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Geometry and Guiding Center Motion 

Ie Introduction 

Robert G. Littlejohn 
Department of Physics 
University of California 
Berkeley, C,alifornia 94720 

Over the years, plasma physicists have developed a number of computational 

techniques for solving various problems of physical interest. Often these involve 

perturbation methods of one sort or another, which are seldom systematized 

or clearly articulated. As one examines these mathematical methods of plasma 

physics, however, one finds that there is a surprising amount of interesting math-

ematics in them, especially in the area of differential geometry. A good example 

of this concerns guiding center motion, which is one of the most important ap-

proximation schemes in plasma physics, and which (orms the subject of this 

paper. 

To preview the main points of this paper, it turns out that guiding center 
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motion hot only involves some interesting features of symplectic geometry, as one 

, might ,expect for a mechanical system, but there is also some interesting metrical 

geometry. It even happens that guiding center motion is a gauge theory. 

Thephy~ical principles of "guiding center ,motion' have beeJ:l well understood 

". .. . , ' ' 1 ' 
for many years; and are reviewed In the excellent book by Northrop. So here I 

will appro~ch the subject from a mathematical standpoint, where there is much 

that is new. I will begin by giving a brief overview or the subject for the noil~ 

plasma physicist. 

2. What Is GUiding-Center/Motion? 

Guiding center motion concerns the motion of a single charged particle in 

a given electromagnetic field. It is, therefore, represented by a Hamiltonian 

system of three degrees of freedom. The essence of the approximation involved 

in guiding center motion can be seen by examining the Lagrangian for 'a partiele· 

in a magnetic field,. 

v2 
L(x,v) = '2 +v ·A(x). (1) 

For simplicity I have neglected any electric field, and I have treated the particle 

nonrelativistically. The position of the particle is x, its velocity is v, and the 

magnetic field B· is represented by the vector. p-<>t~ntial A, so that B = V XA. 

.. 
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I have also suppressed the physical constants e, m, and c from the Lagrangian, 

in order to make the mathematics more clear. However, when the physical 

constants are restored and the two terms of the Lagrangian are numerically 

evaluated for many plasmas of physical interest, it turns out that the second term 

v . A, representing the coupling of the particle to the magnetic field, greatly 

dominates the first term, u2 /2, which is the kinetic energy of the particle. 

Therefore for these physical situations one can achieve a good approximation to 

the particle motion simply by neglecting the kinetic energy altogether. Doing 

this and carrying out the variational principle, one finds the approximate equa­

tion of motion, 

vXB=O. (2) 

The physical meaning· of this is that the particle moves parallel to the direction 

of the magnetic field, i.e. that it is constrained to lie on the integral curves of B, 

the magnetic field lines. This, in a nutshell, is the essence of plasma confinement 

by magnetic fields. 

A more exact analysis of the particle motion shows that the component of 

the particle velocity perpendicular to the magnetic field does not really vanish, as . 

indicated by (2), but rather undergoes high frequency oscillations. However, the 

average or this velocity component does, in ract, vanish to a good approximation, 

so that (2) is still correct in an averaged sense. The actual particle moves in tight 

circles around a magnetic field line, producing overall a helical trajectory as it 
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• 
moves along the field line, as shown in Fig. 1. 

Practically speaking, one must have a more refined picture of the particle 
.. , , . 

motion than that indicated by (2), and so various schemes have been invented to 

analyze the motion perturbativeiy. These schemes effecti~ely treat the kinetic 

energy asa perturbation, although they seldom expiicit'ly acknowlegde this. The 

physical effect of the perturbation is to cause tbeparticle to "drift," i.e. to 

move slowly in a direction perpendicular to the magnetic field lines, at 'the same 
, ' 

tim~ that it moves rapidly along the field lines, according to' (2). The motion is 

pictured physically'inan averaged sense,' with the time average .ofthe particle 

posit~ on being called' the "guiding center. " 

Ie The SympJeetie Form in Guiding Center Theol")' 

Now, in what sense can there be interesting symplecticgeollletry in guiding 

center motion, as I claim! After all, if you've seen one symplectic structure, 

you've seen them all. Dat:boux's theorem guarantees that local canonical coot-

dinatesalways exist,so allsymplectiestructures look.alike locally, i;e. they are. 

all simply given by dp A dq. 

