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The expansion of marine protected areas (MPAs) is a core focus of global conservation
efforts, with the “30x30” initiative to protect 30% of the ocean by 2030 serving as
a prominent example of this trend. We consider a series of proposed MPA network
expansions of various sizes, and we forecast the impact this increase in protection would
have on global patterns of fishing effort. We do so by building a predictive machine
learning model trained on a global dataset of satellite-based fishing vessel monitoring
data, current MPA locations, and spatiotemporal environmental, geographic, political,
and economic features. We then use this model to predict future fishing effort under
various MPA expansion scenarios compared to a business-as-usual counterfactual
scenario that includes no new MPAs. The difference between these scenarios represents
the predicted change in fishing effort associated with MPA expansion. We find that
regardless of the MPA network objectives or size, fishing effort would decrease inside
the MPAs, though by much less than 100%. Moreover, we find that the reduction in
fishing effort inside MPAs does not simply redistribute outside—rather, fishing effort
outside MPAs would also decline. The overall magnitude of the predicted decrease in
global fishing effort principally depends on where networks are placed in relation to
existing fishing effort. MPA expansion will lead to a global redistribution of fishing
effort that should be accounted for in network design, implementation, and impact
evaluation.

marine protected areas | conservation | fishing effort | predictive machine learning

The expansion of marine protected areas (MPAs) is a crucial part of global conservation
efforts (1). The “30x30” initiative, for example, aims to protect at least 30% of the
world’s oceans by 2030 through a combination of fully protected areas (no extractive
activities allowed) and partially protected areas (some activities remain permitted) (2, 3).
Currently, fully protected MPAs cover less than 3% of the world’s oceans, but this is
expected to increase (4, 5). As fully protected MPAs expand, it is crucial to understand
their impact on global fishing effort. The creation of fully protected MPAs will shift the
location and intensity of industrial fishing effort—as fishers move out of newly created
MPAs, increased congestion and altered economic opportunities from fishing could lead
to a cascade of redistribution that ripples from proximate to far-flung areas (6). But where
and how much fishing effort will move remains an unanswered question.

The effectiveness and longevity of fully protected MPA expansion depends on how
fishing effort responds. If fishing effort simply moves elsewhere, it could increase fishing
intensity and threaten biodiversity outside of MPAs, possibly even reversing the presumed
biodiversity benefits of protection (7). However, if fishing effort decreases (e.g., due to
increased competition and reduced profitability), it could protect biodiversity (8) but
potentially harm the economies of fishery-dependent nations and the feasibility of long-
term protection commitments.

For example, two of the largest fully protected MPAs ever created, Phoenix Islands
Protected Area and Palau National Marine Sanctuary, were recently reopened to fishing
because of their perceived negative economic effects. In fact, protected area downgrading,
downsizing, and degazettement of MPAs has been observed in dozens of MPAs around
the world, with commercial fishing interests being one of the driving factors (9). Thus,
understanding how fishing effort will redistribute must be a central component of marine
spatial planning.

Previous research has measured the effect of individual MPAs on fishing responses, but
typically for a single fleet in a limited area; none of the existing methods can capture the
effects of global interventions affecting all fishing fleets. Simulation methods developed
in the fisheries literature (10) and location choice models developed in the economics
literature (6, 11–14) are helpful for understanding the structure of individual behavior,
but are unlikely to apply when considering complex interactions between multiple fleets

Significance

The ability of marine protected
areas (MPAs) to safeguard global
biodiversity hinges on where and
how much fishing effort occurs.
Yet, MPA evaluations often simply
assume that fishing effort inside
new MPAs either disappears or
moves elsewhere. We find that
neither assumption is true. We
use machine learning to
understand how fishing fleets
responded to past MPAs and to
forecast the effects of future
MPAs. We show that fishing effort
decreases both inside and
outside new MPAs. This finding
suggests that MPAs have complex
effects on fishing, which could be
occurring through changes in fish
stocks, costs, and/or profitability.
As such, predicting and
measuring the effect of MPAs on
fishing effort is a critical part of
marine spatial planning.

Author affiliations: aMarine Science Institute, University
of California, Santa Barbara, CA 93106; bBren School
of Environmental Science and Management, University
of California, Santa Barbara, CA 93106; cEnvironmental
Markets Lab, University of California, Santa Barbara,
CA 93106; dDevelopment Research Group, World Bank,
Washington, DC 20433; and eDepartment of Forest
and Wildlife Ecology, University of Wisconsin-Madison,
Madison, WI 53706

Author contributions: G.M., C.C., G.E., and J.R. designed
research; G.M., C.C., G.E., and J.R. performed research;
G.M. analyzed data; J.B. performed administrative duties;
and G.M., J.B., C.C., G.E., and J.R. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS.
This open access article is distributed under Creative
Commons Attribution License 4.0 (CC BY).
1To whom correspondence may be addressed. Email:
gmcdonald@bren.ucsb.edu.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2400592121/-/DCSupplemental.

Published July 9, 2024.

PNAS 2024 Vol. 121 No. 29 e2400592121 https://doi.org/10.1073/pnas.2400592121 1 of 12

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2400592121&domain=pdf&date_stamp=2024-07-08
https://orcid.org/0000-0001-7624-5985
https://orcid.org/0000-0001-8167-2404
https://orcid.org/0000-0003-0229-9889
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:gmcdonald@bren.ucsb.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2400592121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2400592121/-/DCSupplemental


at the global scale. They also often require detailed vessel-
level data, which are rarely available globally even with modern
satellite tracking. Causal inference methods have been effective
in examining regional effects of individual marine protection
policies (15–18), but these methods require an unaffected
control group, which by definition does not exist for a policy
that induces global effects. As a result, simulations of large-
scale MPA expansions have relied on heuristic assumptions of
fisher responses, such as assuming no change outside MPAs or
a uniform reallocation of effort from within MPAs to areas
outside (19–23). This approach provides an “all else equal”
reference point, but it is an assumed scenario, not an empirically
driven response, so does not capture the true net effect of the
policy.

We develop the first data-driven, predictive behavioral model
of global fishing effort response following large-scale spatial
closures. We begin by compiling a global dataset of fishing
effort for all industrial fishing vessels that used Automatic
Identification System (AIS) transponders between 2016 and
2021 (24), which is our outcome variable (Fig. 1). We then
generate 42 model features that include spatial and temporal
information on the geographic distribution of fully protected
MPAs, environmental and economic conditions, and geographic
and governance characteristics; we also assess AIS reception
quality, which can affect apparent fishing effort from AIS
transponders (see Materials and Methods for a complete list of
model features). In order to promote computational tractability,
we aggregate all data to a 1x1 degree pixel level annually; however,
the model can be implemented, in principle, at any geographic
resolution. Next, we train a series of two-stage hurdle random
forest models to predict fishing effort one, two, and three years
in the future: The first stage predicts whether any fishing occurs
in a pixel, and the second stage predicts the intensity of fishing
if it occurred. We tune the model hyperparameters using cross-
validation (CV) with time-based folds, and we quantify out-
of-sample performance over both time and space. Finally, we
use the trained models to predict: i) a business-as-usual (BAU)
counterfactual scenario, which represents future fishing effort if
no new fully protected MPAs are implemented and ii) MPA
expansion scenarios, which represent future fishing effort as fully
protected MPA coverage incrementally increases from current
levels. The difference between each MPA expansion scenario and
the BAU counterfactual scenario represents the predicted change
in fishing effort as a result of the MPA expansion. We focus

0 10 1,000 100,000
Fishing
hours

Fig. 1. Map of observed fishing effort (hours) in 2021, shown using a
log10 scale for visualization purposes. Pixels have a 1x1 degree geographic
coordinate resolution, the spatial unit of our analysis.

our analysis on the potential impacts of fully protected MPAs,
although in practice the levels of protection afforded by MPA
expansion will vary across specific policies and regions. For
example, under 30x30 the European Union has proposed to
afford some level of protection to 30% of its waters, while fully
protecting only 10% (25).

In forecasting the effects of future fully protected MPAs,
we do not favor or limit our analysis to any particular MPA
network proposal. Rather, we explore how a suite of alternative
proposed MPA networks would each affect fishing effort. We
include a number of networks that are the outputs of global
prioritization analyses. These are a network that focuses on areas
beyond national jurisdiction in the high seas (26), and a suite
of networks that prioritize either biodiversity protection, carbon
sequestration, food provision, or multiple objectives (20) (Fig. 2).
We also consider an expert-designed bottom–up network of
Ecologically or Biologically Significant Marine Areas (EBSAs)
proposed by the Convention on Biological Diversity (27). We
finally evaluate a set of networks that randomly protect pixels
to achieve certain area-based targets, as well as networks that
protect either the currently most-fished areas or the areas that
are currently not fished. Importantly, each network differs in its
overlap with current fishing effort (Fig. 1); for the same ocean
coverage percentage, some networks would place MPAs in regions
with significantly higher current fishing activity than others
(Fig. 3). Comparing results across MPA networks therefore allows
us to explore not only the potential impact of fully protecting,
for example, 15% of the ocean, but also whether it matters which
15% of the ocean is protected.

