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1. INTRODUCTION 

The Interacting Boson Model (IBM) of Arima and Iachello l ) has proved to 

be a very successful phenomenological description of collective properties in 

nuclear structure. One would like, of course, to understand this fact on a 

more microscopic basis. In particular one would like to make the connection 

between the Bosonic degrees of freedom used in the IBM as the building blocks 

of the nucleus and the conventional Fermionic degrees of freedom of protons 

and neutrons which are used for instance in the nuclear shell model. Usually 

this link is made by interpreting the Bosons in a first approximation as 

collective pairs of Fermions. 

In fact many years ago it was shown that a system of interacting Fermions 

can be exactly represented by a system of interacting Bosons (for a review see 

ref. 2). In nuclear physics this idea was introduced by Belyaev and 

zelevinskii 3) and by Marumori, Yamamura and Tokunaga4). These authors used 

collective ph- (or two-quasi-particle-) pairs as the Fermionic counterpart of 

the Bosons. Much work has been done in this framework S-8) and considerable 

success has been achieved. There are, however, still a number of open 

problems as to the convergence of these "conventional" Boson expansions, the 

possible admixtures of single particle degrees of freedom and the occurrence 

of spurious modes. These problems show up in all Boson theories and can cause 

serious mistakes in practical applications if not properly treated. 

The microscopic counterpart of the Bosons in the IBM are usually assumed 

to be pp-pairs of Fermions9,10). These pairs can be thought as the building 

blocks of a shell model calculation. Taking into account a sufficiently large 

number of different Fermion pairs one thus has in principle an exact 
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description of the many-body problem for the valence shell of transitional and 

deformed nuclei. Of course this concept can only be carried out in practice 

if the number of different types of Fermion pairs is restricted. In fact the 

ground state of spherical nuclei seems to be built to a very large extent by 

pairs coupled to angular momentum L = O(S). Low lying excited states carry 

angular momentum L = 2(0). A number of calculations in spherical nuclei, 

where only very few broken pairs are present, has shown that one obtains a 

qualitative understanding of the microscopically fitted IBM-parameters already 

using only S- and 0_pairs 11 - l3 ). By taking into account the influence of 

higher pairs, such as G,I ... and SI ,0 1 
••• , by a renormalization procedure one 

can even find a quantitative agreement14 ,15). In that sense there is a 

microscopic foundation of the IBM for spherical nuclei. 

Of course the IBM model has its biggest success for the description of 

transitional and deformed nuclei. There the situation is much more 

complicated. The transition from spherical shapes to deformed shapes can be 

described as a kind of a phase-transition in a finite system. Such a 

phase-transition is connected with the freezing out of a soft mode. It is 

evident that this soft mode is a quadrupole vibration and therefore one 

expects the deformed ground state to contain a large number of O-pairs. A 

number of investigations have been carried out to understand quantitatively 

the structure of deformed HFB-states in terms of S,O,G ... pairs 16-18 ). It has 

been found that HFB wave functions of deformed nuclei lie, to a large extent, 

in the SO-space. Essential physical quantities, however, can only be 

understood on the basis of higher pairs. For a microscopic understanding of 

the properties of deformed nuclei one has to take into account at least the 

G-pair. These results are in agreement with detailed phenomen~logical 
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investigations of "K. Heyde et al. 31 ,32), which show that the fits to 

experimental data in 156Gd ca~ be considerably improved by including a 

g-Boson. 

All these microscopic investigations used deformed HFB-states. IBM-model 

states, however, are states in the laboratory frame with good angular 

momentum. In fact one of the big advantages of pp-Bosons, as compared to the 

ph-Bosons based on quasi-particle pairs, is the fact that the former preserve 

the symmetries. The microscopic counterpart of the IBM-groundstate in 

1 ·· ·th 1· d ··t 19-21) b spherical nuc ellS a state W1 genera 1ze sen10r1 y zero , or anum er 

projected BCS-state. Using symmetry conserving wave functions in the Fermion 

picture is certainly more complicated, but it has the advantage that one 

avoids the admixture of spurious states. 

A consistent extension of these ideas to deformed nuclei requires, in 

addition to number projection, the restoration of rotational invariance using 

angular momentum projection. For the analysis of the microscopic background 

of the IBM-model in deformed nuclei we therefore used angular momentum and 

number projected deformed HFB wave functions in this paper. In fact it is 

well known that the groundstate and the members of the groundstate band for 

not too large angular momenta can be described to a fairly good approximation 

by such wave functions. These wave functions have only a very small overlap 

with the intrinsic HFB wave function 22 - 24 ) and thus it is not at all clear 

from the outset if the conclusions obtained from the analysis of intrinsic 

unprojected wave functions remain valid. 

