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Abstract
Models of word meaning, like the Topics model (Griffiths et
al., 2007) and word2vec (Mikolov et al., 2013), condense
word-by-context co-occurrence statistics to induce
representations that organize words along semantically
relevant dimensions (e.g., synonymy, antonymy, hyponymy
etc.). However, their reliance on latent representations
leaves them vulnerable to interference and makes them slow
learners. We show how it is possible to construct the
meaning of words online during retrieval to avoid these
limitations.
We implement our spreading activation account of word

meaning in an associative net, a one-layer highly recurrent
network of associations, called a Dynamic-Eigen-Net, that
we developed to address the limitations of earlier variants of
associative nets when scaling up to deal with unstructured
input domains such as natural language text. After fixing the
corpus across models, we show that spreading activation
using a Dynamic-Eigen-Net outperforms the Topics model
and word2vec in several cases when predicting human free
associations and word similarity ratings. We argue in favour
of the Dynamic-Eigen-Net as a fast learner that is not
subject to catastrophic interference, and present it as an
example of delegating the induction of latent relationships
to process assumptions instead of assumptions about
representation.

Keywords: Retrieval; Dynamic; Associative; Semantic; Process
model; Words

Landauer and Dumais (1997) echoed Plato’s observation
that most of our knowledge about the meaning of words
depends on the induction of latent relationships between
words that never directly co-occur. A statistical learning
account of the formation of the meaning of words from
linguistic experience must specify how to exploit
surface-level co-occurrence patterns to infer relationships
between words that have not appeared together. How can
the system infer a relationship between two words like
EAGLE and HAWK if they never co-occur, but both occur
in the context of other words like FEATHER and FLY?

In the absence of direct co-occurrence, the
relationship between words like EAGLE and HAWK is
latent. Distributional semantics accounts of word meaning
assume that latent relations directly correspond to
representations in memory, and specify a set of
transformations that encode the surface-level co-occurrence
patterns of words into a latent representation. The latent
relationships between words result from an encoding
process that compresses each word’s full co-occurrence
history into a lower-dimensional representation.

Some accounts treat discrete documents as separate
contexts, and assume that the raw input to the system is a
matrix of word vectors, where each element of each word’s
vector is proportional to the frequency of the word in the
corresponding document. Vectors for words like EAGLE
and HAWK may not significantly overlap in the raw
word-by-document matrix. In Latent Semantic Analysis
(LSA; Landauer & Dumais, 1997) the latent relationship
between words becomes explicit when the original word
vectors are projected to a lower-dimensional subspace. In
the Topics model (Griffiths et al., 2007), the latent
representation corresponds to a set of discrete topics, whose
combination is assumed to generate each of the observed
documents. The latent relationship between two words is
mediated through unobserved topics to which both words
correspond.

Word2vec (Mikolov et al., 2013) defines context based
on a fixed-size window of text from a corpus. At each slice
of text, the word in the middle of the window is designated
as the target and the surrounding words are used as its
context. Latent representations are formed through gradual
changes to the connectivity of a multi-layer neural net that is
trained to learn the conditional probability of each target
word given its context. The input and output layers are
local-code representations, where each unique word is
assigned a unique index. The context words are activated in
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the input layer and projected through a lower dimensional
hidden layer and back out through the output layer. The
lower-dimensional hidden layer acts in a similar fashion as
the lower-dimensional subspace in LSA, and increases the
proximity of words in the embedding based on overlap
between their contexts.

Levy and Goldberg (2014) showed that transforming
a word-by-context co-occurrence matrix using the shifted
Pointwise Mutual Information (SPMI) and compressing the
result along the context dimension approximates the same
objective function used to train word2vec. As we later show,
it is possible to obtain a similar level of performance, and
sometimes better, compared to word2vec by using spreading
activation in an associative net, instead of dimensionality
reduction, for revealing latent structure. An associative net
is a network of direct associations, stored in a weight
matrix, coupled with a recurrence relation that specifies how
activation spreads from an initially active set of nodes to the
rest of the network. Spreading activation forces the structure
in the network to interact with the initial activations to yield
a representation that integrates those initial activations with
the global associative structure.