We make three distinct scientific contributions. First, our
results contribute to a timely, international policy debate on
the impacts of large-scale MPA expansion and the best im-
plementation strategies. While previous work has modeled the
potential impacts of large-scale expansion of terrestrial protected
areas on land (28), no such similar work has modeled the
potential impacts of marine protected areas in the ocean. Second,
we develop a machine learning technique for predicting global
changes in fishing effort as a result of MPA implementation that
is tractable, flexible, and data-driven. Machine learning lets us
move beyond rigid assumptions about the structure of complex
economic and ecological interactions because the algorithm
allows for nonlinear, data-driven relationships (29). We also
use machine learning to build a plausible BAU counterfactual,
which allows for inference when there is no unaffected control
group (30). Finally, our model can provide a decision-support
tool for local marine managers to predict the effects of future
spatial closures (fully protected MPAs or other spatially explicit
fishing prohibitions). By providing more clarity on potential
fishing effort outcomes, our model can help mangers reduce
the probability of downgrading, downsizing, and degazettement
of future MPAs, thus decreasing the uncertainty and regulatory
burden associated with MPA expansion. Importantly, our model
is general enough that it could also predict fishing redistribution
from other spatiotemporal changes such as climate change.

Results

How well can a globally tuned machine learning model actually
predict fishing? An important first step in validation is to test the
predictions of our trained models against out-of-sample fishing
effort data. We find that the model performs well in these out-of-
sample tests and is sufficient for our purpose of predicting future
fishing effort under the expansion of fully protected MPAs. To
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Protecting unfished pixels

Sala et al. 2021 multi−objective Random Protecting most−fished pixels

Sala et al. 2021 biodiversity Sala et al. 2021 carbon Sala et al. 2021 food

Business−as−usual Expert−derived EBSA Visalli et al. 2020

Area protected

2.5% 3% 5% 10%

16% 20% 30%

Fig. 2. Maps of business-as-usual (BAU) network and hypothetical global MPA networks used in our simulations. The fill color of the global MPA network maps
is by the global area coverage size, and only pixels that are fully enclosed in MPAs are colored. The BAU scenario holds fixed the existing fully protected MPA
coverage as of the end of 2020 (2.5% of ocean area). Since the Sala et al. 2021 network scenarios, protecting most-fished pixel scenario, and random, unfished,
and most-fished scenarios each protect pixels in descending order of priority, the network for each area protected size (3%, 5%, 10%, 16%, 20%, and 30%) is
inclusive of all pixels in smaller coverage sizes. The Visalli et al. 2020 and expert-derived EBSA scenarios are each only available for a single coverage size (16%
and 20%). Pixels have a 1x1 degree geographic coordinate resolution, the spatial unit of our analysis.

test the model’s ability to predict future fishing effort, we perform
a temporal out-of-sample test using a model trained on early years
of the dataset and tested on held-out later years of the dataset.
Using this test, the receiver operating characteristic (ROC) area-
under-the-curve in the first stage prediction is approximately
0.97 and the F1 score is approximately 0.91 (SI Appendix, Fig.
S4A and Table S1). In the second stage prediction of fishing
intensity, the R2 is approximately 0.8 (SI Appendix, Fig. S4B
and Table S1). Additionally, across performance metrics, there
is little reduction in performance as we predict fishing effort
additional years into the future. To test the model’s ability
to predict both future fishing effort and in spatial areas that
have never before seen fully protected MPAs, we perform a
spatiotemporal out-of-sample test that uses a suite of models
for each ocean trained on early years of the dataset and in other
oceans, and tested on held-out later years of the dataset and
in the ocean of interest. We do this leave-one-out test for each
ocean, allowing us to see how well the model can predict fishing
effort in spatial areas where the model has not seen any training
data. Again, we find high performance for the spatiotemporal
out-of-sample testing (SI Appendix, Fig. S5), indicating that the

model can forecast across both time and space. Finally, we test
our model’s performance against a series of simpler models, again
using temporal out-of-sample testing. We find that our model
outperforms these simpler models across all performance metrics
(SI Appendix, Fig. S6). These out-of-sample evaluations give
credence to our subsequent MPA network scenario predictions
because the MPA network scenario predictions consider MPAs
in future years and in locations that may not yet have MPAs.

In the absence of any new MPAs, our BAU counterfactual
scenario predicts greater total global fishing effort in the future
compared to currently observed levels (Fig. 4). Under any of the
hypothetical MPA expansion scenarios we consider, our model
predicts that total future global fishing effort will invariably be
lower than the BAU counterfactual scenario of no new MPAs.
The extent of this decrease depends on the MPA network and
the percentage of ocean area it encompasses. For some scenarios
such as protecting unfished pixels, “Visalli et al. 2020,” “Expert-
derived EBSA,” “Random,” and for MPA coverage levels of 5%
to 20%, we find that predicted total fishing effort may be roughly
equal to or even above the current levels we see today. However,
for other scenarios, and all scenarios with 30% protection (other
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Fig. 3. Percent of global fishing effort (hours) that spatially occurs within pixels that would be protected by hypothetical MPA networks versus percent of
global ocean area protected, colored by MPA scenario. Colors differentiate the various hypothetical MPA networks. Linetypes are used to further differentiate
networks that can have various levels of protection, while shapes are used to differentiate networks that only have a single level of protection. The scenarios
are listed in the legend in the same order as they appear in the figure at the level of their largest area protected.

than protecting unfished pixels), we find that total global fishing
effort would be both lower than the currently observed level and
lower than the predicted future level under business-as-usual.

Intuitively, the decrease in future total fishing from MPA
expansion is smallest under the scenarios that extend protection
to areas that are currently unfished (−0.4% to −6%, dark gray
line in Fig. 5A). Scenarios that extend protection to areas that
are currently most fished would lead to the largest decrease in
total fishing effort (−6% to −55%, light gray line). These two
scenarios are not meant to represent plausible real-world MPA
networks; rather, they are intended to display a range of possible
effects from the large-scale expansion of fully protected MPAs.

Most of the actual proposed networks result in reductions in
fishing effort of about 10% to 20%. Two exceptions are “Sala
et al. 2021 carbon” and “Sala et al. 2021 biodiversity,” which
have predicted declines of 37% and 38%, respectively, after
three years and with full 30% area protection. For all scenarios,
as the percentage of ocean area protected increases, we predict
incrementally larger decreases in total fishing effort.

We have shown that across the range of proposed protection
scenarios (i.e. excluding the “Most-fished,” “Unfished,” and
“Random” scenarios), global fishing effort is likely to decrease,
and the magnitude ranges from about −3% to −38%. What
drives the magnitude of predicted decreases for different MPA

MPA coverage: 16% MPA coverage: 20% MPA coverage: 30%

MPA coverage: 3% MPA coverage: 5% MPA coverage: 10%

−5 −4 −3 −2 −1 0 1 2 3 −5 −4 −3 −2 −1 0 1 2 3 −5 −4 −3 −2 −1 0 1 2 3

0

20

40

0

20

40

Forecast horizon (years)
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hours

(millions)

Business−as−usual

MPA network scenario

Protecting unfished pixels

Visalli et al. 2020

Expert−derived EBSA

Sala et al. 2021 food

Random

Sala et al. 2021 multi−objective

Sala et al. 2021 carbon

Sala et al. 2021 biodiversity

Protecting most−fished pixels

Fig. 4. Total observed global fishing effort (hours) (where forecast horizons−5 to 0 correspond to observed data from years 2016 to 2021), and total predicted
global fishing effort in the business-as-usual (BAU) scenario and all MPA scenarios for the three predicted forecast horizons. A vertical dashed line is shown at
0 y (such that the line to the Left represents observed data, and the lines to the Right represent predictions). A horizontal dashed line is shown at the level of
currently observed fishing effort in the last year of historically observed data. Each panel represents global MPA networks that are sized for a given percentage
coverage. Colors and linetypes differentiate the various hypothetical MPA networks and the BAU scenario. The MPA network scenarios are listed in the legend
in the same order as they appear in the figure at a forecast horizon of 3 y and their largest MPA coverage.
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Fig. 5. Predicted aggregate percentage changes in global fishing hours from expanding MPAs. The y-axis shows the relative difference in fishing hours
between each MPA network scenario and the business-as-usual counterfactual scenario, with values aggregated globally. (A) presents the relationship between
the percentage change in fishing hours and the percentage of ocean area covered by each hypothetical MPA network, with panels for each of the three forecast
horizon years. (B) presents the relationship between the percentage change in fishing hours and the percentage of current global fishing hours occurring in
areas that would be covered by each hypothetical MPA network, with panels for each of the three forecast horizon years. In all panels, colors differentiate the
various hypothetical MPA networks. Linetypes are used to further differentiate networks that can have various levels of protection, while shapes are used to
differentiate networks that only have a single level of protection. The MPA network scenarios are listed in the legend in the same order as they appear in the
Top Right panel and their largest MPA coverage.

networks? Regardless of the network’s objectives, how it was
designed, the percentage of the ocean covered, or the forecast
horizon, the key driver is the overlap of the proposed network
with current fishing effort (Fig. 5B). As this percentage increases,
we consistently predict larger decreases in global fishing effort.
For instance, the proposed scenario that results in the smallest
predicted decrease covers only 4% of current global fishing hours.
Similarly, the proposed scenario prompting the largest predicted
decrease covers the greatest percentage of current global fishing
hours (78%). This pattern implies that the overlap between
current fishing effort and new MPAs will play a crucial role
in determining the impacts of future MPA expansion.

