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Abstract

Multivariate spatially-oriented data sets are prevalent in the environmental and physical sciences.
Scientists seek to jointly model multiple variables, each indexed by a spatial location, to capture any
underlying spatial association for each variable and associations among the different dependent variables.
Multivariate latent spatial process models have proved effective in driving statistical inference and
rendering better predictive inference at arbitrary locations for the spatial process. High-dimensional
multivariate spatial data, which is the theme of this article, refers to data sets where the number of spatial
locations and the number of spatially dependent variables is very large. The field has witnessed substantial
developments in scalable models for univariate spatial processes, but such methods for multivariate spatial
processes, especially when the number of outcomes is moderately large, are limited in comparison. Here,
we extend scalable modeling strategies for a single process to multivariate processes. We pursue Bayesian
inference which is attractive for full uncertainty quantification of the latent spatial process. Our approach
exploits distribution theory for the Matrix-Normal distribution, which we use to construct scalable
versions of a hierarchical linear model of coregionalization (LMC) and spatial factor models that deliver
inference over a high-dimensional parameter space including the latent spatial process. We illustrate the
computational and inferential benefits of our algorithms over competing methods using simulation studies
and an analysis of a massive vegetation index dataset.

Key words: Bayesian inference; Factor models; Linear Models of Coregionalization; Matrix-
Normal distribution; Multivariate spatial processes; Scalable spatial modeling
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I. Introduction

This manuscript develops a new class of hierarchical models for analyzing multiple spatially
oriented variables in high-dimensional settings. Multivariate spatial models are typically driven
by vector-valued latent spatial stochastic processes, such as a multivariate Gaussian process, to
capture the spatial dependence for each variable while also accounting for associations among
each variable (see, e.g., Cressie, 1993; Chilés and Delfiner, 1999; Wackernagel, 2003; Gelfand and
Banerjee, 2010; Cressie and Wikle, 2015, and references therein). Multivariate spatial processes
are specified with matrix-valued cross-covariance functions (see, e.g., Genton and Kleiber, 2015;
Salvaña and Genton, 2020; Le and Zidek, 2006, and references therein) to model associations
among the multiple variables at any two spatial locations. Theoretical characterizations of cross-
covariances are well established, but practical modeling implications and computational efficiency
require specific considerations depending upon the application (see, e.g. Brown et al., 1994; Le
et al., 1997; Sun et al., 1998; Le et al., 2001; Gamerman and Moreira, 2004; Schmidt and Gelfand,
2003; Banerjee et al., 2014, and references therein).

We address multivariate spatial modeling in high-dimensional settings dealing with a poten-
tially large number of dependent variables over a massive number of locations. While analyzing
massive spatial and spatial-temporal databases have received much attention (see, e.g., Sun et al.,
2011; Banerjee, 2017; Heaton et al., 2019; Zhang et al., 2020, and references therein for an account
of the expanding literature in this domain), the bulk of these methods have focused on one or
very few (two or three) spatially dependent variables and often have to rely upon restrictive
assumptions that preclude full inference on the latent process. With larger numbers of dependent
variables, modeling the cross-covariance becomes challenging. Even for stationary cross-covariance
functions, where we assume that the associations among the variables do not change over space
and the spatial association for each variable depends only on the translation vector connecting
two locations, matters become computationally challenging.

The scalable modeling approach we develop here enriches the popular linear models of
coregionalization (Bourgault and Marcotte, 1991; Wackernagel, 2003; Gelfand et al., 2004; Chiles
and Delfiner, 2009; Genton and Kleiber, 2015) using a Matrix-Normal distribution to model the
linear transformation on latent spatial processes. Our contribution extends existing classes of
spatial factor models by offering fully model-based analysis of spatial misalignment, where not all
responses are recorded over the same set of locations. The literature in this context is comparatively
sparse for large datasets. Spatial factor models have been explored in different contexts including
by Wang and Wall (2003), Lopes et al. (2008), Ren and Banerjee (2013) and Taylor-Rodriguez
et al. (2019). An extensive discussion on how hierarchical models emerged from dynamic factor
models is found in Lopes et al. (2008) and references therein. Ren and Banerjee (2013) proposed
low-rank specifications for spatially-varying factors to achieve dimension reduction in number of
locations and variables, but such low-rank specifications tend to over-smooth the latent process
from massive data sets containing millions of locations. More recently, Taylor-Rodriguez et al.
(2019) consider Nearest-Neighbor Gaussian process (Datta et al., 2016a) for spatial factors with the
usual constrained loading matrices in non-spatial factor models. These are more restrictive than
needed for identifying spatially correlated factors (see, e.g. Ren and Banerjee, 2013).

In the next section, we collect some results in multivariate geostatistical modeling. We develop
our modeling framework in Section II. In Section III, we state some theoretical results about
posterior consistency for the proposed models. Simulation studies for exploring the performance
of proposed models are summarized in Section IV. An analysis illustrating our methods is
presented in Section V. We conclude with some discussion in Section VI.
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II. Multivariate spatial processes

Let z(s) = (z1(s), . . . , zq(s))> be a q × 1 stochastic process, where each zi(s) is a real-valued
random variable at location s ∈ D ⊆ <d. The process is specified by its mean E[zi(s)] = µi(s) and,
customarily, second-order stationary covariances Cij(h) = Cov{zi(s), zj(s+h)} for i, j = 1, 2, . . . , q.
These covariances define the matrix-valued q× q cross-covariance function C(h) = {Cij(h)} with
(i, j)-th entry Cij(h). While there is no loss of generality in assuming the process mean to be
zero by absorbing the mean into a separate regression component in the model, as we will
do here, modeling the cross-covariance function requires care. From its definition, C(h) need
not be symmetric, but must satisfy C(h)> = C(−h). Also, since var{∑n

i a>i z(si)} ≥ 0 for any
set of finite locations s1, s2, . . . , sn ∈ D and any set of constant vectors a1, a2, . . . , an ∈ <q, we
have ∑n

i,j=1 a>i C(si − sj)ai ≥ 0. Genton and Kleiber (2015) provide a comprehensive review of
cross-covariance functions.

While theoretical characterizations rely upon spectral theory and are useful in understanding
the local behavior of random fields, perhaps the most widely used approach for constructing
multivariate random fields is the linear model of coregionalization (LMC). The underlying idea
is that invertible linear maps of independent spatial processes will yield valid spatial processes.
If f(s) = ( f1(s), f2(s), . . . , fK(s))> is a K × 1 vector of independent spatial processes so that
cov{ fi(s), f j(s′)} = 0 for all i 6= j and any two locations s and s′ (same or distinct), then LMC
(Bourgault and Marcotte, 1991) specifies the q× 1 process

z(s) =
K

∑
k=1

λk fk(s) = Λ>f(s) , (II.1)

where Λ is K × q, λ>k is the k-th row of Λ and each fk(s) is an independent Gaussian process
with correlation function ρψk (·, ·) with parameters ψk. The cross-covariance for z(s) yields non-
degenerate process-realizations whenever K ≥ q and Λ is nonsingular. To achieve dimension
reduction in the number of variables, we restrict K < q so we have non-degenerate realizations in
a K dimensional sub-space. The key question, then, is how to model Λ, whose rows determine the
subspace where the factors are mapped.

Other versions of LMC include Schmidt and Gelfand (2003), who model the multivariate spatial
process through a hierarchical spatial conditional modeling approach, whereupon Λ> in (II.1) is a
q× q lower triangular matrix. The flexibility offered in modeling Λ is appealing and, in particular,
can accrue computational benefits in high-dimensional settings. Other approaches for building
cross-covariance functions such as convolutions, latent dimensions, Matérn cross-covariances and
other methods reviewed in Genton and Kleiber (2015) do not necessarily provide the flexibility
and scalability we seek. Hence, we build upon (II.1).

