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 13 

Abstract  14 

Solar reflective cool roofs and walls can be used to mitigate the urban heat island effect. While 15 

many past studies have investigated the climate impacts of adopting cool surfaces, few studies 16 

have investigated their effects on air pollution, especially on particulate matter (PM). This 17 

research for the first time investigates the influence of widespread deployment of cool walls on 18 

urban air pollutant concentrations, and systematically compares cool wall to cool roof effects. 19 

Simulations using a coupled meteorology-chemistry model (WRF-Chem) for a representative 20 

summertime period show that cool walls and roofs can reduce urban air temperatures, wind 21 
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speeds, and planetary boundary heights in the Los Angeles Basin. Consequently, increasing wall 22 

(roof) albedo by 0.80, an upper bound scenario, leads to maximum daily 8-hour average ozone 23 

concentration reductions of 0.35 (0.83) ppbv in Los Angeles County. However, cool walls 24 

(roofs) increase daily average PM2.5 concentrations by 0.62 (0.85) μg m-3. We investigate the 25 

competing processes driving changes in concentrations of speciated PM2.5. Increases in primary 26 

PM (elemental carbon and primary organic aerosols) concentrations can be attributed to 27 

reductions in ventilation of the Los Angeles Basin. Increases in concentrations of semi-volatile 28 

species (e.g., nitrate) are mainly driven by increases in gas-to-particle conversion due to reduced 29 

atmospheric temperatures. 30 

 31 

1 Introduction  32 

Urbanization is occurring at a fast pace around the world; global urban land area in 2030 is 33 

projected to be up to triple that in 20001. Compared to rural areas with natural land cover, urban 34 

areas contain more impervious surfaces that are made of solar absorptive and thermally massive 35 

materials, such as asphalt concrete. Urban areas also contain less vegetation and thus reduced 36 

evaporative cooling and shade cover. These differences in urban and natural land cover contribute 37 

to the urban heat island (UHI) effect (i.e., cities being hotter than their surrounding rural areas)2, 38 

which can, in turn, affect air pollutant concentrations. The air quality effects of urban land 39 

expansion have been studied in previous research3–7, although only a few studies clearly explained 40 

the mechanisms driving these effects8–11. Tao et al.8 suggested that with pollutant emissions held 41 

constant, urbanization in eastern China would increase ozone concentrations from the surface to 4 42 
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km. However, it would also enhance turbulent mixing and vertical advection, therefore reducing 43 

the concentrations of primary pollutants below 500 m.  44 

While many studies have explored the air quality impacts of the UHI effect, fewer studies have 45 

investigated how strategies that mitigate the UHI effect would influence urban air quality12–15. For 46 

example, adopting solar reflective cool surfaces (roofs, walls, and pavements) increases city albedo 47 

and the solar radiation reflected by cities, therefore reducing urban surface temperatures and near-48 

surface air temperatures16–22. However, adopting cool surfaces might change air quality in 49 

unexpected ways. For primary pollutants (i.e., pollutants directly emitted to the atmosphere) such 50 

as elemental carbon (EC), nitric oxide (NO), and carbon monoxide (CO), lower surface 51 

temperatures in cities may suppress convection and therefore reduce atmospheric mixing heights 52 

and vertical dispersion of pollutants, leading to increases in pollutant concentrations near the 53 

ground23. Changes in horizontal temperature distributions can also influence wind speed and 54 

direction, affecting the horizontal transport and distribution of pollutants. For secondary pollutants 55 

(i.e., pollutants formed in the atmosphere from primary pollutants), in addition to the previously 56 

mentioned changes in transport and dispersion of pollutants and their precursors, pollutant 57 

concentrations can also be influenced by temperature dependent chemical reactions, phase-58 

partitioning, and emissions. Tropospheric ozone is primarily formed via reactions between 59 

nitrogen oxides (NOx) and volatile organic compounds (VOCs). Reductions in dispersion could 60 

increase both VOC and NOx concentrations, though impacts on ozone could be counterintuitive 61 

due to non-linearities in ozone chemistry. Lowering air temperature decreases biogenic VOC 62 

emissions from vegetation, potentially reducing ozone concentrations in urban areas where VOC 63 

availability limits ozone formation24. Air temperature reduction also slows reactions that produce 64 

ozone. Therefore, ozone concentrations are expected to decrease with lower temperatures25. 65 
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Secondary particulate matter includes sulfate, nitrate, ammonium, and secondary organic aerosols 66 

(SOA). While temperature-dependent reactions that form secondary particulate matter should be 67 

slower due to reduced temperatures, gas-particle partitioning for semi-volatile species (ammonium 68 

nitrate and semi-volatile SOA) favors the particle phase26,27. The competing physical and chemical 69 

processes lead to uncertainties in changes to air pollution concentrations induced by heat island 70 

mitigation strategies.  71 

The complexity of the aforementioned processes requires the use of sophisticated models that 72 

resolve atmospheric physics and chemistry to predict how cool surface adoption would influence 73 

city-level air quality. Using photochemical models, Taha et al.13,28 estimated that increasing city 74 

surface albedo would effectively reduce ozone concentrations in Southern California and Central 75 