There are several reasons why avoiding a latent
representation is desirable. A system capable of inducing
latent relations as a result of processing, instead of
representation, is more dynamic and context-sensitive, and
therefore more adaptable. Such a system is better suited for
tasks like predication, where the meaning of one word is
conditioned on another word, whereas models like LSA and
word2vec require further augmentation. One problem with
latent representations is that their formation is slow and
inflexible. For example, the Topics model and word2vec
both require several passes through the same input to form
stable representations that capture semantic relations. As a
result, it is unclear if models like word2vec and the Topics
model can account for the fast-learning and adaptation to the
environment characteristic of human learners (e.g., Wood et
al., 2020).

Another problem is more specific to neural embedding
approaches like word2vec, which rely on learning systems
that are notorious for their vulnerability to interference.
McClosky (1989) showed how learning one set of
input-output mappings in a three-layer neural network,
trained with backpropagation, completely wipes out
information encoded from previously learned input-output
mappings. More recently, Manning and Jones (2020) used
polysemous words to show that word2vec suffers from
similar problems due to interference. Polysemous words
have the same spelling, but take up different meanings
depending on their context. A word like BANK, has its
dominant meaning as a financial institution and its
secondary meaning as the land surrounding a body of water.
Manning and Jones found that word2vec favoured one sense
of polysemous words over another sense, depending on
whether contexts portraying the one sense were trained
before or after the contexts portraying the other sense. That
is, if the network was trained with all the contexts using

BANK to refer to a financial institution, followed by
contexts that use BANK to refer to land surrounding a body
of water, then the resulting word vector for BANK would be
most similar to other words like RIVER or WATER instead
of MONEY or ACCOUNTING. Avoiding dimensionality
reduction may be one way cross-talk between encoded
information can be minimized, since the distinctiveness of
word representations is not lost through the compression.

In this paper, we show how latent relations can form
in an associative net, using a spreading activation algorithm
we developed. In prior work, we explored generalization
over serial-order associations encoded from a text corpus,
and found how a Dynamic-Eigen-Net was better at
distinguishing congruent bigrams (e.g., “the dog”) from
incongruent bigrams (“dog the”) than commonly used
alternatives (Shabahang, Yim, Dennis, 2022). The
Dynamic-Eigen-Net attributed greater familiarity to the
congruent bigrams over incongruent bigrams, even when the
weight corresponding to each of the congruent bigrams was
lesioned prior to retrieval. That is, it exploited the global
associative structure to generalize. Here, we extend the
model to order-independent associations.

Dynamic-Eigen-Net
A Dynamic-Eigen-Net is a linear associative net with
transient cue-driven weight changes. The transient weights
temporarily bias the network’s settling point toward the cue
and prevent runaway towards the dominant settling point of
the static weight matrix. In Hebbian associative nets like the
Dynamic-Eigen-Net, synapses between pairs of “neurons”
strengthen when the neurons activate within a short time
interval. If a single neuron encodes a single word in a
sentence, then the strengthened synapses encode
co-occurrence rates between words that keep the same
company. Hebbian learning only requires a single exposure
to the training data compared to backpropagation learning
which requires many exposures before producing a stable
memory representation. In addition to a memory
representation for capturing associations, the weight matrix,
a state vector tracks the momentary activations of the
system.

Processing in an associative net is characterized by an
initial state and an update function that propels the system
forward in time. The state-transition law specifies how its
memory weights, W, interact with the momentary state, xT

t,
to drive the system into the future, xT

t+1. For retrieval, an
input cue, xT

0, is used to initialize the state for the first
time-point, and the state at the next time-point is obtained as
a function of the vector-matrix multiplication of the current
state and the weight matrix, xT

t+1 = f(xT
tW). The process is

carried out iteratively until further iterations have no
additional effect on the state vector (i.e., when xT

t+1≈ xT
t).