The answer is that the canonical coordinates whose existence is guaranteed 

by Darboux's .theorem have different physical meanings in different contexts, so 

that it is the physical interpretation of the symplectic structure which provides 

interest and variety. To say this another way, the quantities of most immediate 

.. 
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physical interest do not always form canonical coordinates, so that the symplectic 

structure expressed in terms of physical variables is not simply dp A dq. For 

example, in the case of guiding center motion, the symplectic 2-form has four 

contributions of different physical origin: one is the (kinetic) mechanical action, 

the second is the magnetic flux, the third is associated with a symmetry group 

producing rotations in the plane perpendicular to the magnetic field, and the 

fourth is a curvature form associated with the transport of triads of unit vectors 

in Euclidean space. 

The decomposition of the symplectic form into physically interesting pieces 

can be seen in simpler form in the case of the motion of a charged particle 

in a magnetic field (completely apart from any guiding center approximation). 

For this system, the canonical momentum p is often not considered a physical 

quantity, because it is not invariant under a change of gauge of the magnetic 

field. The velocity v, however, is physical. In terms of the canonical momentum, 

the symplectic structure in phase space is just w = E dPi A dqi. But in terms 

of the physically meaningful velocity, the symplectic structure is 

w = L dVi A dqi + L Bii dqi A dqi· (3) 
i i<i 

The first term may be called the kinetic action; it is the only term present for 

mechanical problems with Lagrangians of the form L = T - V, where T is the 

kinetic energy and V is the potential energy. Indeed, this is the only class of 

problems considered in older treatises on mechanics. The second term is the 
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magnetic flux (or rather the lift' of it to phase space); it is responsible for the 

magnetic forces on the particle, and by our previous discussion of the Lagrangian 

(I), it is the dominant term when t~e guiding cent~r approximation is valid. The 

te~sor Bij is expressed in terms of the usual magnetic field vector B by Bii = 

Eij1c B1c • 

It is useful to pursue a littlerurtherthe notionol using only physically 

significant quantities to represent a dynamical system. Consider, for example, 

the equa.tions of motion. In ca~onicaI . coordinates these are just Hamilton's 

equations, but, what do we do if the canonical coordinates are physically un­

desirable! The best answer, I believe, is to use the Poincare-Cartan' Ieform 8, 

which is defined in terms' ot canonical coordinates by.' 

8 = LPidq, - H dt, 
i 

(4) 

where H is the Hamiltonian. This 'fo'rm lives on the odd-dimensional space which 

is . phase space augmented by time, for which I will write P X!t. As explained 
, 

by Arnold,2 the equations or motion are implicitly contained in, the I-form 8 

through· the construction of its "vortex lines." That' is, if the 2-form n = d8 

is or m'aximai rank, it defines a l·dimensional distribution on P X!t. A vector 

field X lying in this distribution satisfies ixO = 0, and any such X specifies the 

equations of motion through the relation 

(5) 



.. 

Geometl'7 and GuldlnC Center Motion I 7 
--------------~----~----------------

for some parameter B (which has no physical significance). This formulation also 

deals nicely with time-dependent Hamiltonians. 

It is significant that the equations of motion depend only on n = dO, so 

that 0 can be subjected to a transformation 0 -.. 0 + dS, for any scalar S, 

without changing any physical results. I call this a "gauge transformation on 

phase space," to distinguish it from a gauge transformation on the magnetic 

vector potential A in physical space. 

A completely equivalent formulation, and one that is easier to use in prac­

tice, is the variational principle, 

6 f 0 = 0, (6) 

where the variations of the path in P X II are required to vanish at the endpoints. 

In canonical coordinates this variational principle is trivially equivalent to Hamilton's 

equations, and it is discussed in many mechanics books as a curiosity. However, 

one can easily use physically interesting variables in this variational principle, 

and as a result one can clearly see the physical ingredients in the symplec-

tic structure as well as in the Hamiltonian. 

Consider again, ror example, the motion of a charged particle in a magnetic 

field. Setting p = v + A in (4) and (6), we have 

6 ! [(A +v) . dx- ~2 dtj = o. (7) 

It is easy to show that this is equivalent to the usual Newton-Lorentz equations 
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of motion. But notice that the symplectic structure neatly breaks up into the 

kinet.ic action, represented byv· dx, and the magnetic flux, represented by A· dx. 

Furthermore,; the Hamiltonian H = 0 2/2 is just the kinetic energy. 

Now let us consider the same system jn the guiding center approximation .. 