California. Epstein et al.23 predicted that 8-hour daily maximum ozone concentrations would 76 

decrease if cool roofs do not reflect more solar ultraviolet (UV) than do dark roofs; if solar UV 77 

reflection is increased, ozone concentrations could rise.  78 

Despite previous literature on the influence of cool roofs on ozone concentrations, there is only 79 

one study that has investigated the influence of cool roofs on particulate matter23. They found that 80 

increasing roof albedo would increase the annual mean concentrations of PM2.5, because reduced 81 

ventilation would suppress dispersion of pollutants. However, they did not investigate (1) the 82 

various physicochemical processes driving cool roof impacts on PM2.5 concentrations or (2) the 83 

varying responses of different PM species (e.g., nitrate, sulfate, and organics) to cool roof adoption.  84 

Cool walls are less studied than cool roofs. Zhang et al.29, for the first time, estimated the influence 85 

of cool walls on urban climate, and systematically compared the effects of cool walls to cool roofs. 86 

They found that adopting cool walls in Los Angeles would lead to daily average canyon air 87 
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temperature reductions of up to 0.40 K, which is slightly lower than that induced by adopting cool 88 

roofs (0.43 K). However, the influence of cool walls on air quality has never been studied.  89 

To address the aforementioned science knowledge gaps and inform policymaking on heat 90 

mitigation strategies, we seek to (1) quantify and systematically compare the air quality effects of 91 

adopting cool walls and roofs, and (2) investigate the physicochemical processes leading to 92 

changes in particulate matter concentrations.  93 

 94 

2 Method 95 

2.1 Model description 96 

We use the Weather Research and Forecasting model coupled with Chemistry Version 3.7 (WRF-97 

Chem V3.7), a state-of-the-science climate and air quality model, to estimate the impacts of 98 

employing cool walls and roofs on air quality30. WRF-Chem has been widely used to study air 99 

pollution in Southern California11,31,32. Table S2 summarizes our model configuration. The 100 

following schemes are chosen for WRF physics: the Rapid Radiative Transfer Model (RRTM) for 101 

long-wave radiation33, the Goddard shortwave radiation scheme34, the Lin et al. scheme35 for cloud 102 

microphysics, the Grell 3D ensemble cumulus cloud scheme36, and the Yonsei University scheme 103 

for the planetary boundary layer37. 104 

Impervious fraction (Figure S3b) and land use classification in urban grid cells (Figure S3c) are 105 

obtained from the National Land Cover Database (NLCD, 2006)38,39. The Noah land surface 106 

model40 simulates land-atmosphere interactions in non-urban grid cells and for the pervious 107 

portion of urban grid cells. The single-layer urban canopy model resolves urban physics and 108 
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simulates land-atmosphere interactions for the impervious portion of urban grid cells41. Urban grid 109 

cells are classified as low-intensity residential (“Developed, Open Spaces” and “Developed, Low 110 

Intensity” in NLCD), high-intensity residential (“Developed, Medium Intensity” in NLCD), and 111 

commercial/industrial (“Developed, High Intensity” in NLCD). Urban morphology (i.e., roof 112 

width, canyon floor width, and building height) is determined for each urban land use type based 113 

on real-world building and street datasets for Los Angeles County, following Zhang et al29; the 114 

datasets include National Urban Database and Access Portal (NUDAPT)42, the Los Angeles 115 

Region Imagery Acquisition Consortium (LARIAC)42, and LA County Street and Address File43. 116 

Since the default WRF-Chem is not compatible with the NLCD land use classification system, we 117 

modify the model code to allow for use of NLCD urban land use types, following Fallmann et 118 

al.44. We also implement satellite-based green vegetation fraction into the model following 119 

Vahmani and Ban-Weiss21. 120 

Gas phase chemistry is simulated using the Regional Atmospheric Chemistry Mechanism 121 

(RACM)45 scheme, further updated by National Oceanic and Atmospheric Administration 122 

(NOAA) Earth System Research Laboratory (ESRL)32. The RACM-ESRL scheme covers organic 123 

and inorganic chemistry simulating 23 photolysis and 221 other chemical reactions46. The Modal 124 

Aerosol Dynamics Model for Europe (MADE) simulates aerosol chemistry47. The volatility basis 125 

set (VBS) is used for simulating secondary organic aerosols48.  126 

We evaluate modeled ozone and PM2.5 concentrations against observations (Figures S1 and S2, 127 