The analysis was carried out in different stages. We start out in 

section 2 with a fixed HFB wave function, decompose it into SO-,SOG-, ... parts 

and calculate overlaps of wave functions and matrix elements of physical 
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observables with these truncated wave functions. We are thus in a position to 

investigate which quantities can be reproduced already in the SD-space and 

which are sensitive to admixtures of higher pairs. This analysis is carried 

out first for a model containing nucleons in a single j-shell and later on 

extended to the case of a realistic wave function of Rare Earth nuclei. 

In these investigations the structure of the collective Fermion pairs is 

completely determined by the intrinsic wave function. In section 3 we go a 

step further and use pairs optimized for the different truncations. We carry 

out a variation of the energy calculated after truncation and projection. 

Thus we are able to work with optimally adjusted pairs. We study how their 

structure changes in going from spherical shapes through transit10nal cases to 

deformed nuclei and discuss again to what extent this shape-change may be 

represented in such truncated spaces. 

In section 4 we summarize the conclusions we can draw from this 

investigation regarding the validity of the IBM model in deformed and 

transitional nuclei. 
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2. CALCULATIONS WITH FIXED INTRINSIC WAVEFUNCTIONS' 

2.1 THE TRUNCATION OF ANGULAR MOMENTUM PROJECTED HFB-STATES 

It is well known that the groundstate and the low lying members of the 

~ groundstate rotational band of deformed nuclei can be written to a good 

'. 
approximation as a number- and angular-momentum projected state: 

( 1 ) 

where pI and pN are projection operators onto good angular momentum and 

particle number. The intrinsic function I~> is a generalized Slater 

determinant. According to the theorem of Thouless 25 ) it can be represented in 

the form 

+ 
I~> « exp(xA ) 10> (2 ) 

where x is a normalization constant determined be the condition 

<IO[A,A+]IO> = 1 and the operator A+, the so-called deformed Cooper-pair, is 

a collective superposition of Fermion-pairs. 

( 3) 

The quantum numbers a = (a,m ) = (n ,1 ,j ,m ) describe a spherical a a a a a 

oscillator basis and the coefficients AaB can be obtained from the usual 

representation of HFB wave functions in terms of the matrices uak,Vak of the 

Bogoliubov-transformation 
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+ 
U ka + V ka a a a a 

by matrix inversion (see ref. 24, p. 615): 

Since we are dealing with deformed nuclei, the collective pair A+ 

violates rotational symmetry. As in ref. 17,18 it can be decomposed into 

pairs of good angular momentum: 

with 

The pairs QO' Q2' Q4··· are called in the following S,O,G, .... They are 

normalized in the sense 

(4) 

( 5) 

(6 ) 

(7) 

(8) 

(9) 

( 1 0) 
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which defines the quantities x~. They can be interpreted as the probability 

+ of finding a pair with angular momentum L in the Cooper pair A and have been 

calculated by several authors16-18). It has been found that a large 

percentage (between 80% and 90%) of the Cooper pair is already given by the S 

and 0 pair. We investigate in the following different truncations, i.e., we 

use intrinsic states of the form 

(11 ) 

( 12) 

From these wave functions we project onto good particle number and onto 

good angular momentum as indicated in eq. 1. We use the projection operators 

in the form introduced by Wigner26 ). Projected wave functions are in the 

IN IN IN following denoted by I~> , 1~>02 and 1~>024 indicating the different 

truncations. 

2.2 INVESTIGATIONS IN A SINGLE-j-SHELL 

The conclusions about the validity of SD- and SDG- ... truncation depend 

certainly on the dynamics of the system, i.e., on the underlying many-body 

Hamiltonian. Since there is no unique prescription which Hamiltonian one 

should use, these conclusions can be somewhat arbitrary. We therefore begin 

this section with an investigation, which is completely independent of the 
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dynamics. We use as intrinsic state a fixed wave function of the Nilsson-BCS 

type, truncate it, project it onto good angular momentum and particle number 

and discuss the effect of the truncation and projection on overlaps and matrix 

elements of physical operators. In the following sections we will also take 

into account the dynamics, by treating a realistic Hamiltonian. 

As in ref. 17 we use a model wave function I~> of the Nilsson-BCS type 

in a single j = 41/2 shell with fixed deformation B = -0.3, a fixed gap 

parameter 6 = 1 MeV and particle number mean value N = <~INI~>. In contrast 

to ref. 18 we shall not minimize with respect to some Hamiltonian. Since we 

only wish to study the influence of projection we shall always work with the 

same intrinsic wave function. 

