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Geometry and Guiding Center Motion

Robert G. Littlejohn
Department of Physics
University of California
Berkeley, California 94720

1. Imntroduction

Over the years, plasma physicists have developed a number of computational
techniques for solving various problems of physical interest. Often these involve
perturbation methods of one sort or another, which are seldom systematized
or clearly articulated. As one examines these mathematical methods of plasma
physics, however, one finds that there is a surprising amount of interesting math-
ematics in them, especially in the area of differential geometry. A good example
of this concerns guiding center motion, which is one of the most important ap-

proximation schemes in plasma physics, and which forms the subject of this
paper.

To preview the main poi'nts of this paper, it turns out that guiding center
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- motion not only involves some interesting features of symplectic geometry, as one
‘might expect for a mechanical system, but there is also some interesting metrical

. geometry. It even happens that"guiding center motion is a gauge theory.

The physical principles of .'guidi’nvgv ‘cént‘er motion have been well understood
for many years, and are rév_ieﬁed in the égcellent book by Nbrt_hrop:.l So h_ei‘e I
“will a‘pprc)e}ch' the gubject f-to;_:’i a m_ﬁathemati'g:alv lst.a.nd‘point, where there is much ‘-
.that is:néw.' I will begin by gifing a .b’rief overview of the"svubject for the non-

‘plasma physicist.

2. Whatis Guiding-.Centex';ﬂMption?

- Guiding center motion*conéerns the motion of a 'singlév charged}article} iﬁ- |
3 givén- electrbmag’net;ic field. It is, therefore, -fepr_es‘ented by a Hamiltonian
system of three degrees of freedom. The essence of the _approxi'mat’ionv involved
in guiding centér motioﬁ.c‘ah be seen by examining the Lagr'angia-n fora pa}"tiC'le.~
in a magnetic field, | .‘ “ | o

'L(x,v) = ‘—’23~+v -A(x)‘. | ' (1)

For simplicity I have neglected any electric field, and I have treated the particle
ndnrelativiétically. The positibn of the particle is x, its velocity is v, and the -

magnetic field B.is represented by the vector. potential A, so that B= V XA.
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I have also suppressed the physical constants e, m, and ¢ from the Lagrangian,
in order to make the mathematics more clear. However, when the physical
constants are restored and the twa terms of the Lagrangian are numerically
evaluated for many plasmas of physical interest, it turns out that the second term
v - A, representing the coupling of the particle to the magnetic field, greatly
dominates the first term, v2/2, which is the kinetic energy of the .particle.
Therefore for these physical situations one can achieve a good approximation to
the particle motion simply by neglecting the kinetic energy altogether. Doing
this and carrying out the variational principle, one finds the approximate equa-

tion of motion,

vXB =0. | (2)

The physical meaning of this is that the particle moves parallel to the direction
of the magnetic field, i.e. that it is constrained to lie on the integral curves of B,
the magnetic field lines. This, in a nutshell, is the essence of plasma confinement

by magnetic fields.

A more exact analysis of the particle motion shows that the component of
the particle velocity perpendicular to the magnetic field does not really vanish, as
indicated by (2), but rather undergoes high frequency oscillations. However, the
average of this velocity component does, in fact, vanish to a good approximation,
so that (2) is still correct in an averaged sense. The actual particle moves in tight

circles around a magnetic field line, producing overall a helical trajectory as it
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'moves'along the field line, as shown in F’lg 1.

‘Practically Speaking, one must have a more refined picture of the particle
B 'moﬁion than that indicated by (2), and s0 Various: schemes have been invented to
_-analyze the motlon perturbatlvely These schemes eﬂ’ectlvely treat the- klnetlc
energy as a perturbation, although they seldom exphcxtly acknowle‘gde thls The
‘phys1cal eﬂ'ect of t.he perturbatlon is to cause the partxcle to “dnft.” e to
:‘_move slowly in a direction perpendncular to the magnetic ﬁeld hnes, at’ the same
time that. it moves rapidly along the ﬁeld lines accordmg to (2) The motlon is
-pnctured physxcally in an averaged sense thh the time average of the partlcle'

position being called the_ , _gmdl,ng_center'.-

| 3. The S'ymplectie.Form in Guiding Center Th‘eor& |

" Now, in what sense can there be interesting symplectic »gebmetrj in guiding
'cen'ter'motioh, as I claim? After all, if .yhu’ve seen one 'syvmpl(ecltic st}'ﬁctufe,
| jo‘u’ve aeeh them all. ,vDar;bo:ux’s‘theore'm'.lg'uarantees that local canbnical coor-
dinates-always exist, so allv.éymplectic-“structures' look .alike. loéally, i.e. they are.
" all simply giv‘eh hy dp A dq. |
The answer is that the canonical edordinates whose existence is guar_anteed
. by Darboux’s theorem have diﬁetent physical meaniﬁgs in diﬁ'er.ent eentexts, 80
that it is the physical interaretation of the symplectic structure which provides