Table S1) from the Environmental Protection Agency’s Air Quality System in Section S1 of the 128 

Supporting Information. Although our model underestimates ozone and PM2.5 concentrations at 129 

higher concentrations, the bias in baseline concentrations does not necessarily lead to bias in 130 

estimated changes induced by adopting cool surfaces. 131 
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 132 

2.2 Simulation domains 133 

We simulate three nested domains (d1, d2, and d3, as shown in Figure S3a) with 30 layers in the 134 

vertical at horizontal resolutions of 18 km, 6 km, and 2 km, respectively. The three domains each 135 

cover the Southwestern United States (d1); Central and Southern California (d2); and Southern 136 

California, including Los Angeles and San Diego (d3). Each outer domain provides boundary 137 

conditions for the adjacent inner domain. In this paper we report results for the innermost domain.  138 

 139 

2.3 Emission inventories 140 

WRF-Chem requires gridded emissions inputs for each simulation. We use state-of-the-science 141 

emission inventories from the South Coast Air Quality Management District (SCAQMD) and 142 

California Air Resources Board (CARB) for the year 2012 (i.e., the most up-to-date inventories as 143 

of writing this paper). For the outer two domains (d1 and d2), hourly emissions for the entire year 144 

at 4-km resolution are provided by CARB for California49. Emissions outside California, but 145 

within the simulation domain, are from National Emissions Inventory (NEI) by the Environmental 146 

Protection Agency for the year 201150. For the innermost domain (d3), we use hourly emissions 147 

for the entire year at 4-km resolution provided by SCAQMD51 . These emissions represent all 148 

anthropogenic sources including motor vehicles; point sources such as refineries; and off-road 149 

sources, such as construction. Emission inventories are regridded to match the grid for the modeled 150 

domains and chemical speciation for RACM-ESRL and MADE/VBS mechanisms used in this 151 

study. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is used to generate 152 

temperature-dependent biogenic organic emissions52. Note that anthropogenic emissions are not 153 
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sensitive to ambient temperatures in our study. Though some anthropogenic emissions may be 154 

temperature dependent (e.g., evaporative emissions of VOCs from gasoline powered vehicles), 155 

this effect is not simulated in this study, as anthropogenic emissions are obtained directly from 156 

input datasets.  157 

 158 

2.4 Simulation design 159 

To investigate the air quality effects of cool walls and roofs in Southern California, we simulate 160 

three scenarios: CONTROL, where wall, roof, and pavement albedos are each set to 0.10; 161 

COOL_WALL, where wall albedo is increased to 0.90; and COOL_ROOF, where roof albedo is 162 

increased to 0.90. These cool surface albedos are intentionally chosen to quantify the upper bound 163 

effects of adopting cool surfaces (i.e., increasing surface albedo by 0.80). Note that cool surface 164 

albedos of actual cool walls and roofs are usually lower than 0.90. For example, the albedo of a 165 

bright-white cool roof may decrease to 0.60–0.70 from an initial albedo of 0.80–0.90 after several 166 

years of soiling and weathering53,54. In order to test the linearity of changes in air pollutant 167 

concentrations to albedo increases, we add two additional scenarios where wall albedo and roof 168 

albedo are each increased by 0.40.  169 

Simulations are performed for 28 June 2012 to 11 July 2012, with the first five days discarded as 170 

model “spin-up” to reduce the possible influence of inaccuracies in input initial conditions on our 171 

analysis. We analyze the results from 00:00 local standard time (LST) on July 3 to 00:00 LST on 172 

July 12. Section S3 in the Supporting Information demonstrates that the meteorology during our 173 

analysis period is representative of summertime meteorology in Southern California. Thus, our 174 

results are representative of changes induced by adopting cool surfaces under typical summertime 175 
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conditions in Southern California. The paired Student’s t-test (n = 9 analyzed days) is used to 176 

assess whether the changes in cool surface scenarios relative to CONTROL are statistically 177 

distinguishable from zero. 178 

 179 

2.5 Method of attributing the changes in PM to ventilation versus other 180 

factors 181 

Carbon monoxide (CO) is considered a chemically inert pollutant at urban scale, with 182 

concentrations controlled by meteorological conditions. Therefore, past studies have used CO as 183 

a tracer for transport and dispersion of pollutants9,56. Similarly, in our study, we use the increase 184 

in CO concentration relative to CONTROL to quantify the increase in PM2.5 that is attributable to 185 

ventilation (∆𝐶𝑃𝑀(vent)), as   186 

 ∆𝐶𝑃𝑀(vent) =
∆𝐶CO

𝐶CO
× 𝐶𝑃𝑀 (1)  

where ∆𝐶CO is the change in CO mixing ratio (ppbv) relative to CONTROL, 𝐶CO is the mixing 187 

ratio (ppbv) of CO for CONTROL, 𝐶𝑃𝑀 is the concentration (μg m-3) of a PM species (i.e., total 188 

