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Accuracy of the Time-Averaged Ponderomotive Approximation for
Laser-Plasma Accelerator Modeling

D. Terzani,1, a) C. Benedetti,1 C. B. Schroeder,1, 2 and E. Esarey1
1)Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
2)Department of Nuclear Engineering, University of California, Berkeley, California 94720,
USA

(Dated: May 6, 2021)

Reliable modeling of laser-plasma accelerators, where a short and intense laser pulse propagates in an under-
dense plasma over long distances, is a computationally challenging task. This is due to the great disparity
among the scales involved in the modeling, ranging from the micron scale of the laser wavelength to, for in-
stance, the meter scale of the laser-plasma interaction length for a multi-GeV-class laser-plasma accelerator.
To reduce such imbalance the time-averaged ponderomotive approximation may be used, where the plasma
particle dynamics is analytically averaged over the laser frequency, and only spatio-temporal scales associated
with the laser envelope are retained in the calculations, resulting in significant computational savings. In this
paper we characterize the accuracy and robustness of the time-averaged ponderomotive approximation for a
range of laser parameters of interest for present and future laser-plasma accelerators, and we show that the
error introduced by the averaging process is small in all relevant cases.

I. INTRODUCTION

Plasma-based acceleration has attracted significant
theoretical and experimental interest over the past few
decades owing to the possibility of generating accelerat-
ing gradients that are several orders of magnitude larger
than that obtainable in conventional radio-frequency-
based accelerators, presently limited to . 100 MV/m
due to material breakdown1. In a laser-plasma accel-
erator (LPA), a short and intense laser pulse propagat-
ing in an underdense plasma ponderomotively drives a
plasma wave (or wakefield). The wakefield has a rel-
ativistic phase velocity and the electromagnetic fields
associated with it can accelerate and focus a parti-
cle beam properly delayed with respect to the laser
driver. LPAs have demonstrated the production of quasi-
monoenergetic electron bunches in gas jets2–4, gas cells5,
and in capillaries discharge waveguides6–8, reaching en-
ergies as high as 8 GeV in a 20 cm-long laser-heated
capillary7.

In the context of modeling the complex nonlinear
physics involved in the laser-plasma interaction and
particle acceleration, simulation codes based on the
Particle-In-Cell (PIC) method have been broadly used for
decades9,10. However, start-to-end modeling, in 3D, of a
multi-GeV class LPA is generally a very computationally-
challenging task. This is due to the large disparity be-
tween the spatio-temporal scales involved in the model-
ing, ranging from the ∼ µm scale of the laser wavelength,
to the total plasma length, which can be up to a meter
for a ∼10 GeV-class LPA stage. Significant efforts are
underway to develop highly efficient and highly scalable
parallel codes that can reduce the computation time by
making use of the possibilities offered by modern hard-
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ware architectures (e.g., Graphics Processing Units)11–14.
However, besides software improvements, and in order to
make modeling of multi-GeV LPA stages readily avail-
able, a reduction of the computational complexity of the
problem is required. This can be achieved by means
of the adoption of reduced physics models to describe
the laser-plasma interaction. Reduced models allow for
significant computational speed-up either because of di-
mensionality reduction (e.g., 2D cylindrical or quasi-3D
instead of full 3D Cartesian)12,15–17 and/or because of
approximations in the description of the physics of the
system (e.g., use of quasi-static instead of full plasma
response18–20, use of cold fluid plasma description instead
of fully kinetic15–17,21, use of time-averaged ponderomo-
tive approximation instead of full Lorentz force22–25, per-
forming the simulation in a Lorentz boosted frame ne-
glecting backward propagating waves14,26,27, etc.). For
instance, in the time-averaged ponderomotive approxi-
mation (TPA), also known as the laser envelope approxi-
mation or ponderomotive guiding center approximation,
the equations describing the motion of the electrons in
the fields of the laser and the wake are (analytically) av-
eraged over the fast laser oscillations. This approxima-
tion is justified by the fact that, generally, the particle
quiver motion in the laser pulse does not couple with the
plasma dynamics at the scale of the plasma wavelength.
Since the averaging removes the need to model the details
of electron motion at the scale of the laser wavelength,
the imbalance between the physical scales involved in the
simulation is reduced, and a coarser computational mesh
can be used. For instance, the longitudinal resolution
(i.e., along the direction of laser propagation) can be re-
duced by a factor Ω = ω0/ωp, where ω0 = ck0 = 2πc/λ0
is the laser frequency (k0 is the laser wavenumber, λ0 is
the laser wavelength, c the speed of light in vacuum), and
ωp = (4πn0q

2
e/m)1/2 is the plasma frequency (n0 is the

background plasma density, qe and m are the electron
charge and mass, respectively). Additionally, if the tem-
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poral step scales with the longitudinal resolution (this
is typically the case if the spatial and temporal resolu-
tion obey a Courant condition) also the temporal res-
olution can be reduced by a factor Ω. Hence, assuming
the number of particles-per-cell is kept constant, the final
speed-up is on the order of Ω2, resulting in several orders
of magnitude reduction in the total computational time
required. For instance, for a 10 GeV-class LPA stage
where n0 ∼ 1017 cm−3, and assuming λ0 ∼ 1 µm, we
have Ω ∼ 100, yielding a speed-up of 104.

Over the years, the TPA has been exploited in many
simulation codes15,16,22–24,28,29, that have successfully
been used for the investigation of several aspects of LPA
physics30–35 and the detailed modeling of experimental
setups6–8,36. Recently, a new fast and efficient explicit
solver for the laser envelope equation has been presented
and implemented in the codes ALaDyn25 and SMILEI37.