Retrieval forces the interconnections between words
encoded from previously learned patterns to interact with
the cue until the system reaches an equilibrium state. The
equilibrium state is treated as the retrieved pattern.
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In a Dynamic-Eigen-Net, the outer-product of the initial
cue is added to the weight matrix before recurrence takes
place, and is reset once the state settles to an equilibrium. In
a linear associative net, each step in the recurrence pulls the
state closer to a weighted combination of the eigenvectors,
but ultimately settles toward the dominant eigenvector – the
dimension capturing the highest amount of variance in the
encoded patterns. Temporarily adding the outer-product of a
cue adds another term, which persistently pulls the state
towards the initial representation to prevent flight towards
the dominant eigenvector. The update function for a
Dynamic-Eigen-Net is given by,

If we let xT
∞ be the state in the limit, and λ∞ be the

primary eigenvalue of the modified weight matrix,
W + x0xT

0 , the following equation holds:

The symbol, ėi , denotes the i’th eigenvector. The right-hand
side, λ∞xT

∞ , follows from the fundamental eigenvalue
theorem and because xT

∞ is the primary eigenvector of W +
x0xT

0 . The equation shows how transient weights shift the
system’s equilibrium, i.e., xT

∞, toward the initial cue. For the
term, Σiλi(xT

∞ ėi)ėi
T, the eigenvectors and eigenvalues

correspond to the original weight matrix, before the
outer-product of the initial pattern was added. In general, the
activation pattern converges towards the direction of each of
the eigenvectors, weighted by its dot-product with the
current state, plus the initial pattern, weighted by its
dot-product to the current state. Since the states are assumed
to have unit-normal length, the dot-products correspond to
vector cosines (c.f. word embeddings).

Given a cue, the first iteration of recurrence excites
words corresponding to its syntagmatic, or first-order,
associates but because the resulting activations are used to
probe the system again on a subsequent iteration, they in
turn excite the second-order (latent) associations of the cue.
Higher-order associations follow from further recurrence
iterations until the system settles. Given two sentences such
as “the dog played with the bone” and “the cat played with
the leaf”, cueing the system with CAT would activate
PLAYED and LEAF in the first iteration. In the next
iteration, the word PLAYED would activate DOG and
BONE and so forth.

Table A1, in the appendix, shows a small corpus of
fifteen different sentences that will be used to provide a toy
demonstration of some of the Dynamic-Eigen-Net’s
properties. First each unique word in the corpus was
assigned a unique index. Treating each sentence as a
different context, the number of times each word
co-occurred with each other word within the same context
was collected into a word-by-word co-occurrence matrix, C,
where each cell, Cij, corresponded to the number of times
the i’th word co-occurred with the j’th word in the same

context. In the simulations in the next section, a 7-word
sliding window was used to define context.

The co-occurrence matrix is used to estimate the
joint-probability of pairs of words occurring in the same
context, in addition to the base-rate probability of each
word. We used a smoothing parameter, ɑ, when estimating
the relevant probabilities. The details of the probability
estimation method are shown in the appendix. We used a
smoothing parameter ɑ = 1 for the toy demonstration and ɑ
= 0.4 for the main simulations in the next section.

The Shifted Pointwise Mutual Information (PPMI) was
applied to the probabilities to normalize for the different
base-rate probabilities of different words (i.e., words like
THE and ON occur much more often than words like DOG
and CAT). For the simulations in the next section, we also
remove all negative values to increase sparsity to reduce the
memory load for computational reasons (cf. Goldberg &
Levy, 2014).

The weight connecting the i’th word to the j’th word is
given by,

where pij is the probability that the i’th word occurs with the
j’th word and pi and pj are the base-rate probabilities of the
i’th word and the j’th word, respectively. The ratio of the
joint probability of a pair of words and the product of their
base-rate probabilities ensures that the associative strength
between each pair of words is proportional to the magnitude
by which their joint probability exceeds their expected
probability under the assumption that they occur
independently.

The parameter, k, corresponds to the amount of “negative
evidence” used to discount each association by a constant to
reduce spurious associative strengths (see Levy & Goldberg,
2014). The shift parameter, k, was set to 1 (i.e., no negative
evidence) for the toy example and 5 for the simulations in
the next section.

In addition, the Dynamic-Eigen-Net requires partial
inhibition of the dominant eigenvector, therefore we subtract
some proportion, η, of the dominant eigenvector’s
outer-product, with itself, ėmaxėT

max , weighted by its
corresponding eigenvalue, λmax , from the weight matrix,

The parameter, η, was set to 0 for the toy demonstration and
0.8 for the main simulations in the next section. Before
cueing the system, the transient weights, x0xT

0 , are added to
the weight matrix with a weight set to, λmax + βλmax to ensure
that the pull of the initial cue dominates during recurrence.
The parameter, β, was set to 0.001. Hence the complete
update function is given by,
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Overall, the model has four free parameters, ɑ
(smoothing), k (negative evidence), η (dominant eigenvector
inhibition), and β (excess force of the transient weights over
the dominant eigenvector).

