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Purpose: The purpose of this work is to develop a cardiac-induced lung motion model to be integrated
into an existing breathing motion model.
Methods: The authors’ proposed cardiac-induced lung motion model represents the lung tissue’s
specific response to the subject’s cardiac cycle. The model is mathematically defined as a product of
a converging polynomial function h of the cardiac phase (c) and the maximum displacement ⇀

γ (
⇀

X0)
of each voxel (

⇀

X0) among all the cardiac phases. The function h(c) was estimated from cardiac-gated
MR imaging of ten healthy volunteers using an Akaike Information Criteria optimization algorithm.
For each volunteer, a total of 24 short-axis and 18 radial planar views were acquired on a 1.5 T MR
scanner during a series of 12–15 s breath-hold maneuvers. Each view contained 30 temporal frames of
equal time-duration beginning with the end-diastolic cardiac phase. The frames in each of the planar
views were resampled to create a set of three-dimensional (3D) anatomical volumes representing
thoracic anatomy at different cardiac phases. A 3D multiresolution optical flow deformable image
registration algorithm was used to quantify the difference in tissue position between the end-diastolic
cardiac phase and the remaining cardiac phases. To account for image noise, voxel displacements
whose maximum values were less than 0.3 mm, were excluded. In addition, the blood vessels were
segmented and excluded in order to eliminate registration artifacts caused by blood-flow.
Results: The average cardiac-induced lung motions for displacements greater than 0.3 mm were
found to be 0.86 ± 0.74 and 0.97 ± 0.93 mm in the left and right lungs, respectively. The average
model residual error for the ten healthy volunteers was found to be 0.29 ± 0.08 mm in the left lung
and 0.38 ± 0.14 mm in the right lung for tissue displacements greater than 0.3 mm. The relative
error decreased with increasing cardiac-induced lung tissue motion. While the relative error was
> 60% for submillimeter cardiac-induced lung tissue motion, the relative error decreased to < 5%
for cardiac-induced lung tissue motion that exceeded 10 mm in displacement.
Conclusions: The authors’ studies implied that modeling and including cardiac-induced lung
motion would improve breathing motion model accuracy for tissues with cardiac-induced
motion greater than 0.3 mm. © 2014 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4866888]
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1. INTRODUCTION

Breathing motion adversely impacts the radiation therapy
treatment planning and delivery process.1 It can arise from
voluntary, involuntary, and semivoluntary physiological fac-
tors. One solution to account for the breathing-induced
lung tissue motion has been to employ lung motion mod-
els for planning and treatment.2–13 Lung and lung tumor
motion models have been developed based on lung tissue
elasticity,2, 8, 11–13 respiratory phase,3, 5–7, 9 and biomechanical
tissue properties.4, 10 These models, however, did not address
the lung motion induced by the heart’s pulsatile motion. There
have been studies that evaluated breathing induced cardiac
motion,14–17 but no specific modeling efforts have been de-
veloped to quantify and report cardiac-induced lung motion.

Cardiac motion is uncorrelated to the breathing cycle, so
cardiac motion may appear as noise in breathing motion
measurements that consist of repeated CT scans, such as
those used by Low et al.18 Subsequently, breathing motion
model accuracy will be degraded by this apparently random
motion component. Cardiac-induced lung tissue motion has
been measured using 4D fluoroscopy and observed to be ori-
ented in the lateral direction with a magnitude in the range
of 1–4 mm.6

The motion of the heart during the different cardiac
phases consists of radial, longitudinal, and circumferential
displacements.19–22 The base of the heart contracts, ejecting
blood from the ventricles. This contraction changes the shape
and volume of the heart, causing the lung to expand and slide
against the heart. The apex of the heart contracts less than the
base but includes a circumferential torsion.23 The maximum
myocardium displacement of the heart during the different
phases of a cardiac cycle has been reported to be approx-
imately 30 mm, greater than the 1–4 mm of lung-induced
cardiac motion.24 Such large displacements may also lead to
substantial cardiac-induced lung motion. Modeling the
cardiac-induced lung motion and incorporating the
cardiac-induced lung motion into a breathing lung mo-
tion model4, 10, 25, 26 forms the focus of this paper.