In Fig. la we show the probabilities x~ as a function of the particle 

number N, starting from small particle numbers (where certainly a deformed 

intrinsic state is a bad approximation) up to N = 20, where the shell is 

nearly half filled. With increasing number we observe that the sum of the 

probabilities of the S- and O-pair x~ + x~ increases from 70% to 95%. The 

relative importance of the O-pair increases too, and it reaches its saturation 

value of ~55% at N = 10. The probability for the G-pair has a maximum for 

N = 6 and decreases slowly thereafter, a fact which has been seen already in 

an early paper by A. Klein and C. oasso33 ). 

In Fig. lb we show the overlap integrals of the various normalized 

functions. Only the overlap between the number and angular momentum projected 

Nilsson + BCS state and the SOG-approximation to it stays close to unity for 

all particle numbers. This indicates that the relative contribution of 

G-pairs increases for larger particle numbers, although the G-pair content in 

a single Cooper-pair x~ decreases, a fact which can be understood only by 
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appealing to the Pauli principle. For large particle numbers we have a 

considerable cancellation of S- and O-pairs, such that the contribution of the 

G-pair (also small in a single A-pair) becomes important in the total wave 

function. The corresponding overlaps for unprojected and number only 

projected functions are smaller, but we find qualitatively the same features . 

In particular the SO-approximation becomes very poor in the intrinsic scheme 

for large particle numbers. 

We have, however, to bear in mind the well known fact that a small 

overlap in a many-body wave function does not necessarily mean a bad 

description of the physical properties, because we are mainly interested in 

certain matrix elements of a few observables. 

We therefore calculate projected and unprojected matrix elements for the 

quadrupole operator. Since we cannot compare spectroscopic quadrupole moments 

with intrinsic values, we show in Fig. 2 the intrinsic quadrupole moments <Q> 

and <Q>N and in the angular momentum projected case an effective intrinsic 

quadrupole moment <Q>IN defined through the rotor model: 

.. /8 ( E 2 , 2 ~ 0) <2 0 2 010 0> <Q>IN ( 13) 

As one can see, the unprojected intrinsic matrix element <Q> provides for 

all particle numbers a very reasonable approximation to the projected value 

<Q>IN. This is of course a well known fact and a justification for 

introducing an intrinsic scheme with a deformed potential. In detail the 

projected matrix element is roughly 5% larger than the unprojected, indicating 

that angular momentum projection usually yields somewhat larger deformations 

in a self-consistent calculation. 
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For small particle numbers the SO-approximation seems to work properly 

(at least for the quadrupole operator), but for more than 10 particles we 

observe a~trong reduction of the unprojected quadrupole moment <Q>02' This 

effect is due mainly to the fact that the SO-part of the unprojected wave 

function 1~>02 gives the wrong mean value of the particle number: 

( 14) 

and this strong reduction disappears after projection onto the right particle 

number. 

The additional projection onto good angular momentum only increased the 

matrix elements by a small amount, but gives no great change to this picture. 

If the G-pair is included, one obtains nearly the full value for the 

quadrupole operator. This is not true for other quantities such as the 

pairing gap 6, which is proportional to the pair transfer matrix 

element <~IS+I~> 

Summarizing our investigations for a single j-shell we can say that 

(15) 

restoration of the broken symmetries in a HFB calculation (particle number and 

angular momentum) is necessary for a discussion of the validity of the 

SO-approximation. It turns out that the main effect comes from the projection 

onto good particle number. The proper treatment of the rotational symmetry, 

however, has little influence on the effects connected with the truncation to 

SO- or SOG-space. In order to verify these results obtained for a single 

j-shell we investigate in the following section a realistic case with many non 

degenerate j-shells. 

'. 
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2.3 INVESTIGATIONS OF MULTI-j-SHELL CONFIGURATIONS 

In contrast to the single j-shell case, where we have only analyzed the 

structure of a given wave function, we now refer explicitly to an effective 

two-body Hamiltonian. We use the configuration space and the residual 

interaction of Kumar and Baranger27 ), which has been widely used in the 

literature and has been very successful in microscopic descriptions of 

collective excitations in Rare Earth nuclei. The Hamiltonian is of the form 

The model takes into account only the residual interaction between the valence 

nucleons in the qscillator shells N = 4,5 for protons and N = 5,6 for 

neutrons. This is compatible with the ideas of the Interacting Boson Model, 

where the Bosons are assumed to be pairs of nucleons in the valence shell. 