Figure 1. Trajectory of activations across iterations when
the model is cued with CAT, EAGLE, and LIBERAL,
shown in the left column of plots and when it is cued with
BANK, BANK and MONEY, in addition to BANK and
BIRD, shown in the right column of plots.

Comparing the three plots along the left column of
Figure 1 with the corresponding corpus, shown in the
appendix, demonstrates how latent relations between words
like CAT and DOG, EAGLE and HAWK, and LIBERAL
and CONSERVATIVE emerge as activation spreads through
the network using the Dynamic-Eigen-Net algorithm. Only
words that directly co-occurred with the cues in the same
sentence are activated after the first iteration of recurrence,
however, activation quickly spreads to other words that
occurred in similar contexts after the second iteration. The
plots along the right column show the context-sensitivity of
the model. When cued with the word BANK, words with
the financial sense of the cue dominate the activations since
there were more cases using the word in the financial sense
in the toy corpus. When further context is added, and the
model is cued with BANK and MONEY, the secondary
sense (i.e., river-bank) is further suppressed relative to when
only the word BANK was used as the cue. Likewise, when
the model is cued with both BIRD and BANK, the
secondary sense dominates in the activations as shown in
the lower right plot.

Simulations
To compare our account with other commonly employed
models, we used the same corpus to train LSA, the Topics
model, word2vec (CBOW), and the Dynamic-Eigen-Net,

and examined each model’s performance on the free
association task, using the University of South Florida
norms (USF; Nelson et al., 2004), and several word
similarity datasets. Our results demonstrate how spreading
activation using the Dynamic-Eigen-Net outperforms the
other models in several cases and present it as a more
parsimonious account. Finally, we used a set of norms,
where raters categorized the relation between pairs of words
into six different classes, to qualitatively profile each model
in terms of their differential proclivity towards particular
types of relations. Our main contribution is the
demonstration that spreading activation using the
Dynamic-Eigen-Net is capable of capturing the meaning of
words as well as commonly used alternatives that rely on
latent representations.

To construct LSA vectors, we first normalized the raw
word-by-document co-occurrence matrix, C, into the
transformed matrix, G, using,

, where,

We then applied Singular Value Decomposition (SVD) to
reduce the dimensionality of each Gi from the original
37,650 to 700.

To train the Topics model, we used the same procedure as
Griffiths et al. (2007). We fixed the number of topics at
K=1700 and set the smoothing parameters over documents
and words to 50/K and 200/V, respectively. For the Gibbs
sampling, we used 800 burn-in samples. After the burn-ins,
we used 8 samples for our estimate of the posterior, each
separated by 100 thinning samples.

For training word2vec, we set the embedding
dimensionality to 200, and used a 7-word sliding window –
same as the Dynamic-Eigen-Net – over the corpus (3 words
flanking a middle target). We used the negative sampling
optimization algorithm, with 25 negative samples, and
trained the network over 40 epochs. Since word2vec
initializes the weights at random, we provide results based
on the average of 20 separate runs.

We used the USF norms for the free association task in
order to match results from Griffiths et al. (2007). We used
the same procedure that they describe to preprocess the
training corpus and kept it fixed across models. That is, we
used the TASA corpus and filtered out any word that either
occurred less than ten times or was in a stop-list. This left us
with a corpus of V = 52046 word types over D = 37650
documents; the total number of word tokens was 4402747.

With LSA and word2vec, to predict the free associates of
a given cue, the cue’s vector cosine with every other word
was obtained and the word with the largest cosine was
treated as the response. We rank-ordered the words in
decreasing order, and checked the most probable human free
associate’s rank. A rank of one corresponds to a perfect
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match, whereas a rank of two means that the most common
associate is below another word, and so forth.