_interest and variety. To say this another way, the quantities of most immediate
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physical interest do not always form canonical coordinates, so that the symplectic
structure expressed in terms of physical variables is not simply dp A dg. For
example, in the case of guiding center motion, the symplectic 2-form has four
contributions of diﬁerent physical origin: one is the (kinetic) mechanical action,
the second is the magnetic ﬁux, the third is associated with a symmetry group
| producing rotations in the plane perpendicular to the magnetic field, and the
fourth is a curvature form associated with the transport of triads of unit vectors

in Euclideaxi space.

The decomposition of the symplectic form into physically inleresting pieces
can be seen in simpler form in the case of the motion of a charged particle
in a magnetic field (completely apart from any guiding center approximation).
For this system, the canonical momentum p is often not considered a physical
quantity, because it is not invariant under a change of gauge of the magnetic
field. The velocity v, however, is physiéal. In terms of the canonical momentum,
the symplectic structure in phase space is just w = }_ dp; A dg;. But in terms
of the physicaliy meaningful velocity, the symplectic structure is

w=) dv;Adg;+ Y _ Bijdg; A dg;. (3)

i i<y _
The first term may be called the kinetic action; it is the only term present for
mechanical problems with Lagrangians of the form L = T — V', where T is the
kinetic energy and V is the potential energy. Indeed, this is the only class of

problems considered in older treatises on mechanics. The second term is the
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- magnetic flux (or rather the lift of it to phase space); it is responsible‘fof the
magnetic forces on.the particle, and by our prévious discussion of the Lagrangian

(1), it is the dominant term when.the guid_in@ cen-_tér, approximation is valid. The

'~ tensor Bi;; is expressed in terms of the usual magnetic field vector B by Bi; =

é;ngk._

It is useful to pursue a little further the notion of using only physically
signiﬁcént_qﬁantitiés to represent a dynamical system. Conéidexf, fbr’ example,
the équa‘,tions of mOtion.- In canonical--coordinate.§ ‘_thése are jﬁst -Ham'_ilton’s
equations, but \?hat d(; we dp if.‘th'e _ca‘giqniCal coordinaté_s are phy‘siéally.. un-
deéiral::l'e? vTh',e best a',nsvivr‘er\,l I believe,.v is to use the Ppincéré-Cartan* 1-form 0;

_ which is defined in terms of canonical coordinates by;'

0= Z?i«dq; -Hdt, - (4)

- where H is the Hamiltonian. This form lives on the odd-dimensional space which |

" is phase space augmented by .time, for which I will ivfif.e PXR. As explaine”d,

by Arnold,2

the equa.tivc)ns of motion are implicitly contained in. the 1-form ¢
through. the construction of its “vortex lines.” . That'is, if the 2-form Q = d¢
is of maximal rank, it defines a. I-dimensional distribution on PXR. A vector

field X lying in this distribution satisfies ix (2 = 0, and any such X specifies the

equations of motion through the relation

X".—-__.(i‘-“-‘ ap ‘d—t),_ e

ds’ ds’' ds

1
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for some parameter s (which has no physical significance). This formulation also

deals nicely with time-dependent Hamiltonians.

It is significant that the equations of motion depend only on {1 = d#d, so
that & can be subjected to a trénsformation § — 0 + dS, for any scalar S,
without changing any physical results. I call this a “gauge transformation on
phase space,” to distinguish it from a gauge transformation on the magnetic

vector potential A in physical space.

A completely equivalent formulation, and one that is easier to use in prac-

5/ =0, | (6)

where the variations of the path in P X R are required to vanish at the endpoints.

tice, is the variational principie,

In canonical coordinates this variational principle is trivially equivalent to Hamilton’s
equations, and it is discussed in many mechanics books as a curiosity. However,
one can easily use physically interesting variables in this variational principle,
and as a result one can clearly see the physical ingredients in the symplec-

tic structure as well as in the Hamiltonian.

Consider again, for example, the motion of a charged particle in a magnetic

field. Setting p = v + A in (4) and (8), we have
v2
5/[(A+v)-dx—7dt =0. (7)

It is easy to show that this is equivalent to the usual Newton-Lorentz equations
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of 'miot'ioh. But notice that the symplectic structure neatly breaks up into the
kinetic action, represented by v. ax, and the magnetic flux, repfesentéd by A -dx.
Furthermore, the Hamiltonian H = v?/2 is just the kinetic energy.