Despite the interest that the TPA has attracted in the
community, as of today no study is available where the
accuracy of this approximation is systematically inves-
tigated in the whole domain of laser and plasma pa-
rameters of interest for present and future LPA experi-
ments. While for quasi-linear or mildly nonlinear regimes
the TPA has been shown to be sufficiently accurate and
robust15,21,23,25,28,37, regimes where the laser pulse is
very short (i.e., pulse length & λ0), ultra-intense (i.e.,
such that a0 � 1, where the laser strength parameter
a0 is defined starting from the peak vector potential of
the laser, A0, as a0 = qeA0/mc

2) and tightly focused
(i.e., transverse laser size & a0λ0) have not been suffi-
ciently explored. A detailed study of the dynamics of a
single particle interacting with a laser pulse evolved in
the ponderomotive approximation has been presented in
Ref. 38; however the laser intensities I0 ∼ 1017 W/cm2,
where the intensity can be obtained from the relation
I0[W/cm2] ' 1.37× 1018a20/λ

2
0[µm], and pulse durations

considered T ∼ 200 fs do not comply with the laser pa-
rameters for a present day LPA. Here, we focus on in-
tensities 1018 W/cm2 . I0 . 1020 W/cm2 and pulse
durations 3 fs . T . 100 fs. In these regimes it is
not possible to determine a priori the accuracy of the
particle trajectory averaging associated with the TPA
model, since no rigorous analytical description is avail-
able. However, numerical experiments show that the
TPA tends to be remarkably accurate even in these cases.
For instance, this is shown in Fig. 1, where we present
a comparison between the wake resulting from a stan-
dard full PIC (top half of each panel) and from a TPA
simulation (bottom half of each panel) obtained in 2D
Cartesian geometry for a laser propagating in a plasma
with density of n0 = 1.4 × 1018 cm−3 and a laser profile
a(r, z, t) = a0 exp(−r2/w2

0) cos2[π(z − ct)/L] cos[k0(z −
ct)], with a0 = 10, w0 = 10µm, TFWHM = 8 fs, and
λ0 = 0.8µm, where w0 is the laser waist, i.e., the trans-
verse position where the intensity drops by a factor e−2,
and cTFWHM = LFWHM = 2L arccos

(
2−1/4

)
/π is the full

width at half maximum (FWHM) length of the pulse in-
tensity. Panel (a) shows a two-dimensional map of the

a)

Figure 1. Comparison between a wake obtained with a full
PIC (top half of each panel) and in a TPA simulation (bot-
tom half of each panel) in 2D Cartesian geometry for a longi-
tudinally cosine-squared profile and a transversely Gaussian
laser driver with a0 = 10, w0 = 10µm, TFWHM = 8 fs and
λ0 = 0.8µm propagating in a uniform plasma with density
n0 = 1.4 × 1018 cm−3. Panel (a) shows a two-dimensional
map of the longitudinal electric field normalized to the cold
wavebreaking limit, panel (b) shows a map of the electron
plasma density.

longitudinal electric field normalized to the cold wave-
breaking limit EWB = mcωp/qe, while panel (b) shows
a map of the electron plasma density. The TPA simu-
lation correctly reproduces, at least macroscopically, all
the features observed in the PIC case.

In this paper, we perform a systematic comparison be-
tween the results obtained with the non-averaged parti-
cle dynamics, computed using, e.g., a standard PIC code,
where the particle quiver motion in the laser field is de-
scribed without approximation, and that using the en-
velope approximation. We compare the particle phase-
space after the interaction with the laser in the two cases
quantifying the relative error with a suitable phase-space
metric. This allows us to characterize the regimes where
the TPA is valid. Additionally, a laser-dependent phe-
nomenological parameter quantifying the quality of the
TPA has been identified and correlated with the phase-
space error. Studies are performed in vacuum and in
plasma assuming a 2D Cartesian geometry. We also pro-
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pose an improved expression for the TPA that is more
accurate in the case of a tightly focused laser pulse.

The paper is organized as follows. In Sec. II we re-
view the theoretical background of the TPA, showing,
by means of a one-dimensional (1D) analysis, how the
Hamiltonian is transformed under the two scale separa-
tion that characterizes the model and in which limit it
tends to the often-quoted Hamiltonian in the ponderomo-
tive approximation. In Sec. III we present a systematic
comparison of PIC and TPA simulations, spanning over
a broad set of laser parameters (i.e., varying its strength,
longitudinal size, and transverse size), exploring regimes
of interest for modern and future LPAs, analyzing how
the error associated with the TPA affects the single par-
ticle dynamics, and investigating how such error affects
the wakefield. Conclusions are presented in Sec. IV.

II. THE TIME-AVERAGED PONDEROMOTIVE
APPROXIMATION

In order to investigate theoretically the validity of the
time-averaged ponderomotive approximation, we con-
sider the motion of a single electron in a laser pulse prop-
agating in the longitudinal, z, direction. Introducing the
(longitudinal) co-moving coordinate defined as ζ = z−ct,
where t is the time, the dynamics of the system is de-
scribed by the (normalized) Hamiltonian

H (x,P) =

√
1 + |P + a|2 − Pz, (1)

where x = (x, y, ζ) denotes the particle coordinates
(x and y are the transverse coordinates), P = u − a
is the normalized (to mc) canonical momentum, u is
the normalized (to mc) particle kinetic momentum, and
a = qeA/mc

2 is the normalized laser vector potential.
We note that if the particle interaction time with the
laser is much shorter than the laser Rayleigh length,
ZR = πw2