Just as with the Lagrangian (1), the Poincare-Cartan form 6 has a ,dominant 
, , 

-term and a perturbation, for which we write 8 = 80 + 81 , The dominant term 

is 60 = A· dx, and the pertur-bation is 81 = V • dx - (02 /2)dt. The physical 

picture We drew above for the guiding center approximation is easily verified in 

the formulation (1). 

4:. Geometry and Periurbatiob Theory' 

Now we are ready to get serious about a perturbation calculation. It turns 

out that this is not just an unhappy exercise in algebra, but that there is some 

interesting geometry involved. This is mainly because we require a perturbation 

theory which is applicable to I-for:ms like 8 = 80 + 81 , and. this problem in turn 

causes us to think about the structure of perturbation theory in general. A more 

complete accounting of this analysis may be found in Refs. 3-4. 

A great deal is known about standard forms of Hamiltonian perturbation 

theory, which are applicable to problems for which the Hamiltonian H consists 

of a dominant term Ho and a perturbation HI' In terms of the Poincare-Cartan 

for 6, we could write 60 = Epidqi-Hodt, and 61 = -Htdt. That is, for these 

.. 



Geometl'7 and GuldlDC Center Motion I 9 
----------------------~----------------

standard problems in Hamiltonian perturbation theory, the symplectic structure 

is given exactly in terms of some physically significant canonical coordinate 

system, and all approximations are focused on the Hamiltonian. Therefore for 

these problems, one typically uses a sequence of canonical transformations to 

transform the perturbation into something easier to solve, the virtue of canonical 

transformations being that they exactly preserve the canonical form of the 

symplectic structure. 

For the guiding center problem of (7), however, the symplectic structure 

itself is perturbed, with the perturbation being given by v . dx, and the entire 

Hamiltonian is also treated as a perturbation. Therefore we require a generaliza­

tion of canonical perturbation theory which allows us to transform not only the 

time component of I, i.e. the scalar Hamiltonian, but the whole I-form in all of 

its components. 

It is easiest to see how to do this by examining the geometric foundations 

of Lie transforms, which are often used in canonical perturbation theory. The 

goal of canonical Lie transforms is to perform a change of coordinates in order 

to simplify the scalar Hamiltonian. The Lie transforms themselves are a special 

kind of coordinate transformation. They are given by the advance map of some 

vector field G, which is called the genertJtor of the transformation. That is, what 

is often viewed as a change of coordinates can also be seen as the application of 

the pullback of the advance map associated with G: 
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H=T*H, (8) 

where 

T = exp(G). (9) 

For time-dependent Lie transforms, 'the vector field G is seen as a vector field 

on the space P X !I. In the canonical theory G must be a Hamiltonian, vector 

.field,since one requires the map exp( G) to' be a canonical ttansformatio~. That 

is, we must have G 1= {g"l} Cor some gand any /. (The bracket shown is the 

Poisson bracket.) Typically, the scalarg, and hence the vector neldG and the 

transfor,mation T"==exp(G), is ,chosen so as to make H. easier to solve than the' 

originalH. Usually this involv~s 'finding coordinates in which an approximate 

symmetry of the original problem becomes ex'act. 

"These notions are.easily generalized and applied to the Poincare-Cartan 

form oC (7). Again we define a Lie transform as a mapping T == exp( G) for soine 

vector field G, and we apply the obvious generalization of (8), 

, =T*i = exp(Lc )8. (10) 

Now; however, G'should not bea Hamiltonian veCtor field, because it is precisely' 

the Corm or the symplectic structure which we wish to change (so as to deal with 

the perturbation in it). .. 

. Thus, the practical perturbation program for guiding center motion is the 

(ollowing. We use (10) to obtain an explicit relation connecting 8 and q in 
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terms of the given fI = flo + fl1 • Then we choose G to make 8 easier to 

understand or solve than fl. This comes down to a kind of averaging of fI 

over t~e rapid oscillations; an analogous averaging procedure is often applied 

in canonical perturbation theory and gives the "averaged Hamiltonian" H. Here 

we produce an averaged symplectic structure as well as an averaged Hamiltonian, 

both contained in 8. To go to higher order in the perturbation series, the process 

has to be repeated with a new G. The result is the Poincare-Cartan form '8 for 

guiding center motion. 

The use of Lie transforms in this process has some unexpected benefits. 