Crucially, these reductions in aggregate fishing effort arise
both inside and outside the new MPAs. Aggregate fishing
effort inside the MPAs diminishes under all network scenarios;
however, it never drops to zero, even though these new MPAs
ostensibly prohibit all commercial fishing (SI Appendix, Figs.
S11 and S12). Aggregate fishing effort outside MPAs also
decreases across all scenarios, which drives the majority of the
global decline (SI Appendix, Figs. S11 and S12). This effect is
most prominent in locations closer to MPA boundaries. Pixels
located fully inside new MPAs see the largest median decrease
in fishing effort (−18%), and this median decrease becomes
smaller and approaches zero as the distance increases from the
MPA boundary (Fig. 6B). This spatial dissipation is consistent
with the before-versus-after changes we observe in the historical
raw data following the implementation of real MPAs (with an
observed median decrease of −57% for pixels fully inside new
MPAs, and diminishing magnitude changes as the distance to the
nearest MPA increases) (Fig. 6A).

How do our results compare to the conventional wisdom?
The two most common assumptions employed in the previous
literature are “full displacement” (where each unit of fishing
effort covered by an MPA is displaced outside the MPA) and
“complete exit” (where each unit of fishing effort covered by
an MPA disappears) (19–23). Our results suggest that neither
of these hypotheses is correct. Instead, we find that the large-
scale expansion of fully protected MPAs is likely to trigger
a redistribution of fishing effort, most prominently near new
MPAs but with effects that also arise farther away, which in
aggregate imply a global reduction in fishing. Furthermore, as
fully protected MPAs cover larger fractions of current fishing
activity, this reduction magnifies, underscoring the importance
of carefully considering fishers’ adaptation to MPA expansion.

Discussion

The ecological and economic consequences of large-scale MPA
expansion will hinge to a large extent on how global fishing
effort responds to increased protection, yet little is known about
how this will unfold. Understanding the potential redistribution
of fishing effort, and the subsequent changes in the aggregate
quantity of global fishing, is an important first step. We developed
an empirical global model to predict how fishing activity will re-
spond to changes in fully protected MPA coverage. Importantly,
our model is general enough that it could also be used to predict
fishing changes in response to other oceanic changes, such as
climate change or new fishing regulations. Across a wide range of
hypothetical MPA networks, our key finding is clear: Aggregate
global fishing is likely to decline, and the magnitude of this decline
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A

B

Fig. 6. (A) Observed historic pixel-level changes in fishing hours between
one-year after MPA implementation and one-year before MPA implemen-
tation, for fully protected MPAs implemented after 2016 and before 2021.
Pixels are bucketed into different distance bins to the nearest MPA. (B)
Predicted pixel-level changes in fishing hours from expanding MPAs, relative
to business-as-usual scenario, with pixels grouped into different distance
categories to the nearest MPA. Each point represents the pixel-level results
for a different hypothetical MPA scenario, coverage size, and forecast horizon.
For both (A and B), the points are jittered to avoid visual overlap. Boxplots
and violin plots show distributions for each bin. The boxplots for each bin
show the median, 25th percentile, and 75th percentile. A line connects the
median values for each distance bin. The y-axis is limited to −100% to 150%,
although some outlier values extend beyond 150%.

is largely driven by the amount of current fishing activity in the
newly protected areas. This factor is more important than either
the conservation objectives of the MPA network or even the total
area it covers. Specifically, when new fully protected MPAs are
placed in regions currently experiencing intense fishing activity,
we predict the most substantial decreases in total fishing effort.
While policymakers may choose to place MPAs in locations with
limited fishing activity—for strategic reasons such as protecting
critical habitats, or for political reasons such as protecting areas
that are currently unfished or minimally fished—our results
suggest that such placements would exert minimal impact on
fishers’ decisions. In other words: which parts of the ocean are
protected is more important in determining overall fishing effort
than how much of the ocean is protected.

Our results show that new fully protected MPAs will lead to a
global redistribution of fishing effort, but we also find that other
factors play an important role in determining fishing effort. While
model features based on MPAs make important contributions
toward predictions of future fishing effort (SI Appendix, Figs. S7,
S9, and S10), in aggregate they are less important than features
like previous fishing effort and spatiotemporal environmental
factors (SI Appendix, Fig. S8). Climate change, which may have
impacts on these spatiotemporal environmental factors such as
sea surface temperature and the El Niño-Southern Oscillation
(31), could therefore play an important role in the redistribution
of future fishing effort. In fact, changes in sea surface temperature
are already playing a role in the redistribution of tuna catch in
the Eastern Pacific Ocean (32).

Because our model is training on historical data, the validity
of our predictions relies on the assumption that future fisher
responses to MPAs will resemble past responses of fishers to
MPAs. While our MPA expansion scenarios represent different
degrees of extrapolation from past experience, it is reassuring that
predictions across proposed MPA networks consistently align
when assessed in relation to the percentage of current fishing
activity they cover. Our predicted percentage changes inside and
nearby MPAs are also consistent with the changes seen in the
historically observed data for MPAs that were implemented after
2016 and before 2021 (Fig. 6).

Although our results consistently predict that large new
networks of MPAs will lead to decreased global fishing effort,
decreases in effort do not necessarily translate to decreases in
catch, food provisioning, catch-per-unit-effort (CPUE), revenue,
or profits. A recent review paper found 48 examples of fisheries
benefits relating to MPAs across 25 countries (33). For example,
an empirical analysis of the impacts from Papahānaumokuākea
Marine National Monument found that CPUE increased in areas
surrounding the MPA as a result of the MPA (34). Increased
CPUE—as empirically shown in this example—combined with
decreased effort—as predicted by our model—could lead to
either increases or decreases in catch, depending on the relative
magnitude of the changes of each. A study of Revillagigedo
National Park in Mexico, the largest fully protected MPA yet
to be implemented in North America, found that while the MPA
reduced fishing effort, CPUE did not significantly change (35). In
general, constant CPUE combined with decreased effort would
lead to decreases in catch. Aside from potential fisheries impacts,
benefits from MPAs relating to tourism have also been widely
documented (33).

The impact of MPAs on catch and biomass will depend
on current fishery status and other types of existing fisheries
management institutions. In fisheries that are currently overfished
(e.g., catch exceeds maximum sustainable level), standard fisheries
surplus production models predict that reducing fishing effort
will increase both catch and biomass (36). But in fisheries that
are currently fished at or below sustainable levels, reducing fishing
effort may reduce catch (while still increasing biomass).

MPAs are often not used in isolation but in the context of other
types of fisheries management. As an alternative or complement
to spatial protections, fisheries management has been shown to
effectively increase biomass while simultaneously increasing catch
and profits (36, 37). While our current analysis on the impact of
global MPA expansion on fishing effort is an important first step,
future research could use bioeconomic simulation modeling to
explore how this predicted change in fishing effort would translate
to changes in catch, CPUE, revenue, or profits.

While the decrease in fishing effort within the bounds of newly
created MPAs aligns with expectations and historically observed
patterns (38), our consistent prediction that fishing effort will also
decrease outside of MPAs is more surprising. This is in contrast to
the commonly discussed concept of “fishing-the-line,” in which
fishing effort concentrates around the edges of newly created
MPAs (39). Here, we hypothesize three potential mechanisms
that could lead to our result. In practice, different mechanisms
may be at play under different contexts, and multiple mechanisms
may simultaneously occur. While it is outside the scope of this
paper, future research could empirically examine which of these
different explanations are most important and in which contexts.

First, when there is significant biological spillover, which refers
to the movement of fish and other marine life from newly
protected areas to the remaining fishing grounds, CPUE may
actually increase in the remaining fishing grounds. This increase
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could allow vessels to reduce their fishing effort while maintaining
catch levels (a decision-making strategy known as “satisficing”
in the economics, psychology, and political science literatures).
This phenomenon may also arise when catch is closely regulated
outside the protected area.

A second possible explanation is that under certain circum-
stances, a new MPA may close off the most productive fishing
grounds, leaving less productive areas open to fishing. If there
is little or no biological spillover of the region’s target species,
fishing in the remaining open areas may become less profitable.
If this is the case and fishers use a “profit-maximizing” decision-
making strategy, this reduced profitability could lead to a decrease
in fishing effort outside the MPA.

A third possible explanation is that the fixed cost of traveling
to distant waters could lead to a decrease in fishing outside large
and distant MPAs. Consider a scenario where the MPA generates
negligible biological spillovers for the target species and where
the MPA covers a large fraction of a fleet’s fishing grounds. Some
distant water fishing fleets that specialize in fishing this species
and region may have historically incurred large fixed costs to
transit from their home ports to the fishing grounds. If a large
fraction of those historical grounds are closed to fishing by an
MPA, fishing the remaining open area may become unprofitable,
so the fleet may divest entirely from those fishing grounds, and
we would observe a decrease both inside and outside the MPA.
This fixed cost effect could even be compounded by displacement
to less productive fishing grounds which have lower CPUE, the
second mechanism discussed above.