0/λ0, i.e., the characteristic length scale for
laser evolution, we can treat the laser pulse as non-
evolving throughout the interaction, and, hence, the
Hamiltonian Eq. (1) is conserved. In this case, and for
a particle initially (i.e., before the interaction with the
laser) at rest we have that H = 1. We consider the (non
evolving) laser pulse to be linearly polarized (i.e., ay = 0)
and we define its transverse component as

ax =
â

2
eik0ζ + c.c., (2)

where â is the (complex) laser envelope and the exponen-
tial term represents the contribution of fast laser oscilla-
tions. Under the Coulomb gauge, ∇ · a = 0, the longi-
tudinal component of the vector potential is determined
by the transverse one according to

az =
1

2

∫ ∞
ζ

∂xâ e
ik0ζ

′
dζ ′ + c.c., (3)

where we assumed az = 0 ahead of the laser pulse. In the
limit k0L� 1, where L is the characteristic scale length
of the laser envelope, the expression above simplifies to

az ' −
1

2ik0
∂xâe

ik0ζ + c.c. (4)

The Hamiltonian in Eq. (1) can therefore be expanded
taking into account the expression in Eq. (4), becoming

(H + Pz)
2

= 1 +
|â|2

2
+ |P|2 +

|∂xâ|2

2k20
+
â2e2ik0ζ + â∗2e−2ik0ζ

4
+ Px

(
âeik0ζ + â∗e−ik0ζ

)
− 1

4k20

[
(∂xâ)

2
e2ik0ζ + (∂xâ

∗)
2
e−2ik0ζ

]
− 2Pz

k0

∂xâe
ik0ζ − ∂xâ∗e−ik0ζ

2i
. (5)

A. 1D case (plane wave laser pulse)

In the 1D limit (i.e., assuming ∂x = ∂y = 0), and
using the conservation of the transverse component of the
canonical momentum for a particle in an electromagnetic
wave, yielding Px = 0 (i.e., ux = ax) and Py = 0 (i.e.,
uy = 0), the Hamiltonian Eq. (5) becomes

H1D(ζ, Pz) =√
1 +
|â|2

2
+ P 2

z +
â2e2ik0ζ + â∗2e−2ik0ζ

4
− Pz, (6)

where uz = Pz since az = 0, and the single particle
equations of motion are given by Hamilton’s equations,

(ζ̇(t), Ṗz(t))
T = (∂H/∂Pz, −∂H/∂ζ)

T
. Owing to the

presence of the rapidly varying term in Eq. (6) (i.e., the
terms containing the e±2ik0ζ factors), the (ζ(t), Pz(t))
phase-space orbit of a generic particle will contain high-
frequency components. For instance, from the constancy
of the Hamiltonian Eq. (6) (i.e., H1D = 1), we have

Pz(ζ) = uz(ζ) = |â|2/4+
(
â2e2ik0ζ + â∗2e−2ik0ζ

)
/8, (7)

where the second term on the right-hand side represents
the high frequency component. Averaged phase-space or-
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bits, where high-frequency components on the scale of the
laser wavelength (or smaller) are smoothed out, can be
obtained by introducing the following spatial averaging
operator

〈f〉 (ζ) =
1

λ0

∫ ζ+λ0/2

ζ−λ0/2

f (ζ ′) dζ ′, (8)

where f(ζ) is any ζ−dependent function. The aver-
aged momentum (i.e., the momentum of the particle
without high-frequency components) is obtained directly
by applying the spatial averaging operator to Eq. (7),
i.e., Pz,av = 〈Pz〉. Removing the high frequency spa-
tial component in the longitudinal momentum induces
a temporal smoothing in the temporal dependence of
the particle position. In fact, from Hamilton’s equa-
tions, dζ/dt = Pz(ζ)/γ(ζ) − 1, where, from Eq. (6),
γ(ζ) = 1 + Pz(ζ), and so [1 + Pz(ζ)] = −dt/dζ. By
applying the spatial operator to the previous equation,
we obtain the following expression for the averaged po-
sition of the particle, dζav/dtav = −1/(1 + Pz,av), where
tav is a slow time used to parametrize the averaged dy-
namics. One can show that equations for the averaged
phase-space orbit [ζav(tav), Pz,av(tav)] can be obtained
from the following Hamiltonian

H1D,av(ζav, Pz,av) ≡
√

1 + P 2
z,av +

|â|2
2

+Q− Pz,av,
(9)

where

Q =
〈 [
â(ζ)2e2ik0ζ + â∗(ζ)2e−2ik0ζ

]
/4
〉
, (10)

namely,

(
ζ̇av(t), Ṗz,av(t)

)T
=

(
∂H1D,av

∂Pz,av
, −∂H1D,av

∂ζav

)T
. (11)

We recall that the 1D TPA Hamiltonian is1,22,24,39

H1D,TPA(ζTPA, Pz,TPA) =

√
1 + P 2

z,TPA +
|â|2

2
− Pz,TPA.

(12)

It is straightforward to verify that in the limit k0L� 1,
Q→ 0, and so the averaged Hamiltonian H1D,av Eq. (9)
reduces to the TPA Hamiltonian H1D,TPA. In prac-
tice, already for a pulse length k0L ' 4, correspond-
ing to a FWHM length of ∼1 laser period, the results
obtained with the TPA Hamiltonian are essentially in-
distinguishable from the result obtained with the aver-
aged Hamiltonian, and, hence, both correctly describe
the (slow) secular part of the dynamics observed in the
exact (non-averaged) case. This is shown in Fig. 2(a),
where we plot the evolution of the longitudinal posi-
tion for a particle interacting with a laser pulse of the
form ax(ζ) = a0 exp

(
−ζ2/L2

)
cos(k0ζ), where a0 = 1,

λ0 = 2π/k0 = 1µm, and k0L = 4.

Figure 2. Longitudinal position of a particle interacting with
a laser pulse with a Gaussian longitudinal profile and a0 = 1.
The blue, red, and black curves are the trajectory obtained
using, respectively, the Hamiltonian in Eq. (6), Eq. (12), and
Eq. (9). The pulse length is k0L = 4 in (a), and k0L = 2 in
(b).