PM2.5, sulfate, nitrate, elemental carbon, primary organic aerosol, anthropogenic secondary 189 

organic aerosols, or biogenic secondary organic aerosols) for CONTROL, and all variables are 190 

spatial averages over urban areas in Los Angeles County. 191 

The change in concentration of a PM2.5 species that is not attributable to ventilation ∆𝐶𝑃𝑀(no vent) 192 

(μg m-3) is then calculated as  193 

 ∆𝐶𝑃𝑀(no vent) = ∆𝐶𝑃𝑀 −
∆𝐶CO

𝐶CO
× 𝐶𝑃𝑀 (2)  
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 194 

In this way, we attribute increases in PM2.5 species to reductions in ventilation and changes in all 195 

other processes. Note that while sea salt aerosols contribute to total PM2.5 concentrations, we omit 196 

this species from the discussion because they are naturally produced and are not a public health 197 

concern. Reductions in ventilation may also contribute to less vertical mixing and consequent 198 

reductions in dry deposition of pollutants.  199 

2.6 Caveats  200 

In this study, we assume that adopting cool surfaces would not change reflectance in the UV 201 

spectrum (280–400 nm). However, based on spectral reflectance measurements, UV reflectance 202 

could increase from adopting cool roofs23. Increases in UV reflectance could enhance ozone 203 

production and atmospheric oxidation capacity, which influences the formation of other secondary 204 

pollutants. Therefore, changes in ozone are a result of competing effects among (a) ozone increases 205 

induced by enhanced UV reflection, (b) ozone decreases induced by decreased temperatures, and 206 

(c) ozone changes induced by reduced ventilation, which could affect the dispersion of ozone and 207 

its precursors.  208 

The influence of adopting cool surfaces is likely to vary by city due to differences in baseline 209 

climate and land cover (e.g., vegetation distributions, building distributions, urban canyon 210 

morphology). Also note that results might be different if simulated using another model or using 211 

different parameterizations. For example, the single layer urban canopy model does not explicitly 212 

resolve individual buildings.  213 

Note that the urban morphology is derived using gross wall area (including windows) instead of 214 

net wall area (excluding windows). In Los Angeles County, citywide ratio of net wall area to gross 215 

wall area is 83%.29 In reality, windows may not be changed to cool colors.  Therefore, a portion of 216 
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walls may not be able to be made solar reflective and our study may overestimate the influence of 217 

adopting cool walls. 218 

 219 

3 Results and discussion 220 

By comparing changes in air pollutant concentrations for increasing albedo by 0.80 versus 0.40 221 

relative to CONTROL, we find that the changes in air pollutant concentrations are approximately 222 

linear to surface albedo change (Section S4 in the Supporting Information). Therefore, the results 223 

reported for albedo increase of 0.80 can be interpolated to other albedo changes. For simplicity, 224 

we report only results for COOL_WALL and COOL_ROOF in the main body.   225 

3.1 Meteorological conditions 226 

Figure 1 shows spatial distributions of near-surface air temperatures in the afternoon and evening. 227 

(Diurnal cycles of near-surface air temperatures are shown in Figure S4.) For the CONTROL 228 

scenario (Figure 1a), temperatures in inland areas are hotter than coastal areas, as expected. 229 

Temperature reductions induced by adopting cool surfaces are higher in inland areas than in coastal 230 

areas (Figure 1b,c). This is due to an accumulation effect in air temperature reduction as the sea 231 

breeze advects air from the coast to inland.  232 

Although total wall area in Los Angeles County is larger than roof area by a factor of 1.7, daily 233 

average solar irradiance (W m-2) on walls is 38% of that on roofs29. In addition, 50-59% of the 234 

solar radiation reflected by cool walls is absorbed by opposing walls or pavements, while all the 235 

radiation reflected by cool roofs escapes the urban canopy in the model29. Therefore, daily average 236 

temperature reductions induced by cool roofs (0.45 K) are larger than cool walls (0.24 K) over 237 
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urban areas in Los Angeles County, as shown in Table 1. Cool roofs are simulated to induce larger 238 

temperature reductions than cool walls at both 14:00 LST (daytime) and 20:00 LST (nighttime).    239 

Note that past studies investigating how air temperatures influence atmospheric chemistry often 240 

report 2-meter air temperatures (“T2”)8,45. However, 2-meter air temperature is a diagnostic 241 

variable that is not used in model calculations of atmospheric chemistry. The chemistry model 242 

actually uses the four-dimensional (x, y, z, t) atmospheric temperature. Therefore, we present 243 

temperatures in the lowest atmospheric layer as “near-surface air temperature” rather than “T2.” 244 

Figures S5 and S6 show diurnal cycles and spatial maps of 10-meter horizontal wind speeds, and 245 

