . . . , 23, according to the procedure
described in [34]. The optimal parameters obtained from the
grid search were C = 2 and γ = 0.5.
SVCs were trained for each subject and separately for

upper and lower extremities within each subject. The data
were divided using an 80/20 approach, where 80% of the
data is used for training and validation and 20% is used for
testing. Testing and training sets were ensured to have similar
ratios of dependent and antigravity instances. This process
was repeated for every patient and type of extremity (upper
and lower). In order to evaluate the ability of cross-limb
information in helping to classify dependent limbs, a third
combined classifier was created for each subject, in which
training and prediction occurred in combined upper and lower
limbs. The feature selection process and cross-validation was
identical.

To determine the validity of a classification, the probability
output from the classifier was used. In general, if the posterior
probability of an instance belonging to the dependent class
is over 50%, the SVC will assign that class to the tested
instance. However, since the classifier is not perfect, there
will be a certain degree of uncertainty with each prediction,
which can be estimated by the closeness of a given pre-
diction to the decision boundary. As a means of increasing
the certainty of the predictions, those that had probabilities
within a region close to the decision boundary were labeled
as uncertain. To determine this region, the probability of an
instance belonging to the dependent class was used. Since
the clinical risk of a false negative (incorrectly predicting a
dependent limb as antigravity) is larger than the risk of a
false positive (incorrectly predicting an antigravity limb as
dependent), the lower bound of the probability region was set
to 42% while the upper bound was set to 54%. That is, for
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an instance to be classified as antigravity, the probability of it
belonging to the dependent class must be smaller than 42%,
while for it to be classified as dependent, the probability of
it belonging to the dependent class must be larger than 54%.
Instances with probabilities between 42% and 54% are other-
wise labeled as uncertain. These bounds were chosen such
that the number of instances labeled as uncertain was less
than 20% of the tested instances.

Maintaining the dependent and antigravity labels of the
feature matrix as a template, the entries of the matrix were
populated with normalized random data between 0 and 1 to
train a baseline classifier. The random feature matrix was
subject to the same scaling as the actual feature matrix and
used to train a SVC. Cross-validation scores were computed
for the baseline classifier and used as the baseline accuracy
for its corresponding actual classifier. Given that the num-
ber of cross validation accuracy scores is only 10 for every
actual classifier, the normality of this data cannot be accu-
rately determined. For this reason a nonparametric Wilcoxon
rank-sum test was used to compare the cross-validation scores
of the actual classifier with the accuracy of the baseline
classifier. The statistical significance of the accuracy values
for each trained classifier was calculated by subtracting the
cross-validation accuracy scores from their corresponding
baseline accuracy and performing a one sided Wilcoxon
rank-sum test in the resulting datapoints.

Only subjects 1 through 3 were used for creating the indi-
vidual classifiers since subject 4’s minimum motor score on
the dependent side was 3, therefore all of its features were
labeled as antigravity.

4) FEATURE RELEVANCE ASSESSMENT
In order to validate the choice of features, a recursive feature
selection approach was taken. Given the complete set of fea-
tures described previously, an SVC was trained using all pos-
sible combinations of features in sets ranging from 1 feature
to 9 features. Each individual classifier previously described
(upper, lower and combined extremity classifiers), for sub-
jects 1 through 3 was used. With the same specifications
described in the previous section, a 10-fold cross-validation
was applied to each classifier and the average cross-validation
accuracy for all folds and all classifiers was used as a metric
for the performance of each feature set. The test set did not
enter the feature selection process in any way.

5) LEAVE-ONE-SUBJECT-OUT APPROACH
In order to assess the generalizability of the proposedmethod-
ology, a leave-one-subject-out approach was used. For this
approach, all the data from a single subject were excluded
from the training set and then the model was tested on that
excluded data. The SVCs used in this approach had the same
hyperparameters and linear kernel type as in the previously
described classifiers. To assess which features were gen-
eralizable across subjects, a leave-one-subject-out approach
leaving subject 3 out, and training on subjects 1, 2, and 4,
was performed. Using a similar approach as that shown in

the previous section, the performance in the left out test set
after training with different feature sets was assessed for a
classifier using only information from the upper extremi-
ties, the lower extremities, and combined upper and lower
extremities. After the features with the best performance were
identified in subject 3, a final leave-one-subject-out approach
training on subjects 2, 3 and 4, and testing on subject 1 was
carried out. For comparison, a baseline classifier was also
trained following the same approach described previously,
and tested on the data of subject 1. Subject 4 was not assessed
for the leave-one-subject-out approach due to the absence of
any impaired limbs according to the specified criteria. Sub-
ject 2 was assessed for the leave-one-subject-out approach by
training on subjects 1, 3, and 4, however, it seemed that none
of the features generalized well as performance was no better
than baseline.

