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Causal Information Seeking
Brian N. Yin (bny212@nyu.edu)
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Abstract
How do people’s causal knowledge influence how they seek in-
formation? The current work tasks participants with choosing
to observe disease symptoms in a setting where they know a
disease’s etiology and related symptoms. We use causal graph-
ical models (CGMs) to formalize their causal knowledge of the
disease, and find that people tend to use their expected infor-
mation gain, computed over their CGM-generated probability
beliefs, to search for information in causal settings.
Keywords: Bayesian decision theory; information search;
causal reasoning; causal graphical models

Introduction
How does a person’s causal knowledge influence how they
seek information? A doctor chooses a test for a patient pre-
senting with a cough and chest pains, a cognitive psycholo-
gist designs an experiment to probe a popular theory, a child
suffering from afternoon tummyaches asks the lunch lady
what’s in the chocolate cake. In both specialized and every-
day contexts, we reason forward from causes to effects (tree
nuts cause allergic reactions) and backward from effects to
causes (from a patient’s symptoms to a doctor suspects bron-
chitis from their patient’s symptoms), and knowledge of what
causes what influences how we search for explanations.

Information search has been studied extensively across
cognitive psychology and underlies the research that’s nom-
inally about how people test hypotheses to discover general
rules and regularities (Klayman & Ha, 1987; Markant &
Gureckis, 2014; Oaksford & Chater, 1994; Wason, 1968)
and about how they seek evidence to infer the categories
of given exemplars and the underlying causes of particular
events (Baron, Beattie, & Hershey, 1988; Eddy, 1982; Nel-
son, McKenzie, Cottrell, & Sejnowski, 2010; Rehder & Hoff-
man, 2005). However, whereas the research to date has gen-
erally involved participants reasoning with statistical infor-
mation relating evidence and hypotheses (typically, the con-
ditional probability of evidence given the presence of each
hypothesis), reasoning in real-world scenarios often uses a
reasoner’s causal knowledge about how evidence relates to
hypotheses.

A large body of empirical work in the last two decades, in-
spired by formalisms from artificial intelligence (Glymour,
1998; Pearl, 2000), has shown that people employ their
causal knowledge during reasoning (Holyoak, Lee, & Lu,
2010; Kemp, Shafto, & Tenenbaum, 2012; Rehder & Bur-
nett, 2005), learning (Cheng, 1997; Griffiths & Tenenbaum,

2005), decision making (Hagmayer & Sloman, 2009), and
classification tasks (Rehder, 2003; Rehder & Kim, 2010), and
that their behavior on these tasks can be explained by causal
graphical models (CGMs) of their knowledge.

The present work will investigate exactly how people’s
causal knowledge influences how they choose what informa-
tion to acquire in the domain of medical diagnosis, using
CGMs to model their causal knowledge as a structure over
which they search for information. We gave participants net-
work diagrams that displayed a disease’s etiology and related
symptoms, and analyzed how participants’ conditional prob-
ability judgements (e.g., their belief in the chance the disease
gave rise to one of its characteristic symptoms) predicted their
choices in an information-seeking task (their choice of what
observation to make to best diagnose a hypothetical patient).

The Value of Information
Following Nelson et al. (2010), we quantify the value of an
observation as its expected utility—the usefulness of the pos-
sible outcomes of the observation, each weighted by its prob-
ability and aggregated into a single value representing the ob-
servation’s expected usefulness. We can express the expected
utility U(A) of observing an alternative as

U(A) := ∑
a∈A

P(a)u(a) (1)

where A is the random variable we’re observing, P(a) rep-
resents the probability of a specific value a of an observation,
and u(a) represents the utility of observing A to be a—the
value of an observation coming out a specific way. We will
test four utility functions, each corresponding to a different
theory of how people value information.

Information gain (IG) (Lindley, 1956) treats the value of
an observation as the degree to which it reduces uncertainty
(reduces entropy of the hypothesis space):

uIG(a) :=

[
− ∑

d∈D
P(d|a) logP(d|a)

]

−

[
− ∑

d∈D
P(d) logP(d)

] (2)
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D is a random variable1 who’s value we’re interested in
inferring from observing A, the first parenthetical represents
our uncertainty about D’s value after observing A = a, and
the second parenthetical represents our uncertainty about D’s
value before observing A.