Figure S7 shows horizontal wind vectors. For the CONTROL scenario, winds are southwesterly 246 

from coast to inland and wind speed is higher during daytime than nighttime. As shown in Table 247 

1, spatially averaged wind speed in urban areas is 4.2 m s-1 and 2.3 m s-1 at 14:00 LST and 20:00 248 

LST, respectively. Simulations predict that adopting cool walls (roofs) decreases onshore wind 249 

speeds by 0.06 (0.21) m s-1 at 14:00 LST and 0.08 (0.09) m s-1 at 20:00 LST. This can be explained 250 

by the reduced temperature difference between urban land and ocean, which is a driver for the sea 251 

breeze.  252 

Figure S8 show the diurnal cycle of planetary boundary layer (PBL) height. PBL height reaches 253 

its maximum at 12:00 LST. Adopting cool walls reduces PBL height by 3-7% at most times of 254 

day. Adopting cool roofs reduces PBL height by about 5% at night and about 10% during the day. 255 

The reduction in PBL height can be attributed to decreases in surface temperatures and consequent 256 

reductions in convection. Decreases in wind speeds and PBL height tend to reduce ventilation for 257 

pollutants. The influence of changes in ventilation on particulate matter is discussed in Section 258 

3.5.1.  259 
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 260 

3.2 Spatial distribution of ozone concentrations  261 

Figure 2 shows the spatial distribution of daily maximum 8-hour average (MDA8) ozone 262 

concentrations. MDA8 ozone is regulated by the National Ambient Air Quality Standards of the 263 

Environmental Protection Agency. For the CONTROL scenario, the ozone concentration over 264 

urban areas is lower than rural areas because (a) southwesterly winds transport ozone and its 265 

precursors from the coast to the inland areas, creating an accumulation effect as this secondary 266 

pollutant is generated in the atmosphere; and (b) nitric oxide emissions in urban areas can titrate 267 

ozone. Adopting cool walls can decrease the spatially averaged MDA8 ozone concentration by 268 

0.35 ppbv in the urban areas of Los Angeles County (Table 1). These decreases in ozone 269 

concentrations are likely due to reductions in temperature-dependent ozone formation. Adopting 270 

cool roofs can lead to a greater reduction in MDA8 ozone concentration (0.83 ppbv) than cool 271 

walls. This is likely because the near-surface air temperature reductions induced by cool roofs are 272 

larger than that induced by cool walls during daytime (Figure S4) and thus the decreases in reaction 273 

rates for ozone production are larger for COOL_ROOF than COOL_WALL relative to CONTROL. 274 

As mentioned in Section 2.5, we assume that the UV reflectance of cool surfaces is the same as 275 

dark surfaces. Similarly, Epstein et al23 report reductions in ozone concentrations in most Southern 276 

California regions due to adopting cool roofs when UV reflectance is assumed to be held constant. 277 

(Note that they also find that ozone concentrations could increase if the difference in UV 278 

reflectance between cool and dark roofs follows an upper bound scenario.)  279 

 280 
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3.3 Spatial distribution of PM2.5 species 281 

Figure 3 shows the spatial distribution of daily average PM2.5 species concentrations and changes 282 

due to adopting cool surfaces. PM2.5 concentrations reported here represent dry particle mass. 283 

Spatial distributions of PM2.5 species concentrations in the CONTROL scenario are mainly 284 

attributable to spatial patterns in emissions and meteorology. For example, when the sea breeze 285 

advects air from the coast to inland, EC, a primary pollutant, accumulates, leading to higher 286 

concentrations in locations further east. For spatial distributions of sulfate concentrations, there 287 

are higher concentrations near the ports of Los Angeles and Long Beach that are likely due to hot 288 

spots in SO2 (the precursor of secondary sulfate) and primary sulfate emissions from ships and 289 

power plants (Figure S9). Meanwhile, southwesterly winds then transport these emissions to 290 

downtown Los Angeles, making concentrations downtown greater than those further east. The 291 

spatial variability of anthropogenic and biogenic SOA is relatively small compared to other species.  292 

The concentrations of total PM2.5 and each individual species increase due to cool surface adoption 293 

(Figure 3). The increase in each PM2.5 species induced by adopting cool roofs is larger than that 294 

induced by cool walls, though their spatial patterns are similar. Spatial distributions of increases 295 

in total PM2.5 and individual species (except nitrate) are consistent with the spatial patterns of 296 

absolute concentrations in the CONTROL scenario. In other words, the regions with the highest 297 

baseline concentrations show the largest changes in PM2.5 due to meteorological shifts from cool 298 

surface adoption. The exception is for nitrate, which shows larger increases in urban residential 299 

areas northeast of downtown where baseline concentrations are low, rather than downtown where 300 

baseline concentrations are the highest in CONTROL. This is likely due to the greater temperature 301 

reductions in regions northeast of downtown Los Angeles relative to downtown, especially at night 302 