Our discussion of all three mechanisms is speculative; we
merely intend to offer potential interpretations of our results and
motivate future research. In that spirit, we share the following
real-world example regarding our third mechanism. In 2020
the Pacific island nation of Palau closed 80% of its Exclusive
Economic Zone (EEZ) to fishing, and the Taiwanese fleet, which
was the largest fleet fishing in Palau, is said to have left Palau
entirely. Indeed, an inspection of global fishing effort reveals
that this is exactly what happened. In the year following Palau’s
MPA implementation, Taiwan’s fishing effort decreased by over
99% inside the new MPA and by 62% outside the MPA, for
a total decrease of 97% (SI Appendix, Fig. S13). This finding
is corroborated by a major Taiwanese-owned fishing company
that stated that the reduced size of Palau’s fishing grounds
caused by the MPA made it no longer financially viable to
continue operating anywhere in Palau (40). While fixed costs
may substantially reduce fishing by some fleets, other fleets may
respond differently. For example, prior to 2020, Japan was the
second-largest fleet operating in Palau. After the establishment
of the MPA, Japanese fishing effort decreased by 95% inside the
MPA, but actually increased outside the MPA by 155%, leading
to a net increase in Japanese fishing in Palua’s waters of 0.2%.
Since both fleets predominantly use drifting longlines in Palau
and are therefore likely fishing for similar species that would have
similar biological responses to the MPA, the different behavioral
responses from these two fleets suggest that economics plays an
important role in the spatial changes in fishing effort.

We next investigate whether this anecdote can also exemplify
our main finding that large-scale expansion of fully protected
MPAs is likely to reduce global fishing effort. We do so by
following Palau’s “pre-MPA fishing fleet,” which consists of
all vessels that fished in Palau’s EEZ prior to the 2020 MPA
implementation, regardless of their flag. While some of these
vessels reallocated fishing activity to regions outside Palau’s
EEZ (SI Appendix, Fig. S14B), others ceased fishing entirely
(SI Appendix, Fig. S14A). Between 2019 and 2021, the number

of active vessels who fished anywhere in the world from Palau’s
pre-MPA fishing fleet decreased in size from 202 to 159 vessels
(−21%). The pre-MPA fishing fleet’s global fishing effort also
decreased by 49% between 2019 and 2021. By comparison,
global fishing effort across all vessels decreased by only 1.9%
between 2019 and 2021.

Global reductions in fishing effort will occur across a range
of habitats, which could have ecological benefits for both
biodiversity and fish populations. We can gauge these benefits
by overlaying the predicted spatial changes in fishing effort
with regions of biological or ecological interest. There are many
different ways to do this, so as one example, we overlay our
spatial predictions with the spatial boundaries of Large Marine
Ecosystems (LMEs) (41) (SI Appendix, Fig. S15). LMEs represent
regions in continental coastal waters characterized by trophi-
cally dependent populations and higher primary productivity
compared to open-water areas. They can thus be relevant for
informing ecosystem-based management and MPA network
design. Naturally, the specific changes in each LME will be
contingent on the exact placement of new MPAs. Given that we
predict the largest decreases in effort inside the boundaries of new
MPAs, we can expect that fishing pressure will be reduced most
in those habitats directly protected by new MPAs. A clear pattern
emerges across the range of hypothetical networks we considered
in our analysis: Regardless of the MPA network scenario, almost
all LMEs will experience a decrease in fishing effort compared
to business-as-usual. Similar to understanding how predicted
changes in effort would translate to predicted changes in catch,
making precise predictions for the resulting biological effects
would require explicit modeling of population dynamics (42).

Since our analysis uses AIS-based vessel monitoring as the basis
of our global dataset of observed fishing effort, it is important
to acknowledge that not all fishing vessels use AIS, and thus
our results are likely most relevant to those that do. AIS can be
used to monitor most of the world’s large fishing vessels above
24 m in length (43); the dataset in our analysis represents fishing
activity by over 110,000 fishing vessels between 2016 and 2021.
However, most vessels below 24 m do not use AIS (43), such
as many small-scale, artisanal, or subsistence fishing vessels. Our
results should therefore be interpreted with caution when trying
to understand how MPAs may impact fishing effort of small-
scale vessels. Even for industrial fleets, a recent analysis using
satellite imagery data found that many fishing vessels do not
broadcast AIS (44). Future research could empirically examine
how effort by these “dark” vessels respond to the implementation
of MPAs.

Our findings, indicating a decrease in global fishing effort
both inside and outside of MPAs regardless of the hypothetical
network scenario, suggest that expanding fully protected MPA
coverage would likely benefit fish populations. This could also
benefit fishers who are operating in fisheries that are currently
experiencing overfishing. However, fishers may bear an economic
cost in fisheries that are currently being fished more conser-
vatively. This divergence underscores an important challenge
that international conservation initiatives like 30x30 confront:
balancing ambitious conservation goals with the livelihoods of
those who depend on the sea. Achieving such a balance is possible,
and we are not arguing in this paper against MPA expansion
or that MPAs will have a negative impact on fisheries. Future
research could strive to furnish direct evidence regarding both the
conservation impacts and economic fisheries impacts of proposed
global ocean interventions. Such understanding will be essential
for formulating policies that effectively protect marine ecosystems
and economically benefit fisheries-dependent people.
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Materials and Methods

Data Processing and Feature Engineering. We build a global, spatial-
temporal dataset of AIS fishing hours and 42 model features that predict
the location and intensity of fishing effort. For each feature, we discuss the
rationale for its inclusion in the model and data processing steps below. Table 1
summarizes the complete list of features, measurement units, variable types,
spatial-temporal variation, and data sources. For all features, our observation unit
is a 1x1 degree pixel-year, although our model specification can theoretically
handle any spatial-temporal resolution.

1. Outcome variable. Our outcome variable is AIS fishing effort (hours) from
Global Fishing Watch (GFW) between 2016 and 2021 (24). We normalize
the fishing effort in each pixel by the spatial area of each pixel (m2) in
order to account for slightly different pixel sizes across the globe, depending
on the latitude. We also log transform fishing effort because it is a highly
skewed distribution. Our final measurement unit is therefore log(h/m2).
After making predictions, we backtransform the predicted log fishing effort
to obtain predicted level fishing effort (45), and then multiply this area-
normalized effort by the pixel area to obtain absolute predicted fishing
effort. We do not use earlier years of GFW data (2012 to 2015) because AIS
coverage and quality were generally increasing during those years; these
trends could cause confounding in the model because MPA expansion is
also increasing over time.

2. MPA implementation. We delineate the spatial-temporal spread of MPAs
globally. For each year, we determine the global network of fully protected
MPAs that had been implemented during or before that year. The boundaries
of MPAs come from a version of the MPA Atlas downloaded in December 2020
(5). We first filter these MPAs to those that are listed as fully “no-take,” and also
those that are either “Designated” or “Established.” Implementation dates in
MPA Atlas frequently do not correspond to the date when fishing bans begin,
so for each MPA we also performed an extensive gray literature review using
Google and Google Scholar to determine the exact date when the no-take
zone was fully implemented and enforced. When the exact date could not be
found, we next tried to determine the month, and if that could not be found
the year. We used the search terms: “mpa_name no take implementation
date” and “mpa_name implementation date.” Priority of dates was given to
government management plans, followed by nongovernment organization
reports, news articles, and blogs. This left us with 845 “no-take” MPAs in the
analysis for which we had an MPA implementation date. To remain consistent
with the MPA classification language provided in the MPA Guide (4), we refer
to these MPAs in the text as “fully protected.”

We then calculate 11 MPA-based model features, which vary spatially
and temporally. First, we calculate the distance to the nearest MPA (=0 if
the cell contains an MPA) and the years since that MPA was designated (=0
if the MPA was designated in the current year). The distance is calculated
based on the distance to the nearest 1x1 degree rasterized version of the
MPA boundary shapefile, while preventing travel through land masses.

Table 1. Data sources for all includedmodel features, including the units, feature type, whether it varies spatially,
whether it varies temporally, and the source name and reference citation
No. Feature (units) Type Spatial Temporal Source Ref.

MPA implementation
1 Nearest MPA: distance (m) Numeric Yes Yes MPA Atlas, December 2020 (5)
2 Nearest MPA: years since designation (years) Numeric Yes Yes MPA Atlas, December 2020 (5)
3 to 5 Spatial coverage: fraction of pixel, first and Numeric Yes Yes MPA Atlas, December 2020 (5)

second neighbor
6 Spatial coverage: inside, outside, or partial Categorical Yes Yes MPA Atlas, December 2020 (5)
7 Temporal coverage: fraction of year Numeric Yes Yes MPA Atlas, December 2020 (5)
8 to 11 Future coverage: inside or partial, 1 and 2 y leads Boolean Yes Yes MPA Atlas, December 2020 (5)

Environmental (mean and sd for each)
12 to 15 Sea surface temperature and anomaly (°C) Numeric Yes Yes NOAA 0.25-deg Daily OI SST V2.1 (46)
16 and 17 Chlorophyll-A (mg/m3) Numeric Yes Yes Aqua MODIS Chl-a 4 km monthly (47)
18 and 19 Wind speed (m/s) Numeric Yes Yes CCMP Wind Vector V2.1, 4x daily (48)
20 and21 El Niño Southern Oscillation index Numeric No Yes NOAA ENSO 3.4 Index (49)
22 and 23 Pacific Decadal Oscillation index Numeric No Yes NOAA PDO Index (50)

Geographic
24 and 25 Latitude and longitude (°) Numeric Yes No Global Fishing Watch (24)
26 Shore: nearest distance (m) Numeric Yes No Global Fishing Watch (24)
27 Seamount: nearest distance (m) Numeric Yes No Yesson et al. 2020 (51)
28 Bathymetry: depth (m) Numeric Yes No Global Fishing Watch (24)
29 Ocean Categorical Yes No Marine Regions Global Oceans (52)
30 Mesopelagic zone Categorical Yes No Biogeographic mesopelagic zones (53)