If one simply takes the I-form fI of (7) and tries to transform it by some ar­

bitrary change of coordinates (not necessarily a Lie transform), one quickly finds 

a proliferation of magnetic gauge-dependent terms, coming from the transfor­

mation of the term A . dx. These can always be eliminated by performing a 

gauge transformation in phase space, fI -.. fI + dS, but it is not always easy to 

find the appropriate S. Using Lie transforms, however, we are applying the Lie 

derivatives Lc to forms such as fI, as shown by expanding the exponential in 

(10). This aJlows us to use a nice formula from differential geometry, 

Lcfl = icdfl + d(ic fl ). (11) 

The second term represents a gauge transformation in phase space, and can 

be dropped without any effect on the dynamics. But by doing so, one finds 

that all the magnetic gauge dependencies are dropped also. Thus, by using Lie 
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transforms, one easily obtains a perturbation expansion which is magnetic, gauge. 

invariant to all orders (except for the original :m'agnetic flux term, A· dx, which 

stays around.) The ability to guarantee, gauge invarianee to arbitrary order is 

an important bEmefit'of the geometrie-approachto perturbation theory. . " 

Now I shall discuss the actual results of the perturbation calculation I have 

just outlined. These res~lts consist o! .asequence, of generating vector fields 

G, which I shaH not display, and an averaged Poincar~Cartan form D. The 

generators specitythe,coordinate transformation (or :map of PX!l onto itself) 

which connects the' original set of phase space coordinatell (x, v) with anew 
Y I, '. , ' 

set of averaged.coordinates .. Fof the latter it is convenient to "ake the set 

(X.;U, ~ ,~), in which X is the guiding center' positioll, ,U is the comp<?nent of 

the guiding center velocity parallel to B, JJ is the magnetic moment, and ~ is. the 

"gyrophase."The magnetkmoment is approximately given by JJ == tJl/2Bj its 

dynamical significance is that it is the generator of the U( 1) symmetry group 

whose action consists of rotations in the plane perpendicular to' the magnetic 

field. The gyro phase ""~ is some conventional angle in this plane,so that the 

Hamiltonian vector field associated with 'JJ is 8 / 8~ .. The conjugate variable pair 

()' JJ) describe the symmetry, and indicate that the perturbation calculation h~ 

achieved a "reduction." Thus,) is an ignorable coordinate, JJ is a constant of 

motion, and the four relD:aining variables (X, U), for fixed JJ, can be taken "as 

coordinates on the reduced phase space. 
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The averaged Poincare-Cartan form is given by 

(12) 

where 

(13) 

In deriving this result I have introduced a formal expansion parameter E into the 

original I-form 8, i.e. I have set 8 = 80 + E81 80 that the final I-form '8 appears 

as a series in E. The vector R will be discussed presently; additional notation 

appearing in (12) is defined by B = IBI, b = B/ B. The ellipsis in (12) represents 

higher order terms which I have not displayed. 

When this I-form is applied to the variational principle of (6), the ,result is 

the set of drift equations familiar in plasma physics. A practical benefit of this 

formulation of the drift equations is that several important conservation laws 

(those for energy, angular momentum, and phase volume) emerge easily and 

naturally. The status of these conservation laws has been obscure in traditional 

guiding center theory. 

The symplectic structure appearing in (12) consists of several contributions 

with different physical interpretations. The dominant term is A·dX, which is still 

the magnetic flux, although it can now be interpreted as living on the reduced 

phase space. The next term is Ub . dX, which· is in a sense the average of the 

kinetic action (since the perpendicular velocity components average to zero). At 
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next order, the term p.d~ can be interpreted in terms of the. symmetry group 

generated by p.. The term -p.R· dX will of the same order; it will be discussed 

in the next section. Finally, the Hamiltonian (the . coeffiCient of dt) is still the 

kinetic .. energy, now expressed in terms· of the averaged variables. 

50 GYl"ogauge Invarianees T.be Geometrical Picture 

I turD now to the issue of defining the gyrophase, which'involves some in­

teresting metrical geometry. Because·this .section contains material of occasional. 

use in plasma ph.ysics;,I will express t·he resultS in terms of three-dimensional 

vector calculus. 

Physically, the gyrophase is an angle which represents the rapid circular 

motion of the particle in the perpendicular plane .. Figure 2 .shows the geometrical 

situation; the unit vector b is parallel to the magnetic field, and the unit vectors 

ell e2 span the plane perpendicular to b.The set (el' e2, b) form an orthonormal 

triad. The use of such a triad of unit vectors is necessary to coordinatize the 

~otion of the particle, but only the vector b has an immed~ate physical and 

geometrical. significance. The other two vectors, el and e2, are constrained to 

form an orthonormal triad with h, but otherwise their particular orientation in 

the perpendicular plane is immaterial. Nevertheless, in a practical problem some 

specific choice for the vectors el and e2 must be made, in order to define the 
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gyrophase ~. For example, ~ may be taken as the angle between er and the 

perpendicular component of the particle velocity. 