I. A Bayesian LMC factor model

Let y(s) = (y1(s), . . . , yq(s))> ∈ Rq denote the q× 1 vector of dependent outcomes in location
s ∈ D ⊂ Rd, x(s) = (x1(s), . . . , xp(s))> ∈ Rp be the corresponding explanatory variables, and β
be a p× q regression coefficient matrix in the multivariate spatial model

y(s) = β>x(s) + Λ>f(s) + ε(s) , s ∈ D , (II.2)

where the latent process Λ>f(s) is an LMC as described above. Elements in f(s) are as described

in (II.1), while the noise process ε(s) iid∼ N(0, Σ) with covariance matrix Σ. We model {β, Λ, Σ}
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using a Matrix-Normal-Inverse-Wishart family. To be precise,

β |Σ ∼ MN(µβ, Vβ, Σ) ; Λ |Σ ∼ MN(µΛ, VΛ, Σ) ; Σ ∼ IW(Ψ, ν) , (II.3)

where µΛ a q× K matrix and VΛ a K × K positive definite matrix. A random matrix Zn×p ∼
MNn,p(M, U, V) has the probability density function (Dawid, 1981)

p(Z | M, U, V) =
exp

(
− 1

2 tr
[
V−1(Z−M)TU−1(Z−M)

])
(2π)np/2|V|n/2|U|p/2 , (II.4)

where tr(·) is the trace function, M is the mean matrix, U is the first scale matrix with dimension
n× n and V is the second scale matrix with dimension p× p. This distribution is equivalent to

vec(Z) ∼ Nnp(vec(M), V⊗U) , where ⊗ is the Kronecker product and vec(Z) =
[
z>1 , . . . , z>p

]>
is the vectorized n× p random matrix Z = [z1 : . . . : zp].

The assigned priors in (II.3) yield conditional posterior distributions in a closed form for all
the parameters, except {ψk}K

k=1. This supports a block update MCMC algorithm for posterior
sampling (see Section II). If S = {s1, . . . , sn} denotes the set of locations that have recorded at
least one of the observed outcomes, then ∪q

i=1Si = S , where Si is the subset of locations that
have recorded the i-th response. LetMi = S \ Si denote the set of locations where at least one
response, but not the ith response, is recorded so that ∪q

i=1Mi =M. Without misalignment, the
observation model can be cast as

Yn×q = Xn×pβp×q + Fn×KΛK×q + εn×q , (II.5)

where Y = y(S) = [y(s1) : · · · : y(sn)]> is the n× q response matrix, X = x(S) = [x(s1) : · · · :
x(sn)]> is the corresponding design matrix with full rank (n > p), and F is the n× K matrix with
j-th column being the n× 1 vector comprising f j(si)’s for i = 1, 2, . . . , n.

We derive the conditional distribution of F and of the unobserved responses {yi(Mi)}
q
i=1 con-

ditional on {β, Λ, Σ, {ψk}K
k=1}. Let P be the permutation matrix such that Pvec(Y) = {y(si)osi}n

i=1,
where the suffix os denotes the index of the observed responses for s ∈ S . Therefore, P reorders
the observed responses from vec(Y) in locations {s1, . . . , sn}. The joint distribution of vec(F) and
{y(si)osi}n

i=1, given {β, Λ, Σ, {ψk}K
k=1}, can be represented through the augmented linear system,[

{(y(si)− x(si)
>β)osi}n

i=1
0

]
=

[
P(Λ> ⊗ In)

IK ⊗ In

]
vec(F) +

[
ε1
ε2

]
, (II.6)

where ε1 ∼ N(0, ⊕n
i=1{Σosi}), ε2 ∼ N(0, ⊕K

k=1{ρψk
(S ,S)}), ρψk

(S ,S) is the n × n spatial cor-
relation matrix corresponding to fk = ( fk(s1), fk(s2), . . . , fk(sn))>, and ⊕n

i=1 represents the

block diagonal operator stacking matrices along the diagonal. Letting D−
1
2

Σo
= ⊕n

i=1{Σ
− 1

2
osi } and

VF = ⊕K
k=1{Vk}, where ρ−1

ψk
(S ,S) = V>k Vk, we obtain[

D−
1
2

Σo
{(y(si)− x(si)

>β)osi}n
i=1

0

]
︸ ︷︷ ︸

Ỹ

=

[
D−

1
2

Σo
PΛ> ⊗ In

VF

]
︸ ︷︷ ︸

X̃

vec(F) +
[

η1
η2

]
︸ ︷︷ ︸

η̃

. (II.7)

The elements of η̃ are independent error terms, each with unit variance. The full conditional
distribution vec(F) | {y(si)osi}n

i=1, β, Λ, Σ, {ψk}K
k=1 for the LMC model in (II.2) then follows

vec(F) | {y(si)osi}
n
i=1, β, Λ, Σ, {ψk}K

k=1 ∼ N((X̃>X̃)−1X̃>Ỹ, (X̃>X̃)−1). (II.8)
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Turning to the unobserved variables, let ms be the suffix for s ∈ M. Then, the conditional
distribution of y(s)ms given the parameters

{
F, {y(si)osi}n

i=1, β, Λ, Σ
}

is

N([µs]ms + Σ[ms,os]Σ
−1
[os,os](y(s)os − [µs]os), Σ[ms,ms] − Σ[ms,os]Σ

−1
[os,os]Σ[os,ms]) , (II.9)

where µs = β>x(s) + Λf(s), Σ[ms,os] is a sub-matrix of Σ extracted with row index ms and
column index os, and Σ−1

[os,os] is the inverse of matrix Σ[os,os]. With the priors given in (II.3), we let

VΛ = LΛL>Λ and define γ = [β>, Λ>]>. The conditional posterior distribution γ |Σ, F, Y can be
found through the augmented linear system, Y

L−1
β µβ

L−1
Λ µΛ


︸ ︷︷ ︸

Y∗

=

 X F
L−1

β 0
0 L−1

Λ


︸ ︷︷ ︸

X∗

[
β
Λ

]
︸ ︷︷ ︸

γ

+

 η1
η2
η3


︸ ︷︷ ︸

η∗

,
(II.10)

where η∗ ∼ MN(0(n+p+K)×q, In+p+K, Σ). Using standard distribution theory, we can show that
γ, Σ | F, Y follows MNIW(µ∗, V∗, Ψ∗, ν∗), where

V∗ = [X∗>X∗]−1 , µ∗ = V∗[X∗>Y∗] ,

Ψ∗ = Ψ + (Y∗ − X∗µ∗)>(Y∗ − X∗µ∗) , ν∗ = ν .
(II.11)

In particular, if Σ = ⊕q
i=1{σ

2
i }, then we specify σ2

i ∼ IG(ai, bi) for i = 1, . . . q where a1 = a2 =
. . . = aq = a. We can show that the marginal posterior distribution of σ2

i given Y, F follows
IG(a∗, b∗i ) with

a∗ = a +
n
2

, b∗i = bi +
1
2
(Y∗ − X∗µ∗)>i (Y

∗ − X∗µ∗)i , i = 1, . . . , q. (II.12)

Here (Y∗ − X∗µ∗)i is the i-th column of Y∗ − X∗µ∗. Through the linear system (II.10), the condi-
tional distribution γ |Σ, F, Y follows MN(µ∗, V∗, Σ).

The full conditional distributions for {ψk}K
k=1 are not available in closed form. However,

since {ψk}K
k=1 and Y are conditionally independent given {F, γ, Σ}, and fk are independent for

k = 1, 2, . . . , K, we obtain p(ψk | F, Y, γ, Σ, {ψj}j 6=k) up to a proportionality constant as

p(Y | F, γ, Σ)× p(γ, Σ)×
K

∏
k=1

p(fk |ψk)× p(ψk) ∝ p(fk |ψk)× p(ψk) , (II.13)

for each k = 1, . . . , K, where p(ψk) is the prior for ψk. Often, the right hand side of (II.13) is much
easier to calculate than a direct formulation of the posterior distribution of ψk, especially when
fk’s are modeled using scalable spatial models.