Probability gain (PG) (Baron & Hershey, 1988) treats the
value of an observation as the increase in our probability of
guessing D’s value, given that we’re guessing greedily:

uPG(a) := max
d∈D

[P(d|a)]−max
d∈D

[P(d)] (3)

where the first max expression is the chance we infer D’s
value correctly after observing A = a and the second max ex-
pression is the chance we infer correctly before observing A.

Impact (Imp) (Klayman & Ha, 1987) assigns the value of
an observation to be the summed absolute changes from prior
to posterior beliefs over D’s value:

uImp(a) := ∑
d∈D

|P(d|a)−P(d)|. (4)

Certainty gain (CG) (Baron & Hershey, 1988) assigns the
value of an observation to be the number of hypotheses it
rules out:

uCG(a) := I0(p(D))− I0(p(D|a)) (5)

where I0(p(X)) is a function that takes a discrete distribu-
tion p(X) and counts over x∈X how many values of p(x)= 0.

Causal Graphical Models
Equations 1–5 express four theories of how people assign val-
ues to the prospect of observing variables, given their prob-
ability beliefs P(a), P(d), P(d|a). Previous work on infor-
mation seeking has given these probabilities to participants,
either by describing rates of events or by having participants
infer those rates from experience—in both cases, the prob-
abilities that get fed into their models are the ground truth
probabilities.

But a cognitive theory should give an account of what
probabilities people compute with (not necessarily the ground
truth ones) and where these probability beliefs come from.
People can reason on the basis of their theoretical knowl-
edge of events whose probabilities they’ve never experienced
firsthand (on the basis of e.g., causal knowledge that’s been
described to them). CGMs give a way to model such theo-
retical knowledge, representing causal knowledge as graphs,
with variables as vertices and causal relationships as directed
edges between vertices. CGMs have had success explaining
behavior in a large range of tasks, and one question is whether
CGMs, when used in conjunction with the right utility func-
tion(s), may underlie people’s reasoning in an information-
seeking decision task.

1Technically, D should appear as a free variable in Equation 1;
we omit it for concision of notation.

A CGM generates a probability distribution over the values
of its variables. It is common to assume that exogenous influ-
ences on a CGM’s variables are uncorrelated, which entails
(1) that CGMs satisfy the causal Markov condition, i.e., that
in CGMs, each variable, conditioned on its parents, is inde-
pendent of all its nondescendents; and (2) that we can express
a model’s joint distribution as

P(v1, ...,vN) =
N

∏
j=1

P(v j|Parents(v j)) (6)

where each v j is a CGM variable. Assuming binary vari-
ables, that causes makes their effects more likely, and that
causes integrate according to a noisy-OR function, each fac-
tor in that product can be computed as:

P(v j = 1|Parents(v j)) = 1−(1−b j) ∏
vi∈Parents(v j)

(1−mi j)
I1(vi)

(7)
where b j is the effect of background causes on variable v j

in the model, mi j is the strength of the causal relation between
v j and parent vi, and I1(vi) is an indicator function that returns
1 when vi is present, otherwise 0. If instead causes are as-
sumed to integrate conjunctively (rather than via a noisy-OR
function), then the probability of a variable conditioned on its
parents is instead:

P(v j = 1|Parents(v j))= 1−(1−b j)(1−m j)
I1(Parents(v j)) (8)

where b j is the effect of background causes on variable v j,
I1(Parents(v j)) is an indicator function that’s 1 when all of
v j’s parents are present, else 0, and m j is the causal strength
of the conjunction of v j’s parents on v j.

To see how CGM causal reasoning informs information
seeking, take a situation in which a doctor is tasked with
choosing to run a test for a disease and is deciding between
two alternatives: A1 and A2. A general theory of infor-
mation search would explain which test they choose to run
(which observation they choose to make) in two phases. First,
the doctor’s internal model (representable as a CGM) gener-
ates distributions P(D) (their prior beliefs about the disease’s
prevalence), P(A1) and P(A2) (their beliefs in the chances of
test outcomes), and P(D|A1 = 0), P(D|A1 = 1), P(D|A2 = 0)
and P(D|A2 = 1) (their beliefs in the conditional probability
of the disease given those test outcomes).