(Figure 1b,c). The processes leading to nitrate increases will be discussed in Section 3.5. The 303 
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increase in SOA is relatively smaller than other species, which will also be explained in Section 304 

3.5.   305 

3.4 Diurnal cycles of PM2.5 species concentrations 306 

Figure 4 shows the diurnal cycles of spatially averaged PM2.5 species concentrations and their 307 

changes in the urban areas of Los Angeles County. For the CONTROL scenario, PM2.5, nitrate, 308 

ammonium, sulfate, EC, and primary organic aerosol (POA) concentrations reach their maximum 309 

between 08:00 and 09:00 LST and their minimum at 16:00 LST, while biogenic and anthropogenic 310 

SOA reach their maximum near 14:00 LST and their minimum at night. The diurnal cycles of 311 

PM2.5 concentrations can be attributed to the diurnal variation of (1) emissions (Figure S10); (2) 312 

PBL height (Figure S8a), which peaks at 12:00 LST; (3) wind speed (Figure S5), which peaks at 313 

14:00 LST; and (4) photochemical reaction rates for secondary species that depend on UV 314 

radiation and temperature (Figure S4a).  315 

Raising roof or wall albedo leads to increases in concentrations of total PM2.5 and most individual 316 

species (except for biogenic SOA) throughout the day (Figure 4). Increases in nitrate 317 

concentrations are the largest among all PM2.5 species, followed by increases in POA, sulfate, and 318 

ammonium, while the increases in concentrations of other PM2.5 species are relatively small. The 319 

changes in speciated PM2.5 concentrations due to adopting cool walls or roofs vary by time of day, 320 

and the mechanisms contributing to the changes will be discussed in Section 3.5. For all PM2.5 321 

species except biogenic SOA, increases in PM2.5 concentrations induced by adopting cool roofs 322 

are larger than those induced by adopting cool walls during most daytime hours (07:00-19:00 LST). 323 

On daily average, cool roof adoption contributes to greater increases in particulate matter than cool 324 

wall adoption (Table 1) for total PM2.5 and each species. Daily average increases in total PM2.5 325 

concentrations are simulated to be 0.62 (0.85) μg m-3 upon increasing wall (roof) albedo by 0.80 326 
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in July in Los Angeles County. Compared to the national annual and 24-hour PM2.5 standard of 12 327 

μg m−3 and 35 μg m−3, respectively, increases in PM2.5 concentrations reported here have the 328 

potential for increasing exceedance days of federal air quality standards. The grid cell containing 329 

Mira Loma (i.e., the most polluted PM2.5 monitoring station in Southern California) is simulated 330 

to have PM2.5 increases of 0.84 (1.05) μg m−3 due to adopting cool walls (roofs) in summer. Epstein 331 

et al. (2018) estimate that annual average PM2.5 concentrations at Mira Loma would increase by 332 

0.19 μg m-3 due to adopting cool roofs, which they compute would result in an increase of 2/3 333 

exceedance day for the 24-hr federal PM2.5 standard. (The number of exceedance days is not an 334 

integer because they report 3x3 cell moving averages.) Thus, even though these changes may look 335 

small, they have the potential to increase the annual number of days exceeding air quality standards 336 

and are therefore important for regulatory agencies in controlling PM2.5 pollution.  337 

3.5 Mechanisms that lead to changes in PM2.5 concentrations 338 

As mentioned in the introduction, adopting cool surfaces can influence PM2.5 concentrations 339 

mainly via (1) reducing ventilation, (2) slowing temperature dependent reactions and emissions, 340 

and (3) increasing the likelihood that semi-volatile species will partition to particle phase. In the 341 

following sections we report on the relative importance of these pathways. 342 

3.5.1 Ventilation 343 

For primary pollutants such as elemental carbon (EC), mass concentrations depend highly on 344 

ventilation and are insensitive to atmospheric chemistry in the model. (Note that strictly speaking, 345 

hydrophilic species can coat EC and increase its hygroscopicity, enabling the in-cloud wet 346 

scavenging of EC56. This so-called “aging process” depends on temperature-dependent 347 

atmospheric photochemical reactions that form hydrophilic species, such as sulfate. However, the 348 
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aging of EC should not be a very important process during summer when there is little precipitation 349 

in the Los Angeles Basin.) Decreases in ventilation (Section 3.1) impede the dilution and transport 350 

of pollutants in source regions and may also reduce dry deposition, leading to increases in near-351 

surface pollutant concentrations. This ventilation effect is driven by vertical and horizontal mixing 352 

of pollutants in the planetary boundary layer, which can be investigated using PBL height and 353 

surface wind speeds, respectively. Figure 5 shows that fractional increase in EC is positively 354 

correlated with the fractional reductions in PBL height and 10-meter wind speed. Fractional 355 

reduction in PBL height can explain 42% of the variability in the fractional increase in EC 356 

concentrations for both COOL_WALL – CONTROL and COOL_ROOF – CONTROL. Fractional 357 

reduction in horizontal wind speed explains 17% (79%) of the variability in fractional increase of 358 