Turning to predictions, if U = {u1, . . . , un′} is a set of new locations, then YU = y(U ) is
independent of {y(si)osi}n

i=1 given {β, Λ, Σ} and FU = [f1(U ) : . . . : fK(U )]>. Then,

fk(U ) | fk, ψk ∼ N(ρψk
(U ,S)ρ−1

ψk
(S ,S)fk, ρψk

(U ,S)ρ−1
ψk

(S ,S)ρψk
(S ,U )) , (II.14)

for each k = 1, 2, . . . , K. It follows that p(YU , FU | {y(si)oi}n
i=1) is proportional to

p(YU | FU , β, Λ, Σ)× p(FU | F, {ψk}K
k=1)× p(β, Λ, Σ, F, {ψk}K

k=1 | {y(si)osi}
n
i=1) , (II.15)

where we have used the independence between FU and {y(si)osi}n
i=1 given F and {ψk}K

k=1. The
distributions in (II.14) and (II.15) help in sampling from the posterior predictive distribution over
U using the posterior samples of

{
β, Λ, Σ, F, {ψk}K

k=1
}

. We elaborate below.
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II. The block update MCMC algorithm

We formulate an efficient MCMC algorithm for obtaining full Bayesian inference as follows. From
the lth iteration with {β(l), Λ(l), Σ(l), {ψ(l)

k }
K
k=1}, we generate F(l+1) from (II.8). Next, we impute

the missing response {y(si)
(l+1)
mi }si∈M onM through (II.9) and then update {β(l+1), Λ(l+1), Σ(l+1)}

using (II.11). We complete the iteration by drawing {ψ(l+1)
k }K

k=1 through a Metropolis random
walk using (II.13). Upon convergence, these iterations will generate samples from the desired joint
posterior distribution.

For inference on U , we sample FU from (II.14), given the posterior samples of F and {ψk}K
k=1,

then generate posterior predictions of YU given the posterior samples of {β, Λ, Σ, FU}. Applying
the SCAM algorithm introduced in Haario et al. (2005), one can avoid tuning parameters in
Metropolis algorithm by warming up each MCMC chain of {ψk}K

k=1 with an adaptive proposal
distribution. In our implementation, we use the proposal distribution defined by equation (2.1) in
Roberts and Rosenthal (2009) with an empirical estimate of the covariance of the target distribution
based on half of the chain’s history. Details are provided in Sections IV and V.

The parameters Λ and F are not jointly identified, but we can transform back to ω = FΛ and
obtain inference for the latent process. This parametrization has the advantage of conditional
conjugacy, which brings more efficient computation in posterior sampling. We sample the elements
of F as a single block through a linear transformation of the n× K independent parameters from
the model in (II.7). The sampling of {β, Λ} follows analogously. Hence, we can significantly
improve convergence by reducing the posterior dependence among the parameter in this Gibbs
with Metropolis algorithm (Gelman et al., 2013). Since F is sensitive to the value of the intercept,
we recommend using an intercept-centered latent process to obtain inference for the latent spatial
pattern and the non-spatial covariance of the latent process. We also advise against an initializing Λ

with a zero matrix. Otherwise, F may get an extreme initial value, slowing down the convergence
of the MCMC chains.

III. Scalable Modeling for Block-update MCMC

We use a conjugate gradient method to facilitate the sampling of F when ρ−1
ψk

(S ,S) is sparse
for k = 1, . . . , K. Accelerating MCMC sampling through a conjugate gradient method has an
elaborate implementation in Nishimura and Suchard (2018). We develop a Bayesian framework
to implement this sampling scheme in massive multivariate spatial data modeling. Here, we
illustrate a detailed algorithm for a BLMC model, where each element of the factor process f(s) is
modeled as a Nearest-Neighbor Gaussian Process (NNGP).

Let each fk(s), s ∈ D be an NNGP(0, ρψk (·, ·)), which implies that fk ∼ N(0, ρ̃k) for each
k = 1, 2, . . . , K, where ρ̃k = (I−Aρk )

−1Dρk (I−Aρk )
−>, Aρk is a sparse-lower triangular matrix

with no more than a specified small number, m, of nonzero entries in each row and Dρk is a
diagonal matrix. The diagonal entries of Dρk and the nonzero entries of Aρk are obtained from
the conditional variance and conditional expectations for a Gaussian process with covariance
function ρψk (s, s′). To be precise, we consider a fixed order of locations in S and define Nm(si)
to be the set comprising at most m neighbors of si among locations sj ∈ S such that j < i. The
(i, j)-th entry of Aρk is 0 whenever sj /∈ Nm(si). If j1 < j2 < · · · < jm are the m column indices for
the nonzero entries in the i-th row of Aρk , then the (i, jk)-th element of Aρk is the k-th element of
the 1×m vector a>i = ρψk

(si, Nm(si))ρψ(Nm(si), Nm(si))
−1. The (i, i)-th diagonal element of Dρk

is given by ρψk (si, si)− a>i ρψk
(Nm(si), si). Repeating these calculations for each row completes

the construction of Aρk and Dρk and yields a sparse ρ̃−1
k . This construction can be performed in
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parallel and requires storage or computation of at most m×m matrices, where m << n, costing
O(n) flops and storage. A detailed algorithm of the MCMC algorithm for NNGP based BLMC
model is presented in Appendix S.1

Sampling F is computationally expensive, but is expedited by solving (X̃>X̃)−1X̃>v efficiently
for any vector v. If ρψk

(S ,S) = LkL>k has a sparse Cholesky factor Lk, then calculating X̃>v is
efficient. To be precise, the Woodbury matrix identity yields

(X̃>X̃)−1 = (FD−1
Σ0

F> +⊕K
k=1{ρ

−1
k })

−1 = ⊕K
k=1{ρk} −⊕

K
k=1{ρk}FG−1F> ⊕K

k=1 {ρk} , (II.16)

where F = Λ⊗ InP> is sparse, G = DΣ0 + P{∑K
k=1 λikλjkρk}

p
i,j=1P> with ρk = ρψk

(S ,S). If all

the ρk’s have similar structures, then permuting {∑K
k=1 λikλjkρk}

p
i,j=1 with P in rows and columns

often renders sparsity in the Cholesky decomposition of ρk. For example, if ρk’s are banded
matrices with bandwidth b, then P{∑K

k=1 λikλjkρk}
p
i,j=1P> is also banded with bandwidth bq.

Moreover, DΣ0 is a banded matrix with bandwidth ≤ q. Hence, adding DΣ0 hardly increases
the computational burden in the Cholesky decomposition of G when q is small. Assembling all
features of ρk, F and G, the calculation of (X̃>X̃)−1u for any u = X̃>v is scalable when multiplying
u with (II.16).

We conclude this section with a remark on the BLMC model with diagonal Σ. This specification
is desirable for data sets with a massive number of responses q. Compared to BLMC, BLMC
with diagonal Σ can avoid the quadratic growth of the number of parameters in Σ as q increases.
When K < q, it becomes a factor model that can fit the latent process with a low-rank structure.
We provide an example in the simulation section to illustrate an NNGP based factor BLMC with
diagonal Σ.

III. On posterior consistency: Large-sample properties of posterior

estimates

We present some theoretical results for the models constructed in the previous section. Specifically,
we investigate the behavior of the posterior distribution as the sample size increases and establish
its convergence to an oracle distribution. Here, for establishing the results, we will assume
conjugate MNIW models with no misalignment. First, we assume that y(s) itself is modeled as a
spatial process without explicitly introducing a latent process. Let

y(s) ∼ GP(β>x(s), C(·, ·)) , C(s, s′) = [ρψ(s, s′) + (α−1 − 1)δs=s′ ]Σ , (III.1)

where ρψ(·, ·) is a spatial correlation function defined through hyperparameter ψ, δ denotes
Dirac’s delta function, and α−1Σ is the non-spatial covariance matrix of y(s). The fixed scalar
α represents the proportion of total variability allocated to the spatial process. This implies
that Y | β, Σ ∼ MNn,q(Xβ,K, Σ), where K = ρψ(S ,S) + (α−1 − 1)In. We model {β, Σ} using the
conjugate MNIW prior

β |Σ ∼ MNp,q(µβ, Vr, Σ) , Σ ∼ IW(Ψ, ν) , (III.2)

with prefixed {µβ, Vr, Ψ, ν}. Closely following the developments in Gamerman and Moreira
(2004), we obtain the posterior distribution of {β, Σ} as MNIW(µ∗, V∗, Ψ∗, ν∗), where

V∗ = (X>K−1X + V−1
r )−1 , µ∗ = V∗(X>K−1Y + V−1

r µβ) ,

Ψ∗ = Ψ + Y>K−1Y + µ>β V−1
r µβ − µ∗>V∗−1µ∗ , and ν∗ = ν + n .