The three curves represent the trajectories obtained
with the exact Hamiltonian Eq. (6) (blue curve), with
the averaged Hamiltonian Eq. (9) (black curve), and with
the TPA Hamiltonian Eq. (12) (red curve), respectively.
For shorter pulse lengths, as shown in Fig. 2(b), where
k0L = 2 (corresponding to a FWHM length of ∼0.5 laser
periods), the TPA trajectory (red curve) deviates from
the one obtained with the averaged Hamiltonian (black
curve), and it is unable to reproduced the secular dynam-
ics observed in the exact case (blue curve). Note that, in
this limit, the particle trajectory is sensitive to the laser
phase, also known as carrier envelope phase (CEP). CEP
effects in a near single-cycle laser pulse can cause particles
interacting with the laser to accumulate a residual trans-
verse momentum that only depends on the phase of the
laser pulse40. This phase-dependent residual transverse
momentum can produce various effects that go beyond
a simplified ponderomotive description. We will investi-
gate numerically the implications that CEP effects have
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on the validity of the TPA in Sec. III C.

B. 3D case (focused laser pulse)

In the 1D case, the TPA Hamiltonian, formally de-
rived from the exact Hamiltonian, can be heuristically
obtained by dropping all the high-frequency terms, and
replacing the canonical momentum with its slow (time-
averaged) component that describes the secular motion
of the particle. Following the same heuristic procedure in
the 3D case, starting from Eq. (5), the TPA Hamiltonian
reads

HTPA =

√
1 + |PTPA|2 +

|â|2

2
+
|∂xâ|2

2k20
− Pz,TPA, (13)

where γ = (1 + |â|2/2 + |PTPA|2)1/2, and where PTPA de-
notes the slow (secular) particle momentum without the
high-frequency components. The corresponding expres-
sion for the ponderomotive force is

FP = −mc
2

4γ
∇

(
|â|2 +

1

k20

∣∣∣∣∂â∂x
∣∣∣∣2
)
. (14)

Note that the expression for the ponderomotive force de-
rived here contains an additional term (i.e., the second
term on the right-hand side in Eq. (14)) compared to the
expression commonly discussed in the literature1,38,39,41.
This term, which scales as ∼ 1/(k0w0)2 = ε2, originates
from the longitudinal component of the laser vector po-
tential and it is generally negligible, but may become
relevant for tightly focused laser pulses. Previous ana-
lytical derivations of the ponderomotive force based on
a multiscale expansion of the particle dynamics, e.g. as
discussed in Refs. 22, 38, and 39, only considered per-
turbations to the the quiver motion up to the first order
in ε � 1 (i.e., a broad laser pulse was assumed). In
this limit, corrections to the ponderomotive force arising
from the transverse variation of the envelope (e.g., terms
of order ε2) are necessarily neglected.

Due to the non-integrable nature of the dynamics of
the system described by Eq. (5), it is not possible to
determine a priori the error induced in the secular (av-
eraged) dynamics associated with neglecting the high-
frequency contributions in Eq. (5). Hence, the accuracy
of the TPA needs to be assessed on a case-by-case basis
using numerical simulations.

III. NUMERICAL VALIDATION OF TIME-AVERAGED
PONDEROMOTIVE APPROXIMATION

In order to systematically investigate the validity of
the TPA for the laser parameters of interest for present
and future LPA applications, where a clear separation be-
tween slow (secular) and fast (motion in the laser field)
dynamics might not always be satisfied, we analyzed and

compared the motion of a subset of particles interact-
ing with a given laser pulse, either retaining or averaging
their motion on the short spatial scales. We performed
the tests for a laser pulse propagating in vacuum, where
the ponderomotive force is the only force acting on the
particles, and in a uniform plasma, where also the effect
of the laser-driven plasma wakefield is considered. Mod-
eling for the vacuum case was done by numerically inte-
grating Hamilton’s equations for the Hamiltonian Eq. (5)
(the laser was assumed to be non-evolving) and the re-
sults compared with the ones obtained using the TPA
Hamiltonian Eq. (13), with and without the proposed
|∂xâ|2/k20 correction. Modeling for the plasma propaga-
tion case, where the self-consistent evolution of the laser
was taken into account, was done with the PIC code
ALaDyn25,42. Since the dimensionality of the system does
not influence the validity of the approximation, all the
studies were done in 2D Cartesian geometry.

In the tests, a laser pulse described by the envelope
profile

â(x, ζ) = a0 exp

(
− x

2

w2
0

)
cos2

(
πζ

L

)
, (15)

interacts with a sheet (line) of test particles, located at
the pulse focal point. Simulations are carried on until all
the particles have exited the laser pulse. In all our runs,
the laser wavelength was λ0 = 0.8µm. Fig. 3 shows an
example of the initial and final phase-space configuration
for the test particles for a case with laser pulse param-
eters a0 = 4, w0 = 10µm and TFWHM = LFWHM/c = 3 fs
(vacuum propagation). In Fig. 3, results obtained with
the exact dynamics are in black, while TPA results are
in red.

In order to quantify the error associated with the TPA,
we measure the relative difference between the final parti-
cle momenta obtained, respectively, in the non-averaged
and TPA cases [see panel (d) in Fig. 3]. An estimate of
the error associated with the TPA can be given by the
parameter

∆Ũ =

〈
|uP − uT |2

|uP |2

〉
, (16)

where uP and uT are, respectively, the final particle mo-
menta obtained in the non-averaged and TPA cases, and
where the averaging 〈·〉 represents an ensemble average
over the N test particles.