The same procedure was applied to the Topics model by
swapping cosines for probabilities. The probability of seeing
a response, given a cue, is obtained by marginalizing over
the topics,

In addition to the four models, we also provide results from
the direct associative weights corresponding to the SPPMI
normalized co-occurrence matrix (labeled as “Direct”). That
is, for a given cue, the associative strengths in the
corresponding row in the weight matrix were treated as
activation strengths. Better performance in the
Dynamic-Eigen-Net relative to the direct weights
demonstrates a performance advantage gained by spreading
activation.

The ranks in activation were restricted to the
intersection of the words that were used as either cues or
responses in the free association norms with the words in
the corpus. The intersection of the word types in the USF
norms and TASA was 4566.

We followed a similar procedure for applying the
models to the word similarity datasets from Miller et al.
(1993; MC), Bruni et al. (2013; MEN), Radinsky et al.
(2011; MKTurk1), Halawi et al. (2012; MKTurk2), Luong et
al. (2013; RareWord), Rubenstein et al. (1965; RG), Hill et
al. (2016; SimLex), Gerz et al. (2016; SimVerb), Yang et al.
(2016; YP), Finkelstein et al. (2006; WS1), and Agirre et al.
(2009; WS2). For each pair of words in a given dataset, one
member was used as a cue and either the resulting cosines,
probabilities, or activations, depending on the model.
Performance on each dataset was quantified as the
Spearman’s correlation between the model-derived strengths
and corresponding human word similarity ratings.

Results
Figure 1 summarizes performance on the free association
task across models. The left panel shows the median rank of
the first associate, across all cue-response pairs, with lower
valued ranks indicating that the first associate was closer to
the top in strength. The Topics model, Dynamic-Eigen-Net,
and the direct associations yield similar performance in
terms of the median ranks (17), followed by word2vec
(21.5) and LSA (29). The right panel shows the percent of
times the first associate was also the most active word in
each model. The Dynamic-Eigen-Net and the Topics model
favour the first associate as the most active word at about
the same rate, 15.73% and 15.68%, respectively. The direct
associations favour the first associate 14.98% of the time, a
rate lower than the Dynamic-Eigen-Net, indicating a
performance advantage when spreading activation.
Word2vec and LSA trail behind the other models, favouring
the first associate 14.85% and 11.73% of the time,
respectively.

Figure 1. Performance on the free association across
models shows how the Dynamic-Eigen-Net (DEN) yields
low median rank for the first associate (left panel) and a
high percentage of first associates as the most active
word (right panel).

Figure 2 shows the Spearman’s correlations between the
strengths obtained for pairs of words and the human rated
similarity, across models and datasets. Overall, strengths
derived using word2vec show slightly higher correlations
with human judgments, but the Dynamic-Eigen-Net, the
Topics model, and LSA are not very far behind. The
increase in the correlations for the Dynamic-Eigen-Net
relative to the direct associations shows how spreading
activation improves performance. The only exception is the
MC dataset, which only contains 30 pairs of words. The
advantage of spreading activation is most stark for the YP,
SimVerb, and MKTurk1 datasets. Word2vec and LSA show
superior performance to the other models for the SimLex
dataset, which defines similarity based on paradigmatic
relations. Paradigmatic relations hold between words that
can be used interchangeably.

To explore the kinds of relations the different models
capture, we obtained a set of norms where five raters
categorized a set of cue-response pairs into one of six
categories, including “syntagmatic”, “paradigmatic”,
“forward”, “backward”, “form”, and “other”. The raters
were asked to categorize pairs that tend to occur in the same
context (e.g., WEB and SPIDER) as syntagmatic, and pairs

Figure 2. Performance on the word similarity
datasets shows comparable performance
between Dynamic-Eigen-Net (DEN) and
widespread models like word2vec and
Topics.
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that can occur in place of one-another (TROUSERS and
PANTS or EAST and WEST) as paradigmatic. When a cue
(DILL) tends to precede the response in serial order
(PICKLE), the raters were asked to label the pair as having
a forward association and when the cue (YOLK) tends to
succeed the response (EGG), it was to be labeled as a
backward association. If the two words had phonetic (EYE
and I) or orthographic (CHOIR and CHORE) overlap, their
relation was labeled as form-based. A final category,
“other”, was included to make the classification exhaustive.
For any given pair, each rater was asked to choose one
relation. We designated the relation with the most votes
across the five raters to be the dominant relation for each of
the word-pairs, and probed the models with one member of
the pair and tallied the median rank of the other word into
bins corresponding to the dominant relation. We base the
ranks on the intersection of the words in the norm-set and
those in the TASA corpus, totalling 1371 words.