(III.3)

We refer to the above model as the “response” model.
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Next, we consider the spatial regression model with the latent process,

y(s) = β>x(s) + ω(s) + ε(s) , s ∈ D , (III.4)

where ω(s) ∼ GP(0q×1, ρψ(·, ·)Σ) is a latent process and ε(s) ∼ N(0q×1, (α−1 − 1)Σ) is measure-
ment error. Define ω = ω(S) = [ω(s1) : · · · : ω(sn)]>. For theoretical tractability, we restrict
posterior inference on {β, ω, Σ}, assuming that the scalar α is fixed. Assuming that the joint
distribution of β and Σ are given in (II.3) and that ω |Σ ∼ MNn×q(0, ρψ(S ,S), Σ), the posterior

distribution of γ> = [β>, ω>] is p(γ, Σ |Y) = MNIW(µ∗γ, V∗, Ψ∗, ν∗), where

V∗ =

[
α

1−α X>X + V−1
r

α
1−α X>

α
1−α X ρ−1

ψ (S ,S) + α
1−α In

]−1

, µ∗γ = V∗
[

α
1−α X>Y + V−1

r µβ
α

1−α Y

]
,

Ψ∗ = Ψ +
α

1− α
Y>Y + µ>β V−1

r µβ − µ∗>γ V∗−1µ∗γ and ν∗ = ν + n ,

(III.5)

We refer to the above model as the “latent” model.
We establish the posterior consistency of {β, Σ} for the response model (III.1) and the latent

model (III.4). For distinguishing the variables based on the number of observations, we make
the dependence upon n explicit. Denote X(n)n×p = [x(s1) : · · · : x(sn)]>, Y(n)n×q = [y(s1) : · · · :
y(sn)]>, S(n) = {s1, . . . , sn}, K(n) = C(S(n),S(n)) + (α−1 − 1)In. In the following results, we
denote P(n) = X(n)>K(n)−1X(n), A ≥ B to mean that A− B is a positive semi-definite matrix,
and Aij to be the (i, j)-th element of A. Proofs and technical details are available in Appendix S.2.

Theorem III.1. [Theorem S.2, Theorem S.3] Parameter set {β, Σ} is posterior consistent for both
conjugate response and latent models if and only if limn→∞λmin(P(n)) = ∞, where λmin(P(n)) is the
smallest eigenvalue of P(n).

When the explanatory variables share the same spatial correlation with the responses, the
necessary and sufficient conditions for Theorem III.1 hold (see Remark S.5). When the explanatory
variables are themselves regarded as independent observations, the necessary and sufficient
conditions in Theorem III.1 hold (see Remark S.6).

IV. Simulation

We present two simulation examples here. The first compares our proposed BLMC model with
other multivariate Bayesian spatial models. The second assesses our factor BLMC model when K is
not excessively large. Our proposed models were implemented in Julia 1.2.0 (Bezanson et al., 2017).
We modeled the univariate processes in the proposed BLMC by NNGP. We took the Bayesian
LMC model proposed by Schmidt and Gelfand (2003) as a benchmark in the first simulation
example. The benchmark model was implemented in R 3.4.4 through function spMisalignLM in the
R package spBayes(Finley et al., 2007). We also fitted a response NNGP model with misalignment
in Julia 1.2.0 in the first example. The detailed algorithms for the response NNGP model with
misalignment is in Appendix S.3. The most demanding model took approximately 21 hours to
deliver its entire inferential output involving 20,000 MCMC iterations on a single 8 Intel Core
i7-7700K CPU @ 4.20GHz processor with 32 Gbytes of random-access memory running Ubuntu
18.04.2 LTS. Convergence diagnostics and other posterior summaries were implemented within
the Julia statistical environment. Each model was compared in terms of the posterior inference
of parameters (posterior mean and 95% confidence interval), root mean squared prediction
error (RMSPE), mean squared error of intercept-centered latent processes (MSEL), prediction
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interval coverage (CVG; the percent of intervals containing the true value), interval coverage
for intercept-centered latent process of observed response (CVGL), average continuous rank
probability score (CRPS; see Gneiting and Raftery (2007)) for responses, and the average interval
score (INT; see Gneiting and Raftery (2007)) for responses and run time. To calculate the CRPS
and INT, we assumed that the associated predictive distribution was well approximated by a
Gaussian distribution with mean centered at the predicted value and standard deviation equal
to the predictive standard error. All NNGP models were specified with at most m = 10 nearest
neighbors.

I. Simulation Example 1

We simulated the response y(s) from the LMC model in (II.2) with q = 2, p = 2, K = 2 over 1200
randomly generated locations over a unit square. The size of the data set was kept moderate to
enable comparisons with the expensive full GP based LMC models for experiments conducted
on the computing setup described earlier. The explanatory variable x(s) consists of an intercept
and a single predictor generated from a standard normal distribution. An exponential correlation
function was used to model {ρψk (·, ·)}K

k=1, i.e., ρψk (s, s′) = exp (−φk‖s− s′‖), for s, s′ ∈ D ,
where ‖s− s′‖ is the Euclidean distance between s and s′, and ψk = φk is the decay for each k. We
took Σ = diag([0.3, 0.2]) and let Λ in (II.2) be an upper triangular matrix. We randomly picked
200 locations for predicting each response to examine the predictive performance. Since the data
set has misalignment, we present inference from a response NNGP model with misalignment
(resp NNGP), BLMC, and the Benchmark LMC model. Table 1 presents the posterior estimates
of all model parameters including the covariance matrix of the measurement error (labeled as
cov(ε)) and the non-spatial covariance of latent process (labeled as cov(ω)).

We assigned flat priors for {β, Λ} for the response NNGP model with misalignment and the
BLMC. The prior for Σ for the two models was set to follow IW(Ψ, ν) with Ψ = diag([1.0, 1.0]) and
ν = 3. For the benchmark LMC, we assigned a flat prior for β, IW(Ψ, ν) with Ψ = diag([1.0, 1.0])
and ν = 3 for the cross-covariance matrix Λ>Λ, and IG(2, 0.5) for each diagonal element of Σ. The
candidate values for {φ, α} were estimated using a cross-validation algorithm for the response
NNGP model (with misalignment) over a 25 by 25 grid over [2.12, 26.52]× [0.8, 0.99]. We assigned
unif(2.12, 212) as priors of decays for BLMC and benchmark LMC model. The posterior inference
from the response NNGP with misalignment, BLMC as well as the benchmark LMC model were
based on an MCMC chain with 20,000 iterations, and we took the first 15, 000 samples as burn-in.
The number of iterations of all MCMC chains was taken to be large enough to ensure convergence.

All three models provided similar posterior inferences for {β21, β21}. The 95% confidence
intervals of the intercepts {β11, β12} all include the true value used to generate the data. With a
mismatch of data generating schemes and model assumptions, the response NNGP model with
misalignment provided incorrect inference for cov(ε) when compared to the other two candidate
models. The RMSPEs and CVGs, however, are close to BLMC and benchmark LMC. Compared
to benchmark LMC which cost around 21 hours, the response NNGP model spent less that 0.5
minute, suggesting that fitting the response NNGP model with misalignment is a pragmatic
way to have reliable interpolation and predictions. The NNGP based BLMC model costs 4.5
minutes, while the Benchmark LMC model costs around 21 hours. Yet, despite the shorter running
time, we observed superior performance of the NNGP based BLMC models than the benchmark
LMC for inferring on the latent process using CVGL. Moreover, the interpolated map of the
recovered intercept-centered latent processes (figure 1) by BLMC and benchmark LMC are almost
indistinguishable from each other. BLMC and benchmark LMC produce very similar MSELs,
RMSPEs, CRPS and INT. Benchmark LMC yields better estimates for the spatial decays but poorer
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inference for cov(ω). The differences in estimates between the two models is likely emerging
from the different prior settings and sampling schemes. Benchmark LMC restricts the loading
matrix Λ to be upper triangular, while BLMC does not, resulting in greater flexibility in fitting
latent process. On the other hand, the unidentifiable parameter setting of BLMC may cause less
somewhat less stable inference for the hyperparameters {φ1, φ2}.