Then, the relevant distributions are fed into a utility func-
tion: P(D), P(A1), P(D|A1 = 0), P(D|A1 = 1) as the inputs
for A1, P(D), P(A2), P(D|A2 = 0), P(D|A2 = 1) as the inputs
for A2, and the utility function generates the informational
value U(A1) of observing A1 and U(A2) of observing A2. The
doctor chooses to run the test with the higher value.

The current study tested this theory of information search
in a simulated medical context, where participants were given
a disease’s causal structure and tasked with choosing to run
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Cortisol Diposis Anxiety Disorder (CDAD). Patients with CDAD fail to regulate 
cortisol levels in their blood. Cortisol is produced and regulated by the hypothalamic-pituitary-
adrenal system (HPA), and is secreted in response to stress. The two main causes of
CDAD are damaged adrenal glands (the gland in charge of secreting cortisol) and low
adrenocorticotropic hormone (ACTH- the hormone that causes the adrenal glands to
secrete cortisol) levels. Both of these conditions lead to imbalanced cortisol levels thus,
physical responses significantly differ from expected responses in social situations. This
stress and anxiety is notably high in situations associated with a sudden change in plans,
routine, mannerisms or movement. For that reason, CDAD is often confused with
austism, a condition also known to cause significantly high levels of social anxiety.

Hypothalamic Daklosis (HD). Concussions associated with anterior damage lead to 
both a loss of consciousnessand rapid swelling, which presses on the hypothalamus, the 
part of the brain that regulates body temperature, among many other physiological functions. 
Increased pressure on the hypothalamus (a condition known as known as hypothalamic 
daklosis), therefore results in an inability to regulate body temperature. This highly 
dangerous condition creates a high risk of hypothermia or overheating. One must also 
be aware that damage to the pituitary gland also causes temperature deregulation, and 
is frequently considered when diagnosing hypothalamic daklosis.

Fibrosis Laurinitis (FL) is a condition in which the annulus fibrosis, the outer 
component that holds back disks together, is significantly weak. Patients that inherit 
Fibrosis Laurinitis suffer from multiple disk herniations and chronic nerve compression. 
The compression slowly (but constantly) wears down the integrity of the nerves around 
the spine, inevitably causing total lower limb numbness, typically by age sixty. 
Unfortunately, this condition cannot be cured, but the pain and numbing process can 
be reduced and slowed with heat, medication, and physical therapy.

Brasee-Fox Syndrome (BFS) is a condition in which the body’s melatonin levels 
rapidly increase to potentially threatening levels. In patients with a damaged pineal gland 
(whether because of injury, infection, trauma, etc.) and intense ultraviolet light exposure 
(meaning both of these factors must be present), the body begins to significantly increase
melatonin production. You will see this represented in the diagram below by two arrows
converging to one arrow. Thus, a patient will only have Brasee-Fox syndrome if both of
these causes are present. Patients who take too much supplemental melatonin, can
however, also suffer from Brasee-Fox Syndrome. Overmedication leads to an sudden
increase in melatonin levels, resulting in temporary symptoms. Patients that are
overmedicated will also feel extremely lethargic.

D

D

A1

A2

D

A1

A2

D
A1

A2

A1

A2

Figure 1: The four disease networks (reproductions). Oval nodes represent binary variables, arrows represent causal connec-
tions. The CDAD network had the “Damaged adrenal gland” absent across all questions. The gray labels are shorthand added
for expositional convenience; participants did not see these. The BFS network is the only network with a description mentioning
conjunctive causal combination.

one of two tests for the disease. In addition to asking par-
ticipants to make information-seeking judgements, we also
elicited the marginal and conditional probability judgements
that are the constituents of the utility function described
above. Doing so will allow us to distinguish if subjects’ sub-
optimal information-seeking judgments are a result of (a) a
faulty calculation of utility or (b) if utility is being calculated
correctly but with faulty probability estimates.

