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surprise! dopamine signals mix action, value and error
Anne G E Collins & Michael J Frank

Two studies invite us to reconsider the nature of striatal dopamine signals. Accumbens dopamine appears to signal 
the value of overt action and prediction errors arise from deviations in these signals.

The neuromodulator dopamine (DA) is crucial 
to motivation, learning and action; its dysfunc-
tion is implicated in motor disorders, addiction 
and apathy. However, how dopamine operates 
across these domains remains poorly under-
stood. On one hand, a large amount of literature 
focuses on the role of dopamine in motivation 
to exert physical effort to obtain a reward1 or the 
incentive-motivating properties of stimuli that 
drive ‘wanting’2. On the other hand, an influential  
theory proposes that phasic changes in dopamin-
ergic signals reflect reward prediction errors 
(RPEs), or outcomes that are better or worse than 
expected3; these are used to potentiate corticos-
triatal synapses, thereby implementing a form of 
reinforcement learning. Although both theories 
have enjoyed much empirical support4, two new 
studies5,6 recording dynamics of accumbens DA 
concentration during instrumental learning sug-
gest that an integration of the two (Fig. 1a) may 
be more appropriate.

Syed et al.6 tested the effect of overt action 
selection on DA signals in an instrumental 
task. Rats were trained to distinguish cues 
indicating whether they would be rewarded 
for selecting an action (pressing a lever) or for 
withholding action (staying put until a fixed 
delay). The unexpected appearance of a cue 
indicated a change in expected future reward 
and was therefore expected to lead to a phasic 
increase in DA, independently of the required 
action. Using fast-scan cyclic voltammetry, 
the authors reported that DA levels varied 
with RPEs, but only in those trials requiring 
overt action to obtain reward. These signals 
were strongly diminished or absent for cues 
signaling the need to inhibit action-despite 
equivalent behavioral success and equivalent 
delays between cues and rewards. In those tri-
als, phasic increases in DA related to reward 
expectation were nevertheless observed  
following movement initiation to collect the 

reward, after successful waiting triggered by 
the cue, and phasic decreases in DA were 
observed when the animals failed to withhold 
responses and cues indicated that rewards 
would not be obtained. Thus bidirectional 
RPEs were observed, but only in anticipation 
of, or following, active actions.

Dopamine generally increases motor 
activity, especially in rewarding contexts 
(Pavlovian approach), so DA release could 
lead to maladaptive learning when action 
needs to be inhibited to obtain a reward7. 
Thus, these findings may indicate that the 
DA system is smarter than we thought: gating  
its release by action selection would help 
to mitigate such Pavlovian learning biases. 
More broadly, the findings may provide  
preliminary evidence for a more general 
credit-assignment mechanism, whereby 
active action selection by basal ganglia can 
disinhibit phasic DA release8 to enhance 
reward learning about those outcomes that 
it has caused9. Indeed, human active learn-
ing is consistent with such a mechanism: 
subjects exhibit learned preferences for 
freely chosen rewarded actions over those 
that were not chosen, even given identical 
reinforcement histories, and these pref-
erences are modified by dopaminergic  
genetic variants9.

Hamid et al.5 provocatively recasts the 
quantity signaled by accumbens DA in terms 
of reward value, rather than RPEs per se. 
Although the predominant evidence for RPEs 
comes from DA neuron electrophysiology, a few 
voltammetry studies, including that described 
above (albeit modulated by action), have 
largely provided converging support for these  
bidirectional signals10. However, voltammetry 
measurements exhibit slow drifts across time, 
and the documented phasic signals are hence 
always evaluated relative to the pre-cue base-
line. Because RPEs are inherently deviations in 
reward value, Hamid et al.5 reasoned that this 
analysis could obscure the true nature of DA sig-
nals in terms of value. Moreover, a previous study 
suggested that DA levels ramp up as animals 
approach a rewarding location, as is consistent 
with a signal related to reward expectation11.