Now let' us consider the 'sa‘me-system.in the 'guiding center ap'pr'oximation

" Just as with the Lagranglan (1), the Pomcaré-Cart.an form g has a dommant

term and a perturbation, for which we wnt.e 0= 00 + 01 The d_ommant term
is 89 = A - dx, and the pe'rturbatlon is 01 =v.dx— (v? /2)dt. The physical
‘picture we drew above for the guiding céntér':«ippr.bximation is easily verified in

the formulation (7).

4. Geometry | and P<er£urbatiop Theory“

Now we aré. ready to get serious about a perturbation 'ca‘lculé_tion. It turns
~ out that th_is is .j;ot just an uﬁhappy exercise in algebra, but that there is some
interesting geometry involved. This is mainly because wevréq"uire a perturbation' _
th_eory which is applicable to 1-forms like § = 8 + 6, and this problem in turn
causes us to _think about the structure of perturbation theory in general. A more _

-v':complete accounting of this analysis may be found in Refs. 3-4.

A great deal is known about standard forms of Hamiltonian perturbation
theory, which are applicable to problems for which the Hamiltonian H consists
of a dominant term Hy and a perturbation H;. In terms of the Poincaré-Cartan

for 4, we could write g = 3_ p;dg; — Hodt, and 8§, = ~H;dt. That is, for these
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standard problems in Hamiltonian perturbation theory, the symplectic structure
is given exactly in terms of some physically significant canonical coordinate
system, and all approximations are focused on the Hamiltonian. Therefore for
these problems, one typically uses a sequence of canonical transformations to
transform the perturbation into something easier to solve, the virtue of canonical
transformations being that they exactly preserve the canonical form of the

symplectic structure.

For the guiding center problem of (7), however, the symplectic structure
itself is perturbed, with the perturbation being given by v - d$(, and the entire
Hamiltonian is also treated as a perturbation. Therefore we require a generaliza-
tion of canonical perturbation theory which allows us to transform not only the
time component of 4, i.e. the scalar Hamiltonian, but the whole 1-form in all of

its components.

It is easieét to see how to do this by examining the geometric foundations
of Lie transforms, ﬁhich are often used in canonical perturbation theory. The
goal of canonical Lie transforms is to perform a change of coordinates in order
to simplify the scalar Hamiltonian. The Lie transforms themselves are a special
kind of coordinate transformation. They are given by the advance map of some
vector field G, which is called the generator of the transformation. That is, what
is often viewed as a change of coordinates can also be seen as the application of

the pullback of the advance map associated with G:
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H=T*H, N . (8)
where |

T=exp(G). (9)
. For l:ime-dependent‘ Lie transforms, ‘the -'veetor. ﬁeld G is seen as a vector field
on the space PXR. Ih_ the canonical vtheo_kry G muat. be a Hamlltonian_vector
ﬁeld since one requires the map exp(G) to be a caﬂo‘nieal transformation. That
is, we must have G [= {g, f} for some g and any f. (The bracket shown is the
Poisson bracket ) Typically, the scalar d, and hence the vector ﬁeld G and the:
transformatlon T= exp(G'), is .chosen so as to make H easier to solve than the

original- H Usually thxs involves ﬁndmg coordmates in whlch an approx1mate .

symmetry of the onglnal problem becomes exact.

-.'Tl_l_ese notions are easily generalized and applied to the Poincaré-Cartan
form of (7). Again we define a Lie transform as a mapping T= exp(G)_ for some
vector field G, and we apply the obvious generalization of (8),

8 = T*F = exp(Lg)d. o)

Now; however, G'should not be a Hamiitonian vector field, because it is precisely”
the form of the symplectic structure which we wish to change (so as to deal with

the perturbation in i't.).

- Thus, the practical perturbation proéram for g'uidih_g center motion is the

following. We use (10) _l.o obtain an explicit relation connecting 7 and G in
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terms of the given § = 0y + 6;. Then we choose G to make § easier to
understand or solve than 4. This comes down to a kind of averaging of 4
over the rapid oscillations; an analogous averaging procedure is often applied
in canonical perturbation theory and gives the “averaged Hamiltonian” H. Here
we produce an averaged symplectic structure as well as an averaged Hamiltonian,
both contained in @. To go to higher order in the perturbation series, the process
has to be repeated with a new G. The result is the Poincaré-Cartan form 9 for

guiding center motion.