Methods

Subjects

32 New York University undergraduates, aged 18–22, par-
ticipated in this experiment. Participants were selected on a
volunteer basis using SONA, an online scheduling program.

Procedure

Each participant learned and then answered questions about
four diseases, presented one at a time. For each disease, a
participant would be presented with a causal network rep-
resentation of the disease, asked to make a forced-choice
information-seeking decision, and asked for their probability
judgements concerning disease network variables. HIV was
used as a sample disease to ensure that participants under-
stood the instructions. After answering five sample probabil-
ity judgement questions and one sample forced choice ques-
tion, the participant was given feedback, starting the actual
task after understanding the answers to all sample questions.

Materials. Each participant learned about one disease for
each network. Figure 1 shows the four disease networks. Par-
ticipants read an introductory paragraph about each disease,
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examined a causal network diagram for the disease and ques-
tions about the disease presented on a computer screen, and
recorded their answers to the questions into their “diagnostic
evaluation journal,” a packet with a page per disease contain-
ing all the questions to be answered for that disease.

Disease presentation. In each of the four disease net-
works, one node signified the disease, the remaining nodes
representing causes and symptoms related to the disease. Par-
ticipants read a paragraph for each disease describing the
causal relations in the diagrams (Figure 1). Henceforth, we’ll
refer to the networks by their initials: CDAD, FL, HD, and
BFS. In the diagrams, edges between nodes signified causal
relations between the variables, and participants were told
that the presence of a cause entails the presence of its effect
100% of the time. Participants were told that all known in-
formation about each disease was included in the diagrams
(i.e., that there were no unseen background causes). Partic-
ipants were also told that during trials, a small yellow oval
labeled “present” or “absent” overlayed over a blue variable
oval would signify the variable’s value if it was known.

Why these disease networks? Each disease network cor-
responds to a distinct reasoning task. The CDAD network
involves an alternative cause structure—A1 is perfectly diag-
nostic for D when autism is absent; if autism is present, then
A1’s presence could be caused by either autism or D. By con-
trast, A2 is always perfectly diagnostic of D. FL involves an-
other alternative cause structure, but A2 is now perfectly diag-
nostic of D by virtue of being D’s effect. HD involves an in-
direct inference—A2 is perfectly diagnostic of D, but requires
one to reason from A2 backward to whether the patient has a
concussion, then forward to D. A1’s value is completely in-
dependent of D’s. Finally, BFS involves a conjunctive cause
(see Equation 8)—A1 is only perfectly diagnostic of D when
the a participant knows whether the pineal gland is damaged,
whereas A2 is always perfectly diagnostic.

Forced choice. During the forced choice task, each partic-
ipant chose to learn the value of one of two variables. The
two variables were designated with small yellow ovals con-
taining three question marks. For example, for the FL net-
work a participant would see the small yellow ovals overlaid
on the “Disk herniation” and “Chronic nerve compression”
ovals. The text inside the variable of interest (the D node),
was made red (“Weak annulus fibrosis” for FL). The partic-
ipant recorded in their journal which variable they’d choose
to observe and rated their confidence on a seven-point scale.
The order of the forced-choice questions and the set of prob-
ability judgements was randomized.

Probability judgements. Participants were also to pro-
duce judgements for the seven probabilities needed to gen-
erate utility values, as mentioned above: P(D), P(A1),
P(D|A1 = 0), P(D|A1 = 1), P(A2), P(D|A2 = 0), and
P(D|A2 = 1). For example, for P(D) in the HD network they
were be asked, “Does [patient initials] have inflammation
pressing on the hypothalamus (Hypothalamic Daklosis)?”
and they would respond “YES” or “NO” and give their con-

fidence (0%–100%). For P(D|A1 = 0) in the BSF network,
a participant would be shown the BSF network with a small
yellow “Absent”-labeled oval overlaying the “Intense UV ex-
posure” oval and asked, “Does [patient initials] have “Sig-
nificantly high levels of melatonin (Brasee-Fox Syndrome)?”
The order of the probability judgement questions was ran-
domized across diseases and participants. Though we stipu-
late in the instructions that causal links are deterministic, we
nonetheless ask for probability judgements on the grounds
that (1) not all participants may attended to these instructions
and that (2) some subjects may have used their real-world
knowledge to conclude that the causal relations were proba-
bilistic despite the instructions.