2. METHODS

In this section, we describe the mathematical formulation
to model cardiac-induced lung tissue motion. The formula-
tion, when incorporated into the 5D breathing motion model
accounts for cardiac-induced lung motion and presumably
will improve the breathing motion model. To characterize the
morphological changes in lung anatomy during the cardiac
cycle, we employed a cardiac-gated MRI protocol. A three-
dimensional (3D) optical flow image registration algorithm
was used to find the deformation vectors of the lung tissue in
Cartesian space. The temporal dependence of the deformation
vectors on the cardiac cycle was estimated with a converging
polynomial whose order was optimized with an Akaike Infor-
mation Criteria (AIC) method.27 The model was designed as
a linear relation between the maximum tissue displacement
of each voxel and the cardiac phase. The model performance

was assessed by comparing the model residual error against
the uncompensated cardiac-induced lung tissue motion.

2.A. 5D breathing motion model

The breathing motion model that we were modifying was
previously developed by Low et al.4 The model utilized air-
flow f and tidal volume v as time-dependent surrogates and

the internal lung tissue position (
⇀

X) was determined by the
expression4

⇀

X(v, f :
⇀

X0) = ⇀

X0 + ⇀
α(

⇀

X0)v + ⇀

β(
⇀

X0)f, (1)

where
⇀

X0 was the position of the tissue at zero tidal volume

and airflow. v and f scaled the tissue specific vectors ⇀
α and

⇀

β

which determined the motion direction and magnitude for the
volume filling and hysteresis components, respectively.

The accuracy of determining ⇀
α and

⇀

β in the 5D breath-
ing motion model was previously demonstrated in a cohort
of 50 subjects.25 Model and measured tissue position differ-
ences were used by Zhao et al.26 to evaluate the 5D model
precision. They showed that the absolute discrepancy of the
5D breathing motion model was less than 2.1 mm for 90% of
the voxels in the subject cohort,26 but their measurements may
not have had sufficient resolution to detect increased model-
ing errors near the heart. More recently, Low et al.18 improved
the breathing motion model measurement technique and saw
increased motion model error near the heart that might be de-
creased if a cardiac motion model term was incorporated into
the breathing motion model.

2.B. Cardiac-induced lung motion model

To model the effect of the cardiac motion on lung tissue,
we introduced a new term to Eq. (1). For clarity, definitions
of the variables and terms used in this section are presented
in Table I. We modeled the cardiac-induced lung motion as
follows:

⇀

C = ⇀
γ (

⇀

X0)h(c), (2)

where
⇀

C represented the cardiac-induced lung motion at any

cardiac phase, and
⇀

X0 was the position of the tissue at v

= f = 0 and at the beginning of the cardiac cycle (c = 0).
h(c) described the temporal motion magnitude bin of all of
the cardiac-induced motion and ⇀

γ (
⇀

X0) described the local
motion magnitude and direction. h(c) was defined such that
h(0) = 0 and the maximum value for h was 1.

From a biomechanical perspective, the term ⇀
γ represented

the tissue specific response to the cardiac pulsation. The term
was assumed to be independent of breathing-induced motion
and so the term was added to the 5D model shown in Eq. (1).
In Cartesian coordinates, ⇀

γ was written as
⇀
γ = ‖⇀

γ ‖(cos θx î + cos θy ĵ + cos θzk̂), (3)

where ‖⇀
γ ‖ was the maximum displacement of the lung tissue

during the cardiac cycle and was formulated as follows:

‖⇀
γ ‖ = max{‖⇀

upî + ⇀
vpĵ + ⇀

wpk̂‖}Tc=1, (4)
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TABLE I. Table of variables introduced in this paper.

Variable Meaning

⇀

X Lung tissue position
⇀

X0 Initial lung tissue position
⇀
α Lung tissue specific response to volume filling
v Tidal volume
⇀

β Lung tissue specific response to hysteresis
f Airflow
⇀

C Cardiac-induced lung motion term
⇀
γ Lung tissue specific response to the cardiac motion
H Lung tissue response to the cardiac cycle
C Cardiac phase