Governance
31 Exclusive Economic Zone: sovereign state Categorical Yes No Marine Regions V11 (54)
32 Exclusive Economic Zone: fraction of pixel coverage Numeric Yes No Marine Regions V11 (54)
33 Exclusive Economic Zone: nearest distance (m) Numeric Yes No Marine Regions V11 (54)
33 Exclusive Economic Zone: nearest sovereign state Numeric Yes No Marine Regions V11 (54)
34 World Bank Development Indicators region Categorical Yes No R “countrycode” package (55)
35 Global Fishing Index governance capacity Categorical Yes No Global Fishing Index (56)

Economic
36 Distance from port (m) Numeric Yes No Global Fishing Watch (24)
37 and 38 IFO 380 fuel price, mean and sd (USD/MT) Numeric No Yes Bunker Index (57)

Technological
39 and 40 AIS reception: Type A and Type B Numeric Yes No Global Fishing Watch (24)

transponders (messages/day)

Residual effects
41 AIS fishing effort: 1-, 2-, or 3-y lag (log(h/m2)) Numeric Yes Yes Global Fishing Watch (24)
42 Year Numeric No Yes Global Fishing Watch (24)
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We recalculate distances for every pixel in every year because MPAs are
implemented over time, so the nearest MPA will change from year to year.
We expect that MPAs will have a larger effect on nearby pixels and that the
effect may change over time following implementation (e.g., due to changes
in enforcement, compliance, and/or transitions to new fishing grounds over
time).

Next, we quantify the fraction of MPA coverage for each pixel, its first-
degree neighbor pixels, and its second-degree neighbor pixels. We also
generate a categorical variable for whether a pixel is fully inside (pixel
coverage = 100%), fully outside (pixel coverage = 0%), or partially covered
by an MPA (pixel coverage >0% and <100%). Since fishing effort is allowed
near the edges of MPAs, a pixel with only partial MPA coverage could have
a smaller reduction in fishing effort than an MPA with full coverage; indeed,
if there is significant “fishing the line” (aggregation of fishing effort near
MPA boundaries to capture spillover), pixels with partial MPA coverage or
near MPAs with any coverage could experience an increase, rather than a
decrease, in fishing effort postimplementation.

Then, we quantify the fraction of the current year that the MPA was in
place. For pixels inside or partially covered by MPAs, the fraction =1 for
full year coverage and is >0 but <1 for partial year coverage; for pixels
outside MPAs, the fraction always =0. We expect that MPAs implemented
later in the year will be associated with a smaller reduction in annual fishing
effort. In fact, an MPA implemented later in the year could be associated
with an increase in fishing effort if the announcement of a new MPA causes
an anticipatory increase in fishing effort prior to implementation, an effect
known as the “Blue Paradox” (17). To further capture anticipatory effects, we
also include two Boolean features for whether an MPA will be implemented
in a pixel in the following year or in two years, interacted with two Boolean
features for whether the MPA will be fully or partially covered by that MPA
(this procedure generates four unique features).

In the special case where a pixel overlaps with multiple MPAs, the fraction
of MPA overlap is based on the union of these MPAs, and the years since
designation is based on the oldest MPA.

3. Environmental. 12 features capture environmental conditions that may
influence fishing desirability. Sea surface temperature and sea surface
temperature anomaly (46), chlorophyll-A (47), and wind speed (48) vary
spatially and temporally, whereas indices for both the El Niño-Southern
Oscillation (49) and Pacific Decadal Oscillation (50) vary only temporally.
Since these variables all have higher spatial and/or temporal resolution than
our final dataset, we calculate both the mean and SD across source pixels
and months for each of our 1x1 degree pixel-years.

4. Geographic. Seven features capture geographic features of each pixel,
which vary spatially but not temporally. We include numeric features for
latitude, longitude, distance to shore, distance to the nearest seamount,
and bathymetry depth. Global Fishing Watch provides distance to shore and
bathymetry depth for the centroids of 0.01x0.01 pixels (24); we calculate the
average of these values for our 1x1 degree pixels. Distance to the nearest
seamount is based on the distance between each 1x1 degree pixel centroid
and over 37,000 seamount point locations (51). Fish tend to aggregate
near seamounts, so we expect pixels that are closer to seamounts to have
more fishing effort. The relationship between fishing effort and distance
to shore or bathymetry depth likely depends on gear type; trawlers tend
to prefer closer, shallower waters, while longliners tend to prefer farther,
pelagic waters. Latitude and longitude flexibly capture other elements of
geographic location that we do not directly measure.

We also include categorical variables for the ocean (52) and mesopelagic
zone (53) of the pixel. If a pixel falls into more than one ocean or mesopelagic
zone, the pixel is assigned to the category that covers the largest fraction of
the pixel. These variables capture potential geographic differences in where
commercially valuable fish tend to aggregate, which therefore influences
fishing effort.

5. Governance. Six features describe the governance characteristics of a pixel,
which vary spatially but not temporally. The first set of features concern the
presence of EEZs, which may differ in their capacity to effectively manage
fisheries. First, we intersect pixels with EEZs (54) and assign pixels to the EEZ
with the largest pixel overlap using its sovereign ISO3 EEZ label. To reduce
the dimensionality of the data, we group all EEZs that individually represent

less than 1% of the pixels in the training data into an “other” category. Pixels
that do not overlap with any EEZs are assigned an EEZ value of “high_seas.”
Next, for each pixel, we calculate the fraction of the pixel area overlapping
with its assigned EEZ (this takes a value of 0 for pixels in the high seas; for
pixels that overlap multiple EEZs, this value is calculated using only the single
EEZ with which it has the largest overlap). Then, we calculate the distance to
the nearest 1x1 degree rasterized pixel of the EEZ boundary shapefile, while
preventing travel through land masses (=0 for pixels fully inside EEZs). We
also determine the name of this nearest EEZ sovereign state. We assign each
pixel to one of 7 World Bank Development Indicators regions based on its
EEZ (55); if there is no EEZ, it is assigned to the high seas. Then using the
Global Fishing Index (GFI) (56), we assign each pixel to one of 11 governance
capacity score categories based on its EEZ (the GFI does not have data for
high seas areas, so for pixels in the high seas we assign a category value
of “high_seas;” the GFI also does not have complete global coverage for all
EEZs, so for pixels in EEZs that don’t have data from GFI we assign a category
value of “no_data”).

6. Economic. Three features capture economic conditions that may affect the
profitability of fishing, and therefore fishing effort. Distance to port, which
varies spatially but not temporally, is a proxy variable for the cost of fishing,
with farther trips tending to cost more. GFW provides distance to port for
the centroids of 0.01x0.01 pixels (24); we calculate the average of these
values for our 1x1 degree pixels. Fuel prices, which varies temporally but
not spatially, also affect fishing costs. We calculate the mean and SD across
months in the year of the Intermediate Fuel Oil (IFO) 380 fuel price (57). For
each cost proxy, we expect that higher costs tend to reduce fishing effort.

7. Technological. Our fishing effort outcome variable is derived from satellite-
based AIS vessel messages. Satellite-based AIS reception varies globally, and
there are some regions with consistently poor reception (e.g., Southeast Asia).
We capture the quality of AIS reception with two features that vary spatially:
messages per day for Type A transponders and for Type B transponders (24).
Type A transponders are higher quality and usually used by commercial
vessels, whereas Type B transponders tend to be lower quality and used by
recreational vessels.

8. Residual effects. Finally, we cannot capture every feature that determines
the location and intensity of fishing effort in a pixel-year, so we include two
features that capture a wide range of the residual (or otherwise unmeasured)
effects. First, we calculate lagged AIS fishing effort [measured as log(h/m2),
like our outcome variable], which varies spatially and temporally (24). We
use a 1-, 2-, or 3-y lag, depending on the model’s forecast horizon (see details
in the next section). We also include a numeric variable for the current year to
flexibly capture time trends not otherwise defined by the temporally varying
features.

Model Training, Out-of-Sample Performance Testing, and Robustness
Checks. We train and test three separate models for three separate forecast
horizons t (1, 2, and 3 y). For each forecast horizon and pixel-year observation,
we predict future fishing effort in t years. To evaluate the performance of the
three models, we separately perform both temporal and spatiotemporal out-of-
sample testing using holdout testing datasets. The following steps apply to each
of the three models.

1. For each pixel-year, modify the full dataset to create a new outcome variable
for fishing effort in t years using time leads by pixel. Naturally, this reduces
the size of the dataset—for any given year, there are only so many years in the
future with existing data. Larger forecast horizons will therefore have smaller
datasets to work with. For example, for t= 1, we use a dataset that includes
rows of model features from 2020 and fishing effort in 2021, rows of model
features from 2019 and fishing effort in 2020, etc. For t= 3, we use a dataset
that includes rows of model features from 2018 and fishing effort in 2021,
rows of model features from 2017 and fishing effort in 2020, etc.