Modeling
The forced-choice and their corresponding confidence rat-
ings were combined into a confidence-adjusted choice score
(CACS), ranging between 0 (complete confidence in A1) and
1 (complete confidence in A2). 0.5 represents no preference
for either alternative. Each of a participant’s models aims
to predict their four CACSs, making assumptions about how
they compute with probabilities and where those probabili-
ties come from. For each disease network, all models use
the seven probabilities P(D), P(A1), P(A2), P(D|A1 = 0),
P(D|A1 = 1), P(D|A2 = 0), P(D|A2 = 1) to compute U(A1)
and U(A2), then crucially use the difference U(A2) - U(A1)
to predict the the participant’s CACS for that network using
Eqs. 2-5.

We used two broad kinds of models to produce CACS pre-
dictions, direct models and causal models. The direct models
fed a participant’s probability judgements directly into a util-
ity function. There were four direct models per participant,
one for each of the four utility functions. The causal models
instead used CGMs to generate probability judgements, and
fed those probability judgements to utility functions. Each
causal model had three parameters: the background cause pa-
rameter for the root nodes (br), the background cause of the
non-root nodes (bn), and a single causal strength parameter
(m). The causal models can be thought of as adding a con-
straint on the relationships between a participant’s probability
beliefs, namely, the constraint that a participant’s probabil-
ity beliefs be consistent with a CGM. We’re interested, then,
in understanding whether adding this constraint will improve
fits to participant choice scores in the information-seeking
task, i.e., in understanding whether people use CGM-based
causal knowledge when searching for information.

We created three kinds of causal models: deterministic
and quasi-deterministic causal models, and fit causal mod-
els. The deterministic causal model had (br = 0.5, bn = 0,
m = 1)—non-root nodes were never present in the absence of
all of their parents and never absent in the presence of at least
one parent. These can be considered “ground truth” models,
just in the sense that they’re prima facie consistent with the
task instructions (no background causes, deterministic causal
links). The quasi-deterministic causal model had (br = 0.5,
bn = 0.1, m= 0.95)—allowing for non-root nodes were occa-
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sionally though rarely present in the absence of their parents
and occasionally though rarely absent in the presence of their
parents. There were 4 deterministic models and 4 probabilis-
tic models, for the same reason there were 4 direct models.

Finally, the third kind of causal model—the fit causal mod-
els—were fit to participant probability judgements by fitting
(br, bn, m) to minimize the squared-error between the CGM-
generated and actual probability judgements; 4 utility func-
tions gives a total of 4 fit causal models. Note that though
each of the causal models predicts four CACS scores per
participant (corresponding to their choices on the four net-
works), each causal model holds fixed its parameters across
the disease networks—we assume that a participant has a sin-
gle generic set of causal parameters that they use for all four
networks.

In total, we have 16 models (4 direct, 4 det., 4 quasi-det., 4
fit) per participant.

Scaling. Each of the 16 models uses probabilities to com-
pute U(A2)−U(A1), a predictor of CACS. As U(A2)−
U(A1) is not constrained to be in [0,1], we allowed predic-
tions to deviate via a linear transformation from the CACSs
they were predicting—for each of the 16 models, we fit a
slope and an intercept term to minimize the squared error be-
tween a participants four CACSs and the four U(A2)−U(A1)
predictions generated from their models.

Results
Generally, the mean CACSs across participants were larger
than 0.5, indicating that participants tended to prefer A2 to A1:
the mean CACS was 0.72 for the CDAD network (t(31) =
3.74), 0.82 for the FL network (t(31) = 7.52), 0.76 for the
HD network (t(31) = 5.07), and 0.80 for the BFS network
(t(31) = 7.37). p< .001 for each of comparisons. For each of
the networks, A2 is the “normative” response—see the “Why
these networks?” subsection in the previous section, so that
we can say that participants generally seem to be reasonable
in their choices.