(
⇀
u,

⇀
v,

⇀
w) Deformation vectors

(î, ĵ , k̂) Cartesian coordinate system of ⇀
γ

(θ x, θ y, θ z) Cartesian coordinate system angles of ⇀
γ

AIC Akaike Information Criteria
k Number of parameters in h
T Total number of cardiac frames in a single cardiac cycle
L Maximum likelihood
σ 2

c Variance at a given cardiac frame
hfit

c h value from the polynomial fit at a given cardiac frame
hm

c h value at the a given cardiac frame
χ2 Chi-squared
A constant under the condition of consistent measurement data
s Subject
n Number of voxels
j Number of coefficients
m Polynomial coefficient

where the term (
⇀

u,
⇀
v,

⇀
w) indicated the deformation vectors for

each voxel across the cardiac frames in the Cartesian coordi-
nate system (î, ĵ , k̂). The superscript T denotes the total num-
ber of cardiac frames (c) in a single cardiac cycle. The values
of (θ x, θ y, θ z) were determined from

θx = cos−1

(
‖⇀

u‖max

‖⇀
γ ‖

)
, θy = cos−1

(
‖⇀
v‖max

‖⇀
γ ‖

)
,

θz = cos−1

(
‖⇀
w‖max

‖⇀
γ ‖

)
. (5)

Figure 1 illustrates the coordinate system of the cardiac-
induced lung motion model.

The temporal term h(c) was represented in the form of
a converging polynomial that fitted the deformation vector
magnitudes normalized to the maximum tissue displacement.
The polynomial order was chosen as the lowest order poly-
nomial function capable of describing the normalized defor-
mation vector magnitudes while satisfying the AIC.27 For this
study, the AIC was expressed in terms of the number of pa-
rameters (k) in the polynomial fit of h and the maximum like-
lihood (L). The expression for the AIC and the maximum like-
lihood are shown in Eqs. (6) and (7), respectively,27

AIC = 2k − 2 ln(L), (6)

FIG. 1. Coordinate system for the cardiac-induced lung motion model.

L =
∏T

c=1

(
1

2πσ 2
c

)1/2

exp

(
−

∑T

c=1

(
hfit

c − hm
c

)2

2σ 2
c

)
,

(7)

where σ 2
c is the variance at a given cardiac frame, hfit

c is the h
value from the polynomial fit at a given cardiac frame, and hm

c

is the measured h value at a given cardiac frame. An expres-
sion for the AIC in terms of chi-squared (χ2) was derived by
taking the natural log of the maximum likelihood expressed
in Eq. (7)27

ln(L) = ln

[∏T

c=1

(
1

2πσ 2
c

)1/2
]

− 1

2

∑T

c=1

(
hfit

c − hm
c

)2

2σ 2
c

= A − 1

2
χ2, (8)

where the first term in Eq. (8), A, is a constant under the
condition of consistent measurement data (i.e., the number of
model parameter varies but the measured data stay the same)
and the second term is the chi-squared expression. The AIC
was used to find the fewest number of parameters needed to
describe the behavior of h over the cardiac cycle through an
exhaustive search, since A was independent of the fit it was
omitted from the AIC expression. This allowed the AIC to be
a straightforward function of the number of parameters in the
polynomial fit of h and the chi-squared expression.28

A polynomial function was chosen to maintain a strictly
temporal relationship between cardiac frame and lung tissue
motion. The deformation vectors of each voxel were normal-
ized to the maximum displacement of that voxel over the car-
diac cycle. The first cardiac frame of h was defined to be 0
since this cardiac frame was taken as the reference image in
the deformable image registration algorithm. The value of h
was made to vary between 0, corresponding to the reference
cardiac phase (end-diastolic), and 1 which corresponded to
the cardiac frame with greatest tissue motion. The volunteer
specific (s) polynomial behavior of h for each voxel (n) fol-
lowed the form

hs
n(c) =

∑k

j=0
mjc

j . (9)
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A mean of the polynomial coefficients for each voxel was
calculated to produce a single new polynomial for all of the
voxels within the lung

hs(c) = 1

n

∑n

j=1
hs

k(c). (10)

This procedure to determine h was individually done

for the right and left lungs. The limit of
⇀

C provided in
this section was mathematically undefined in the event that

a given voxel did not move, ‖⇀

C‖ = 0. A lung voxel was
considered to be stationary during the cardiac cycle based
on the magnitude of the deformation vectors calculated by
the deformable image registration algorithm. If a voxel did
not experience cardiac-induced lung motion, ‖⇀