It is intuitively clear that no physical results should depend on the orien­

tation of el and e2 in the perpendicular plane. It turns out that this is not a 

problem when the guiding center theory is carried only to lowest order, because 

el and e2 do not appear in the drift equations anyway. But when the equations 

are carried to next order, these vectors do appear, and a number of plasma 

physicists over the years have wondered what to do about 'them. Some people 

have suggested using some privileged choice for et and e2, such as the principal 

normal and binormal vectors of the field line. But such choices have certain 

esthetic drawbacks, and they do not simplify any of the calculations or resu!ts. 

A better answer is to let the arbitrariness in el and e2 be a free parameter of 

the problem, and then to study the invariance principle which results. It turns 

out that this invariance principle involves a kind of gauge transformation. 

The arbitrariness inherent in el and e2 is that they can be rotated about b 

by an arbitrary angle'" with no effect on the physics. Furthermore, the amount 

of rotation can vary from one point of space to another, i.e. '" is allowed to 

depend on x. Explicitly, the transformation is 

ei = +el cos'" + e2 sin"" 

e~ = -el sin'" + e2 cos",. (14) 

I call this a "gyrogauge transformation." It is easy to see the effect of a 
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gyrogauge transformation on the gyrophase ~i one is simply redefining the origin 

of gyro phase, i.e. the reference direction in the perpendicular plane which 

corresponds to ~ = O. Thus, we have 

~' = ~ +1/J(x) (15) . 

. . 
under a gyrogaugetransformation. We see that, ~ is not gyrogauge invariant. 

Naturally, we expect that aliY quantity which is gyrogauge invariant can be 

expressed purely in. terms of the vector band otherphysic'al quantities. 

Now; when one: carries out the perturbation analysis of guiding center 

motion, the first quantity to appear which is not gyrogauge invariant and which 

requires further interpretation is ace~tainvector which I call R: 

(16) 

This vector is not gyrogauge invariant, because, as one easily verifies from (14), 
, '. . , I ' 

R/.~ R + V" . (17) 

. One can see already that R looks like a I-form, and that (17) is a kind 

of gauge transformation. But to proceed from a physical point 'of view, let 

us consider the equationol motion for the gyrophase "~. This equation can be 

obtained from (12) or by other means; in any case, the result is 

B '. . 
~ = - + X· R + other terms. 

. £ 
(18) 

The first tern:t on the right hand side, B / £, shows the rapid evolution of the 

gyro phase due to the rapid orbiting of the particle around the magnetic field 
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line. The frequency of this motion is B, and the term appears perturbatively at 

order £-1. 

The second term is more subtle. As the guiding center moves along with 

velocity X, the local el and e2 vectors, to which the definition of ) is tied, change 

from point to point. In a certain sense, this change is due to two causes. One is 

the fact that b itself changes from point to point, and el and e2 are constrained 

to be perpendicular to b. A second is that the orientation of el and e2 in the 

perpendicular plane can also change, i.e. these vectors may rotate in their plane 

of definition as one moves about. I will show momentarily that it is the latter 

effect which is represented by the term X· R. Accepting this for a moment, we 

can now interpret R as a I-Corm by writing 

p=R·dX, (19) 

and we see that the integral oC p along some path is the net angle oC rotation 

which el and e2 undergo in their plane oC definition along the given path. 

But what sense does it make to talk about an angle oC rotation, when the 

plane in which el and e2 lie is changing Crom point to point? Clearly we need 

some concept oC transport, so that el and e2 lying in the perpendicular plane 

at one point can be compared to their neighbors a short distance away, lying 

in another plane. Nor can this be the usual parallel transport of Riemannian 

geometry, because physical space is flat. 