Table 1: Simulation study summary table: posterior mean (2.5%, 97.5%) percentiles

True resp NNGP BLMC benchmark LMC
β11 1.0 0.761(0.13, 1.376) 0.877(0.399, 1.378) 0.79 (0.344, 1.229)
β12 -1.0 -1.048(-1.971, -0.09) -1.605(-2.078, -0.977) -0.795(-2.069, 0.74)
β21 -5.0 -4.958(-5.068, -4.847) -4.968(-5.113, -4.819) -4.968(-5.115, -4.822)
β22 2.0 1.925(1.763, 2.087) 1.93(1.719, 2.124) 1.933 (1.731, 2.134)

cov(ε)11 0.3 0.17 (0.156, 0.185) 0.277 (0.231, 0.324) 0.275 (0.233, 0.326)
cov(ε)12 0.0 -0.052(-0.071, -0.036) 0.023 (-0.031, 0.073) 0.0
cov(ε)22 0.2 0.376(0.344, 0.411) 0.221 (0.145, 0.307) 0.244 (0.165, 0.322)
cov(ω)11 0.683 1.58(1.451, 1.719) 0.707 (0.636, 0.778) 0.706 (0.639, 0.773)
cov(ω)12 -0.616 -0.488 (-0.656, -0.33) -0.596(-0.685, -0.504) -0.07(-0.115, -0.024)
cov(ω)22 4.517 3.5(3.203, 3.826) 4.372 (4.2, 4.536) 4.311(4.15, 4.455)

φ1 6.0 7.204(α = 0.903) 2.926(2.213, 3.941) 8.63 ( 5.251, 12.711)
φ2 6.0 7.204(α = 0.903) 7.771(3.963, 12.226) 6.045(3.731, 8.526)

RMSPEa – [0.643, 0.948, 0.81] [0.633, 0.917, 0.788] [0.633, 0.918, 0.788]
MSELb – – [0.111, 0.139, 0.125] [0.111, 0.14, 0.126]
CRPSa – [-0.366, -0.535, -0.45] [-0.359, -0.515, -0.437] [-0.359, -0.515, -0.437]

CRPSLb – – [-0.031, -0.036, -0.033] [-0.189, -0.212, -0.2]
CVGa – [0.945, 0.955, 0.95] [0.965, 0.945, 0.955] [0.965, 0.945, 0.955]

CVGLb – – [0.941, 0.971, 0.956] [0.791, 0.816, 0.803]
INTa – [3.031, 4.324, 3.678] [2.929, 4.327, 3.628] [2.927, 4.315, 3.621]

INTLb – – [0.253, 0.278, 0.265] [1.535, 1.728, 1.631]
time(s) – [14, 2, 12]c 270 [51456, 23973]d

a[response 1, response 2, all responses]
bintercept + latent process on 1000 observed locations for [response 1, response 2, all responses]
c[time for cross-validation, time for MCMC sampling, time for recovering β and predictions]
d[time for MCMC sampling, time for recovering predictions]

II. Simulation Example 2

We generated the second dataset by LMC model (II.2) with a diagonal Σ and q = 10, p = 3, K = 50
over 1200 randomly generated locations over a unit square. The explanatory variable x(s) was
composed of an intercept and two predictors generated independently from a standard normal
distribution. We used an exponential covariance function to model {ρψk (·, ·)}K

k=1, where ψk = φk
denotes the decay for k = 1, . . . , K. This data set features a relatively large number of responses
(q = 10) and a complicated pattern in latent processes (K = 50). We randomly selected 200
locations for prediction for each response.

We fitted a factor BLMC model with diagonal Σ with K from 1 to 10. The goal of this simulation
example is to check the performance of a factor BLMC model, especially in recovering latent
processes, when K is not sufficiently large. We assigned a Γ(2, 11.67) prior for all {φk}K

k=1 and
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(a) ω1 + β11 true (b) ω1 + β11 BLMC (c) ω1 + β11 benchmark LMC

(d) ω2 + β12 true (e) ω2 + β12 BLMC (f) ω2 + β12 benchmark LMC

(g) fitted correlation; K = 2 (h) fitted correlation; K = 4 (i) fitted correlation; K = 6

(j) fitted correlation; K = 8 (k) fitted correlation; K = 10 (l) correlation of the raw data

Figure 1: Interpolated maps of (a) & (d) the true generated intercept-centered latent processes,
the posterior means of the intercept-centered latent process ω from the (b) & (e) NNGP based
BLMC model and the (c) & (f) benchmark LMC model. Heat-maps of the (l) actual and (g)-(k)
fitted non-spatial correlation of ω(s)

11



Table 2: Simulation study summary table 2:

K = 1 2 3 4 5 6 7 8 9 10
CVG-slope 19/20 18/20 18/20 18/20 19/20 19/20 19/20 20/20 20/20 20/20

CVGL 0.3068 0.4175 0.5103 0.5999 0.6642 0.7236 0.7864 0.7934 0.8462 0.8681
CVG 0.9445 0.942 0.9375 0.943 0.9435 0.9435 0.941 0.938 0.9385 0.94

RMSPE 4.6531 4.3852 4.0105 3.7076 3.5578 3.2946 3.0944 2.9314 2.716 2.527
time(s) 235 422 836 1268 1891 2417 3214 3635 4880 5248

we set flat priors for β and Λ. All diagonal elements of Σ were assigned an IG(2, 1.0) prior. The
setting for the MCMC sampling scheme follows that of BLMC in the first example.

The running time for executing the models along with CVGL, CVG, and RMSPE are listed in
table 2. We also added CVG-slope in table 2, which counts the number of 95% CIs of regression
slopes that include the true value. Inference for the regression slopes was found to be robust to the
choice of K. The CVG for each K was close to 0.95, while RMSPE decreased rapidly as K increased.
We also found that factor BLMC would fit the latent processes better for some of the responses
that the others when K was small. The performance metrics quickly improved as K increased from
1 to 10: RMSPE decreased by 45.7% while CVGL increased from 30% to over 75% for K ≥ 7.

We compare the correlation across different latent processes (referred as non-spatial correlation)
to check the performance of different models in estimating the latent processes. Figures 1g
through 1l illustrate the heat-maps of the non-spatial correlation of the fitted and the true latent
processes. As K increases from 2 to 10, the estimated heat-maps approach the true correlation
matrix. It can be seen that the heat-map for the fitted correlation with K = 10 shared a similar
pattern with that of the actual correlation. Given that our data comes from an LMC model
with K = 50, we can conclude that the factor BLMC is efficient in obtaining inference for the
latent processes even when K is not adequately large. The test also shows that the choice of K
is important for obtaining reliable inference when using BLMC with a diagonal Σ as a factor
model. We recommend choosing K based on scientific considerations for the problem at hand and
exploratory data analyses. One can also check the RMSPE value for different K and use an elbow
rule (Thorndike, 1953) to choose K .

V. Remote-sensed Vegetation Data Analysis

We apply our proposed models to analyze Normalized Difference Vegetation Indices (NDVI) and
Enhanced Vegetation Indices (EVI) measuring vegetation activity on the land surface, which can
help us understand the global distribution of vegetation types as well as their biophysical and
structural properties and spatial variations. Apart from vegetation indices, we consider Gross
Primary Productivity data, Global Terrestrial Evapotranspiration (ET) Product, and landcover data
(see Ramon Solano et al., 2010; Mu et al., 2013; Sulla-Menashe and Friedl, 2018, for further details).
The geographic coordinates of our variables were mapped on a Sinusoidal (SIN) projection grid.
We chose zone h08v05, which covers 11,119,505 to 10,007,555 meters south of the prime meridian
and 3,335,852 to 4,447,802 meters north of the equator. The land region in zone h08v05 is situated
in the western United States. Our explanatory variables included an intercept and a binary
indicator for no vegetation or urban area through the 2016 landcover data. All other variables
were measured through MODIS satellite over a 16-days period from 2016.04.06 to 2016.04.21.
Some variables were rescaled and transformed in exploratory data analysis for the sake of better
model fitting. The data sets were downloaded using the R package MODIS and the code for the
exploratory data analysis is provided as supplementary material to this paper.
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Our data set comprises 1,020,000 randomly selected observed locations to illustrate BLMC,
response NNGP with misalignment and a factor BLMC model with diagonal Σ. Our spatially
dependent outcomes were the transformed NDVI (log(NDVI + 1) labeled as NDVI) and red
reflectance (red refl). A Bayesian linear model were also fitted for comparison. All NNGP based
models specified at most m = 10 nearest neighbors. We randomly held 10% of each response and
then held all responses over region 10,400,000 to 10,300,000 meters south of the prime meridian
and 3,800,000 to 3,900,000 meters north of the equator to examine the predictive performance of
models over a missing region and randomly missing locations. Figure 2a illustrates the map of the
transformed NDVI data. The white square region within the Continent is the region held out for
prediction.