The use of Lie transforms in this process has some unexpected benefits.
If one simply takes the 1-form @ of (7) and tries to transform it by some ar-
bitrary change of coordinates (not necessarily a Lie transform), one quickly finds
a proliferation of magnetic gauge-dependent terms, coming from the transfor-
mation of the term A - dx. These can always be eliminated by performing a
gauge transformation in phase space, § — @ + dS, but it is not always easy to
find the appropriate S. Using Lie transforms, however, we are applying the Lie
derivatives Lg to forms such as 4, as shown by expanding the exponential in

(10). This allows us to use a nice formula from differential geometry,
Lgd = igdd + d(igh). (11)

The second term represents a gauge transformation in phase space, and can
be dropped without any effect on the dynamics. But by doing so, one finds

that all the magnetic gauge dependencies are dropped also. Thus, by using Lie
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transl‘orms one easily obtains a perturbation expansion.which is magnetic gauge
1nvarlant to all orders (except for the ongxnal magnetm flux term A - dx, which
stays around ) ‘The ability to guarantee gauge invariance e to arbitrary order is

‘an 1mporta,nt beneﬁt of the geometrxc approach to perturbatlon theory.

Now I shall dlscuss the actual results of the perturbatlon calculation I have
Just outlmed These results consnst of a sequence of generatmg vector ﬁelds |
.G, whnch I shall not dns‘pl‘ay:, and an averaged Pomcaré_—Cartan form [ The
generators'specifyf the-»coordinate transformation (or map of PX®R onto itself)
- which- connects the orxglnal set of phase space coordmates (x v) wnth a new-
set of averaged coordnnates For the latter it is convement to .ake the set _
(X, V¢ p) in whlch Xis the guldmg center posmon, U i8 the component of
| the gundlng center veloclty parallel to B, p is the magnetlc moment, and g is.the
| gyrophase. The magnetic moment is approxxmately gnven by p= v _L/ 2B, its
dynamical signlﬁcance is that it is the generator of the' U(l). symmetry group
whose action consists of ..rotatio.n-sv'in ,the iplane perpendlcular to the magnetic
field. The .gyrophase € is | some conventlona‘l angle invthisl. plane, so that the
Hamiltonian svec!tor field associated with u is 8 / 8{. .The conjngate variable pair
(¢, p) describe the symmetry, and indicate that the perturbation calculation has
| achiered a “reductlon.;’ Thus, ¢ is an ignorable coordinate, 4 is a constant of
motion, and the four remaining variables (X, U), for fixed u, can be taken as

coordinates on the reducebd-phase space.
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The averaged Poincaré-Cartan form is given by
0= (A+eUb—euR) -dX + 2 pde — €H dt, (12)

where

H=pB+3U +¢(-) (13)

In deriving this result I have introduced a formal expansion parameter ¢ into the
original 1-form 4, i.e. I have set 8 = fy + €6, so that the final 1-form @ appears

as a series in €. The vector R will be discussed presently; additional notation
appearing in (12) is defined by B = |B|, b = B/B. The ellipsis in (12) represents

higher order terms which I have not displayed.

When this 1-form is applied to the variational principle of (8), the result is
the set of drift equations familiar in plasma physics. A practical benefit of this
formulation of the drift equations is that several important conservation laws
(those for energy, angular momentum, and phase volume) emerge easily and
naturally. The status of these conservation laws has been obscure in traditional

guiding center theory.

The symplectic structure appearing in (12) consists of several contributions
with different physical interpretations. The dominant term is A.-dX, which is still
the magnetic flux, although it can now be interpreted as living on the reduced
phase space. The next term is Ub - dX, which is in a sense the average of the

kinetic action (since the perpendicular velocity components average to zero). At
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next order, the term pd¢ can be interpreted in terms of the symmetry group
~generated by . The term —uR - dX will of the same order; it will be discussed
in the next section. Finally, the Hamiltonian (the'coeﬁiéient of dt) is still the

kinetic.energy, now expressed in terms.of the averaged variables.

8. Gyrogauge Invariances The Geometriéa’l Pieture

I turn now to the issue of defining the gyrophase, which involves some. in-
teresting metrical geometry. Because this section contains material of 6cca§ional.
‘use in plasma pkysics, I will express the results in terms of t.hreé-dime‘nsional’

vector calculus.

Physically, the gyrophase is an angle which represents tﬁe .r.ap.idvcir'cular
N m‘otion of the particle in the perpendicular -plal;e. : Figufre '.2 shows thé geometrical
.sitgation; the unii fector b is parallel to the magnetic field, and the unit vectors
e;, e2 span the plane perpendic.ular to.b. 'The set (ey, 2, b)vform an orthonorinél
triad.  The use of such a t.ria’d. of unit v.e'ct'.orsvis necessary to coordinétiz_e the
motion of the particle, but only .t'he' vector b has an im_me'di_éte physical aﬁd‘
geonietric‘al ‘signiﬁcance'. The other two vectors, ‘el and eq, are éonstrained tb
form an orthdnormal trjiad with b, but otherwise their particular orientation in
the perpe'ndicular; plane is immaterial; Nevertheless, in a practical problem some

specific choice for the vectors e; and e, must be méde, in order to define the
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gyrophase ¢. For example, ¢ may be taken as the angle between e; and the

perpendicular component of the particle velocity.