EC concentrations due to adopting cool walls (roofs).   359 

3.5.2 Quantifying the relative importance of ventilation versus other factors for driving 360 

changes in PM 361 

Following the method described in Section 2.5, we quantify increases in PM2.5 species that can be 362 

attributed to reductions in ventilation and changes in other processes. As indicated in Figure 4, 363 

after removing the effects of ventilation, the change in spatially averaged EC and POA is close to 364 

zero. Therefore, increases in primary pollutant (EC and POA) concentrations are attributable to 365 

suppressed ventilation. A large fraction of the increase in sulfate from cool surface adoption can 366 

be attributed to suppressed ventilation. Other driving processes can affect sulfate concentrations: 367 

(a) reductions in temperature-dependent reaction rates would decrease sulfate production; and (b) 368 

changes in cloud cover can also influence in-cloud SO2 oxidation, which occurs faster than gas-369 

phase oxidation of SO2 if clouds are present. When the ventilation effect is excluded, sulfate 370 

concentrations slightly increase from 04:00 to 14:00 LST but decrease at most other hours, due to 371 
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adopting cool surfaces. Nevertheless, ventilation is the dominant process leading to sulfate 372 

increases, contributing to 76 % (91%) of the daily average increase for COOL_WALL – 373 

CONTROL (COOL_ROOF – CONTROL).  374 

On the other hand, the ventilation effect accounts for a small portion of the increase in semi-volatile 375 

species such as nitrate and ammonium (in the form of ammonium nitrate). Concentrations of these 376 

particulate species rise drastically even when the ventilation effect is excluded. This is because the 377 

reaction between gas-phase ammonia and nitric acid that forms particulate nitrate is reversible, and 378 

the equilibrium constant for the reaction is highly temperature dependent. Temperature reductions 379 

would cause gas to particle conversion and increase the concentrations of ammonium nitrate26. 380 

Note that the amount of nitrate at equilibrium has a non-linear relationship with temperature. Thus, 381 

the relationship between increase in nitrate concentration due to gas-to-particle conversion (Figure 382 

4) and temperature reduction is not linear; the increase in nitrate depends not only on the magnitude 383 

of temperature reduction but also the baseline temperature. In contrast to shifting equilibrium of 384 

the reaction between nitric acid and ammonia, which would increase nitrate, cool surfaces adoption 385 

may also reduce photochemistry and impede the formation of nitric acid precursors (i.e., OH and 386 

NO2) during the day, leading to a reduction in nitrate. Increased gas-to-particle conversion and 387 

suppressed ventilation outweigh reductions in photochemistry, leading to overall increases in 388 

nitrate concentrations (Figure 4).   389 

For secondary organic aerosols (SOA), reductions in ventilation should lead to increases in SOA, 390 

while temperature decreases would be expected to cause (a) increases in gas-to-particle conversion 391 

for semi-volatile species, which would lead to SOA increases, and (b) reduced rates of 392 

temperature-dependent reactions, which would lead to SOA decreases. Biogenic SOA may also 393 

be influenced by reductions in temperature dependent VOC emissions (e.g., isoprene) from 394 
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vegetation (Figure S11). As shown in Figure 4, both anthropogenic and biogenic SOA increase 395 

when including the influence of changes in ventilation, but decrease when ventilation changes are 396 

excluded. Daily average SOA concentrations increase by 0.018 (0.046) μg m-3 for COOL_WALL 397 

(COOL_ROOF) relative to CONTROL. After removing the ventilation effect, daily average SOA 398 

concentrations decrease by 0.057 (0.071) μg m-3 for COOL_WALL (COOL_ROOF) relative to 399 

CONTROL. This means that SOA reductions induced by slowed temperature dependent reactions 400 

and biogenic emissions outweigh the expected increases in semi-volatile SOA species due to phase 401 

partitioning. On the other hand, increases in SOA due to suppressed ventilation and increased gas-402 

to-particle conversion outweigh decreases in SOA due to reduced reaction and emission rates. 403 

These competing effects lead to an overall increase in SOA concentrations, although fractional 404 

increases are small relative to other species. 405 

In this paper, we discuss the climate and air quality implications of cool roofs and cool walls, 406 

which have been used in cities to reduce temperatures and thus combat global warming and urban 407 

heat islands. Our results show that reductions in urban surface temperatures lead to both co-408 

benefits of reduced ozone concentrations and penalties of increased PM2.5 concentrations, 409 

potentially changing the exceedance days of federal air quality standard in the Los Angeles Basin. 410 