2. For each of these three datasets, temporally split the data into a training
dataset and a testing dataset. The testing dataset contains all data in the last
year of the data, while the training dataset contains all data from the previous
years. We can therefore test the temporal out-of-sample performance of the
model to assess how well it predicts future years that were unseen during the
model training. This helps us understand how well the model will perform
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in our simulations, which predict fishing effort in future years that have
not yet been observed. SI Appendix, Fig. S1 shows the years represented
in the training and testing datasets for each ocean and forecast horizon.
SI Appendix, Fig. S2A shows the resulting dataset sizes, by region (inside
MPA, partial MPA overlap, or outside MPAs). SI Appendix, Fig. S2B shows the
number of distinct MPAs represented in each of these datasets, by region
(i.e., distinct MPAs that are fully covered by inside MPA pixels, MPAs that are
partially covered, and MPAs that are the nearest MPA to outside MPA pixels).

3. Using the training dataset, create CV partitions which each have an
analysis (i.e., training) split and an assessment (i.e., testing) split (SI
Appendix, Fig. S3). We use these for optimizing hyperparameters for a
Stage 1 model (classification, or extensive margin), and then for optimizing
hyperparameters for a Stage 2 model (regression, or intensive margin). We
create a series of time-based folds where the assessment split comes from
the last year of data and the analysis split uses the preceding year of data.
In this way, the folds allow us to independently test the CV performance
in predicting different years from the training dataset. We use the timetk R
package to implement time-based CV splitting (58).

4. For each of the CV partitions, train and test random forest models (59) across
a grid of 10 hyperparameter combinations. We test an entropy-maximizing
grid over two hyperparameters—mtry (the number of features that will be
randomly sampled at each tree split node) andmin_n (the minimum number
of observations required for further splitting each node). We use 500 trees
for all random forest models. We independently optimize hyperparameters
separately for both the Stage 1 and Stage 2 models, so that each gets its own
set of hyperparameters. Note that the Stage 1 model uses all observations
from the analysis partition for training, while the Stage 2 model is conditional
on there being fishing effort and therefore uses only those observations with
a nonzero fishing effort from the analysis partition for training. We use the
ranger R package to implement random forests (60).

5. For the Stage 1 model, we choose the optimized hyperparameter set that
maximizes ROC area-under-the curve (roc_auc), a model performance metric
that measures the model’s general ability to differentiate between two
classes and is agnostic to the classification cutoff threshold. We calculate
disaggregated roc_auc separately for each CV fold and then average it across
folds.

6. For the Stage 1 model and using its optimized hyperparameter set, we further
choose the optimal classification cutoff threshold that maximizes the F1 score
(f_meas), which is the harmonic mean of precision and recall. Precision and
recall depend on the number of true positives (TP) and false negatives (FN).
Precision is TP/(TP + FP), and recall is TP/(TP + FN).

7. For the Stage 2 model, we choose the optimized hyperparameter set that
maximizes rsq_trad. rsq_trad is calculated using the traditional definition of
R squared which uses sum of squares, and allows for negative values. This
is opposed to rsq which forces the values to be between 0 and 1. rsq_trad
is therefore a more conservative estimate of model performance (61). We
calculate the backtransformation smearing coefficient for each fold based
on the predictions from the training split, and then backtransform the test
split predictions to get level predictions. Using these level predictions, we
calculate rsq_trad for each CV fold and then summarize it as the average
rsq_trad across folds.

8. Using the optimized hyperparameter sets for the Stage 1 and Stage 2 models,
we train models using the full training dataset. For the Stage 2 models, we
calculate the backtransformation smearing coefficient using the training data
and then backtransform the testing data predictions using this value to get
level predictions.

9. Using the Stage 1 and Stage 2 trained models, we make out-of-sample
predictions for the testing dataset, which has not been used up to this point.
For Stage 1 predictions, we use the optimized classification threshold cutoff
for classifying each prediction.

10. We combine each Stage 1 and Stage 2 out-of-sample predictions into full
hurdle model predictions. For each observation, we simply multiply the stage
1 classification prediction (0 or 1) by the stage 2 prediction (h/m2 of fishing
effort).

11. For the Stage 1 model, we calculate out-of-sample roc_auc, f_meas,precision,
and recall. We do this for all pixels globally, as well as 3 mutually exclusive

regions (inside MPAs, partial overlap, and outside MPAs). This gives us the
Stage 1 performance for predicting out-of-sample future fishing effort (SI
Appendix, Fig. S4A and Table S1).

12. To quantify stage 2 performance for predicting future fishing effort, we
calculate out-of-sample rsq_trad, rsq, rmse (root-mean-square error), and
nrmse (normalized root-mean-square-error, which is rmse divided by the SD
of the outcome in the testing data). Note that rsq_trad, rsq, and nrmse are
unitless, while rmse is in units of the outcome variable (h/m2). We do this for
all pixels globally to obtain global performance metrics, as well as for three
mutually exclusive regions (inside MPAs, partial MPA overlap, and outside
MPAs) (SI Appendix, Fig. S4B and Table S1).

13. We train the final Stage 1 and Stage 2 models using the entire dataset
(which uses data from all years). Again, we use CV to tune hyperparameters
for each model, as in Steps 3 to 8. For the Stage 2 model, we calculate
the final backtransformation smearing coefficient using the entire dataset.
These final Stage 1 and Stage 2 models, in combination with the final
backtransformation smearing coefficient, will be used to make predictions
in the simulations.

14. As an additional out-of-sample performance test, we repeat Steps 2 to 12,
but this time doing a spatiotemporal training/testing data split instead of
just a temporal split. For this test, we split the data into 10 different training
datasets and 10 matched leave-one-location-out testing datasets, one for
each ocean. The testing dataset for each ocean contains all data in the last
year of the data, while the training dataset contains all data from the other
nine oceans in the previous years. In this way, we test the spatiotemporal
out-of-sample performance of the model to assess how well it predicts future
years in spatial areas that were unseen during the model training. This helps
us understand how well the model will perform in our simulations, which
predict fishing effort in future years that have not yet been observed, and
in areas that have new MPAs but which did not have MPAs in the training
dataset. Using these 10 splits, we build and test 10 optimized models
using the full training and tuning procedure outlined in Steps 3 to 12. This
gives us out-of-sample performance measures for each of our 10 models
corresponding to the out-of-sample performance in each of the 10 holdout
testing oceans (SI Appendix, Fig. S5).

15. To test the robustness of the baseline model specification from Steps 1 to
12 (random forest with all model features), we test three additional model
specifications: 1) a random forest with just the model feature of lagged
log fishing effort (using the entire procedure described above); 2) logistic
regression for stage 1 (using the stats::glm function) and linear regression
for stage 2 (using the stats::lm function) (62), with all model features (similar
to what is described above, but without cross-validation since these models
have no hyperparameters to tune); and 3) logistic regression for stage 1
and linear regression for stage 2, with just the model feature of lagged
log fishing effort (again similar to what is described above, but without
cross-validation since these models have no hyperparameters to tune)
(SI Appendix, Fig. S6).

Model Interpretability. To better understand why the model gives certain
predictions and to increase the model’s interpretability, we calculate Shapley
values for the final trained Stage 1 and Stage 2 models (i.e., the models
that are trained using the entire dataset). Shapley values quantify the absolute
contribution of each feature toward the prediction of each individual observation
(i.e., it is a measure of local explanation) (63). To translate local observation-level
explanations into measures of global explanation, we:

1. We select a random sample of 1,000 observations from the training dataset,
and a random sample of 100 observations to represent the background
data. For each observation, we use the Kernel SHAP method to calculate the
approximate Shapley value, using the kernelshap R package (64). For each
feature, we take the mean absolute value from across the observations to
obtain a single Shapley value (SI Appendix, Fig. S7).

2. We then group the features into the seven general categories defined in
Data processing and feature engineering and Table 1 (except including
the previous fishing effort and year features individually); based on the
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additive property of Shapley values, we sum the observation-wise values
across features for each feature group and observation, and then take the
mean absolute feature group values from across all observations to obtain
a single Shapley value per feature group (SI Appendix, Fig. S8). We use the
following groups: Previous fishing effort; Geographic (spatial geographic
features including bathymetry depth, distance to shore, mesopelagic
region, ocean, latitude, and longitude); Environmental (spatiotemporal
and temporal environmental features, including sea surface temperature
(SST), SST anomaly, wind speed, chlorophyll concentration, El Niño–
Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) indices);
Technological (class A and class B AIS reception); MPA Implementation
(MPA-related features); Governance (EEZ indicators and Global Fishing Index
governance capacity index); Economic (distance to port and fuel price); and
Year.

3. We create dependence plots for each feature that plot the Shapley value
against the feature value (SI Appendix, Figs. S9 and S10).

Simulations.

1. Using the final trained Stage 1 and Stage 2 models and smearing coefficient,
make predictions for each of the three forecast horizons using the actual
fully protected MPA network observed in 2020 (which covers 2.5% of the
oceans). This is our BAU scenario of what would happen in a world without
any new MPAs. Since the predicted outcome variable is area-normalized
effort in h/m2, we multiply this number by the area of each pixel to get
predicted fishing hours per pixel.

2. Using the final trained Stage 1 and Stage 2 models and smearing coefficient,
make predictions for each of the three forecast horizons under a series of
hypothetical MPA networks. These networks were designed for different
objectives, and each covers different percentages of the world’s oceans, from
current levels up to 30%. For each of these hypothetical networks, we include
the locations of current fully protected MPAs from 2020 in order to be able to
directly compare predictions to the BAU counterfactual scenario (which only
includes fully protected MPAs from 2020):
– Networks from Sala et al. 2021 (20): We consider four network types

from this analysis that each prioritize different objectives: biodiversity
protection; carbon sequestration; food provision; and a multiobjective
network that equally weights all three objectives. For each network type, we
use seven different protection targets: 3%, 5%, 10%, 16%, 20%, and 30%.