It is intuitively clear that no physical results should depend on the orien-
tation of e; and e, in the perpendicular plane. It turns out that this is not a
problem when the guiding center theory is carried only to lowest order, because
e; and e do not appear in the drift equations anyway. But when the equations
are carried to next order, these vectors do éppear, and a number of plasma
physicists over the years have wondered what to do about them. Some people
have suggested using some privileged choice for e; and e, such as the principal
normal and binormal vectors of the field line. But such choices have certain
esthetic drawbacks, and they do not simplify any of the calculations or results.
A better answer is to let the arbitrariness in e; and e; be a free parameter of
the problem, and then to study the invariance principle which results. It turns

out that this invariance principle involves a kind of gauge transformation.

The arbitrariness inherent in e; and e; is that they can be rotated about b
by an arbitrary angle 4 with no effect on the physics. Furthermore, the amount
of rotation can vary from one point of space to another, i.e. ¥ is allowed to
depend on x. Explicitly, the transformation is

e] = +e;cosy + ezsin Y,

e, = —e;siny + excos ¥. (14)

[ call this a “gyrogauge transformation.” It is easy to see the effect of a
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gyrogauge traﬁsforrﬂéfion on f_.he Qfdphasé ¢; one€ is simply redeﬁning the origin
of gyrophase, i.e. the reference direction in the perpendiculér' plane which
corresp_ondfs;‘ to¢ =0. Thus’,' we _"ha;ve : | |

=ctyx) o (s)
| u;xdér a.gyi'vogaugve transformation. We see fthét,g is not gyrogauée invariant.
Naturally, we expéct_that any quantity which is gyrogaugg invariant can .be'
- expressed purely in terms of the vector b and dther_'phy‘sic'avl‘. quantities.

Now, when -o‘n_e"‘ Cari'iés_ out the _'}pevrtur;batio‘xi an’alysi; of guiding éen‘_ter
motién, the ﬁrét. quanti't}.y‘: ;t;d a;;pe‘zt} Which;is,n.o.t ‘gyro.gau‘ge_ -i.nva.ri.ant “and which
f'equires fﬁrther:‘.interpl-'état'ioﬁ is a‘zvcé;tavin vector wﬂ_ich I céll R: o

R=(Veoer . (1)
-This vector is not gyrogauge jnv#tiént, bég:_a_ﬁse, as one easily verifies from (14),

R =R+ V. 1)

"One can see already that R lqoks like a l-fo'riﬁ,.and that (17) is a kind
of gauge transformation. But to proceed from a physical point of viéw, let
ué .consi‘der the équati_on of motion for the gyrophase ¢. This equation can be
~obtained from (12) or by other means; in any case, thé result is |

¢ = g +X-R+ othe? terms. v (18)
The first térn_l on the right hand side, B/e, shows the rapid evolution of the

gyrophase due to the rapid orbiting of the particle around the niag'netic field
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line. The frequency of this motion is B, and the term appears perturbatively at

order ¢~1.

The second term is more subtle. As the guiding center moves along with
velocity X, the local e; and e; vectors, to which the definition of ¢ is tied, change
from point to point. In a certain sense, this change is due to two causes. One is
the fact that b itself changes from point to point, and e; and e are constrained
to be perpendicular to b. A second is that the orientation of e; and e; in the
perpendicular plane can also change, i.e. these vectors may rotate in their plane
of definition as one moves about. I will show momentarily that it is the}latter
effect which is represented by the term X-R. Accepting this for a moment, we

can ncw interpret R as a 1-form by writing
p =R -dX, (19)
and we see that the integral of p along some path is the net angle of rotation

which e; and e2 undergo in their plane of definition along the given path.

But what sense does it make to t;alk about an angle of rotation, when the
plane in which e; and e; lie is changing from point to point? Clearly we need
some concept of transport, so that e; and e; lying in the perpendicular plane
at one point can be compared to their neighbors a short distance away, lying
in another .plane. Nor can this be the usual parallel transport of Riemannian

geometry, because physical space is flat.

Instead, we find the following geometrical picture. Consider two neighboring
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~points x and x + Ax, and the cdrrespondihg vectors e;(x), es(x) and e;(x+Ax)
es(x +Ax). Take e;(x) and eg(x) and move them parallel to themselves over to
the point x +- Ax Then project these vectors onto the perpendlcular plane at
the new point, to create new -vectors, i, fo. The angle Aa between fl, fa and
e1(x + Ax), es(x + Ax) is interpreted as the rotation ot_‘ e and e, on passing.
“between the two points. Indeed,.a simple calculation shows that
Aa =R-Ax, L (20)
‘which confirms the interpretation of R gijren above.