We expect the quality of the TPA approximation, i.e.,

the value of ∆Ũ , to be correlated with the following phe-
nomenological parameter

Γ = a20λ
2
0

(
1

w0
+

1

LFWHM

)2

, (17)

which represents the variation of the envelope of the laser
vector potential over a wavelength both in the longitu-
dinal and in the transverse direction. In fact, one would

expect the approximation to fail, i.e., ∆Ũ to be large,
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Figure 3. Example of an initial and final test particles con-
figuration after interacting with a laser pulse having a0 = 4,
w0 = 10µm, and TFWHM = 3 fs. Panels (a) and (b) show re-
spectively the initial position and the positions after the end
of the interaction with the laser, corresponding to the final
time ct = 6.2µm. Panels (c) and (d) show the initial and
final time momenta.

when Γ is large, i.e., when either the laser pulse is tightly
focused, very short, or intense enough that most parti-
cles are expelled from the laser region after interacting
with the first few laser cycles, invalidating the averaging
process required to justify the TPA. On the other hand,
when Γ is small, the conditions for the averaging are met
(i.e., a generic test particle samples all laser periods dur-

ing the interaction), and we anticipate ∆Ũ to be small.

A. Validation of TPA: test of particle dynamics in
vacuum.

For the studies in this section we considered the in-
teraction of the test particles with a non-evolving laser
(i.e., a pulse that is rigidly displaced with a constant ve-
locity equal to the speed of light). Hamilton’s equations
associated with Eqs. (5) and (13) are integrated with
a fourth-order Runge-Kutta scheme. Laser parameters
were chosen in a broad range of values, shown in Tab. I.

Parameter Values
a0 0.5, 1, 2, 4, 10
w0 [µm] 4, 10, 20, 40, 80
TFWHM [fs] 5, 10, 20, 30, 40, 60, 70, 80, 90, 100

Table I. List of laser parameters used for the tests in vacuum.

a)

b)

Figure 4. Phase-space error ∆Ũ as a function of the FWHM
pulse duration TFWHM, for different values of w0 (see figure for
details), and for a0 = 2. Results in (a) have been obtained
with the conventional expression for the averaged pondero-
motive force, the results in (b) have been obtained with the
corrected expression Eq. (14).

In a first set of tests, we verified if and when the cor-
rected expression for the averaged ponderomotive force
proposed in Eq. (14) provides better results than the con-
ventional expression (i.e, the one without the |∂xâ|2/k20
term). Results are shown in Fig. 4, where we plot the

phase-space error ∆Ũ as a function of the FWHM pulse
duration TFWHM, for different values of w0 (see figure for
details), and for a0 = 2. Results in (a) have been ob-
tained with the conventional expression for the averaged
ponderomotive force, the ones in (b) with the corrected
expression Eq. (14). We see that the results obtained
with the corrected expression for the pondermotive force
are characterized, in general, by a smaller phase-space
error. As expected, the effect of the correction is more
relevant for tightly focused laser pulses, resulting in a re-
duction of the error by approximately one order of mag-
nitude for the case w0 = 4 µm (blue curve) in the long
pulse limit.

Results for the global comparison between non-
averaged and averaged dynamics for all the parameters
listed in Tab. I are shown in Fig. 5, where the phase-

space error ∆Ũ measured at the end of the interac-
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Figure 5. Phase-space error ∆Ũ measured at the end of the
interaction with the laser as a function of the parameter Γ
(every black point represents a given a0, w0, and TFWHM com-
bination from Tab. I) for a laser pulse in vacuum. The pa-
rameter Γ is a (qualitatively) good predictor of the accuracy
of the approximation. The dashed red line represents a guide
for the eye.

tion with the laser is plotted as a function of the pa-
rameter Γ (every black point represents a given a0, w0,
and TFWHM combination). The averaged dynamics takes
into account the modified version of the ponderomotive
force Eq. (14). A (qualitatively) good correlation be-

tween ∆Ũ and the parameter Γ can be observed. The

case with the highest error, ∆Ũ = 2.15 × 10−1, occurs
for a0 = 10, w0 = 4µm, and TFWHM = 5 fs (yielding
Γ = 53.8), and indeed corresponds to a ultra-intense,
ultra-short, and tightly-focused laser pulse. On the other

hand, the lowest error ∆Ũ = 3.11× 10−6 is recorder for
a0 = 0.5, w0 = 80µm, and TFWHM = 100 fs (yielding
Γ = 3.36 × 10−4) where one would, indeed, expect the
averaging to be well justified since a generic particle inter-
acting with the laser will experience several laser periods.
Note that for a typical 10 GeV LPA stage operating in the
quasilinear regime, one has a0 ' 1.5, w0 ' 70µm, and
TFWHM ' 110 fs, yielding Γ ' 3× 10−3. In this case, the

error is expected to be ∆Ũ ∼ 5× 10−5. Operating in the
bubble the parameters are, a0 ' 4.5, w0 ' 40µm, and

TFWHM ' 90 fs, yielding Γ = 5×10−2, and so ∆Ũ ∼ 10−4.
For both cases the use of the TPA to model the laser-
plasma interaction seems well justified.

B. Validation of TPA: test of particle dynamics in plasma.

For the studies in this section we considered the TPA in
the context of wake excitation. In this case, plasma parti-
cles interact with both the self-consistent laser driver and

the wakefields. Hence, the final phase-space error ∆Ũ
is determined not only by the averaging process of fast
dynamics in the laser field, but also by the particle dy-
namics in the wake. Since in this work we are interested
in characterizing the validity of the TPA, it is impor-
tant to record the phase-space of the test particles used

to evaluate ∆Ũ as early as possible after the end of the
interaction with the laser pulse. Also, tracked test parti-
cles were chosen sufficiently far from the vacuum-plasma
interface in order to mitigate effects related to vacuum-
plasma transition, that may produce phase-spaces that
are complex to analyze. We would like to point out that
the TPA can be used to model density transitions, even
in case of sharp gradients43 (i.e. the length of the transi-
tion is comparable with the pulse length), and transitions
from vacuum to plasma and viceversa.