The posterior inference for BLMC and response NNGP with misalignment were based on an
MCMC chain with 10,000 iterations. The priors for all parameters except decays follow those in
the simulation section. We assigned Γ(200, 0.02) and Γ(200, 0.04) for φ1 and φ2 for BLMC based
on variograms fitted in exploratory data analysis. We recursively shrink the domain and the
grid of candidate values {φ, α} through repeatedly using cross-validation algorithms for fixing
parameters for the response NNGP model with misalignment. The number of threads used in
the cross-validation algorithms for response NNGP models with misalignment were equal to the
number of folders. The remaining part of all the code were run with single thread.

Table 3 gives the results of BLMC and response NNGP with misalignment. Consistent with the
related background, the regression coefficients of the index of no vegetation or urban area show
relatively low biomass (low NDVI) and high red reflectance over no vegetation or urban area. The
inference of the covariance of the noise and non-spatial covariance of the latent process shows
a negative association between the residuals and latent processes of transformed NDVI and red
reflectance, which satisfies the underlying relationship between two responses. BLMC captured
a high negative correlation (≈ −0.87) between the latent processes of two responses, indicating
that the spatial pattern of the latent processes of NDVI and red-reflectance are almost the reverse
of each other. The maps of the latent processes recovered by BLMC, presented in Figure 2, also
support this relationship.

Each model was compared in terms of RMSPE, CVG, CRPS, INT and run time. It is clear that
the spatial models greatly improved predictive accuracy. BLMC and the response NNGP with
misalignment reduced at least 50% RMSPE compared to the Bayesian linear model. CVG is similar
among all models, while all spatial models provided a more accurate prediction than the Bayesian
linear models based on INT and CRPS. Visual inspections of the recovered latent processes based
on BLMC are shown in figure 2. Notably, the proposed methods smooth out the predictions in the
held-out region. The BLMC model took around 44.7 hours. Regarding the scale of the multivariate
spatial data set, the run time for BLMC model is still appealing.

We also fitted a factor BLMC with diagonal Σ to explore the underlying latent processes of
ten (transformed) responses: (i) NDVI, (ii) EVI, (iii) Gross Primary Productivity (GPP), (iv) Net
Photosynthesis (PsnNet), (v) red reflectance (red refl), (vi) blue reflectance (blue refl), (vii) average
daily global evapotranspiration (ET), (viii) latent heat flux (LE), (ix) potential ET (PET) and (x)
potential LE (PLE). We held all responses over the region in the previous example and randomly
held 10% of each response to examine the predictive performance. There are, in total, 12, 057
locations with no responses and 656, 366 observed locations with misaligned data (at least one but
not all responses), which covers 65.12% of observed locations. We provide a heat-map (Figure 2i)
to present the status of misalignment over the study domain.

Based on the exploratory analysis, we observed two groups of responses that have high
within-group correlations but relatively low between-group correlations (see Figure 2g). Hence
we picked K = 2 for the factor BLMC with diagonal Σ. The fitted results of the factor BLMC
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model is presented in Table 4. No vegetation or urban area exhibits lower vegetation indexes
(lower NDVI and EVI) and lower production of chemical energy in organic compounds by living
organisms (lower GPP and PsnNet). We observe a trend of higher blue reflectance, red reflectance,
evapotranspiration (higher ET LE) and lower potential evapotranspiration (lower PET PLE) in
urban area and area with no vegetation. We provide maps of posterior predictions for all 10
variables in Appendix S.4.

The latent processes corresponding to transformed NDVI and red reflectance fitted through
BLMC and the factor BLMC with diagonal Σ in Figure 2 share a similar pattern. Finally, the heat
map of the nonspatial correlation of the latent processes fitted by the factor BLMC with diagonal
Σ, presented in figure 2h, reveals a high underlying correlation among NDVI, EVI, GPP, PsnNet,
red and blue reflectance, and that LE and ET are slightly more correlated with NDVI and EVI than
PLE and PET. The total run time for factor BLMC with diagonal Σ was around 75 hours (4518.67
minutes).

Table 3: Real data analysis summary table 1: posterior mean (2.5%, 97.5%) percentiles

Bayesian linear model Response NNGP with misalign BLMC
intercept1 0.25146(0.25117, 0.25176) 0.1662(0.1579, 0.1742) –
intercept2 0.13951(0.13937, 0.13965) 0.178(0.1733 , 0.1827) –

no vege or urban area1 -0.1338( -0.1349, -0.1327) -1.066e-2 (-1.085e-2, -1.047e-2) -1.385e-2 (-1.430e-2, -1.342e-2)
no vege or urban area2 6.039e-2 (5.989e-2, 6.09e-2) 5.4625e-3 (5.3478e-3, 5.5733e-3) 7.831e-3 (7.584e-3, 8.097e-3)

cov(ε)11 1.599e-2 (1.595e-2, 1.604e-2) 2.4628e-4 (2.4566e-4, 2.4702e-4) 3.51e-4 (3.48e-4, 3.55e-4)
cov(ε)12 -6.494e-3(-6.515e-3, -6.474e-3) -8.617e-5 (-8.649e-5, -8.585e-5) -1.08e-4 (-1.10e-4, -1.07e-4)
cov(ε)22 3.657e-3(3.647e-3, 3.668e-3) 7.672e-5 (7.652e-5, 7.692e-5) 1.07e-4 (1.06e-4, 1.08e-4)
cov(ω)11 – 3.334e-2(3.325e-2, 3.344e-2) 1.675e-2(1.674e-2, 1.676e-2)
cov(ω)12 – -1.166e-2(-1.171e-2, -1.162e-2) -6.873e-3(-6.879e-3, -6.867e-3)
cov(ω)22 – 1.039e-2 (1.036e-2, 1.041e-2) 3.764e-3 (3.760e-3, 3.768e-3)

φ1 – 26.414 (α = 0.99267) 3.942 (3.857, 4.013)
φ2 – 26.414(α = 0.99267) 12.358 (11.601, 13.162)

RMSPEa [0.074, 0.0359, 0.0582] [0.03172, 0.01743, 0.02559] [0.0326, 0.0171, 0.0260]
CRPSa [-0.0414, -0.01052, -0.02596] [-0.01523, -0.00875, -0.01199] [-0.01561, -0.00879, -0.0122]
CVGa [0.9526, 0.9547, 0.9537] [0.9515, 0.9427, 0.9471] [0.954, 0.947, 0.950]
INTa [0.34868, 0.17283, 0.26077] [0.1909, 0.10172, 0.14631] [0.1965, 0.09952, 0.14802]

time(mins) – [169.19, 65.52, 51.13]b 2684.75

a[1st response transformed NDVI, 2nd response red reflectance, all responses]
b[time for cross-validation, time for MCMC sampling, time for recovering β and predictions]

Table 4: Real data analysis summary table 2: posterior mean (2.5%, 97.5%)

response intercept slope nugget (Σii)
NDVI -0.176(-0.179, -0.172) -0.0121 (-0.0125, -0.0116) 7.45e-4 ( 7.43e-4, 7.48e-4)
EVI -0.076(-0.077, -0.074) -4.4e-3(-4.7e-3, -4.1e-3) 8.68e-4(8.65e-4, 8.7e-4)
GPP -6.939(-6.957, -6.919) -0.197(-0.199, -0.194) 0.0244(0.0243, 0.0245)