To address this issue, Hamid et al.5 per-
formed a series of experiments in which they 
assessed and manipulated accumbens DA 

levels while rats learned to select between 
actions yielding different reward probabili-
ties. First, using microdialysis (over a longer 
timescale of many trials), they reported that 
DA concentration was best related to the 
ongoing minute-by-minute reward rate and 
predicted task engagement, supporting the 
role of DA in mediating value-dependent 
motivation. However, by itself, this could 
reflect either a slow time-varying motiva-
tional component or the effect of multiple 
phasic learning signals.

Next they investigated the within-trial 
dynamics of DA using voltammetry. The main 
finding was that when rats were engaged in 
the task, DA levels exhibited progressive 
ramping from the initial cue, consistent with a  
reinforcement-learning model in which value 
progressively increases because of the discount-
ing of predicted rewards that are further into 
the future. They also reported abrupt DA fluc-
tuations at events carrying new information 
(task cues, reward cues), with the size of these 
jumps decreasing with learning. Thus, the vol-
tammetry signal appears to mix value (ramp-
ing) signals with (abrupt, and declining with 
learning) RPEs. However, the authors noted 
that the abrupt signals could simply reflect 
deviations in value, with no need to invoke a 
separate RPE. They performed a careful analysis  
to disentangle these possibilities, supporting 
the value theory. Indeed, the declining ‘RPE’ 
signals with learning could be attributed to 
an increasing baseline from one trial to the 
next in the presence of a fixed peak (Fig. 1b), 
rather than a decline in the height of the peak 
in the presence of a fixed baseline. This clever 
analysis implies that baseline DA evolves with 
estimated expected value and that prediction 
errors simply reflect the changes in such value 
estimates before and after a task event.

But do these DA transients affect learning 
nonetheless, and/or perhaps directly guide 
motivational choice? To answer this ques-
tion, the authors used optogenetics to causally  
probe the function of DA during distinct 
task periods. They first showed that phasic 
stimulation of accumbens DA release follow-
ing choice acted to reinforce the rat’s choice, 
and that phasic inhibition of DA acted to  
punish that choice (decrease its subsequent 
probability), independent of overt reward. This 
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is perhaps itself the clearest demonstration yet 
that abrupt changes in striatal DA do act as 
a bidirectional instrumental learning signal, 
within a single task procedure and using physi-
ologically relevant magnitudes and durations 
of DA stimulation or inhibition. Moreover, the 
same stimulation protocol when applied at trial 
onset (rather than during the outcome) did not 
influence learning, but instead changed the 
likelihood that animals would engage in the 
task. Increases in DA diminished latencies to 
engage and approach one of the action ports, 
and inhibition of DA increased such latencies. 
Thus, during choice, causal manipulations of 
DA appear to influence the effect of expected 
value on task engagement, whereas during out-
comes these manipulations induce learning.

Together, both studies highlight the 
important role of action and motivated task 
engagement in dopaminergic reward-related 
signaling. Effects on action or motivation 
and RPEs are typically considered in isola-
tion, from different traditions and literatures, 
but these studies provide timely evidence for 

interactions between these factors and begin 
to bridge our understanding of dopamine 
across them. Indeed, many empirical studies 
using DA manipulations in both humans and 
animals conflate motivational and learning 
interpretations: a drug modulation of rein-
forcement learning curves, for example, could 
be explained either by changes in learning from 
RPEs or by increased emphasis on learned 
reward values during choice. Conversely, 
apparent motivational effects can sometimes 
be attributed to learning. Theoretical models  
have suggested that DA modulates both 
learning and motivated choice via common 
mechanisms acting on D1 and D2 dopamine 
receptor–containing striatal neurons, and 
have shown the need to consider both factors 
and their interactions to account for a vari-
ety of findings across species12. Such models 
will now need to consider the implications of 
dynamically changing DA transients such as 
the ramping observed by Hamid et al.5.

As provocative findings often do, these stud-
ies raise many new questions. For example,  

Hamid et al.5 did not manipulate the level 
of effort per se, but did manipulate the value 
of task engagement, and they propose a  
parsimonious theory that DA, at all scales, 
represents expected value and thus potenti-
ates both choice (engagement, motivation) 
and learning, with RPEs signaled by abrupt 
changes. We highlight here three points that 
will require further investigation to probe the 
limits of this as compared to existing theories.