The configuration space in this calculation therefore includes the 

j-she11s: 

Protons: 199/ 2, 197/ 2, 2d 5/ 2, 2d 3/ 2, 3s1/ 2 

1h11/2' 1h9/2' 2f7/2' 2f5/2' 3P3/2' 3P1/2 

Neutrons: 1i13/2' 1i11/2' 2g9/2' 2g7/ 2, 3d 5/ 2, 3d 3/ 2, 4s 1/ 2 

1h11/2' 1h9/2' 2f7/2' 2f5/2' 3P3/2' 3P1/2 

In the following we shall discuss results for the Oy-isotopes 

1560 1640 h· h· h 1 d f th t . t· 1 . . 156 . y- y, a c aln w lC ea s rom e ranSl lona reglon ln Oy lnto 

the well deformed region in l64 0y . We use the intrinsic HFB-functions of 

Kumar and Baranger, which are obtained by a variation of the unprojected 
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energy subject to the constraint of fixed average particle numbers for protons 

and neutrons. Truncation and projection is carried out after the variation. 

It should perhaps be emphasized that variation in a truncated space may yield 

totally different results, as we will see in the section 3. 

As we have already seen in the j = 41/2 model, number projection is 

crucial. Thus we have for every case in the following included particle 

number projection (for protons and neutrons) and look for effects coming only 

from the additional angular momentum projection. 

An essential difference to the single j-shell case is that we now have a 

spherical single particle field Ho' Figure 3 shows the expectation values of 

this operator and compares results obtained in the full Fermion space with the 

SO- and the SOG-truncation. On the 1.h.s. we use angular momentum projection 

as well as number projection, on the r.h.s. we use only number projection. 

G · f h t 't' 1 . . 1560 t th 11 d f d . . olng rom t e ranSl lona reglon ln y 0 e we e orme reglon ln 

1640y we observe a large decrease of <Ho>' which is obviously connected with 

the increase in total binding with increasing particle number. At the 

beginning (A = 156-160) <Ho> drops slowly, because in this region the 

deformation changes drastically and the increase in binding is partially 

compensated by the fact that we have to mix in deformed wave function 

components from higher lying j-shells (which are nearly empty in the less 

deformed region). Beyond A = 160 deformation is only increased a little and 

therefore <H > drops more rapidly. These general features are found in all o 

cases shown in Fig. 3. But there is a difference in the absolute values. In 

the SO-space we obtain roughly 8-10 MeV less binding than in the full space. 

Taking into account the G-pair closes this gap to less then 2 MeV. One could 

argue that this difference amounts to only 5% of the total value in the 
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SO-space and less then 2% in the SOG-space. However it is clear that those 

percentages contain little information, because an arbitrary shift in the 

energy scale would change them. Physically interesting properties depend only 

on the vicinity of the Fermi surface. 

We also see in Fig. 3 that angular momentum projection has little 

influence on <H >. The curves on the r.h.s. obtained after number projection 
o 

only, look very similar to those on the l.h.s. 

In Fig. 4 we show intrinsic quadrupole moments. As in section 2.2 they 

are obtained from eq. 14 in the case of angular momentum projected wave 

functions. These quantities are connected with the deformation parameter (in 

simple HFB-theory we have ~ woB = x<Q». We observe an increase of the 

deformation on the way from 1560y to 1640y in all cases. Again there is no 

qualitative difference between the calculations with and without angular 

momentum projection; in detail angular momentum projection increases all 

expectation values a little. There is, however, a large difference between 

the SO-truncation and the full wave functions, which increases with 

deformation: In the well deformed region we find only 80% of the quadrupole 

deformation in the SO-space. Surprisingly the inclusion of the G-pair 

produces nearly the full value. We can say that the SO-approximation shows 

the same features as in the single j-shell: little influence of angular 

momentum projection and an increasing contribution coming from the G-pair with 

growing deformation. The relative influence of the G-pair increases although 

the coefficient x4 remains rather small (x~ = 0.07-0.1). This has to be 

understood again as an effect of the Pauli principle. In detail the SOG wave 

function reproduces the full value for the stronger deformed isotopes (B > 

0.3) whereas for the somewhat weaker deformed isotopes (0.25 < B < 0.3) we 

find only 98-99%. 
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A difference to the above results, concerning the SD- or SDG-

approximation, is found, if one looks at the pair transfer matrix elements: 

+ + + <P > <~I(a a )ol~> (17 ) 

This is related to the pairing gap parameter (in the mean field approach we 

+ have ~ = G<P ». As one can see from Fig. 5 it is clearly not enough to take 

into account the SOG-pairs to reproduce the result obtained with the full wave 

function. 