Instead, we find the following geometrical picture. Consider two neighboring 
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points x and x+A.x, and the corresponding vectors el(x), e2{X) and el(x+~x), 

ez(x +L\x). Take el(x) and e2(x) and move them parallel to themselves over to 

the point x +~x. Then project these vectors onto the perpendicular plane at 

the new point, to create new 'vectors,tl , t2. The ,angle ~Q between f 1, f2 and 
, ~'. 

el'(x + ~x), e2(x + ~x) is interpreted as the rotation of el and e2 on' passing 

'" between the two points. Indeed, a simple calculation shows that 

A.a = R ·&1x, (20) 

which confirms the interpretation of R given above. . ' 

, At this point one might be tempted to say that el and e2 rotate as one moves 

about in space only. because they were poorly defined. If we were-somehow able 

to define a set of unit vector fields el ande2 which were "rotationlessj" then the 

troublesome terms involving the vector a, would vanish. Nevertheless, it turns 

out that it is impossible, in general, to define such rotationless vector fields. One 

way to see this is to take the curl of (17): 

VXR' == VXR. (21) 

" 

Thus, although R itself is,gyrogauge dependent; its curl is gyrogauge invariant. 

If this curl is nonzero, as it sometimes is, then clearly no choice of el and e2 can 

make R vanish. 

Another way to see the same thing is to attempt a geometrical construction 

of a rotationless set el, e2, and see what happens. We begin by choosing el 

' .. 
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and e2 at a single point "0. Next, we take some curve passing through "0 and 

extend the definition of el and ~2 to points on this curve, in such a way that 

the vectors are rotationIess along the curve. This is done geometricaHy by first 

moving el and e2 a small distance along the curve parallel to themselves, next 

projecting them down onto the perpendicular plane at the new point, and then 

by repeating the first two steps for the next and successive small increments 

of distance. This process can be described in terms of a transport differential 

equation. If we let V be a vector we wish to transport along the curve (it might 

be el or e2 or something else, but it should satisfy b· V = 0 at '(0) and we let 8 

be the arc length, then the desired transport equation is 

(22) 

This equation follows from a simple analysis of the geometrical picture of the 

transport process which I have just given. 

This transport equation has several. notable features. First, if b . V = 0 at 

"0, as we require, then b . V = 0 everywhere on the curve. Thus, el and e2 

transported by (22) are actually in the perpendicular plane at each point. Next, 

if V I and V 2 are two perpendicular vectors created by the transport process, then 

the scalar product VI' V2 is constant along the curve. Thus, el and e2 created 

by (22) remain orthogonal to each other along the curve. Finally, by taking 

VI = V 2 = el or e2, we see that the length of el and e2 is preserved by the 

transport, so these vectors remain unit vectors. Thus we obtain an orthonormal 
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triad at each point on'the curve, which is rotationless along the curve. ' 

Equation (22) has the form of a parallel transport equation in Riemannian 

geometry, if we define Christoffel ,symbols by , 

r~1e = h ·hle . 1', ' " "I' 
(23) 

Unlike the usual Christoffel symbols, however" these are not symmetric, i.e. 

r}1e =F' rii , unless V.Xb = O. But in that case it happens, that t~ere exist 

surfaces which are everywhere perpendicular to b (actually b . V X b = 0 is 

sufficient), and r}1e can be, given its ,usual interpretation i~ terms of' parallel 

transport along curves which lie in those surfaces. Altogether ,we see that the 

" transport and connection given by (22)-(23) is a kind of>generalization of parallel 

transport on two-dimensional surfaces in Euclidean ma. 
'The transport process yields a rotationless triad along a given curve, but not 

a field of triads. One could fill up a finite volume of space with triads by drawing 

many curves radiating from "0, but these triads would be rotationless only along 

the given curves. Along some other curve, such as the path ,of the guiding center, 

they might not be rotationless. ThUs, the way to see if arotationless field of 

triads can .be set up is to consider the transportofa triad along a closed curve 

(and not to worry that actual guiding centers might never follow a closed cur.:ve), 

in order to see if the property of beingrotationless is path dependent. 

Let us transport a perpendicular vector V around a small parallelogram 

defined by two small displacements, ~Xl and AX2. The area of the parallelogram 
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is represented by the vector AS = Axl X AX2. In taking V around this small 

parallelogram, one must carry (22) out to second order in the displacements, 

because the first order terms cancel. We know that when we bring V back to its 

starting point it must have the same length as when it started, and it must still 

be perpendicular to b. Therefore at worst it has rotated in the perpendicular 

plane by a certain angle Aa. This angle is given by Aa = N· AS, where 

N = tb[(bi,jbj,i) - (V . b)2] + (V . b)~ . Vb - b . Vb . Vb. (24) 

Thus, if N ~ 0, it will be impossible to set up a field of triads which is rotationless 

along every path. 