III. RESULTS
The results from the recursive feature selection are shown
in Figure 3. It can be seen that every feature used yields above
baseline mean cross validation accuracy. The largest accuracy
is achieved with classifiers trained using all available features
as shown by the blue triangle, and with a classifier using all
features except the average magnitude, which is represented
by highest red circle. A general downwards trend is observed
as less features are used for training the model, and there
seems to be a clear separation between certain sets of features,
as represented by a large vertical gap in the figure. The single
features with the largest accuracy were the average mag-
nitude, movement count and power 2. Furthermore, feature
sets ranging between 2 and 7 features containing either of
these three features always appeared above the vertical gap
suggesting the relative importance of these three features.
The individual classifiers were trained using all features as
the difference in cross-validation performance between the
highest performing 8 feature set and the complete feature set
was negligible.

FIGURE 3. Scatterplot showing the recursive feature sets mean
cross-validation accuracy across all individual classifiers. Each data point
is color coded to the number of features in the feature set it represents.
The number of features in each set decreases as the points go to the
right. Mean baseline classifier is shown with a dashed line.
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FIGURE 4. Boxplot representing the accuracy obtained after a 10-fold cross-validation for each limb classifier and the combined
classifier for each subject. Baseline obtained values are shown as a red line and test set accuracy is shown as a blue line. Outliers
are shown as black squares. Mean± standard deviation for all boxplots shown underneath. Not statistically significant differences
between the cross-validation results and the baseline classifier are denoted by NS.

The results from the trained SVCs are shown in Figure 4.
The combined classifiers, across all trained subjects, had on
average a cross-validation accuracy of 0.72 ± 0.05 and a
test set accuracy of 0.73 ± 0.05, the upper classifiers an
average cross-validation accuracy of 0.76±0.08 and a test set
accuracy of 0.81± 0.02, and the lower classifiers an average
a cross-validation accuracy of 0.78 ± 0.13 and a test set
accuracy of 0.80± 0.06. Most instances had cross-validation
performance statistically significant (P < 0.05) above that
of the baseline classifier, with the exception of the combined
(P = 0.25) and lower (P = 0.39) extremity classifiers for
subject 2. Furthermore, all test set accuracies were within
the cross-validation scores range and above baseline, with the
exception of the combined classifier in subject 2.

The feature selection process showed that the features that
performed the best in the leave-one-subject-out approach
were the maximum magnitude, power 2 and the movement
count. The leave-one-subject-out approach on subject 3,
which was used for feature selection, yielded test set accu-
racies of 0.66, 0.77 and 0.73, with baseline accuracies of
0.51, 0.51 and 0.49, for combined, upper and lower extremity
classifiers respectively. The leave-one-subject-out approach
on subject 1, had accuracies of 0.74, 0.82 and 0.72, and
baseline accuracies of 0.61, 0.56 and 0.65 for combined,
upper and lower extremity classifiers respectively. Finally the
leave-one-subject-out approach on subject 2, had accuracies
of 0.50, 0.51 and 0.47, and baseline accuracies of 0.35, 0.61
and 0.74 for combined, upper and lower extremity classi-
fiers respectively. These results are summarized in Table 4
The confusion matrices and ROC curves for the leave-one-
subject-out approach on subject 1 are shown in Figure 5.
The confusion matrices shown in Figure 5A-C have the

TABLE 4. Leave-one-subject-out accuracy for subjects 1 through 3, and
all corresponding classifiers. Baseline accuracy is shown in parenthesis.

largest values in their diagonals, with a large number of
true negatives (antigravity instances classified as antigravity),
followed by a smaller number of true positives (dependent
instances classified as dependent). In the off-diagonals, there
was a larger number of false negatives (dependent instances
classified as antigravity), than false positives (antigravity
limbs classified as dependent), and this is consistent across all
matrices. The receiver operator characteristics (ROC) curves
for combined, upper and lower extremity classifiers are also
shown in Figure 5D-F. The area under the ROC curves was
largest for the upper extremity trained classifier with a value
of 0.87, followed by the combined classifier with a value of
0.76 and the lower extremity classifier with a value of 0.74.
For the leave-one-subject-out approach of subject 1, 67% of
the incorrect classifications took place in the second half of
the dataset, that is, in the latter days in which the subject
was monitored. For the leave-one-subject-out approach of
subject 3, the errors were distributed equally amongst the two
halves of the dataset.