Another interesting quantity which is crucial for the description of 

rotational spectra is the moment of inertia. 

(21 - 1 )/~EII-2 ( 18) 

We obtain it from angular momentum projected energies EI and assume that the 

intrinsic wave function is the same for all the I-values under 

consideration. Fig. 6 shows the moments of inertia obtained in this way for 

the two isotopes 1580y (B = 0.289) and 1640y (B = 0.328). In the first case 

the influence of SO-truncation is a reduction of more then 20%, which 

increases with angular momentum. In the second case we find only 20-30% of 

the moment of inertia in the SO-space. Again the inclusion of the G-pair 

gives nearly the full value. These results are similar to the results found 

for the quadrupole moments: The SOG-approximation works better in the 

stronger deformed cases and gives for not too large angular momenta nearly the 

full value of !I. 
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Going to the region of higher angular momenta is not meaningful because 

it is well known that this region is characterized by alignment processes, 

which cannot be described in the original version of the IBM model and which 

are not included in our wave functions. 

Thus far our investigations have been restricted to fixed intrinsic wave 

functions determined before truncation and projection. In the following 

section we investigate the influence of truncation and projection on the 

variation. 
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3. VARIATION AFTER PROJECTION AND TRUNCATION / 

3.1 SELF-CONSISTENT CALCULATION OF DEFORMATION AND GAP PARAMETERS 

It is well known that a projection after variation violates the basic 

idea of the variational principle. Besides the fact that in the case of 

translational motion it does not reproduce the exact total mass of the 

nucleus, which is perhaps only an esthetic shortcoming, this method completely 

fails in the description of high spin states, where alignment processes (which 

depend on the angular momentum) produce drastic changes in the intrinsic wave 

function. Nevertheless unprojected HFB-theory is very successful in the 

description of groundstate properties of deformed nuclei. This means that one 

has to investigate for each case separately whether a projection before the 

variation (required by the variational principle) can be replaced by 

projection after variation, which is considerably simpler. In certain cases 

projection can be neglected completely. 

In our case we not only project onto good angular momentum and particle 

number, but in addition truncate the intrinsic wavefunction. According to the 

variational principle we should do this ~efore the variation. In order to 

avoid too large a numerical effort, in the following calculation, we restrict 

the variation to a few crucial parameters. In particular we take only the 

deformation parameter B and the gap parameters Ap and An for protons and 

neutrons into account. This restriction of the variation is physically 

meaningful because quadrupole deformation and pairing properties are the 

crucial properties which determine the low lying collective states and our 

Hamiltonian in eq. 16 contains only quadrupole and pairing terms. In fact the 

variation of the intrinsic untruncated HFB-functions is completely determined 

by these three parameters. 
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In detail we calculate as a first step for each set of parameters B,6 ,6 
P n 

the corresponding Nilsson + BCS wave function It(B,6p,6n» by diagonalizing 

the HFB-matrix 

-H o 

The chemical potential ~ is determined by the constraint on the particle 

number. 

(19 ) 

In a second step we evaluate the energy after truncation and projection 

I N = <t(~,6p,6n)IHP P It(~,6p,6n» 

<t(~,6p,6n)1 pIpNlt(~,6p,6n» 
(20) 

For the third step we determine the minimum of this energy surface with 

respect to the parameters B,6p,6n. The actual calculation was carried out for 

. . 148 150 152 154 . the chaln of Sm lsotopes Sm, Sm, Sm, Sm, ln order to study the 

effects of projection and truncation in the region of the phase transition 

from spherical to deformed. Again the configuration space and the residual 

interaction of Kumar and Baranger were used. In order to avoid a too large 

computational effort an independent variation of the parameters 6p and 6n 

has been carried out only for a few test cases. It turned out that the 

approximation 6n = 6 + (6 - 6 ) gives rather good results. p n p Baranger Kumar 

We therefore used in all other calculations only Band 6p as independent 

parameters. For each isotope we took the difference 6p - 6n from Baranger 

and Kumar (ref. 27). 