Particular care was adopted in order to minimize nu-
merical errors in both the full PIC and TPA simulations.
In fact, as we saw in the previous subsection, the TPA
provides results that are generally very close to the ones
obtained in the non-averaged cases. Hence, minimizing
spurious numerical errors is important to correctly isolate
the effects of the TPA. In order to establish reliable re-
sults, we progressively increased the horizontal and verti-
cal grid resolution and the number of numerical particles
per cell until we noticed no significant variation in the fi-
nal particle distribution. We also verified the convergence
of the laser pulse propagation velocity (verifying that is
the same in the PIC and TPA cases). We ultimately
set a longitudinal cell size of ∆z = 0.01µm, a trans-
verse cell size ∆x = 2∆z, and a temporal integration
step c∆t = 0.64∆z for both the PIC and the TPA simu-
lations. The number of particles per cell was NPPC = 12
in all runs. The need for such a high resolution is due
to the slow convergence of full PIC simulations. In fact,
scales associated with the laser wavelength need to be
resolved well in order to mitigate the dispersive error as-
sociated with the Finite Difference Time Domain solver,
which introduces errors in the laser pulse group velocity,
and to correctly describe the particles trajectories when
they are quivering in the electromagnetic field of the laser
pulse44,45. On the other hand, simulations based on the
TPA and on a laser envelope solver are considerably less
demanding. Particles do not present oscillations on short
scales and the error introduced by the pusher is small,
moreover the pulse propagation speed is correctly repro-
duced already at very low resolutions25. For instance,
for the laser-plasma parameters considered in this study,
TPA simulations were essentially converged for a resolu-
tion ∆z ' 0.05µm, resulting in a considerable reduction
of the cost of the simulation owing to the smaller mesh
dimension, larger time integration step, and smaller total
number of particles. However, in this study, setting the
same grid and temporal resolution for the full PIC and
TPA simulations was necessary in order to obtain easily
comparable results in terms of final particle distributions
(e.g., output data at the same time in both codes, etc.).

As reported in Ref. 44, in 2D Cartesian geometry us-
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Parameter Values
a0 2, 4, 10
w0 [µm] 4, 10, 20
TFWHM [fs] 8, 20, 40, 60

Table II. List of laser parameters used for laser-plasma inter-
action simulations.

ing a laser with in-plane or out-of-plane polarization pro-
duces equivalent effects from the point of view of wake
excitation. However, it was also noted that simulations
with in-plane polarization are affected by a significantly
higher degree of noise, and reaching convergence of the
physics requires higher resolutions and more particles-
per-cell compared to the out-of-plane case. Hence, for
this study all the simulations considered a laser driver
with an out-of-plane polarization. Due to the relatively
large computational cost of LPA simulations performed
with a sufficiently high resolution to keep numerical er-
rors as low as possible, it was not possible to carry out
an extensive parameter scan as the one presented in the
vacuum case. Hence, we restricted our analysis to a rel-
evant subset of cases, as listed in Tab. II. In all the
tests we fixed the background plasma density to the value
n0 = 1.4 × 1018cm−3, which is the resonant value for a
laser pulse with TFWHM = 20 fs, which is the median of
all the values considered in Tab. II.

In all the TPA simulations presented here the modified
expression for the ponderomotive force given by Eq. (14)
was used. Note that the numerical implementation of the
modified expression for the ponderomotive force in simu-
lation codes that are already featuring the standard TPA
is straightforward. In fact, it only requires the interpo-
lation of the gradient of the vector potential from the
computational grid, where the laser envelope is known,
to the particle position. A Boris-like particle pusher as
the one described in Ref. 25 can then be used. The
computational overhead from the inclusion of the addi-
tional term in the evaluation of the ponderomotive force
is negligible. However, contrary to what was observed
in the previous subsection with tests in vacuum, we no-
ticed that the introduction of the modified expression for
the ponderomotive force does not significantly affect the

simulation results (i.e., the phase-space errors, ∆Ũ , mea-
sured in the cases of the standard and modified expres-
sion for the averaged ponderomotive force are essentially
equal). We believe this is due to the higher numerical
noise that characterizes fully self-consistent laser-plasma
simulations. This noise, not present in the case of simple
test-particle simulations, masks any improvement associ-
ated with the modified expression for the ponderomotive
force. However, we were not able to verify this hypothesis
by further increasing the resolution or the number of par-
ticles per cell in our runs due to the high computational
time required.

Results for the global comparison between non-
averaged and averaged dynamics for all the parameters
listed in Tab. II are shown in Fig. 6, where we plot the
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Figure 6. Scatter plot of ∆Ũ in function of Γ regarding the
interaction of a laser pulse with a uniform plasma. As for
the interaction in vacuum, Γ is related to the accuracy of the
approximation and can be used for an a-priori estimate of it.
The red dashed line represents a guide for the eye.

phase-space error ∆Ũ as a function of the phenomeno-
logical parameter Γ for a laser pulse propagating in a uni-
form plasma. We notice that, similarly to what was ob-
served in the previous subsection, there is a qualitatively

good correlation between Γ and ∆Ũ , but the typical ∆Ũ
in this case is about an order of magnitude larger than
in the corresponding case in vacuum. Here, the highest

error, ∆Ũ = 0.62, occurs for Γ = 17.1, and in particu-
lar for the laser parameters a0 = 10, w0 = 10µm, and
TFWHM = 8 fs, which correspond to the highest intensity
and shortest pulse duration among all the tested values.
The large error in this case can be ascribed to the parti-
cles close to the center of the laser pulse. Such particles
undergo a strongly nonlinear interaction, i.e., both their
longitudinal and transverse momentum are ux, uz � 1
before exiting the pulse, and the averaged dynamics can-
not correctly describe the motion22. When considering
the propagation in a plasma, the conditions for a typi-
cal 10 GeV LPA stage operating in the bubble regime,
i.e. a0 ' 4.5, w0 ' 40µm, TFWHM ' 90 fs, and therefore

Γ ' 5× 10−2, correspond to ∆Ũ . 10−3.