First, the ramping value signals observed 
here and in ref. 11 differ from those observed 
in the many electrophysiology studies in which  
spiking changes as a function of prediction 
errors, but not value per se. How can these  
discrepancies be reconciled? Hamid et al.5 
note that striatal DA release can be modulated  
presynaptically (for example, by local circuits) 
so that striatal DA concentration does not 
solely reflect spiking of afferent neurons, but 
the mechanism by which this circuit would 
convey time-varying values remains to be 
clarified. Second, if DA concentration rep-
resents value rather than RPEs, it raises the 
question of how target structures differentiate 
between absolute and relative changes in DA 
for implementing learning. Indeed, depending 
on prior expectations, the very same ‘value’ 
(and hence DA level) can be a positive or 
negative RPE, and efficient learning requires 
treating these differently. One possibility is 
that tonically active neurons, a cholinergic 
population that pause during windows of 
dopaminergic RPEs, may signal when to learn 
and can further enhance the contrast between 
tonic and phasic DA signals13, although this  
remains speculative.

Finally, on a broader level, RPE theory has 
been so successful in part because it has generated 
clear and testable predictions, leading to experi-
mental designs that parametrically manipulate 
factors that affect RPE with compelling results14, 
even satisfying an axiomatic description of RPEs 
independent of any specific implementation10. 
Moreover, RPE models can still show ramping 
under certain circumstances and depending on 
assumptions15, so some purists may prefer the 
parsimony of a single RPE mechanism until fur-
ther evidence for value theory accrues. Thus, any 
new theory should be subject to the same rigor 
and falsifiable predictions for follow-up work. 
For example, an intriguing and counterintuitive 
prediction of the DA value theory proposed by 
Hamid et al.5 is that if one could exogenously 
and selectively increase (or decrease) the DA 
baseline while allowing DA to respond endog-
enously to rewarding events, this should impair 
(versus improve) learning by reducing the local 
change in DA. Regardless of the outcome of these 
or other tests, these papers provide an excit-
ing new bridge to reinvigorate our enthusiasm  

Figure 1  Functions of dopamine in action and learning. (a) DA concentration signals the value of 
overt action and directly invigorates choice accordingly. DA can also signal an RPE during reward 
on trial n – 1, reinforcing the value of the action so that it is invigorated on trial n. (b) Dynamics of 
dopamine during task events. A cue signaling future reward elicits initial jump and ramping in DA, but 
only when an overt action is required. Reward is anticipated by ramping DA encoding expected value. 
Reward occurrence or omission is signaled by a jump in value, mimicking an RPE, which serves as 
a bidirectional learning signal (dashed lines) for both the value of the predictive cue and the action. 
Phasic dopamine bursts increase subsequent value estimates and thus baseline DA on trial n + 1, 
diminishing the size of future phasic dopamine bursts.
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Despite the fact that, to perform the task, the 
monkey must have some working memory of 
the direction of the dots, neurons in LIP showed 
near chance-level encoding of motion direction 
during the delay period. This lack of delay- 
period selectivity is not a result of information  
about motion direction not entering LIP;  
during stimulus presentation, the motion 
direction was clearly represented. The neurons 
just seem to forget the direction when it most 
matters. Notably, the nearby medial superior 
temporal area, MST, which also receives direction- 
selective information from the medial temporal 
motion selective area MT, has by contrast been 
shown to carry working memory representa-
tions of motion direction5.