PsnNet -4.282 (-4.289, -4.275) -4.5e-3(-5.5e-3, -3.6e-3) 5.34e-3(5.32e-3, 5.36e-3)
red refl 0.358 ( 0.356, 0.359) 4.5e-3 (4.2e-3, 4.8e-3) 9.84e-4( 9.81e-4, 9.87e-4)
blue refl 0.186(0.185, 0.187) 0.0123 (0.0121, 0.0124) 2e-4(2.59e-4, 2.61e-4)

LE 4.601(4.586 , 4.616) 0.091(0.088, 0.093) 0.0531 (0.0529, 0.0533)
ET 1.154(1.139, 1.169) 0.092 (0.089, 0.094) 0.0531(0.053, 0.0533)

PLE 0.7126 (0.7118, 0.7132) -3.6e-3 ( -3.8e-3, -3.3e-3) 2.1e-5 (2.09e-5, 2.11e-5)
PET 2.255 (2.252, 2.257) -4.6e-3(-5.5e-3, -3.8e-3) 6.4e-5 ( 6.3e-5, 6.4e-5)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) Misalignment

Figure 2: Colored NDVI and red reflectance images of western United States (zone h08v05). Maps
of raw data (a) & (d) and the posterior mean of the intercept-centered latent process recovered
from (b) & (e) BLMC and (c) & (f) factor BSLMC with diagonal Σ. Correlation of responses (g)
and nonspatial correlation of latent process fitted by the factor BLMC model with diagonal Σ (h).
Heat-map (k) of counts of observed response, the greener the color, the higher the count.

VI. Summary and Discussion

We have proposed scalable models for analyzing massive and possibly misaligned multivariate
spatial data sets. Our framework offers flexible covariance structures and scalability by modeling
the loading matrix of spatial factors using Matrix-Normal distributions and the factors themselves
as NNGPs. This process-based formulation allows us to resolve spatial misalignment by fully
model-based imputation. Through a set of simulation examples and an analysis of a massive
misaligned data set comprising remote-sensed variables, we demonstrated the inferential and
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computational benefits accrued from our proposed framework.
This work can be expanded further in at least two important directions. The first is to extend

the current methods to spatiotemporal data sets, where multiple variables are indexed by spatial
coordinates, as considered here, as well as by temporal indices. Associations are likely to be
exhibited across space and time as well as among the variables within a location and time-point.
In addition, these variables are likely to be misaligned across time and space. Regarding the
scalability of the spatiotemporal process, we can build a dynamic nearest-neighbor Gaussian
process (DNNGP) (Datta et al., 2016b) to model spatiotemporal factors and one can also envisage
temporal dependence on the loading matrix.

A second direction will consider spatially-varying coefficient models. We model the regression
coefficients β using a spatial (or spatiotemporal) random field to capture spatial (or spatiotemporal)
patterns in how some of the predictors impact the outcome. We can assign the prior of the
regression coefficients β using a multivariate Gaussian random field with a proportional cross-
covariance function. Then the prior of β over observed locations follows a Matrix-Normal
distribution, which is the prior we designed for β in all of the proposed models in this article.
While the modification seems to be easy, the actual implementation requires a more detailed
exploration, and we leave these topics for further explorations.

From a computational perspective, we clearly need to further explore high-performance
computing and high-dimensional spatial models amenable to such platforms. The programs
provided in this work are for illustration and have limited usage in Graphical Processing Units
(GPU) computing and parallelized CPU computing. A parallel CPU computing algorithm for the
BLMC model can simultaneously sample multiple MCMC chains, improving the performance of
the actual implementations. Implementations with modeling methods such as MRA (Katzfuss,
2017) also requires dedicated programming with GPU. Other scalable modeling methods that build
graphical Gaussian models on space, time and the number of variables can lead to sparse models
for high-dimensional multivariate data and scale not only up to millions of locations and time
points, but also to hundreds or even thousands of spatially or spatiotemporally oriented variables.
The idea here will be to extend current developments in Vecchia-type models to graphs building
dependence among a large number of variables so that the precision matrices across space, time
and variables is sparse. Research on scalable statistical models and high-performance computing
algorithms for such models will be of substantial interest to statisticians and environmental
scientists.
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S.1. Algorithm of NNGP based BLMC model

We discuss posterior predictive inference a detailed algorithm. Let Nm(ui) be the m neighbors of
ui ∈ U among S . The posterior predictive distribution for fk(U ) given in (II.14) follows

fk(U ) | fk, ψk ∼ N(Ãfk, D̃) , (S.1)

where the (i, j)-th entry of Ã is 0 when sj /∈ Nm(ui) and, similar to Aρk , the m nonzero entries in
the i-th row of Ã are the 1×m vector ã>i = ρψk

(ui, Nm(ui))ρψk
(Nm(ui), Nm(ui))

−1. The (i, i)-th
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diagonal element of D̃ equals ρψk (ui, ui)− ã>i ρψk
(Nm(ui), ui). The posterior sample of YU after

giving posterior sample of β, Λ, Σ and FU can be sampled through

MN(XUβ + FUΛ, In′ , Σ) . (S.2)

The following gives the detailed algorithm.

Algorithm 1: Obtaining posterior inference of {γ, Σ, ω} and predictions on a new set U for NNGP based BLMC model

1. Precalculation and preallocation for the MCMC algorithm

(a) Find location sets S ,M and the index of the observed and missing response {osi}n
i=1 and {msi}n

i=1.

(b) Build the nearest neighbor for S
(c) Calculate Cholesky decompositions VΛ = LΛL>Λ and Vβ = LβL>β

(d) Preallocate MCMC samples and initalize MCMC chain with β(0), Λ(0), Σ(0) and {ψ(0)
k }

K
k=1

2. Block update MCMC alogrithm. For l = 1 : L

(a) Update F(l) and impute missing response {y(si)
(l)
mi}si∈M

• Construct X̃ and Ỹ in (II.7)

– Build the matrix D
1
2
Σo

= diag({Σ−
1
2

osi }
n
i=1}) in (II.7) O(n)

– Construct {Aρk}K
k=1 and {Dρk}K

k=1 as described, for example, in Finley et al. (2019) O(Knm3)

– Construct X̃ and Ỹ in (II.7) with Vk = D
− 1

2
ρk (I−Aρk ) O(nK(m + 1 + q) + npq)

• Use LSMR (Fong and Saunders, 2011) to generate sample of F(l)

– Sample u ∼ N(0, IKn) O(nK)

– Solve vec(F)(l) from X̃vec(F)(l) = Ỹ + u by LSMR

• Impute missing response {y(si)
(l)
msi}si∈M overM through (II.9)

– Calculate µs = β(l)>x(s) + Λ(l−1)f(s) for s ∈ M

– Sample y(s)(l)ms by (II.9) for s ∈ M

(b) Use MNIW to update {β(l), Λ(l), Σ(l)}
• Construct X∗ and Y∗ in (II.10)

• Generate Σ(l)

– (When Σ is a positive symmetric matrix)
∗ Calculate µ∗, V∗−1, Ψ∗ and ν∗ by (II.11) O(n(p + K)(p + K + q))

∗ Sample Σ(l) from IW(Ψ, ν∗)
– (When Σ is diagonal)

∗ Calculate µ∗ by (II.11) O(n(p + K)(p + K + q))

∗ Sample elements of Σ(l) from Inverse-Gamma with parameters provided in (II.12)

• Sample γ(l) = [β(l)>, Λ(l)> ]> from MN(µ∗, V∗, Σ(l))

i. Sample u ∼ MN(0, Ip+K , Iq)

ii. Calculate Cholesky decomposition V∗−1 = LVL>V and Σ(l) = L
Σ(l) L>

Σ(l)

iii. Generate γ(l) = µ∗ + L−>V uL>
Σ(l)

(c) Use Metropolis random walk to update {Ψ(l)
k }

K
k=1

i. Propose new {Ψ∗k}K
k=1 based on {Ψ(l−1)

k }K
k=1

ii. Calculate the likelihood of the new proposed {Ψ∗k}K
k=1 and {Ψ(l−1)

k }K
k=1 given F(l) using (II.13) O(Knm3)

iii. Accept the new {Ψ∗k}K
k=1 as {Ψ(l)

k }
K
k=1 with the probability of the ratio of the likelihood of {Ψ∗k}K

k=1 and

{Ψ(l−1)
k }K

k=1. Let {Ψ(l)
k }

K
k=1 = {Ψ(l−1)

k }K
k=1 when the new proposal is rejected.