At this point oheg;might be tempted to say that e; and e, rotate as one moves
~ about in space only because they-w"ér‘e poorly defined. If we were *-aomehow‘ able
to define a set of unit vector fields e; and e, _whieh were ?rotationlesS’;”’ then the
troublesome terms involving the vector R. would vanish. Nevertheless, it turns

“out that itis 1mpossnble, in general, to define such rotatnonless vector ﬁelds One

way to see this is to take the curl of (17)
VXR’ =VXR. o -~ (21)

‘Thus, altheugh R itself is. gyrogauge dependent,; its curl is gyrogauge invariant.
If this curl is nonzlero, as it sometimes is; then clearly no choice of e; and es can -

make R §anish.

Another way to see the same thing is to attempt a geometrical construction

of a rotationless set e;, e;, and see what happens. We begin by choosing e;
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and e at a single point x9. Next, we take some curve passing through xo and
extend the definition of e; and es to points on this curve, in such a way that
the vectors are rotationless along the curve. This is done geometrically by first
moving e; and e2 a small distance along the curve parallel to themselves, next
projecting them down onto the perpendicular plane at the new point, and then
by repeating the first two steps for the next and successive small increments
of distance. This process can be described in terms of a transport differential
equation. If we let V be a vector we wish to trahsport along the curve (it might
be e; or e or something else, but it should satisfy b -V = 0 at x) and we let s

be the arc length, then the desired transport equation is

T (2 v) -

This equation follows from a simple analysis of the geometrical picture of the

transport process which I have just given.

This transport equation has several notable features. First, if b-V =0 at
X9, as we require, then b- V=0 everywhere on the curve. Thus, e; and e.
transported by (22) are actually in the perpendicular plane at each point. Next,
if V| and V., are two perpendicular vectors created by the transport process, then
the scalar product V, - Vs is constant along the curve. Thus, e, and e- created
by (22) remain orthogonal to each other along the curve. Finally, by taking
V= V, = e; or e, we see that the length of e; and e; is preserved by the

transport, so these vectors remain unit vectors. Thus we obtain an orthonormal
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triad at each point on the curve, which ls rotat’ionless along the curve."

Equatxon (22) has the form of a parallel transport equatlon in Rnemanman
| geometry, if we deﬁne Chrnstoﬂ'el symbols by -
| o T = b.-b,,‘,,-. Y )
.Unlike' the usual "Christoﬁel symbols, however, these are not symmetric, ie.

J,‘ ;é l",u; unless be 0. But in that case it happens. that there exist
'» surfaces whrch are everywhere perpendlcular to b (actually b - be 0 is
sumclent) and I sk can be. glven its usual. interpretation in terms of parallel
transport along curves whlch lie in those surfaces. Altogether ‘we see that the
- transport and connectxon given by (22)- (23) is a kind of generahzatlon of parallel.
: transport on two-dlmensxonal surfaces i ln Euclidean !R"’

‘The transport process yields a rotationless triad along a :giren curve, hut. not

.a, field of triads. One could fill up a finite ‘vo'lunle of space wrth triad_s by drawing
many curves radiatlng from xo, but these trlads would be rotatio'nles's only along |
- the glven curves. Along some other curve, such as the path of the guiding center,
they might not be rotationless. Thus, the way to see. if a rotationless field of |
triads can .be set up is to consider the transport of a tnad alonga closed 'curve-..
(and not to worry that actual '_guiding clente’rs might never follow a closed cnrire),

in order to see if the property of being rotationless is path dependent.

Let us transport a perpendicular rector V around a small parallelogram

defined by two small displacements, Axl and Axz. The area of the parallelogram
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is represented by the vector AS = Ax; X Ax». In taking V around this small
parallelogram, one must carry (22) out to second order in the displacements,
because the first ordgr terms cancel. We know that when we bring V back to its
starting point it must have the same length as when it started, and it must still
be perpendicular to b. Therefore at worst it has rotated in the perpendicular

plane by a certain angle Aa. This angle is given by Aa = N - AS, where
N = }b[(bi;,,i) = (V-b)}] +(V-b)b-Vb—=b-Vb-Vb.  (24)

Thus, if N £ 0, it will be impossible to set up a field of triads which is rotationless

along every path.