From Figs. 7 and 8 we may recognize how sensitive the yariation is to a 

truncation of the wave function. Fig. 7 shows the dependence of the total 
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energy on the deformation parameter B for 152Sm . The other two parameters 

~ and 6 were kept fixed at their values at the minimum. Although the 
p n 

SO-part of the Cooper-pair A+ has x~ + x~ is z90%, the result obtained from 

a variation in the SO-space is totally different from the results in the full 

space. The origin of this surprising effect can be studied in Fig. 8, where 

the total energy in the vicinity of the minimum is split up into the different 

contributions coming from the single particle Hamiltonian, the quadrupole 

correlations and the pairing force. Due to the fact that the minimum is 

rather flat, its position is strongly shifted even by very small contributions 

and one has to take into account the L = 6 pair to reproduce the correct 

position of the minimum. It is also seen that the main effect comes from the 

interplay between <Ho>' a quantity which is steeply increasing with 

deformation, and - i<o+o> , which drops dramatically. The contribution of the 

pairing-interaction shows much smaller variations, because we keep the gap 

parameters fixed in Fig. 8. 

In Figs. 9 and 10 we show the equilibrium values for the 

parameters B, 6p and 6n, i.e., the minima of the different energy surfaces. 

We see the well known fact that angular momentum projection, which takes into 

account fluctuations in the orientation of the deformed nucleus, smears out 

the sharp phase transition observed in pure mean field theory. Between A = 

148 and A ~ 150 we have, for the unprojected case, a sharp onset in the 

deformation. In the angular momentum projected case, we find a smooth 

transition; even the spherical nucleus l48Sm shows small deformation. 

Similar results have been found earlier28 ). Apart from this effect, there is 

no qualitative difference between the angular momentum projected and 

unprojected results. 
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With varying neutron number, the parameters show the same behavior to 

those derived from the unprojected theory of Kumar and Baranger. The 

deformation increases to B = 0.3 in going from 148Sm to 154Sm and as a 

result the proton gap ap decreases because of the decreasing level density. 

The neutron gap an stays roughly constant, because as one adds additional 

h . . f· t· 146S (h . 82 t ) neutrons to t e sem1-mag1c con 19ura 10n m aV1ng neu rons , two 

effects (increasing pairing by the addition of particles to a closed shell and 

decreasing pairing caused by the growing deformation) tend to cancel each 

other. 

In Fig. 9 we compare the full HFB-values with results obtained in the 

framework of SO-truncation; in Fig. 10 we do the same for SOG-truncation. The 

reduction of the quadrupole matrix element found after truncation to SO in the 

static calculation (Fig. 4) is responsible for the reduction of the 

deformation after variation. Here, however, because of the non-linearity of 

the variation, the effect is much larger. We find a reduction of roughly 50% 

in 154Sm . The smaller deformations in the SO-space obviously lead to larger 

gap parameters. 

Including the G-pair (in Fig. 10) improves the situation, but, as 

mentioned previously, because the variation procedure is quite sensitive to 

the truncation one cannot fully reproduce the results obtained with full HFB 

wave functions using the SOG-framework. 

3.2 CHANGES IN THE STRUCTURE OF THE WAVEFUNCTION 

In the next figures some light is shed on the structure of the wave 

functions for the Sm isotope chain. We remember that I~> is completely 

characterized to be the structure of the Fermion pair A+. Indeed the number 

projected wave function 
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is a condensate of A-pairs. This pair is decomposed in normalized "pairs 

with definite angular momentum. 

(22) 

In a single j-shell there is for each L-value only one Fermion pair and A+ is 

uniquely determined by the xL coefficients. In the general case of many 

non-degenerate j-shells one needs in addition the structure coefficients 

aL(a,b) of eq. 9, which characterize the collective pairs S~O,G, .... In the 

philosophy of the IBM model they determine the microscopic structure of the 

Bosons used in the theory. 

Since we have calculated the wave functions in the chain of Sm nucl~i 

self~consistently, we are now able to study the changes in the structure of 

these'wave functions, i.e., the change in the xL-parameters and the change of 

the structure of the Fermion pairs, as we go through the phase transition from 

spherical to deformed. 

In Fig. 11 we show the dependence of these structure coefficients on the 

neutron number, i.e., on the deformation. It is remarkable how little they 

change when we go through the phase transition. The changes for the neutron 

pairs are somewhat larger than those for the proton p.airs. This probably has 

to do with the larger neutron number and reflects the fact th~t we are dealing 

with Fermions, which feel the Pauli principle. Similar results have been 

found by the authors of refs. 29 and 30 ~ithout angular momentum projection. 
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Since the structure of the Fermion pairs changes so little, the main 

effect of the phase-transition has to be understood by changes of the 

xL-coefficients. In fact we see in Fig. 12 that they change dramatically as 

we go from 148Sm to 154Sm . The amplitude of the S-pair, which is close to 

one in 148Sm (the "spherical case"), decreases, whereas the amplitudes of 

the 0- and G-pairs increase. In terms of these Fermion-pairs, deformation is 

therefore produced by an increasing admixture of mainly 0- and a few G-pairs 

having a rather constant structure. Theories, which describe'the phase 

transition from spherical to deformed in terms of the variables xL but with 

A-independent Fermion pairs QL seem to be justified by these results 34 ). 