IV. DISCUSSION
The results presented in this study successfully demonstrate
the ability of features extracted from continuous accelerom-
eter recordings in the NeuroICU to determine gravity and
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FIGURE 5. Confusion matrices for the A. combined, B. upper and C. lower extremity classifiers for the final leave-one-subject-out
approach tested in subject 1. The classifier accuracy (Acc.) and baseline classifier accuracy (Bl.) are shown at the top of the confusion
matrix. The corresponding ROC curves for the D. combined, E. upper and C. lower extremity classifiers are shown in blue. The dashed
line represents the ideal ROC for a completely random classifier. The area under the ROC curve (AUC) is also shown .

antigravity limbs. Of primary importance is that this is the
first study, to our knowledge, that has attempted to assess
motor impairment in the ICU for 7 days or more in individ-
ual subjects. We have also demonstrated that the proposed
methodology is capable of generalizing to new subjects with
minimal modifications, allowing for a simple, yet effective,
way of performingmotor assessment in the NeuroICU.While
the sample size is limited, the results should serve as a lower
bound for the performance that future studies should aim to
achieve.

The iterative feature assessment shown in Figure 3 demon-
strates that all the features extracted from the accelerom-
eter are informative. The general downward trend as the
number of features is decreased suggests that while certain
features might dominate in importance, such as the average
magnitude and the movement count, the contribution of the
other features is sufficient to yield larger accuracies when
they are included in the model. Simply using the move-
ment count, as traditionally done in approaches involving
actigraphy [35], has been shown to be ineffective in an ICU
setting [36]. The incorporation of these new features attempts
to account for other characteristics of the subject’s movement
such as smoothness and idiosyncratic movement patterns,
which might explain the additional accuracy obtained by
including these features. Additionally, their computation is
fast and straightforward. After extraction of all the movement

events with the proposed approach, the computation of the
entire feature matrix for a given subject takes on average
3 seconds, resulting in about 0.5 milliseconds to compute
all the features for a single event. The relative simplicity
in terms of their computation makes them ideal for mobile
or portable applications. Since they are purely derived from
accelerometer information, they can be easily incorporated
into digital actigraphs to improve their effectiveness in ICU
settings [36]. Furthermore, all of the proposed methodology
involved easily accessible resources such as off-the-shelf
accelerometers and open source software, which significantly
increases the accessibility of the proposed approach.

The results of the support vector classifiers (Figure 4)
also proved to be promising. Despite certain instances where
the test set performance was sub-optimal, such as in the
combined limb classifier of subject 2, the results from the
cross validations seem to generalize well into the testing sets.
Furthermore, most cross-validation accuracy measurements
were statistically above those of the baseline classifiers, with
differences in accuracy of up to 0.35 in some cases. Addi-
tionally, the training of each classifier, after the feature matrix
had been constructed and filtered, ranged between 20 to 100
milliseconds, once again proving to be sufficiently fast for
portable applications.

In general, the results shown in Figure 4 suggest that
the performance of the combined classifier is equivalent or
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better than that of the lower classifiers, and equivalent or
slightly inferior to the upper classifier. These cross-limb com-
binations have not been explored in the literature for ICU
monitoring, likely due to the expected differences between
movements in the upper and lower limbs, which are likely
to be exacerbated in bed ridden individuals. However, since
these individuals are unilaterally impaired, the degree of
mobility between ipsilateral limbs might be sufficiently sim-
ilar to successfully train a model using information from all
limbs. These results show that models trained on information
from both upper and lower limbs in unilaterally impaired
patients in the Neurological ICU can be successfully used for
long term hourly limb classification.

The leave-one-subject-out approach results are also
promising. With a maximum test set accuracy of 0.82 in the
upper limb classifier, and an average accuracy of 0.76 across
all classifiers, it can be seen that the performance of this
approach is similar to the individually trained classifiers. Fur-
thermore, the features that performed well in this approach
encompass the strength, the smoothness and the frequency (as
in movement counts) of the movements in each subject. The
maximum magnitude directly relates to the acceleration of
the movement, as it determines the upper limit of that accel-
eration, and therefore it is expected to directly relate to the
strength of the subject. The power 2 relates to the smoothness
of the movements, as it describes the relevance of the second
dominant frequency. These two features, combined with the
movement count, roughly provide the same information as all
the other features used for the individual classifiers. As shown
in the recursive feature selection for the individual classifiers
the movement count, power 2 and the average magnitude
contributed positively to the performance of the classifiers.
Therefore, it is not surprising that two of these three features,
the movement count and the power 2, are able to generalize
well across subjects. The third feature, the maximum magni-
tude, is closely related to the average magnitude, therefore it
is also consistent with the previous discussion. The fact that
the entire feature set does not perform as well as the reduced
feature set in the leave-one-subject-out approach might be
evidence that the entire feature set might be causing the
model to over-fit to individual subjects. This can be useful
in cases when individualized models are desired, such as
in the individual classifiers that were studied. In the case
of a generalized model, however, a small subset of features
capable of encompassing the diverse movement dynamics of
multiple subjects, such as the ones chosen here, seems to
prove more useful.