A complementary point of view is to imagine we are given an arbitrary
field of triads (e;,e2,b), which no one has tried to make rotationless, and find
what angle of _rotatién the triad suffers around a closed curve. By the argument
surrounding (19)-(20), this is the line integral of R around the closed curve, and

Stokes’ theorem can be applied:
fR.dx=f(v><R)-ds. (25)
From this it is clear that

N = VXR, (26)

and indeed we see that VXR, which is gyrogauge invariant by (21), can be
expressed purely in terms of b. One can also verify (28) directly, by taking the

curl of (18) and using some arcane vector identities.
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- The vector N is related to a 2-form v by

ve=-< Z €k Nk dzi A dz, | (27)
sjk

v represents the angle of roiat.lon a triad suﬁ’ers on bexng transported around
the boundary of a 2fd1men810nal reglon. .If surfaces exlst perpendlcul_arvto b and
the regions considered he in these eurfaces, ﬁhen vis th_e curvatufe form (there
is only one) of the surface. We note in (12)”that v= op v}forms the fonrth and
ﬁnal contribut‘ion to the symplectic structure of the guiding-ce'nier :m_otion.
'Finally, I ivou‘ld like to summarize some algebraic properties of the vectors
"R and N, wh:ch cannot be found anywhere else. By (26), we must have v. N=

0. However when we work this out exphcxtly from (24), we find

To see that this actually does vanish (1t is not obvxous), we call on the followmgy

| formula Let M be a 3X3 matrlx with components M., Then

det M = 5[5(Tr M)3 - 3(T"_ M).(Tr M?) + (Tr M,‘"-)] . (29)

~ Therefore by setting M;; = b;,;, we have

- V- N = —}det(b; ;). (30)

And this in turn vanishes because the matrix b:; has an eigenv:ector with eigen-
value zero. This is none other than b itself:

Ub-b=}V(b?) =0, 3
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since b is a unit vector.

On the other hand, N is closely related to the characteristic polynomial of
b; ;. Let the eigenvalues of 5;; be Mg, M1, A2, and suppose Ao = 0 (one of them

must be zero). Then it turns out that (24) can be written in the form
= <2A\Mb+ (A1 +X2)b-Vb—-b-Vb.Vb. (32)

Finally, we obtain another useful identity by multiplying Vb on the left by this. -
The result must vanish, because any matrix satisfies its own secular equation.

Thus,
N.-Vb =0, (33)

and we see that N is a left eigenvector of Vb, just as b is a right eigenvector.

6. Gyrogauge Invariance: Dynamical Considerations

We have succeeded in dealing nicely with the interpretation of the gyrogauge
dependent quantity R, and in showing that it cannot be transformed or defined
away. But if we were to carry the guiding center theory out to higher order,
would we keep running into other gyrogauge dependent quantities which would
have to be analyzed similarly, or can we settle the issue once and for all? In a
similar vein, is it possible to find drift equations which are gyrogauge invariant

to all orders?
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To hegin, the Poincaré-Cartan form of the particle, shown in (7), is certainly_ _
gyrogauge invariant, as it must be. Sinrilarly, the Poin"caréa_Cartan form of the
guiding center, shown'in (12) 'is.also‘gyrogauge'invariant although here some '
| diséussion»is called 'for The. components of § are not mdmdually gyrogauge
.'1nvar1ant because the vector R appears. But the coordmate dlﬁerentlal d¢ is

not gyrogauge. invariant elther, for by (15) we have

”4;'=d;+n--¢x. - (34
However, when we examine the behavior of 3{ under a gyrogauge transformation,
we find that t.hef‘- transformation of 'R;and'that of d¢ exactly cancel one another, |
" showing overall gyrogauge:invariance for 7
The result is that the drift equations coming from J are gyrogange invariant.
- For~ example, the equatrons of motnon for X and U involve the vector R only -
through its curl, which is glven purely in terms of b by (24). Slmxlarly, the
equatlon for ¢, shown in 18) is form invariant under a gyrogauge transformatlon,

even though the vector R appears in it; the transformatnon propertnes of the two

sides of the e_quat.lon cancel one another.

But how did this gyr.ogauge invariance come about in the averaged Po_inearé-
Cartan form of (12), and Would it persist to .higher order? This gyrogauge
inva‘riance was not automatic; rather, it came about by using gyrogauge invariant‘
generators G in the Lie transfo_rms. As long as such generators are used in

(10) for the perturbation transformations, the result will be gyrogauge invariant
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guiding center dynamics to arbitrary order.