In Fig. 13 we finally show the same xL-coefficients for the well deformed 

region of the Oy-nuclei discussed in section 2.3. Here the situation is very 

different. Going form 1580y to 1640y we have only minor changes in the 

deformation. Correspondingly the xL-coefficients stay rather constant. 

, Of course the full many-body wave function contains components with many 

different numbers of S-, 0-, and G-pairs. Because of the Pauli principle 

these different components in the Fermion space are not orthogonal. Therefore 

the average number of S-, 0- or G-pairs is not a well defined quantity. Only 

to get a very rough estimate we neglect for a moment the Pauli principle and 

investigate a wave function in the Boson-space, with the same structure as the 

number projected HFB-function of eq. 21. and restrict ourselves to sdg 

configurations only 

(23) 

This Boson wave function is than decomposed into orthogonal components with 

different numbers of s-, d- and g-Bosons: 
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The coefficients cv2V4are straightforward expressions in the amplitudes 

xL' The quantities 

and 

(24) 

(25) 

measure the probability of finding v 2 d-Bosons or of finding v 4 g-Bosons in 

the wave function \sdg). In Fig. 14 we show these quantities for the nucleus 

154Sm . Following these arguments we would estimate that we need up to 5 

proton d-Bosons and up to 6 or 7 neutron d-Bosons and at the same time up to 

one or two g-Bosons in order to describe the deformed nucleus 1154Sm within a 

Boson model. From this we may conclude that a two-broken-pair approximation, 

which takes into account not more then two D-pairs, cannot be used to describe 

deformed nuclei. A calculation, however, which includes many d-bosons and 

only one or two g-bosons might eventually be reasonable. 
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4. SUMMARY AND CONCLUSIONS 

Angular momentum and number projected HFB wave functions have been used 

in order to study the possibility of truncations of the underlying Cooper-pair 

so as to contain only components coupled to angular momentum L = 0.2.4 •.... 

In the first place we carried out this truncation after variation on a fixed 

intrinsic wave function and found that the SD-truncation is a very poor 

approximation to the full HFB wave function. Although the Cooper-pair 

comprises more than 80% S- and D-pairs. important physical observables cannot 

be reproduced in this approximation. We obtain only 25% of the moment of 

inertia in the well deformed region. The inclusion of the G-pair. which 

amounts to only a few percent of the Cooper-pair. gives. however. surprisingly 

good results for the quadrupole moments and the moments of inertia in the well 

deformed region. 

In the second part we studied the influence of projection and truncation 

on the variation. We found that the phase transition from spherical to 

deformed cannot be represented in the SD--space. and even the inclusion of the 

G-pair does not give the full deformation. 

The investigations of this paper differ from earlier investigations by 

the fact that full angular momentum and number projection is used. It turns 

out that number projection is crucial. because the truncation procedure can 

cause major changes in the average particle number. The influence of angular 

momentum projection is very small in the well deformed region. In the 

transitional regions of small deformations angular momentum projection has 

more influence; the essential qualitative results. however. are not changed. 

Summarizing we can conclude that the concept of SD-truncation does not 

work in transitional and deformed nuclei. In particular it seems to fail even 
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more for well deformed nuclei than for weakly deformed nuclei. On the other 

hand SDG-truncation seems to reproduce many of the full results surprisingly 

well. For a microscopic understanding of the success of the phenomenological 

IBM models it is therefore not enough to neglect the effects of the G-pair. 

It is still an open problem, which will require further investigation, to 

establish if all the effects of the G-pair and the corresponding g-Boson can 

be taken care of by a suitable renormalization of the force-parameters, or if 

the g-Boson has to be treated dynamically. 
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FIGURE CAPTIONS: 

Fig. 1 

Fig. 2 

Fi g. 3 

Properties of the j = 41/2 model with respect to truncation: a) The 

probabilities xL of finding pairs QL coupled to angular momentum L 

in the Cooper-pair of eq. 3 as a function of the number N of 

Fermions. The sum of the probabilities for L = 0 and 2 and for L 

0, 2 and 4 are also given. b) Overlap integrals between various 

projected (full) and unprojected (dashed) wave functions as a 

function of N. The indices 0,2,4 give L-values taken into account. 

Functions without lower index are calculated in the full Fermion 

space. The upper indices I,N indicate angular momentum projection 

(I = 0) and number projection. All overlaps are obtained from 

normalized wave functions. 