γ ‖ and h
would be equal to 0 and the angular components of ‖⇀

γ ‖,
(θ x, θ y, θ z) would be undefined. Incorporating the cardiac-

induced lung motion term (
⇀

C) from Eq. (2) into Eq. (1)
provided

⇀

X(v, f, h :
⇀

X0) =
⎧⎨
⎩

⇀

X0 + ⇀
α(

⇀

X0)v + ⇀

β(
⇀

X0)f ∃⇀

C|‖⇀
γ ‖ = 0

⇀

X0 + ⇀
α(

⇀

X0)v + ⇀

β(
⇀

X0)f + ⇀

C ∃⇀

C|‖⇀
γ ‖ > 0

. (11)

2.C. Data collection

To quantify cardiac-induced lung motion, we used a MRI
protocol to measure lung tissue motion during the cardiac
cycle. Ten healthy volunteers were imaged with an Avanto
1.5 T Siemens MRI scanner (Siemens Healthcare, Erlangen,
Germany). The imaging protocol closely followed a previ-
ously established sequence by Ennis et al.29 The protocol was
a balanced steady-state free precession sequence with an echo
time of 1.6 ms and a repetition time of 3.2 ms. The field of
view was 360 mm. The volunteers were instructed to per-
form a series of 12–15 s breath holds at midexhalation for
each view. The views were acquired with electrocardiogram
(ECG) gating to monitor the cardiac phase. For each view,
∼14 cardiac cycles of data were acquired with each breath
hold and were retrospectively binned using the ECG tags to
provide 30 equal time duration cardiac frames to represent a
single cardiac cycle. The first cardiac frame represented the
thoracic anatomy at the end diastolic cardiac phase and was
timed to coincide with the closure of the mitral valve. A to-
tal of 24 planar views in the short axis orientation were taken
with 3.5–4 mm slice thickness from the mitral valve plane
at the base of the heart to the ventricular apex plane at the
apex of the heart. The slice thickness was directly related to
the short axis length of the volunteer’s heart. The short axis
views were supplemented by 18 radial views at 20◦ incre-
ments centered about the plane intersecting the mitral valve
and the ventricular apex. The short axis images and the ra-
dial images were resampled to form a 3D volume represent-
ing the thorax anatomy at each cardiac frame and provided
the input for a 3D deformable image registration algorithm.
The right and left lung volumes were masked with a region
growing algorithm to only consider lung tissue in the analy-
sis. Large blood vessels and rigid bronchial structures were
also removed to avoid MRI perfusion artifacts.

2.D. Image registration

We employed a Graphics Processing Unit (GPU) based
multiresolution 3D optical flow algorithm.30, 31 Mathemati-

cally, the optical flow image registration method was based
on the Taylor Series approximation and has been well de-
fined in literature.30, 31 Solving for this Taylor series approxi-
mation, we employed a Jacobian iterative solver30, 31 that was
computationally accelerated to determine the 3D volumetric
displacement.

The registration steps were: For each subject, the 3D
anatomy at the end-diastole cardiac phase was taken as a ref-
erence and the deformation vectors were determined from the
reference 3D anatomy to the 3D anatomies at different car-
diac phases. A set of 3D anatomies at multiple lower reso-
lutions were generated for both the reference and the target
3D anatomy. The registration was performed for the reference
and the target 3D anatomy at the lowest 3D resolution level.
The result of this registration was upscaled and provided as
initial input for registering the reference and the target 3D
anatomy at the next 3D resolution level. The process contin-
ued until the reference and the target 3D anatomy were regis-
tered at the original 3D resolution level.

2.E. Model generation

The results of the multiresolution 3D optical flow reg-
istration provided the deformation vectors for each voxel
in the lung. The segmented lung volumes without internal
blood vessels provided the regions of interest in the thoracic
anatomy. The maximum displacement over the cardiac cycle
relative to the first frame for each voxel was identified. This
was used to normalize the response of the voxel to the cardiac
cycle over the 30 cardiac phases. A converging polynomial
was fit to the normalized response for each voxel from the
reference phase (h = 0) to the maximum displacement phase
(h = 1). The polynomial coefficients of each voxel were in-
dividually averaged over all voxels in the lung to express a
single polynomial for the lung. The polynomial was used to
scale the maximum displacement along the direction of the
maximum displacement of each voxel over the cardiac cycle
to create the cardiac-induced lung motion model.