C. Effect of the TPA-induced phase-space error on global
wakefield properties

In this section we analyze how the phase-space error
in the particle distribution associated with the TPA af-
fects the macroscopic (i.e., integrated) properties of the
wakefield.
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Figure 7. On-axis longitudinal lineout of the accelerating
field, Ez/EWB , obtained in a full PIC simulation (solid black
line) and in a TPA simulation (dotted red line) for a set of
parameters corresponding to the smallest (a) and the largest

(b) phase-space error ∆Ũ shown in Fig. 6.

1. Effect on the longitudinal wakefield

In Fig. 7 we compare the on-axis longitudinal wake-
field, Ez/EWB , obtained in a full PIC simulation (solid
black line) and in a TPA simulation (dotted red line)
for a set of parameters corresponding to the smallest
[Fig. 7(a)] and the largest [Fig. 7(b)] phase-space error

∆Ũ shown in Fig. 6. As it can be seen, even in the
case of the largest error, results obtained with the TPA
reproduce very closely the unaveraged PIC results. In
order to perform a more quantitative analysis of the role
of the TPA-induced phase-space error, we consider the
slope of the longitudinal wakefield at the phase location
corresponding to its first zero crossing behind the driver,
i.e., m = ∂ζEz|ζ=ζ0 , where ζ0 is such that Ez(ζ0) = 0.
A precise comparison of this quantity measured in the
full PIC and TPA cases is meaningful if the laser is short
enough that its field components vanish or are negligible
for ζ = ζ0. Note that, as opposed to, for instance, other
wake-related quantities such as the maximum value of the
accelerating wakefield, this quantity is well defined and
easy to measure in simulations even in strongly nonlinear
regimes. In Fig. 8 we show, as an example, the evaluation
of m, represented by the slope of the red dashed line, in a
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Figure 8. Evaluation of m, represented by the slope of the red
dashed line, in a full PIC simulation with parameters a0 = 2,
w0 = 10µm and TFWHM = 20 fs. At the point where Ez = 0,
i.e. z ' 72µm, the laser pulse electric field is negligible,
therefore the slope can be compared to the corresponding one
measured in the TPA, where laser oscillations are absent.
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Figure 9. Normalized difference between the slopes of the
longitudinal wakefields in the full PIC and TPA wakefields,
m̃, measured for the available cases, i.e., when TFWHM ≤ 20 fs,

plotted as function of ∆Ũ . The red dashed line serves as a
guide for the eye.

full PIC simulation with parameters a0 = 2, w0 = 10µm,
and TFWHM = 20 fs. We defined the normalized difference
between the slopes of the longitudinal wakefields in the
full PIC and TPA wakefields as m̃ = (mP − mT )/mP ,
where mP and mT are the values of the slope of Ez at
the zero crossing of the field in the full PIC and TPA
cases, respectively. We have only been able to measure
m̃ for pulses having TFWHM ≤ 20 fs since longer lasers
overlap with the zero-crossing point. In Fig. 9 we show
m̃ measured for the available cases plotted as function of

∆Ũ . As it can be seen, the relative difference between
the slopes of Ez in a full PIC and in a TPA is always



10

Figure 10. Colormap of the plasma density excited by a laser
pulse having a0 = 10, w0 = 10µm and TFWHM = 3 fs, propa-
gating in a uniform plasma of density n0 = 3.5×1018 cm−3 for
ct = 100µm. The green dashed line indicates the laser sym-
metry axis. The two black solid lines identify respectively the
longitudinal and transverse position of the wakefield centroid
(z0, x0) ' (122µm, −1µm).

m̃ < 10−2. We also note that the correlation between m̃
and ∆Ũ , although observable, is weak.

2. Effect on the symmetry of the wakefield.

It is well known that for an ultra-short and ultra-
intense laser pulse CEP effects play an important role
in the dynamics. As shown in Refs. 40 and 46, for
a strongly relativistic interaction, a multi-scale expan-
sion in terms of the vector potential a(x, t) of the equa-
tion of motion of a particle interacting with the laser
field shows that the third order terms of the solution
depend on the fast laser oscillations (note that the sec-
ond order terms corresponds to the ponderomotive force,
which, as we know, does not depend on the laser oscil-
lations). In particular, the third order momentum de-
pendence from the laser fast oscillating phase has an

amplitude such that δu
(3)
x ∼ 1/(k0LFWHM)2, so it be-

comes relevant for a short (i.e, almost single-cycle) laser
pulse, where particles acquire a momentum in the direc-
tion of the laser polarization that depends on the laser
phase. Such momentum perturbation is even with re-
spect to the particle initial transverse position r0, i.e.,

δu
(3)
x (x = r0) = δu

(3)
x (x = −r0). This will result in an

asymmetry in the transverse structure of the wakefield
that cannot be described in the framework of the TPA.
Understanding the breakdown point of the averaged pon-
deromotive approximation is therefore important when
dealing with ultra-short lasers.

We define the transverse wake asymmetry as ∆ =
x0/w0, where x0 is the transverse position of the wake
centroid, defined as the location of the zero crossing of the
transverse wakefield, i.e., the location where Ex(x0, ζ0)−
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Figure 11. On the left, wakefield maximum asymmetry mea-
sured in function of the laser duration for fixed w0 = 10µm
and a0 = 8. On the right, same plot for fixed w0 = 10µm
and TFWHM = 3 fs in function of the laser strength.