= 

Quadrupole moments as defined in eq. 13 as a function of the 

particle number N at angular momentum zero. Values obtained in the 

full Fermion space are compared with those in the SO-space. Details 

of the notation are given in Fig. 1. On the l.h.s. We compare full 

projected values with completely unprojected values. On the r.h.s. 

we compare values with and without angular momentum projection. 

The expectation value of the spherical single particle part of the 

Hamiltonian <Ho> in eq. 16 as a function of the neutron number in 

the Oy isotope chain. Various truncations are compared: a) with 

particle number (N) and angular momentum projection (I = 0), b) only 

with number projection. The different curves correspond to full 

HFB-wave functions and to truncations to the SO-space (02) and to 

the SOG-space (024). 



Fi g. 4 

Fig. 5 

Fi g. 6 

Fi g. 7 

Fi g. 8 

Fig. 9 
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Mass quadrupole moments as defined in eq. 13. The units are fm2 and 

details of the notation are given in Fig. 3. We also show to what 

extend the truncated quantities exhaust the values obtained in the 

full Fermion space. 

Pair transfer matrix elements as defined in eq. 17. Details of the 

notation are given in Figs. 3 and 4. 

M t f · t· d f· d· 18 f th 1· 1640 d omen s 0 lner la e lne ln eq. or e nuc el y an 
158 -Oy as a function of the angular momentum. Full HFB-results are 

compared with SO-truncation (02) and SOG-truncation (024). 

The angular momentum and number projected energy surface for the 

nucleus 152Sm . The full line corresponds to a calculation in the 

full Fermion space; the dashed curve is obtained after a truncation 

to the SO-space. 

Different contributions to the projected energy in 152Sm : the 

pairing part -G<P+P> (scale on the r.h.s.), the quadrupole part -

~Q+Q> (scale on the r.h.s.), the single particle part <Ho> (scale 

on the l.h.s.) and the total energy. Full lines are calculated in 

the full Fermion space without truncation; dashed lines are obtained 

in.the SGO-space and dotted lines are found in the SOGI-space. 

Equilibrium values of the deformation and gap parameters in the 

chain of Sm isotopes as a function of the neutron number. The full 

lines correspond to calculation in the full space, dashed lines are 

obtained after truncation to the SO-space (02). Angular momentum 

and number projection (IN) is compared with number projection alone 

(N). Since we are dealing with the ground state we always project 

onto angular momentum I = o. 
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Fig. 10 Equilibrium values of the deformation parameters in the chain of Sm 

Fig. 11 

isotopes as a function of the neutron number. Calculations in the 

full space (full lines) are compared with those after SDG truncation 

(dashed lines). For details see Fig. 9. 

The structure coefficients ~L(a,b) for proton- and neutron-pairs 

with different angular momenta in the chain of Sm-nuclei as a 

function of the mass-number A. Not all the coefficients are given 

in detail. Many of them are close to zero; others lie in the 

shadowed areas. The underlying wave functions are obtained by a 

variation after angular momentum and number projection without 

truncation. The numbers 1+,2+, ... characterize the single particle 

levels a,b. For the protons we used 1+ = g9/2' 2+ = g7/2' 3+ = 

d5/2 , 4+ = d3/2 , 5+ = s1/2" = hl1/2 , 2- = h9/2 , 3 = f 7/2 , 4 

f 5/2 , 5- = P3/2' 6 = P1/2 and for the neutrons we use ,+ = i 13/2 , 

2+· 3+ = 4+ 5+ = = '11/2' g9/2' = g5/2' 
+ + d5/2 , 6 = d3/2 , 7 = 51/2 

= hl1/2 , 2 = h9/2 , 3- = f 7/2 , 4 = f 5/2 , 5- = P3/2' 6 = Pl1/2' 

Fig. 12 The coefficients xL of eq. 6, which characterize the admixture of 

S-,O-,G-, ... pairs in the Cooper-pair A+ for the Sm-isotopes as a 

function of the mass-number. Full lines correspond to neutrons and 

dashed lines correspond to protons. 

Fig. 13 The coefficients xL of eq. 6 for the Dy-chain discussed in section 

2.3. For details see Fig. 12. 
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Fig. 14 The probabilities Ct2 and c~4 for finding V2 d-Bosons or V4 

g-Bosons in the deformed Boson state of eq. 25. Full lines 

correspond to neutrons and dashed lines correspond to protons. The 

xL-coefficients for the deformed nucleus 154Sm are used for the 

calculation of these quantities. 
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