– Network to protect EBSAs (27, 65): This network was proposed by an
expert-driven process facilitated by the Convention on Biological Diversity,
and covers roughly 20% of the world’s oceans.

– Network in Visalli et al. 2020 (26): This network proposes areas for priority
protection in marine areas beyond national jurisdiction and covers
roughly 16% of the world’s oceans.

– Random: We randomly rank the pixels and successively close pixels until
a desired target is reached. We use 3%, 5%, 10%, 16%, 20%, and 30%
area protected targets.

– Most-fished areas: We first rank pixels in descending order by the amount
of fishing effort (hours) in 2020. We use 3%, 5%, 10%, 16%, 20%, and
30% area protected targets. For each target, we close the top most-fished
pixels necessary to achieve the target.

– Unfished areas: We first select pixels that have zero fishing effort in 2020.
We use 3%, 5%, 10%, 16%, 20%, and 30% area protected targets. For
each target, we close a random sample of these unfished pixels necessary
to achieve the target.

3. For each hypothetical MPA network and forecast horizon, calculate the
absolute and percentage difference between the hypothetical MPA network
predictions and the BAU network predictions. We calculate these differences
for all pixels globally, as well as for the three mutually exclusive pixel regions
(fully inside MPAs, partial MPA overlap, and fully outside MPAs).

Data, Materials, and Software Availability. All code necessary for reproduc-
ing the analysis can be found at https://zenodo.org/records/11625791 (66).
Most data necessary for reproducing the analysis are also available directly in
this repository, including our fishing effort outcome variable and all model
feature data except those relating to bunker fuel prices. The bunker fuel price
data used in our analysis are subject to restricted use and are not available for
public redistribution. Information on obtaining these data directly from Bunker
Index can be found at https://bunkerindex.com/. We use the R programming
language version 4.3.3 for all code (62). We use the targets package to ensure
full reproducibility of the data processing and analysis pipeline (67), and the
renv package to ensure a reproducible package environment (68). We use
the tidyverse suite of packages for all data wrangling tasks (69), and the
tidymodels suite of packages for the general machine learning framework
(70). We use functions from the yardstick package for calculating all model
performance metrics. For spatial operations, we use the sf (71), terra (72),
stars (73), exactextractr (74), and raster (75) packages. For all spatial joins,
area calculations, and distance calculations, we use the Mollweide equal-area
projection.

ACKNOWLEDGMENTS. We gratefully thank Anannya Deshmukh for building
our dataset of fully protected MPA implementation dates. We thank Kristina
Boerder, Ginny Farmer, Steve Gaines, Ray Hilborn, Jack Kittinger, John
Lynham, Juan Mayorga, Michael Melnychuk, Dan Ovando, Emily Pidgeon,
Randi Rotjan, Dale Squires, and Juan Carlos Villaseñor-Derbez for their helpful
feedback at various stages of this research. We thank two anonymous referees
and our editor for helping us to improve the manuscript. We also thank
the team at Global Fishing Watch for making high-resolution fishing effort
data available to the research community. The findings, interpretations, and
conclusions expressed in this paper are entirely those of the authors. They
do not necessarily represent the views of the World Bank and its affiliated
organizations, or those of the Executive Directors of the World Bank or the
governments they represent. We gratefully acknowledge the financial support
from Jon Arnhold that enabled this research.

1. S. Woodley et al., A review of evidence for area-based conservation targets for the post-2020 global
biodiversity framework. Parks 25, 31–46 (2019).

2. I. Eckert, A. Brown, D. Caron, F. Riva, L. J. Pollock, 30x30 biodiversity gains rely on national
coordination. Nat. Commun. 14, 7113 (2023).

3. E. Dinerstein et al., A global deal for nature: Guiding principles, milestones, and targets. Sci. Adv. 5,
eaaw2869 (2019).

4. K. Grorud-Colvert et al., The MPA guide: A framework to achieve global goals for the ocean. Science
373, eabf0861 (2021).

5. Marine Conservation Institute, MPAtlas version December 2020. https://marine-conservation.org/
mpatlas/download/. Accessed 1 December 2020.

6. M. D. Smith, J. E. Wilen, Economic impacts of marine reserves: The importance of spatial behavior.
J. Environ. Econ. Manag. 46, 183–206 (2003).

7. R. Hilborn, Are MPAs effective? ICES J. Mar. Sci. 75, 1160–1162 (2018).
8. S. Lester et al., Biological effects within no-take marine reserves: A global synthesis. Mar. Ecol.

Progr. Seri. 384, 33–46 (2009).
9. R. Albrecht et al., Protected area downgrading, downsizing, and degazettement (PADDD) in marine

protected areas. Mar. Policy 129, 104437 (2021).
10. F. Bastardie, J. R. Nielsen, T. Miethe, DISPLACE: A dynamic, individual-based model for spatial

fishing planning and effort displacement—integrating underlying fish population models. Can. J.
Fish. Aquat. Sci. 71, 366–386 (2014).

11. A. C. Haynie, D. F. Layton, An expected profit model for monetizing fishing location choices.
J. Environ. Econ. Manag. 59, 165–176 (2010).

12. J. K. Abbott, A. C. Haynie, What are we protecting? Fisher behavior and the unintended
consequences of spatial closures as a fishery management tool. Ecol. Appl. 22, 762–777
(2012).

13. V. Kahui, W. R. J. Alexander, A bioeconomic analysis of marine reserves for paua (abalone)
management at Stewart Island. N. Z. Environ. Res. Econ. 40, 339–367 (2008).

14. S. Hynes, H. Gerritsen, B. Breen, M. Johnson, Discrete choice modelling of fisheries with nuanced
spatial information. Mar. Policy 72, 156–165 (2016).

15. J. Lynham, Fishing activity before closure, during closure, and after reopening of the northeast
canyons and seamounts marine national monument. Sci. Rep. 12, 917 (2022).

16. J. Lynham, A. Nikolaev, J. Raynor, T. Vilela, J. C. Villaseñor-Derbez, Impact of two of the world’s
largest protected areas on longline fishery catch rates. Nat. Commun. 11, 979 (2020).

17. G. R. McDermott, K. C. Meng, G. G. McDonald, C. J. Costello, The blue paradox: Preemptive
overfishing in marine reserves. Proc. Natl. Acad. Sci. U.S.A. 116, 5319–5325 (2019).

18. G. Englander, Information and spillovers from targeting policy in peru’s anchoveta fishery. Am.
Econ. J. Econ. Policy 15, 390–427 (2023).

19. J. Hampton et al., Limited conservation efficacy of large-scale marine protected areas for pacific
skipjack and bigeye tunas. Front. Mar. Sci. 9, 2817 (2023).

20. E. Sala et al., Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402
(2021).

21. S. P. Greenstreet, H. M. Fraser, G. J. Piet, Using MPAs to address regional-scale ecological objectives
in the North Sea: Modelling the effects of fishing effort displacement. ICES J. Mar. Sci. 66, 90–100
(2009).

PNAS 2024 Vol. 121 No. 29 e2400592121 https://doi.org/10.1073/pnas.2400592121 11 of 12

https://www.pnas.org/lookup/doi/10.1073/pnas.2400592121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2400592121#supplementary-materials
https://zenodo.org/records/11625791
https://bunkerindex.com/
https://marine-conservation.org/mpatlas/download/
https://marine-conservation.org/mpatlas/download/


22. E. S. Klein, G. M. Watters, What’s the catch? Profiling the benefits and costs associated with marine
protected areas and displaced fishing in the Scotia Sea. PLoS One 15, e0237425 (2020).

23. H. J. Albers, M. F. Ashworth, Economics of marine protected areas: Assessing the literature for
marine protected area network expansions. Annu. Rev. Res. Econ. 14, 533–554 (2022).

24. D. A. Kroodsma et al., Tracking the global footprint of fisheries. Science 359, 904–908 (2018).
25. European commission, EU Biodiversity Strategy for 2030 Bringing nature back into our lives.

Brussels. https://www.arc2020.eu/wp-content/uploads/2020/05/Biodiversity-Strategy_draft_
200423_ARC2020.pdf. Accessed 22 February 2024 (2020).

26. M. E. Visalli et al., Data-driven approach for highlighting priority areas for protection in marine
areas beyond national jurisdiction. Mar. Policy 122, 103927 (2020).

27. D. C. Dunn et al., The convention on biological diversity’s ecologically or biologically significant
areas: Origins, development, and current status. Mar. Policy 49, 137–145 (2014).

28. Y. Zeng, L. P. Koh, D. S. Wilcove, Gains in biodiversity conservation and ecosystem services from the
expansion of the planet’s protected areas. Sci. Adv. 8, eabl9885 (2022).

29. C. U. Soykan, T. Eguchi, S. Kohin, H. Dewar, Prediction of fishing effort distributions using boosted
regression trees. Ecol. Appl. 24, 71–83 (2014).

30. B. C. Prest, C. J. Wichman, K. Palmer, RCTs against the machine: Can machine learning prediction
methods recover experimental treatment effects? J. Assoc. Environ. Res. Econ. 10, 1231–1264
(2023).