The confusion matrices shown in Figure 5A-C also show
that in general, the model is highly capable of determining
when a limb belongs to the antigravity class, while it struggles
more in distinguishing dependent limbs. This behavior is con-
sistent across classifiers, and might be due to the decreased
number of dependent training examples due to the nature of
the hemiparesis. Nevertheless, the results still suggest that
the model has the capacity to classify dependent limbs with
a performance above random guessing. The distribution of

the errors seems to be slightly skewed towards the latter
part of the dataset in subject 1, and equally distributed in
subject 3. This is promising, as it suggests that the model
performs very similar, at least in subject 3 and to a lesser
extent in subject 1, at the beginning and end of the subject’s
stay in the ICU. This can serve as potential evidence of the
ability of the proposed methodology to generalize well in
long term Neurological ICU monitoring. While still below
the 90% multi-class accuracy presented in [10], these results
are tested in more than 130 instances, while previous studies
only do so in 5 or less. While the generalization of the model
only worked in two the three subjects tested in the leave-one-
subject-out approach, the results are still promising since both
subjects were very different in terms of the study. Subject
1 was right side impaired and subject 3 was left side impaired,
and both had very different distribution of motor scores and
lengths of stay. Despite not testing subject 4 in the leave
one out approach, training with data from subject 4 seemed
to have contributed to the performance, as ignoring it from
the training set caused decreased accuracy when testing on
subjects 1 and 3. Similarly, despite the poor performance
when testing on subject 2, training with data from subject
2 in the leave-one-subject-out approach of subjects 1 and
3 proved useful in terms of performance. This is indicative
that the model is indeed learning from these subjects, and
might suggest that there is potential for improvement if more
data is provided.

The results of the SVCs are also important in the con-
text of long term monitoring of individuals admitted to
the ICU. Similar studies [7], [10], [11], [37] have only per-
formed accelerometry recordings in small time windows and
up to 3 days of interrupted monitoring, and to our knowledge,
this is the only study that has obtained this performance
using long term recordings. Since every SVC is trained and
tested using information from the entirety of the subject’s
stay in the ICU, the significantly above baseline performance
of these classifiers suggests that they are flexible enough to
make accurate predictions in situations where a limb might
transition from dependent to antigravity, as it was the case in
initially dependent limbs of subjects 1, 2 and 3 (Table 1).

A clear limitation of this study is the sample size, and
despite our results using a leave-one-subject-out approach
might suggest a potential for generalizability, a larger sample
size is needed for a definite conclusion. However, given the
absence of a study with longer than 24 hour continuous
accelerometry based monitoring in ICU settings, the results
from this study serve as a lower bound for the performance,
and as a proof of concept of a potential course of action.
Another important limitation is the presence of confounding
movements induced by clinical practitioner-patient interac-
tions. While efforts were made to mitigate the effects of these
movements, more effective filtering approaches such as video
monitoring could prove more useful and improve upon the
results. An alternative strategy is to use video alone tomonitor
activity. Previous work has demonstrated the ability to track
upper body joints in the EpilepsyMonitoringUnit fromRGB-
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video [38]. This approach is advantageous because sensors
do not touch the body, which removes the risk of skin irri-
tation and other compilations such as neglecting to remove
non-MRI compatible sensors prior to MRI. There are many
approaches and opportunities to capture patient movement
information that may useful for determining neurological
state. Future studies should also aim at performing a finer
motor assessment that is not only hourly, but includes assess-
ments in smaller timewindows in order to achieve a finer tem-
poral resolution. This can aid in detecting important changes
earlier, such that the proper intervention can take place.
A final limitation is the susceptibility of the ground truth
labels, namely the clinician assigned motor scores, to individ-
ual bias. Despite efforts to standardize the way hourly clinical
assessments are performed, inter and intra-observer variabil-
ity still serve as confounding factors that limit the accuracy
of a given score, especially in overcrowded hospitals, where
the time per patient needs to be minimized and mistakes are
more likely. This study should serve as one of many starting
points to develop consistent and objective ways to monitor
motor impairment in the Neurological ICU.

V. CONCLUSION
The present work served to explore the use accelerometry
for long term monitoring of severe motor impairment in
unilaterally impaired subjects in the Neurological ICU.We
have shown that the movement information obtained from
the accelerometers can be used to create informative features
that can potentially be used in new monitoring approaches.
We have also shown that Support Vector Classifiers are
capable of classifying dependent and antigravity limbs with
above baseline performance using solely movement informa-
tion extracted from the accelerometers. The incorporation of
a leave-one-subject-out approach shows that accelerometer
information acquired from different subjects can be useful in
training classifiers that generalize to new subjects for long
term ICU monitoring. The proposed approaches serve as an
initial proof of concept for the use of accelerometers as a
long term monitoring mechanism in a challenging clinical
environment such as the Neurological Intensive Care Unit.
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