Figure 3 shows the median rank of the responses across
word relations and models. As with the free-association
ranks, lower valued ranks indicate higher activations
relative to other words. The Dynamic-Eigen-Net and the
Topics model show approximately the same tendency for
activating syntagmatic associates, and word2vec and LSA
show the least tendency. Word2vec and LSA show the
strongest tendency toward activating paradigmatic relations,
with the Direct associations showing the least tendency. The
Dynamic-Eigen-Net shows a strong tendency toward
activating words based on serial order, with a higher
likelihood of activating words that succeed the cue in serial
order (“forward”) relative to words that precede it
(“backward”). Word2vec shows the least tendency toward
activating words based on serial order, indicating that such
information is lost during training. Since none of the models
encode form-based representations, they have no tendency
towards activating other words that overlap in form.

Figure 3. Median rank of the strength of
associates across word relations and
models.

Discussion
Our results show that assuming a latent representation may
not be necessary for capturing the meaning of words. The

appropriate process assumption can suffice to reveal
relations between words that are not explicitly observed
through the surface-level regularities in the system’s record
of past experience. Overall, the Dynamic-Eigen-Net
outperformed word2vec and LSA on the free association
task and showed a similar level of performance compared to
the Topics model. Across the word similarity datasets, the
Dynamic-Eigen-Net reliably outperformed the Topics model
and showed a similar level of performance as word2vec on
most of the datasets.

In the Dynamic-Eigen-Net, information stored in
memory directly corresponds to the co-occurrence statistics
of words across contexts, but the spreading of activation
enables the system to induce more generic relations between
words through a relaxation process. The
Dynamic-Eigen-Net, being linear, facilitates the
characterization of the system’s dynamics based on the
eigenspectrum of the weight matrix. The activation of a
particular word, aligns the state vector with a subset of
eigenvectors in the weight matrix and gradually shifts the
state vector in their direction. Since the top eigenvectors of
the weight matrix have the strongest attractive force, the
state is generally pulled towards those dimensions of high
variance. The high-level dynamics of spreading activation
correspond to the gradual integration of the input state into
the global associative structure of the entire memory system.
In a similar way that LSA induces latent representations by
approximating the original word-by-document matrix based
on the singular vectors that capture the most variance,
spreading activation drives the system’s state towards the
dominant eigenvectors of the weight matrix.

Deferring the construction of meaning to retrieval makes
it easier to extend the system to capture the meaning of
multiple words. For instance, cueing memory using the
Dynamic-Eigen-Net algorithm with the word BANK,
activates the words DEPOSIT, ACCOUNT, SAVINGS,
CHECK, and MONEY as the top five most active words. It
is possible to cue memory with more than a single word, by
activating further nodes at input. Cueing memory with the
two words, RIVER and BANK, activates BANKS,
MISSISSIPPI, HUDSON, STREAM, and NILE as the top
five most active words. The occurrence of the word RIVER
in addition to BANK aligns the state of the system with a
different set of eigenvectors as when cueing the network
with BANK alone. The context-sensitivity of the system
makes it a potential candidate for tasks like predication,
without relying on extraneous processing assumptions.

Conclusion The Dynamic-Eigen-Net provides a more
parsimonious alternative for capturing word meaning,
relative to other accounts, and its context-sensitivity makes
it promising for semantic composition.
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Appendix
Table A1
Small corpus

the dog played with the bone
the cat played with the leaf
the truck drove to the factory
the car drove to the garage
the flower grew on the field
the tree grew on the hill
the liberal increased taxes
the conservative decreased taxes
the eagle had white feathers
the hawk had black feathers
the bird sat along the grassy river bank
the investors stood in front of the bank
the traders deposited their money into the bank
the salesman withdrew money from the bank
the bank raised the interest rate

With V as the vocabulary size, the marginal probability
of the i’th word is estimated with ɑ as an additive smoothing
parameter using,

The marginal probability of the j’th word is estimated with ɑ
used as both the additive and multiplicative smoothing
parameter using,

The joint-probability of word pairs are estimated with ɑ as
an additive smoothing parameter using,

where T is the total count, .
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