Medical Physics, Vol. 41, No. 4, April 2014
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FIG. 2. Figure 2(a) shows an overlay example of the reference cardiac frame
image with a randomly selected cardiac frame. In Fig. 2(b), the randomly
selected cardiac frame warped by the calculated deformation vectors overlaid
with the reference cardiac frame is shown. The highlighted pixels display the
discrepancy between the reference and randomly selected cardiac frames.

2.F. Statistical distribution

The displacement magnitude and direction for each lung
voxel were analyzed to check the data distribution and assess
statistical significance. An Ansari–Bradley test was selected
as a statistical metric with which to assess the distribution of
‖⇀
γ ‖ and the model residual error. The Ansari–Bradley test is

a nonparametric hypothesis test of equal variances. The dis-
tribution of ‖⇀

γ ‖ was checked at the 95% confidence level.

3. RESULTS

The deformable image registration algorithm accuracy was
evaluated using the calculated deformation vectors to warp

each cardiac frame back to its respective reference. The dis-
crepancy between the reference cardiac frame and subsequent
cardiac frames with this method was observed to be negli-
gible. Figure 2 shows the overlay of the reference and one
of the cardiac frame images for both warped and unwarped
cases. This example shows the deformable image registration
algorithm to be qualitatively accurate. A quantitative analysis
for the accuracy of the deformable image registration algo-
rithm has been described in detail in Santhanam et al.32 That
paper found the deformable image registration algorithm av-
erage error to be 0.36 ± 0.06 mm based on 20 landmarks
within the lungs. The average error was greatly influenced
by the slice thickness of the MR images since the measured
cardiac-induced lung displacement was small relative to the
slice thickness.

The average cardiac-induced lung motion for tissue dis-
placements greater than 0.3 mm was 0.86 ± 0.74 and 0.97
± 0.93 mm in the left and right lungs, respectively. The aver-
age model residual error, defined as the difference between the
measured cardiac induced motion and �C, for the ten healthy
volunteers was found to be 0.29 ± 0.08 mm in the left lung
and 0.38 ± 0.14 mm in the right lung for tissue displacements
greater than 0.3 mm. Figure 3 shows the reduction in cardiac-
induced lung motion achieved with the model for a short axis
view of the right and left lungs. Figures 3(a) and 3(b) illustrate
the distribution of the cardiac-induced lung tissue motion in
the right and left lungs, respectively, showing that the cardiac-
induced motion was submillimeter for most of the lung tissue.
Figures 3(c) and 3(d) show the corresponding distribution of
the model residual error, defined as the difference between the
registration-measured motion and the motion described by �C,

FIG. 3. The uncompensated cardiac-induced lung tissue motion is shown for a SA view of the left lung (a) and right lung (b). The corresponding model residual
error is shown for the left lung (c) and the right lung (d).

Medical Physics, Vol. 41, No. 4, April 2014
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FIG. 4. A sample distribution comparison between the uncompensated cardiac-induced lung tissue motion |⇀

X| and the model residual error |⇀

X − ⇀
γh| for the

left lung (a) and the right lung (b) shown in Fig. 3.

for the views in Figs. 3(a) and 3(b), respectively. Every voxel
had less model residual error compared with the magnitude
of cardiac-induced lung tissue motion. This is illustrated in
Fig. 4 by comparing the distribution of the cardiac-induced
lung motion and the model residual error. Figures 4(a) and
4(b) show histograms of the motion magnitudes for the left
and right lungs, respectively. In each figure, the uncompen-
sated motion is tabulated as are the model residual errors.
Ideally, the model residual errors would all be zero, but they
were not due, in part, to the simplification of the model that
the motion temporal magnitude bin was constant throughout
the lungs, and, in part, to image registration errors. As shown
by the model residual error, the cardiac motion was modeled
to within 1 mm of its actual motion in this slice. The actual
maximum motion was four times greater than the maximum
residual error. An overall comparison between the cardiac-
induced lung tissue motion and the model residual error for
the ten healthy subjects is shown in Fig. 5, highlighting the
model quality. To quantify the accuracy of the model in de-
scribing cardiac-induced lung tissue motion, the average rela-
tive errors for increasing motion magnitude bins were calcu-

lated. The results of this method are shown in Tables II and III.
Table II reports the summary of the model’s average abso-
lute and average relative error for the right and left lungs
over various tissue trajectory motion magnitude bins. Table III
reports the average cardiac-induced motion and the model
residual error for the right and left lungs.

‖⇀
γ ‖ was found to vary smoothly throughout the lung.