A complementary point of view is to imagine we are given an arbitrary 

field of triads (el' e2, b), which no one has tried to make rotationless, and find 

what angle of rotation the triad suffers around a closed curve. By the argument 

surrounding (19)-(20), this is the line integral of R around the closed curve, and 

Stokes' theorem can be applied: 

f R . dx = I (V X R) . dS. (25) 

From this it is clear that 

N=VXR, (26) 

and indeed we see that VXR, which is gyrogauge invariant by (21), can be 

expressed purely in terms of b. One can also verify (26) directly, by taking the 

curl of (16) and using some arcane vector identities. 
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The vector N is related to a 2mform l/ by 

1" ' v = - L'..." fiikNIc dZi 1\ dZi· 
2 .. L 

'1116 

(27) 

V represents the angle of rotation a triad suffers on being transported around 

the boundary of a 2-dimensional region. If surfaces exist perpendicular to band 
, . 

the regions considered lie in these surfaces, then v is the curvature form (there 

is only one) of the surface. We note in (12) that v = dp forms the fourth and 

final contribution to the symplectic structure of the guiding center motion. 

Finally, I would like to summarize some algebraic properties of the vectors 

Rand N, which cannot'be found anywhere else. By (26), we must have V . N = 

o. However, when we work this out explicitly from (24), we find 

V . N == :i,(V . b)(b· ·b· .) - l.(V . b)3 -- (b 0 ·bL ·b· L). (28) ~ ,',1 1,- 2"' 1,- 116,1 _,116 

To see that this actually does vanish (it is not obvious), we call on the followi~g 

formula. Let M be a3X3 matrix with components Mii' Then 

det M == :! r(Tr M)3 - 3(Tr M)(Tr M~) + (Tr M a)] (29) 

Therefore by setting Mii = bi,i, we have 

V'· N = -i det(bi,i)· (30) 

And this in turn vanishes because the matrix bi,i has an eigenvector with eigen­

value zero. This is none other than b itself: 

(31) 

.. 

., 
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since b is a unit vector. 

On the other hand, N is closely related to the characteristic polynomial of 

bi,j. Let the eigenvalues of bi,j be Xo, XI, X2 , and suppose Xo = 0 (one of them 

must be zero). Then it turns out that (24) can be written in the form 

(32) 

Finally, we obtain another useful identity by multiplying Vb on the left by this. 

The result must vanish, because any matrix satisfies its own secular equation. 

Thus, 

N· Vb = 0, (33) 

and we see that N is a left eigenvector or Vb, just as b is a right eigenvector. 

Be Gyrogauge InvarianeelDynamieal Considerations 

We have succeeded in dealing nicely with the interpretation of the gyrogauge 

dependent quantity R, and in showing that it cannot be transformed or defined 

away. But if we were to carry the guiding center theory out to higher order, 

would we keep running into other gyrogauge dependent quantities which would 

have to be analyzed similarly, or can we settle the issue once and for all? In a 

similar vein, is it possible to find drift equations which are gyrogauge invariant 

to all orders? 
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To begin, the Poincare-Cartan form of ,the particle, shown in (7), is certainly, 

gyrogauge invariant, as it must be. Similarly, the Poincare-Cartan form of the 

guiding center; shown in (12) is also gyro gauge invariant, although here some 

discussion is called for. The, components of 0 are not individually gyrogauge 

'invariant, 1?ecause the vector R appears. But the coordinate differential d~, is 

not gyrogauge invariant either, for by'(15) we have 

d~' = d~ +R· dX. (34) 

However, when we examine the behavior of" under a gyrogauge transformation, 
, \ 

we find that the transformation ofR~andthat of d~ exactly cancel one another, 

showing overall gyrogauge'invariance forO. 

,The result is,that the drift equations coming froin 0 are gyr()ga~ge invariant. 

For"example,the equations of, motion for X and U involve the vector R only 

through its curl, which isgiv~n purely in terms of b by (24). Similarly, the 

equation for S', shown in (18), is form invariant under a gyrogauge transformation, 

even though the vector R appears in it; the transformation properties of the two 

sides of the equation cancel one another. 

But how did this gyrogauge invariance come about in the averaged Poincare-

Cartan form of (12), and would it persist to higher order? This gyrogauge 

invariance was not automatic; rather, it came about by llSing gyrogauge invariant 

generators G in the Lie transforms. AB long as such generators are used in 

(10) for the perturbation transformations, the result will be gyrogauge invariant 

.. 
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guiding center dynamics to arbitrary order. 