By(x0, ζ0) = 0 (Ex and By are the transverse electric
and magnetic field components in the wake, respectively).
The longitudinal position where x0 is measured is ζ = ζ0,
corresponding to the zero crossing of the longitudinal
wakefield in the first plasma period behind the driver.
We emphasize that our goal is to define an accuracy
threshold under which the approximation is considered
valid, therefore our set of laser and plasma parameters
are chosen so that the maximum asymmetry is reached
within the first Rayleigh length, where the laser pulse
evolution is negligible. In Fig. 10 we show the plasma
density obtained from the propagation of a laser hav-
ing a0 = 10, w0 = 10µm, and TFWHM = 3 fs in a uniform
plasma of density n0 = 3.5×1018 cm−3 after ct = 100µm
of propagation. The green dashed line indicates the sym-
metry axis of the laser pulse. The wakefield centroid is
in (z0, x0) ' (122µm, −1µm), and the black solid lines
highlight its coordinates. The centroid transverse posi-
tion is not on axis due to the CEP effects (we note that
in a purely TPA description the centroid is always on
axis) and the injected bunch presents some transverse
oscillations.

Simulation results for the maximum wake asymmetry
reached in the first 300µm of propagation (corresponding
to about one Rayleigh length) are shown in Fig. 11. For
these simulations the laser has a waist w0 = 10µm and
propagates in a uniform plasma with density n0 = 3.5×
1018 cm−3. Results for a fixed laser strength, a0 = 8,
as a function of the pulse duration are shown in Fig. 11
(a). We see that the asymmetry increases when reducing
the pulse duration. Results for a fixed pulse duration,
TFWHM = 3 fs, and different laser intensities are shown in
Fig. 11 (b). As expected, the asymmetry grows with the
laser intensity.

By defining a maximum level of wake asymmetry,
∆max, for which the TPA approximation is still con-
sidered acceptable, we can use the results presented in
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Fig. 11 to constrain the corresponding laser parameters.
For instance, by selecting ∆max = 0.05, we have that
the corresponding wake asymmetry will be below 5% as
long as we have TFWHM & 3 fs and a0 . 8. Note that,
however, the laser driver needs to satisfy these require-
ments at any time in a TPA simulation run. In fact,
when performing the modeling of a realistic LPA stage,
even though the initial laser parameters might be ac-
ceptable from the point of view of TPA modeling, non-
linear laser evolution (i.e., laser self-steepening and laser
depletion/redshifting47,48) might cause the depleted laser
to enter a regime where then use of TPA might not be jus-
tified anymore. It is worth noticing that the asymmetry
induced by the CEP effects also influences the particles
dynamics in the wakefield. In this case, a TPA descrip-
tion of the system can therefore result in an inaccurate
evolution of a trapped and accelerating particle beam,
particularly if generated by self-injection as pointed out
in Ref. 40.

IV. CONCLUSIONS

In this paper we analyzed and characterized the accu-
racy of the TPA for a range of laser parameters of interest
for present and future LPA applications.

In the TPA, the equations describing the motion of an
electron interacting with the laser pulse and the wake are
analytically averaged over the fast laser oscillations, and
so electron dynamics on the scale of the laser wavelength
need not be modeled. This results in a reduction of the
computational complexity associated with the modeling
of the laser-plasma interaction in an LPA, allowing for
considerable computational speedups.

In this work, we performed a systematic comparison
between the particle dynamics obtained in the case of the
exact, non-averaged, dynamics computed using a stan-
dard PIC code or a dedicated test particle code, and that
using the TPA. We compared the particle phase-space af-
ter the interaction with the laser in the two cases quanti-
fying the relative error with a suitable phase-space met-
ric. This phase-space error was correlated with a laser-
dependent phenomenological parameter quantifying the
quality of the TPA. Studies were performed in vacuum
and in plasma. We also proposed and tested an improved
expression for the TPA valid in the case of a tightly fo-
cused laser pulse.

We have shown that in a broad range of laser param-
eters, namely TFWHM & 3 fs, w0 & 4µm and a0 . 10 (a
laser wavelength of 0.8µm was assumed), the TPA de-
scribes the system very accurately, and we quantified this
accuracy for the first time. For instance, for a 10 GeV
LPA stage operating in the nonlinear regime and driven
by a laser pulse with parameters a0 ' 4.5, w0 ' 40µm,
and TFWHM ' 90 fs, the phase-space error associated with

the TPA is ∆Ũ . 10−3. The TPA introduces relatively
low errors even in extreme cases, such as for a laser having
a0 = 10, w0 = 4µm, and TFWHM = 8 fs. The phase-space

error in this case is ∆Ũ ∼ 10−1, and so the TPA can be
used to reliably describe such regimes.

Tests in vacuum showed that the improved expres-
sion for the ponderomotive force provided here produced
more accurate results than the conventional expression
in the case of tightly-focused laser pulses, namely for
w0 . 10µm. However, no measurable improvements
were observed for the tests in plasma. We believe this
is due to the higher numerical noise that characterizes
fully self-consistent laser-plasma simulations.

Lastly, the role that the phase-space error associated
with the TPA has on the integrated wake properties, such
as the structure of the longitudinal wakefield and the
symmetry of the wake, was also investigated. In particu-
lar, we found that for laser parameters typically employed
in a GeV-class LPA stage, namely TFWHM & 10 fs, a0 . 10
and w0 & 10µm, the wakefield properties are retrieved
effectively by the TPA and the differences with respect to
the results obtained with a full PIC simulation are unim-
portant. CEP effects can introduce a significant asym-
metry in the wakefield in case of ultra-intense (a0 ∼ 10)
and almost single-cycle (TFWHM ∼ 3 fs) laser pulses. We
characterized the level of asymmetry for a fixed laser
waist w0 = 10µm and we found that as long as the dura-
tion and the strength are respectively TFWHM & 3 fs and
a0 . 8, it remains below 5% and the effects on the plasma
dynamics are negligible.

The choice of laser wavelength used in this study λ0 =
0.8µm, was motivated by the fact that Ti:Sa is currently
the most widespread high-power laser technology used
as driver in today’s LPA experiments. Of course, TPA
can be used with other wavelengths provided that the
ratio between the laser wavelength and the characteristic
size (transverse and longitudinal) of the laser envelope is
small enough in such way that a multiscale expansion of
the dynamics holds.
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