We suggest further studies to assess the air quality effects of other heat strategies and the effects 411 

in other cities. For policy makers, it is important to assess the effects of environmental solutions 412 

from a systematic perspective, i.e., looking at heat mitigation impacts not just from a climate 413 

perspective but also from an air quality perspective. 414 

 415 
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 592 

 593 

Table 1. Spatially averaged meteorological variables and pollutant concentrations for the CONTROL 594 

scenario, and the change relative to CONTROL for COOL_WALL and COOL_ROOF. Values represent 595 

spatial averages in Los Angeles County (shown in Figure S3b) for urban grid cells from 00:00 LST on July 3 596 

to 00:00 LST on July 12. 597 

 CONTROL 
COOL_WALL 

minus CONTROL 
COOL_ROOF 

minus CONTROL 

Daily average near-surface air temperature a (K) 292.85 -0.24 -0.45 

10-meter wind speed at 14:00 LST (m s-1) 4.15 -0.06 -0.21 

10-meter wind speed at 20:00 LST (m s-1) 2.28 -0.08 -0.09 

Daily maximum 8-hour average ozone concentration 
(ppbv) 

38.47 -0.35 -0.83 

Daily average PM2.5 concentration (μg m-3) 12.25 0.62 0.85 

Daily average nitrate concentration b (μg m-3) 0.89 0.11 0.18 

Daily average ammonium concentration b (μg m-3) 0.98 0.07 0.10 

Daily average sulfate concentration b (μg m-3) 1.91 0.11 0.13 

Daily average EC concentration b (μg m-3) 0.87 0.05 0.06 

Daily average anthropogenic SOA concentration b (μg m-3) 1.22 0.01 0.04 

Daily average biogenic SOA concentration b (μg m-3) 0.51 0.01 0.01 

Daily average POA concentration b (μg m-3) 1.90 0.12 0.14 

a  Near-surface air temperature refers to the temperature in the lowest atmospheric layer.  598 

b Mass concentrations for particles with diameter less than 2.5 μm (i.e., nuclei and accumulation mode) 599 

are included for each species.  600 
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 602 

 603 

Figure 1. Spatially resolved near-surface air temperatures (K) at 14:00 LST and 20:00 LST for (a) the 604 

CONTROL scenario, and the difference relative to CONTROL for (b) COOL_WALL and (c) COOL_ROOF. 605 

Values are temporally averaged over the period of 00:00 LST on July 3 to 00:00 LST on July 12.   606 

 607 

608 
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  609 

 610 

 611 

Figure 2. Spatially resolved daily maximum 8-hour average (MDA8) ozone concentrations (ppbv) for (a) 612 

the CONTROL scenario, and changes relative to CONTROL for (b) COOL_WALL and (c) COOL_ROOF. 613 

Changes that are not statistically distinguishable from zero (see section 2.4 for details on statistical 614 

analysis) in (b) and (c) are dotted. Values are temporally averaged over the period of 00:00 LST on July 3 615 

to 00:00 LST on July 12.   616 
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Figure 3. Daily average PM2.5 concentrations (μg m-3) by species for CONTROL (left column), as well as 619 

the differences for COOL_WALL – CONTROL (middle column) and COOL_ROOF – CONTROL (right 620 

column). Differences that are not statistically distinguishable from zero (see Section 2.4 for details on 621 

statistical analysis) are shaded in gray (middle and right columns of panels). Values are temporally 622 

averaged over the period of 00:00 LST on July 3 to 00:00 LST on July 12.   623 
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Figure 4. Diurnal cycles of spatially averaged PM2.5 concentrations by species. The left column shows the 626 

diurnal cycle of spatially averaged PM2.5 (μg m-3) for CONTROL, COOL_WALL, and COOL_ROOF. The right 627 

column shows the differences in PM2.5 species for COOL_WALL – CONTROL and COOL_ROOF – CONTROL 628 

and the differences if ventilation effect is excluded. Values represent spatial averages in Los Angeles 629 

County (i.e., shown in Figure S3b) for urban grid cells from 00:00 LST on July 3 to 00:00 LST on July 12. 630 

Note that vertical axis ranges vary for each species.  631 
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 633 

Figure 5. Scatter plots showing fractional increase in EC concentrations induced by cool walls and cool 634 

roofs versus (a) fractional reduction in PBL height and (b) fractional reduction in 10-meter wind speed. 635 

The value on each dot represents the hour of day (e.g., 9 = 09:00 LST). Least-squares linear regressions 636 

and corresponding coefficients of determination (R2) are also shown. Values represent spatial averages 637 

in Los Angeles County (i.e., shown in Figure S3b) for urban grid cells from 00:00 LST on July 3 to 00:00 638 

LST on July 12. 639 
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