A generating vector field G appearing in (10) can be written in the form 

a a a a 
G = Gx· ax + Gu au + G,. a JJ + G~ a~ . (35) 

All of the partial derivative operators appearing here are gyro gauge invariant 

with the exception of a/ax, which transforms according to 

(a)' a a ax = ax- v" Fi· (36) 

Therefore the overall vector field G will be gyrogauge invariant if the component 

G~ compensates for (36) by transforming according to 

(31) 

And this will be the case if all the components of G consist of gyro gauge invariant 

quantities, except for G~ which must contain a term equal to R . Gx . By this 

definition of a gyrogauge invariant generator, one can construct a gyrogauge 

invariant guiding center theory to arbitrary order. 

It is interesting that the gyrogauge transformation (11) is mathematically 

identical to an ordinary magnetic gauge transformation. Thus, the vector R 

is analogous to the vector potential A, and the divergence free and completely 

physical vector N = V XR is analogous to the magnetic field B. Furthermore, 

these two types of gauge fields are coupled to each other in the guiding center 

Poincare-Cartan form of (12), and the coupling constant is the magnetic moment. 
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This analogy is even more striking when time-dependent fields are cone 

sidered. Then the vectors el and e2 depend on time as well as space, and one 

finds a gyr~gauge dependent scalar,' 

(38) 

Under a time-dependent gyrogauge transformation, one has 

0" tI =tr--, Ot 
(39) 

which taken with (17) shows that ~ is like an electric potential. Indeed, just as 

, N = V X R is gyrogattge invariant,so, now is the vector 'F ~ given by 

(40) 

Evidently, F is like an electric field, just as' N is like a mZ"gnetic field. Since Fis 

gyrogauge invariant, it can also (like N) be expressed purely" in terms of bjthe 

result is 

(41) . 

Finally,there is another gyrogaugeequivalent ofaMaxweH equation, the comple­

ment of V . N ~O: 

ON 
VXF=--O' "; 

. t 
, (42) 

Thus, by using the quantities tr a~d F, it is straightforward to extend 

gyrogauge invariance to time-dependent systems. One finds, for example; the 

term /Juin the Hamiltonian. 
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It turns out that it is impossible to find a set of variables to describe the 

guiding center motion which are both canonical and gyrogauge invariant, if one 

of these variables is the magnetic moment and another is some gyrophase canoni-

cally conjugate to it. This was the principal esthetic difficulty with my earlier 

work on guiding center motion, which used Darboux's theorem to construct 

averaged variables. In the present formalism, the Poisson brackets {X, ~} and 

{U, ~}, which can be derived from the I-form of (12) in a manner described 

in Ref. 3, are nonzero. If one redefines these variables so that these brackets 

vanish, then the variables (X, U) cannot be made gyrogauge invariant. This 

conclusion may have interesting consequences for the applicability of canonical 

coordinates and canonical transformation theory to other dynamical systems 

wh·h a symmetry and for the reduction process in general. 

'1. Conclusions 

The principal practical goal of guiding center theory has been to address 

specific problems in plasma physics, and therefore I have not considered possible 

mathematical generalizations. Let me now suggest a few of these, and raise some 

questions. Some of these are vague and not clearly thought out, but perhaps 

they will be suggestive. 

In guiding center motion, the reduction of the phase space by means of the 

symmetry associated with the ignorable coordinate ~ has produced a reduced 
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phaSe space, with coordinates (X, U), which is the guiding center phase space. 

Each point of this space can be considered to have a fiber attached to it, for . . 

which the ignorable.coordinate S" serves as a coordinate. Th~tis, we have a circle 

bundle on the reduced phase space, each circle being a copy of the symmetry • 
. . 

grou~ U(l). Foran arbitrary dynamical system with a symmetry, would we in 

the same manner obtain a group bundle on the reduced phase space? 

If so, then the identity element in each copy of the group could be redefined 
.~ .' :. 

from point to point on the reduced phase ~pace with no physical effect, just as 

we used the field '" to redefine the origin of the gyrophase. 1/J would now be a 

field of group. elements ... Similarly, the I-form p ~ R . dX would .generalize to a 

Lie algebra-valued'l-form. .. 
Would there then be a connection? The 'metrical structure. of Euclidean !f3 

seemed to play an essential role in the connection we have discovered here; c~n 
. 

, this be generalized! What role does the curvature form of the group bundle 

generally play in the symplectic structure of the dynamical' system? It seems 

to have played a role in guiding center theory, through the form v = dp, but. 

then here v isclosed~ I will leave these and further issues to my mathematical 

colleagues. 
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