Although clearly a provocative finding, task 
and training are intertwined in the experi-
ments as outlined above, making it unclear 
which accounts for the difference in LIP activ-
ity. Parietal working memory activity might 
arise only after sufficient training. Given that 
the delayed match-to-sample task was trained 
first, it is possible that lack of working memory 
representation comes not from a difference in 
task, but from a lack of training. The authors 
have provided a detailed view into their train-
ing structure, which helps to allay this concern. 
In particular, the monkeys were extensively 
trained on the delayed match-to-sample task 
(hundreds of daily sessions and hundreds of 
thousands of trials), and their performance 
had plateaued. Although sorting out training 
and task by design awaits future replication 
studies, clearly the monkeys had substantial 
experience with the delayed match-to-sample 
task, therefore suggesting that task, and not 
training, accounts for the difference.

Potential alternative explanations aside, 
pause for a second to consider the extensive 
training regime. Why does it take monkeys so 
long to learn so little? It seems intuitive that a 

But how exactly does one get a monkey to 
make categorical decisions repeatedly and in 
a controlled way so that the neural representa-
tions can be systematically studied?

Continuing in the tradition of their labora-
tory4, Sarma et al.3 have developed formidable  
skills in training monkeys to do just this.  
In the current work, they shaped behavior 
incrementally, starting with a sequence of sim-
pler tasks before making the leap into categori-
cal decisions. The authors trained monkeys to  
perform a delayed match-to-sample task in 
which the monkeys were required to remem-
ber the direction of a patch of briefly presented 
moving dots and release a lever only if the 
direction of a second dot patch, presented after 
a short delay, exactly matched the remembered 
direction. After monkeys reached criterion 
performance, they were trained on the full 
categorization task, which was identical except 
for one crucial difference. In the categorization 
task, the monkeys were trained to release the 
lever not when the two directions were iden-
tical but when they were in the same experi-
menter chosen category (that is, moved in the 
same direction relative to an arbitrary category 
boundary). A series of studies has provided 
abundant support that, after such categoriza-
tion training, neurons in LIP and prefrontal 
cortex show a beautifully simple and stable 
representation of the category, preferring 
stimuli in either one category or the other4.

The new insight concerning working mem-
ory came from a relatively simple proposition 
that led to an unexpected result: record the 
activity of neurons before as well as after the 
training of the categorization task. Given that, 
after training, LIP neurons encode category 
during the delay period, might one expect that 
a working memory representation encoding 
direction would be present for the delayed 
match-to-sample task? Oddly, the answer is no. 

and update our understanding of dopamine in 
action, motivation and learning.
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Parietal and prefrontal: categorical differences?
Daniel Birman & Justin L Gardner

A working memory representation goes missing in monkey parietal cortex during categorization learning, but is still 
found in the prefrontal cortex.

Daniel Birman and Justin L. Gardner are in the 

Department of Psychology, Stanford University, 

Stanford, California, USA.  

e-mail: jlg@stanford.edu   

If you can imagine reading to the end of this 
sentence and forgetting what was written at 
the beginning, you may start to appreciate 
how critical working memory is to much of 
what we take to be higher cognition. Indeed, 
a life without such short-term memory would 
lurch between disconnected events, threat-
ening not just our cognitive abilities, but the 
core continuity of our conscious selves. The  
finding in the 1980s that, during delay periods 
in which monkeys remembered the location of 
an instructed eye movement, prefrontal1 and 
parietal2 neurons display persistent, spatially 
specific activity cemented the idea that these 
cortical areas are allied in serving this criti-
cal memory function. However, in this issue 
of Nature Neuroscience, Sarma et al.3 report 
parietal neurons in the lateral intraparietal 
area (LIP) to be unexpectedly and puzzlingly 
forgetful, whereas their counterparts in the 
prefrontal cortex are not.

This finding comes from experiments 
probing another hallmark cognitive function 
for which parietal and prefrontal neurons 
appear to share responsibility: categoriza-
tion. Categorization is our ability to general-
ize properties of, say, an apple across many 
exemplars with incidental differences in size, 
color or shape. Without categorization, each 
and every apple might have to be individu-
ally memorized. Categorization is clearly a  
foundational cognitive capacity; we use it 
not just when we recognize an apple, but 
when we distinguish specific states of impor-
tance, such as whether it is edible or rotten.  
We might imagine that categorical decisions 
are just as critical for a monkey as for a human.  
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