A generating vector field G appearing in (10) can be written in the form

3 d d ad
G—GX’;‘}E‘*"GUW‘*Gpa"'Ggé?- (35)

All of the partial derivative operators appearing here are gyrogauge invariant

with the exception of /39X, which transforms according to

a Y o ]
(ﬁ) - \2") 3 (36)

Therefore the overall vector field G will be gyrogauge invariant if the component

G, compensates for (36) by transforming according to
G, =G;+ Vy . Gx. (37

And this will be the case if all the components of G consist of gyrogauge invariant
quantities, except for G, which must contain a term equal to R - Gx. By this
definition of a gyrogauge invariant generator, one can construct a gyrogauge

invariant guiding center theory to arbitrary order.

It is interesting that the gyrogauge transformation (17) is mathematically
identical to an ordinary magnetic gauge transformation. Thus, the vector R
is analogous to the vector potential A, and the divergence free and completely
physical vector N = V XR is analogous to the magnetic field B. Furthermore,
these two types of gauge fields are coupled to each other in the guiding center

Poincaré-Cartan form of (12), and the coupling constant is the magnetic moment.
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This analogy is even more striking when time-dependent fields are con-
- sidered. Then the vectors e; and e; depend on time as well as space, and one

~ finds a gyrogauge dependent scalar,

=% v )

Under a time-dependent gyrogauge transformation, one has -

el | |
»a’v Lt o (39)

which taken with (17) shows that o is like an electric potentiai. Indeed, just as
- N = VXR is gyrogauge invariant, so, now is the vector F, given byv

- - i _ 40)
| Va 8t | (40)

’ ’E'vide_ntly," F is like an electric field, just'as-N is like a mrgnetic field. Since F s
gyrogaugévinvériant-, it can also .(like’N) be _expréssed -pure‘l'y‘-i.n terms of b; -thé |
~ result is | | L o , SR
F=Vb. (bx‘;‘t’) W
Finally, there is another gy‘roka’u'ge' equivalent of .a.Maxweli equation, the COmple-
‘ment of V-N =0:
' ' N

- | : 4
VXF ~% R )

Thus, by using the quantities o and F, it is straightforwa.rd to extend
gyrogauge invariance to time-dependent systems. One finds, for example; the

term po in the Hamiltonian.
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It turns out that it is impossible to find a set of variables to describe the
guiding center motion which are both canonical and gyrogauge invariant, if one
of these variables is the magnetic moment and another is some gyrophase canoni-
cally conjugate to it. This was the principal esthetic difficulty with my earlier
work on guiding center motion, which used Darboux’s theorem to construct
averaged variables. In the present formalism, the Poisson brackets {X, ¢} and
{U,¢}, which can be derived from the 1-form of (12) in a manner described
in Ref. 3, are nonzero. If one redefines these variables so that these brackets
vanish, then the variables (X, U) cannot be made gyrogauge invariant. This
conclusion may have interesting consequences for the applicability of canonical
coordinates and canonical transformation theory to other dynamical systems

L

wih a symmetry and for the reduction process in general.

7. Coneclusions

The principal practical goal of guiding center theory has been to address
specific problems in plasma physics, and therefore I have not considered possible
mathematical generalizations. Let me now suggest a few of these, and raise some
questions. Some of these are vague and not clearly thought out, but perhaps

they will be suggestive.

In guiding center motion, the reduction of the phase space by means of the

symmetry associated with the ignorable coordinate ¢ has produced a reduced
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phase space, with coorjdina,tes (X, U), which is the guiding center phase space.-
Each point of t:his spéce can be considered to have a ﬁbef attached to it, for
which"’the ignorablei ,coordi.rlxate ¢ serves as a coordinate. That_ .i§,'we have a circle
“bundle on the reduéed phase. space, each circle being_ a copj of the symmetry
gf.oub U(1). For an 5rbitr5rj dynémical system with a symmetrf,' wéﬁld:we in

the same manner obtain a group bundle on the reduced phase space?

If §o,'then the »ide'ntity element in each copy of the group could be redefined
from point to point on the reduced phase §pa¢e with no phyéica;l effect, just as
| f we ﬁéedj the ﬁeld‘ ¥ to redefine the origin o’f the gyrophase. iﬁwould‘ﬁ_ow be 5

_ ﬁgld» of gréup; elements.. Similarly,-the_loform_p = R - dX would generalize toa. |

Lie algebra-valueds 1-form.

-

Wbuld there then be a connection? The metrical structﬁfeof Euclidean ®3
seemed to play anb‘v'ess_ential‘ l;o:le in th‘ev connection we have discovered here; can
‘this be 'generva’lized?v What role does the curvat;ure form of the groﬁp bundle
g'énefaily pl'ayj' in the symplectic structure of the dynamical‘syste'bm? It seems
to have played a role in gui‘ding center theofy, _thrbugh the form v = dp, but
then here v is closed. I vlv'ill leavé these and fur'ph‘er-issueé,to my'mathematical

colleagues.
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