Figure 6 shows a typical example of the ‖⇀
γ ‖ for a SA view

of the left lung. The cardiac-induced lung tissue motion was
observed to be greater than 1 mm for 15.5% of the voxels an-
alyzed in this study. These voxels were almost exclusively lo-
cated in lung regions close to the heart. A rapid decrease in the
cardiac-induced lung tissue motion magnitude was observed
outside of this region. Based on an Ansari–Bradley test, the
results for the cardiac-induced lung tissue motion (p < 0.01),
‖⇀
γ ‖ (p < 0.04), and the model residual error (p < 0.01) were

found to follow an exponential distribution.
Based on the AIC analysis, a ninth order polynomial was

found to be the lowest order required to describe the mag-
nitude of lung tissue displacement in each cardiac frame for
each voxel. The behavior of h over the lung for each subject

FIG. 5. Cumulative histogram comparison between the cardiac-induced lung tissue motion and the model residual error for all voxels in the right (a) and left
(b) lungs.

Medical Physics, Vol. 41, No. 4, April 2014



043501-7 White et al.: Modeling and incorporating cardiac-induced lung tissue motion 043501-7

TABLE II. Summary of the average absolute error and average relative error for increasing cardiac-induced lung
motion magnitude bins.

Motion magnitude Left lung average Left lung Right lung average Right lung
bin (mm) absolute error (mm) relative error absolute error (mm) relative error

0.3–1 0.30 ± 0. 09 59.8 ± 35.8% 0.45 ± 0.20 75.4 ± 56.9%
1–2 0.33 ± 0.11 24.9 ± 6.2% 0.53 ± 0.28 34.3 ± 11.8%
2–3 0.32 ± 0.10 13.7 ± 1.2% 0.58 ± 0.34 20.0 ± 4.0%
3–4 0.32 ± 0.11 9.6 ± 0.9% 0.61 ± 0.38 14.2 ± 2.0%
4–5 0.34 ± 0.12 7.7 ± 0.6% 0.61 ± 0.37 11.0 ± 1.2%
5–6 0.35 ± 0.12 6.4 ± 0.4% 0.58 ± 0.33 8.8 ± 0.8%
6–7 0.34 ± 0.12 5.3 ± 0.3% 0.57 ± 0.33 7.0 ± 0.5%
7–8 0.35 ± 0.12 4.7 ± 0.2% 0.56 ± 0.32 5.6 ± 0.3%
8–9 0.35 ± 0.12 4.2 ± 0.2% 0.55 ± 0.30 4.9 ± 0.2%
9–10 0.36 ± 0.13 3.8 ± 0.2% 0.56 ± 0.31 4.2 ± 0.2%
> 10 0.38 ± 0.14 3.4 ± 0.1% 0.60 ± 0.36 3.5 ± 0.1%

was similar in the right and left lungs individually for the ten
healthy volunteers. Figure 7 shows the behavior of h over the
cardiac cycle for the right and left lungs for the ten healthy
subjects.

The accuracy and the robustness of the analysis are greatly
dependent on the accuracy of the DIR algorithm. We validated
the DIR algorithm using a landmark-based Target Registra-
tion Error (TRE) metric. A set of 80 landmarks was tracked on
each of the ten datasets from the end-systolic to end-diastolic
phase. Figure 8 presents the user interface that we employed
for our validation process. The landmarks were placed by an
expert on the reference cardiac phase data (left) as shown by
the cross hairs. For each of the landmarks, the correspond-
ing landmark in the target phase was calculated using the
DIR results and were visually shown to the expert as cross
hairs overlapping the target (right) image. Based on the re-
sults, the expert either accepted the DIR results or marked the
correct landmark on the target image. Once the 80 landmarks
were found, the TRE for each of the datasets was computed.
Table IV tabulates the DIR registration results. For each of
the datasets, the TRE was found to be subvoxel and in the

TABLE III. Summary of average cardiac-induced lung tissue motion and av-
erage model residual error for the right and left lungs over all subjects in this
study.