31. W. Cai et al., Increased ENSO sea surface temperature variability under four IPCC emission
scenarios. Nat. Clim. Chang. 12, 228–231 (2022).

32. H. J. Mediodia, V. Kahui, I. Noy, Sea surface temperature and tuna catch in the Eastern Pacific
Ocean under climate change. Mar. Res. Econ. 38, 329–351 (2023).

33. M. J. Costello, Evidence of economic benefits from marine protected areas. Sci. Mar. 88, e080
(2024).

34. S. Medoff, J. Lynham, J. Raynor, Spillover benefits from the world’s largest fully protected MPA.
Science 378, 313–316 (2022).

35. F. Favoretto, C. López-Sagástegui, E. Sala, O. Aburto-Oropeza, The largest fully protected marine
area in north America does not harm industrial fishing. Sci. Adv. 9, eadg0709 (2023).

36. C. Costello et al., Global fishery prospects under contrasting management regimes. Proc. Natl. Acad.
Sci. U.S.A. 113, 5125–5129 (2016).

37. R. Hilborn et al., Effective fisheries management instrumental in improving fish stock status. Proc.
Natl. Acad. Sci. U.S.A. 117, 2218–2224 (2020).

38. T. D. White et al., Tracking the response of industrial fishing fleets to large marine protected areas in
the Pacific Ocean. Conserv. Biol. 34, 1571–1578 (2020).

39. J. B. Kellner, I. Tetreault, S. D. Gaines, R. M. Nisbet, Fishing the line near marine reserves in single
and multispecies fisheries. Ecol. Appl. 17, 1039–1054 (2007).

40. Island Times, PITI suspends fishing in Palau, blames PNMS for exit. (2020). https://islandtimes.org/
piti-suspends-fishing-in-palau-blames-pnms-for-exit/. Accessed 8 November 2023.

41. K. Sherman, A. M. Duda, Large marine ecosystems: An emerging paradigm for fishery
sustainability. Fisheries 24, 15–26 (1999).

42. D. Ovando, O. Liu, R. Molina, A. Parma, C. Szuwalski, Global effects of marine protected areas on
food security are unknown. Nature 621, E34–E36 (2023).

43. M. Taconet, D. Kroodsma, J. A. Fernandes, Global Atlas of AIS-based fishing activity - Challenges
and opportunities. (Rome, FAO, 2019) www.fao.org/3/ca7012en/ca7012en.pdf. Accessed 22
February 2024.

44. F. S. Paolo et al., Satellite mapping reveals extensive industrial activity at sea. Nature 625, 85–91
(2024).

45. N. Duan, Smearing estimate: A nonparametric retransformation method. J. Am. Stat. Assoc. 78,
605–610 (1983).

46. B. Huang et al., NOAA 0.25-degree daily optimum interpolation sea surface temperature (OISST),
version 2.1. (2020). NOAA Natl. Centers Environ. Inf. Accessed 18 March 2022.

47. C. Hu, Z. Lee, B. Franz, Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on
three-band reflectance difference. J. Geophys. Res. Oceans 117, 1–25 (2012).

48. C. Mears, T. Lee, L. Ricciardulli, X. Wang, F. Wentz, Improving the accuracy of the cross-calibrated
multi-platform (CCMP) ocean vector winds. Remote Sens. 14, 4230 (2022).

49. N. Rayner et al., Global analyses of sea surface temperature, sea ice, and night marine air
temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 1–25 (2003).

50. N. Mantua, The pacific decadal oscillation: A brief overview for non-specialists. Encycl. Environ.
Change (1999). Accessed 11 March 2022.

51. C. Yesson et al., List of seamounts in the world oceans - An update. PANGAEA. https://doi.org/10.
1594/PANGAEA.921688/ (2020). Accessed 16 March 2022.

52. Flanders Marine Institute. Global Oceans and Seas, version 1. (2021). https://www.marineregions.
org/. https://doi.org/10.14284/542. Accessed 27 April 2022.

53. T. T. Sutton et al., A global biogeographic classification of the mesopelagic zone. Deep Sea Res. Part
I Oceanogr. Res. Pap. 126, 85–102 (2017).

54. Flanders Marine Institute, Maritime Boundaries Geodatabase: Maritime Boundaries and Exclusive
Economic Zones (200NM), version 11. (2019). https://www.marineregions.org/. https://doi.org/10.
14284/386. Accessed 27 April 2022.

55. V. Arel-Bundock, N. Enevoldsen, C. Yetman, countrycode: An R package to convert country names
and country codes. J. Open Source Softw. 3, 848 (2018).

56. J. Spijkers et al., Diversity of global fisheries governance: Types and contexts. Fish Fish. 24,
111–125 (2023).

57. Bunker Index, Bunker Index BIX World Indices. https://bunkerindex.com/prices/bix-world.php.
Accessed 23 October 2023.

58. M. Dancho, D. Vaughan, timetk: A Tool Kit for Working with Time Series R package version 2.8.3.
(2023). https://github.com/business-science/timetk. Accessed 25 May 2023.

59. L. Breiman, Random forests. Mach. Learn. 45, 5–32 (2001).
60. M. N. Wright, A. Ziegler, ranger: A fast implementation of random forests for high dimensional data

in C++ and R. J. Stat. Softw. 77, 1–17 (2017).
61. M. Kuhn, D. Vaughan, E. Hvitfeldt, yardstick: Tidy Characterizations of Model Performance R

package version. 1.2.0. (2023). https://github.com/tidymodels/yardstick. Accessed 8 May 2023.
62. R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing. R version 4.3.3. (2024). Vienna, Austria. https://www.R-project.org. Accessed 29
February 2024.

63. S. M. Lundberg, S. I. Lee, A unified approach to interpreting model predictions. Adv. Neural Inf.
Process. Syst. 30, 4768–4777 (2017).

64. M. Mayer, D. Watson, kernelshap: Kernel SHAP R package version 0.3.7. (2023). https://github.
com/ModelOriented/kernelshap. Accessed 20 September 2023.

65. EBSA statistics using R (2018) https://github.com/iobis/ebsa_np. Accessed 20 November 2022.
66. G. McDonald, J. Bone, C. Costello, G. Englander, J. Raynor, emlab-ucsb/mpa-fishing-effort-

redistribution: Public release to accompany published paper. In Proceedings of the National
Academy of Sciences of the United States of America. Zenodo. https://doi.org/10.5281/zenodo.
11625791. Accessed 12 June 2024.

67. W. M. Landau, The targets R package: A dynamic make-like function-oriented pipeline toolkit for
reproducibility and high-performance computing. J. Open Source Softw. 6, 2959 (2021).

68. K. Ushey, H. Wickham, renv: Project Environments. R package version 1.0.2 https://github.com/
rstudio/renv (2023). Accessed 23 September 2023.

69. H. Wickham et al., Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).
70. M. Kuhn, H. Wickham, Tidymodels: A collection of packages for modeling and machine learning

using tidyverse principles. Package version 1.1.0. https://www.tidymodels.org (2020). Accessed 8
May 2023.

71. E. J. Pebesma et al., Simple features for R: Standardized support for spatial vector data. R J. 10, 439
(2018).

72. R. J. Hijmans, terra: Spatial Data Analysis R package version 1.7-29. (2023). https://rspatial.github.
io/terra/. Accessed 8 May 2023.

73. E. Pebesma, R. Bivand, Spatial Data Science: With applications in R (Chapman and Hall/CRC,
London, 2023), p. 352.

74. D. Baston, exactextractr Fast Extraction from Raster Datasets using Polygons R package version
0.9.1. (2022). https://github.com/isciences/exactextractr. Accessed 8 May 2023.

75. R. J. Hijmans, raster: Geographic Data Analysis and Modeling R package version 3.6-20. (2023).
https://rspatial.org/raster. Accessed 8 May 2023.

12 of 12 https://doi.org/10.1073/pnas.2400592121 pnas.org

https://www.arc2020.eu/wp-content/uploads/2020/05/Biodiversity-Strategy_draft_200423_ARC2020.pdf
https://www.arc2020.eu/wp-content/uploads/2020/05/Biodiversity-Strategy_draft_200423_ARC2020.pdf
https://islandtimes.org/piti-suspends-fishing-in-palau-blames-pnms-for-exit/
https://islandtimes.org/piti-suspends-fishing-in-palau-blames-pnms-for-exit/
www.fao.org/3/ca7012en/ca7012en.pdf
https://doi.org/10.1594/PANGAEA.921688/
https://doi.org/10.1594/PANGAEA.921688/
https://www.marineregions.org/
https://www.marineregions.org/
https://doi.org/10.14284/542
https://www.marineregions.org/
https://doi.org/10.14284/386
https://doi.org/10.14284/386
https://bunkerindex.com/prices/bix-world.php
https://github.com/business-science/timetk
https://github.com/tidymodels/yardstick
https://www.R-project.org
https://github.com/ModelOriented/kernelshap
https://github.com/ModelOriented/kernelshap
https://github.com/iobis/ebsa_np
https://doi.org/10.5281/zenodo.11625791
https://doi.org/10.5281/zenodo.11625791
https://github.com/rstudio/renv
https://github.com/rstudio/renv
https://www.tidymodels.org
https://rspatial.github.io/terra/
https://rspatial.github.io/terra/
https://github.com/isciences/exactextractr
https://rspatial.org/raster