As we have 16 models per participant, we used Bayesian
model averaging to derive predictors that incorporated our un-
certainty over models. First, for each of a participant’s 16
models we derived a BIC from the squared error between the
model’s predicted CACS and the participant’s actual CACS:

BIC := n log
(

SSE
n

)
+K log(n) (9)

Each of a participant’s models generates four CACSs (one
per network), and so n = 4 always. For the direct models,
deterministic models, and quasi-deterministic models K = 2
(the two scaling parameters). For the fit models, K = 2; K
doesn’t increase for the models because we fit our models not
to the CACSs (which were used to compute BIC-determining
SSE) but rather to a participant’s probability judgements.

From these BICs, following Neath and Cavanaugh (2012),
we derived for each participant a posterior distribution over
their 16 models. As each model makes four CACS predic-
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Figure 2: Predicted vs. actual CACSs, plotted across partici-
pants. All correlations are significant (p < .001).

tions and is associated with a posterior probability, we can
compute the expected value of the four CACS predictions,
taking the expectation over models. Averaged across sub-
jects, the model predictions were 0.707, 0.815, 0.779, and
0.795 for the CDAD, FL, HD, and BFS networks. Figure
2 shows the predicted (Bayesian-model averaged) vs. actual
CACSs across participants. Fit quality is good. We can now
use the model posteriors to compute marginal distributions in
order to understand what utility function participants seem to
favor and whether or not it’s worth using CGMs to generate
predictions.
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Figure 3: Utility function posterior distributions across par-
ticipants.
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Marginalizing over all but the utility function, we find
that p(uIG) = 0.271, p(uPG) = 0.222, p(uImp) = 0.241, and
p(uCG) = 0.266. Figure 3 shows the variation across partic-
ipants in the distribution over utility functions. Across 32
participants, information gain is the MAP utility function for
9, probability gain for 7, impact for 11, and certainty for 5.
There seems to be substantial individual variation in the pos-
terior distributions, enough variation to make it difficult to
conclude a clear winner.
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Figure 4: Model posterior distributions across participants.

Marginalizing over all but model kinds, we find that
p(direct) = 0.271, p(det.) = 0.202, p(quasi-det.) = 0.237,
p(fit) = 0.289. Figure 4 shows the variation across partici-
pants in the posterior distribution over models. Across 32 par-
ticipants, the MAP model is the direct model for 10, the de-
terministic model for 6, the quasi-deterministic model for 5,
and the fit causal model for 11. Notably, it’s worth it for us to
constrain the probability judgements of the majority (22/32)
of participants with some CGM or other.

Discussion
Information search is an important ability both in everyday
and specialized contexts, contexts in which causal knowl-
edge is ubiquitous; this study is, to our knowledge, the first
examining information search in an explicitly causal setting.
Generally, participant choices reveal they tend to seek infor-
mation rationally. We presented participants with four causal
information-seeking scenarios, each requiring a different kind
of causal reasoning, and found that responses during a choice
task tended to be consistent with probabilities generated by a
CGM.

In fact, for two-thirds of participants, the best (MAP)
model was a model constraining probabilities to be consistent
with some CGM or other. On the basis of nothing but descrip-
tions of unfamiliar events in a hypothetical causal scenario,
participants were able to make use of the provided causal
knowledge to seek information—the probability judgements
that best explained their behaviors were ones that were con-

strained to be consistent with a formalization of causal knowl-
edge.

There is a good amount of variation across participants in
preferred utility function, though it’s difficult to tell whether
this variation reflects the distribution of people’s preferred
utility functions, or whether it reflects a limitation in our de-
sign: The four causal scenarios we tested were not chosen to
distinguish between the different utility functions.

We could, in an extension to this study, stipulate nonde-
terministic causal strengths (m < 1) and possible background
causes (bn > 1). A cover story might involve machines that
cause each other to take a state with some probability, from
which state they’d have some chance of causing other ma-
chines to take a state, etc. Aside from enabling us to ask
how people reason in nondeterministic scenarios, this exten-
sion could allow us to design “more optimal” experiments
(Coenen, Nelson, & Gureckis, 2019), where we would, fol-
lowing Nelson et al. (2010), search for causal model param-
eters that maximally distinguish between the CACSs antici-
pated by different utility functions.
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