Average Average Average Average
cardiac residual cardiac residual

induced motion, error left induced motion, error right
Subject left lung (mm) lung (mm) right lung (mm) lung (mm)

1 0.69 ± 0.47 0.21 ± 0.04 0.80 ± 0.64 0.26 ± 0.07
2 0.75 ± 0.56 0.23 ± 0.05 0.69 ± 0.48 0.31 ± 0.09
3 0.67 ± 0.45 0.23 ± 0.05 0.68 ± 0.46 0.28 ± 0.08
4 0.66 ± 0.43 0.20 ± 0.04 0.65 ± 0.42 0.23 ± 0.05
5 0.83 ± 0.69 0.43 ± 0.18 0.72 ± 0.52 0.27 ± 0.07
6 1.00 ± 0.99 0.31 ± 0.10 1.17 ± 1.36 0.48 ± 0.23
7 1.01 ± 1.02 0.33 ± 0.11 1.18 ± 1.40 0.54 ± 0.29
8 0.63 ± 0.40 0.23 ± 0.05 0.60 ± 0.36 0.25 ± 0.06
9 1.05 ± 0.53 0.31 ± 0.18 1.14 ± 1.30 0.51 ± 0.26
10 1.07 ± 1.14 0.39 ± 0.15 1.58 ± 2.51 0.67 ± 0.44

range of 0.27–1.1 mm. The registration accuracy enabled the
cardiac-induced lung tissue motion model to not be influenced
by errors in DIR.

4. DISCUSSION

This paper has proposed a new term for the 5D breathing
motion model4 to account for cardiac-induced lung tissue mo-
tion. The cardiac-induced lung tissue motion term followed
the form of the other terms in the 5D breathing motion model.
The key concept behind the 5D breathing motion model was
that it separated the motion of lung tissue into unique motion
sources. The original 5D breathing motion model had two
components, a lung filling component and a breathing rate
component. Each component was approximated to be inde-
pendent in the model. The breathing rate component was in-
tended to model hysteresis motion, which was hypothesized
to be due to pressure imbalances within the lungs, and these
were hypothesized to be proportional to the breathing rate.
The lung filling component and breathing rate do not model
the cardiac-induced motion. Therefore, they were unable to
adequately model that component of motion in regions of the

FIG. 6. A typical example of ⇀
γ for a SA view of the left lung. The intensity

scale is in units of mm.
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FIG. 7. h curves for the right (a) and left (b) lungs for the ten subjects.

lung close to the heart, where this motion appeared as a source
of noise in the model. While the 5D breathing motion model
was capable of modeling the breathing motion, model errors
were greater for lung tissue in close proximity to the heart be-
cause of the model’s inability to understand or model cardiac-
induced lung tissue motion. Adding a cardiac-induced lung
tissue motion term to the 5D breathing motion model will al-
low the model to not only track breathing induced motion but
also cardiac motion near the heart. The results have shown
the potential of the new term to model the cardiac-induced
lung tissue motion to within 1 mm. A cardiac cycle varying

time scalar quantity, h, scaled the magnitude of ⇀
γ according

to the cardiac phase. To build the model, a deformable im-
age registration algorithm was applied to cardiac gated planar
MR images of the thorax anatomy acquired during breath-
hold maneuvers. The maximum displacement of lung tissue
caused by the cardiac cycle was observed to be 17.6 mm. This
occurred in the region of the lung that was close to the heart–
lung boundary. The majority (84.5%) of the imaged lung tis-
sues had less than 1 mm of cardiac-induced motion.

The behavior of h for the right lung was slightly differ-
ent than the behavior of h in the left lung. The maximum

FIG. 8. User interface for the DIR validation process. The corresponding landmark locations are denoted by arrows on the reference cardiac phase data (left)
and on the target phase image (right).
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TABLE IV. Mean error of the DIR for each subject from the landmark vali-
dation process.

Mean target
registration

Subject error (mm)

1 0.612
2 0.92
3 0.279
4 0.463
5 1.16
6 0.824
7 0.96
8 1.03
9 1.10

10 0.83

cardiac-induced lung tissue motion occurred at the 9–10th
cardiac frames for both lungs, which approximately corre-
sponded with the end-systolic phase of the cardiac cycle. The
definition of h mirrors the periodic nature of the cardiac cycle,
which would permit h to synchronize with another time vary-
ing cardiac signal, the ECG. Given this scalar surrogate input
h, it would be possible to predict the internal motion of lung
tissue during the cardiac cycle by scaling ⇀

γ , the lung tissue
specific response to the cardiac cycle.

Intersubject variability of h was greater in the right lung
than the left lung for both absolute and relative errors. This
could be explained by considering the portions of the heart
that abut the right and left lungs. For the left lung, the my-
ocardium primarily abuts the lung tissue. These muscles force
the ejection of blood from the heart, which causes the greatest
lung tissue displacement during the cardiac cycle. The right
lung primarily abuts the descending aorta due to the presence
of the liver, which limits the surface interaction between the
myocardium and the right lung.

The results of this study have an impact on the modeling
of lung tissue motion, in particular the modeling of hysteresis
motion. In a recent publication, we characterized the distribu-
tion of hysteresis during free breathing.33 The relative amount
of hysteresis motion was found to be 8%–18% of the volume
filling component of motion throughout the lung. For exam-
ple, consider a lung tissue voxel with a tissue displacement
of 20 mm. The hysteresis component of this motion would be
between 1.6 and 3.6 mm, encompassing the range of cardiac-
induced motion. Cardiac-induced lung tissue motion could
degrade the accuracy of the model in predicting hysteresis
motion near the heart. The model residual error was much less
than 1 mm on average for tissues at all cardiac motion magni-
tude bins. This cardiac-induced motion modeling accuracy is
expected to increase the accuracy of the previously developed
5D breathing motion model for tissues lying near the heart.

Clinical 4DCT utilized simultaneously acquired surrogate
measurements to retrospectively sort the acquired images
according to respiratory phase. A promising improvement
in 4DCT image acquisition and analysis published by Low
et al.18 in 2013 introduced a method to provide whole lung

volumes at user-selected breathing phases. Monitoring of the
cardiac phase could be achieved with a surrogate (ECG) that
would provide a means to define the cardiac phase. The lung
tissue locations at specified breathing phases could be ob-
tained with the corresponding cardiac phase. In this manner,
each voxel would have samples associated with tidal volume
(v), airflow ( f ), and cardiac phase (h). DIR can be applied
as described by Low et al.18 to determine the tissue specific
response to volume filling (⇀

α), hysteresis (
⇀

β), and cardiac cy-
cle (⇀

γ ), respectively. In this manner, it would be possible to
describe each term of the 5D breathing motion model. The
key concept behind the 5D breathing motion model was that
it separated the motion to unique motion sources. For exam-
ple, the original 5D breathing motion model had two com-
ponents, a lung filling component and a breathing rate com-
ponent. Each is considered to be independent by the model
(an approximation). The breathing rate component was in-
tended to model hysteresis motion, which was hypothesized
to be due to pressure imbalances within the lungs, and these
were hypothesized to be proportional to the breathing rate.
The lung filling component and a breathing rate component
do not model cardiac-induced motion. Therefore, they were
unable to adequately model that component of motion near
the heart, and cardiac motion appeared as a source of noise
in the model. In other words, the 5D breathing motion model
was capable of modeling breathing motion but the errors in
that model were greater near the heart because of the model’s
inability to understand or deal with cardiac motion. By adding
a cardiac term to the 5D breathing motion model, it is able
to not only track breathing induced motion, but also the car-
diac motion near the heart, at least to within the model’s accu-
racy. This analysis would not be possible with current clinical
4DCT techniques.

Clinical application of the model proposed in this paper
could extend into breathing motion modeling. Specifically,
this work could be applied to the recent work in establish-
ing a novel 4DCT image acquisition and analysis technique
described by Low et al.18 For some patients, the discrepancy
between the lung tissue locations and the breathing motion
model was less than 1 mm except in the region of the lung that
closely abuts the heart. This was believed to be the uncompen-
sated cardiac-induced motion that was greatly reduced with
the model presented in this paper. The cardiac-induced lung
tissue motion model could potentially be improved by ex-
pressing the relationship between the cardiac phase and lung
motion in a more robust manner. A polynomial function was
chosen as a practical way to describe this relationship. While
impractical for the scope of this paper, future work will focus
on theoretically describing lung tissue motion as a function
of cardiac phase independent of a breathing motion model
application.

5. CONCLUSIONS

Cardiac-induced lung tissue motion can be corrected to
within 1.5 mm using the proposed model. The model had a
complex time-domain term (a ninth-order polynomial) and
a simple spatial domain term (a three-dimensional vector)
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to minimize the possibility of the cardiac term inadvertently
modeling breathing motion. A future study will examine the
impact of the term in breathing motion modeling, especially
in regions near the heart.
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