3. Generate posterior samples of {F(l)
U , Y(l)

U } on a new set U
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(a) Construct Ã and D̃ in (S.1) O(n′m3K)

(b) Generate fk(U )(l) ∼ N(Ãfk , D̃) for k = 1, . . . , K O(n′Km)

(c) Sample Y(l)
U |ω

(l)
U , γ(l), Σ(l), F(l)

U ∼ MN(XU β + FUΛ, In′ , Σ(l))

• Sample u ∼ MN(0, In′ , Iq) O(n′q)

• Generate Y(l)
U = XU β + FUΛ + uL

Σ>
(l)

with F(l)
U = [ f1(U )(l) : · · · : fK(U )(l)] O(n′(pq + Kq + q2)

S.2. Technical details and proofs of results in Section III

Let us begin with a representation of posterior distributions of the latent model in Section III.
Let Vρ be a non-singular square matrix such that ρ−1

ψ (S ,S) = V>ρ Vρ. Treat the prior of γ as
additional observations and recast p(Y, γ |Σ) = p(Y | γ, Σ)× p(γ |Σ) into an augmented linear
model 

√
α

1−α Y

L−1
r µβ

0


︸ ︷︷ ︸

Y∗

=


√

α
1−α X

√
α

1−α In

L−1
r 0
0 Vρ


︸ ︷︷ ︸

X∗

[
β
ω

]
︸ ︷︷ ︸

γ

+

 η1
η2
η3


︸ ︷︷ ︸

η

, (S.1)

where Lr is the Cholesky decomposition of Vr, and η ∼ MN(0, I2n+p, Σ). When having a flat prior
for β, L−1

r degenerates to a zero matrix, showing no information from β’s prior contributes to the
linear system. The expression in (III.5) can be simplified as

V∗ = (X∗>X∗)−1 , µ∗ = (X∗>X∗)−1X∗>Y∗ ,

Ψ∗ = Ψ + (Y∗ − X∗µ∗)>(Y∗ − X∗µ∗) , ν∗ = ν + n .
(S.2)

We explore the behavior of the above posterior density as the number of observations becomes
large under a true data generating distribution. Assume that the true distribution of the dependent
variables is included in the parametric family f (Y) = p(Y | β0, Σ0) for some Σ0 and β0. For
distinguishing the variables based on the number of observations, we make the dependence
upon n explicit. Denote X(n)n×p = [x(s1) : · · · : x(sn)]>, Y(n)n×q = [y(s1) : · · · : y(sn)]>,
S(n) = {s1, . . . , sn}, K(n) = C(S(n),S(n)) + (α−1 − 1)In. X∗(n) and Y∗(n) are X∗ and Y∗ in
(S.1) using X(n) and Y(n) instead of X and Y.

Lemma S.1. The matrix Σ in the conjugate multivariate models is posterior consistent if and only if
Ψ∗(n)ij/n→ {Σ0}ij a.s. for 1 ≤ i, j ≤ q with Ψ∗(n) defined by (III.3) & (III.5)

Proof. The conjugate multivariate models yield Σ |Y(n) ∼ IW(Ψ∗(n), ν∗(n)) with

Mij = E(Σij |Y(n)) =
Ψ∗(n)ij

c− 1
, Var(Σij |Y(n)) =

(c + 1)Ψ∗(n)2
ij + (c− 1)Ψ∗(n)iiΨ

∗(n)jj

c(c− 1)2(c− 3)
,

where c = ν∗(n)− p, Ψ∗(n) and ν∗(n) are defined in (III.3) and (III.5) for the response and latent
process models, respectively.

Necessity: If Σ is posterior consistent, i.e., for any ε > 0

limn→∞Pr(|Σij − Σ0ij| > ε |Y(n)) = 0 for 1 ≤ i, j ≤ q ,
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then limn→∞E(Σij − Σ0ij |Y(n)) ≤ limn→∞E(|Σij − Σ0ij| |Y(n)) < ε for any ε > 0; hence,
limn→∞E(Σij |Y(n)) = Σ0ij a.s. Therefore, Ψ∗(n)ij/n→ Σ0ij a.s. for 1 ≤ i, j ≤ q.

Sufficiency: If Ψ∗(n)ij/n → Σ0ij a.s. for 1 ≤ i, j ≤ q, then, from the posterior distribution
of Σ directly obtain limn→∞E(Σij |Y(n)) = Σ0ij and the variance of each element converges
to 0 at the rate of 1/n. Using the triangle and Chebyshev’s inequalities, for any ε > 0 we
obtain Pr(|Σij − Σ0ij| > ε |Y(n)) ≤ Pr(|Σij −Mij| > ε/2 |Y(n)) + Pr(|Mij − Σ0ij| > ε/2 |Y(n)) ≤
4Var(Σij |Y(n))/ε2 + Pr(|Mij − Σ0ij| > ε/2 |Y(n))→ 0 a.s..

Theorem S.2. The matrix Σ in the conjugate multivariate models is posterior consistent.

Proof. From (S.1), it follows that u(n) |Σ0 ∼ MN(2n+p)×q(0, I2n+p, Σ0), where u(n) = Y∗(n) −
X∗(n)γ and we write Ψ∗(n)/n = Ψ/n+ 1

n u(n)> (In −H∗(n)) u(n), where H∗(n) = X∗(n)(X∗(n)>X∗(n))−1X∗(n)>

is idempotent with rank p+ n. Writing H∗(n) = Q(n)> ĨQ(n), where Q(n) is an orthogonal matrix

and Ĩ =
[

Ip+n O
O O

]
and letting v(n) = Q(n)u, we obtain v(n) ∼ MN(2n+p)×q(0, I2n+p, Σ0). Also,

we know limn→∞
2

2n{u(n)>u(n)}ij = 2Σ0ij a.s. for 1 ≤ i, j,≤ q and limn→∞
1
n
{u(n)>H∗(n)u(n)}ij =

limn→∞
1
n

p

∑
l=1
{v>l vl}ij = Σ0ij a.s. from the Khinchin-Kolmogorov strong law of large numbers,

where vj is the j-th column of v(n). Hence, limn→∞Ψ∗(n)ij/n = Σ0ij a.s. and the result follows
from Lemma S.1.

Theorem S.3. The regression slopes β is posterior consistent for both conjugate models if and only if
limn→∞λmin(P(n)) = ∞, where λmin(P(n)) is the smallest eigenvalue of P(n).

Proof. The augmented linear system (S.1) implies that the marginal posterior mean of β is an
unbiased estimator of β0 with respect to the true distribution of Y(n). When β is posterior
consistent, limn→∞ Var(βij |Y(n)) = 0 a.s with respect to the true distribution of Y(n). Moreover,
limn→∞ Var(βij |Y(n)) = 0 a.s. is a sufficient condition for the posterior consistency of β through
Chebyshev’s inequality. In the conjugate model, β |Y(n) ∼ Tp,q(ν∗(n)− q+ 1, µ∗(n), V∗(n), Ψ∗(n))
with parameters given in (III.3). From Theorem III.1, limn→∞ Ψ∗(n)ij/n = Σ0ij a.s. for 1 ≤ i, j,≤ q,
hence limn→∞ Var(βij |Y(n)) = 0 a.s. if and only if limn→∞{V∗(n)}ii = 0 for all i = 1, . . . , q.
Following Eicker (1963) (see his proof of Theorem 1), the sufficient and necessary condition is
limn→∞ λmin(V∗−1(n)) = ∞. Since λmin(P(n)) + λmax(Vr

−1) ≥ λmin(V∗−1(n)) = λmin(P(n) +
Vr
−1) ≥ λmin(P(n)), the condition simplifies to limn→∞ λmin(P(n)) = ∞.

The following remarks reveal that the posterior consistency in Theorem III.1 satisfies with
common conditions.

Remark S.4. λmin(P(n)) is non-decreasing, and when β is posterior consistent, limn→∞ P(n)ii = ∞
since P(n)ii ≥ λmin(P(n))

Proof. Let X(n + 1) = [X(n)>, xn+1]
>, K(n + 1) =

[
K(n) K(n),n+1

Kn+1,(n) α−1

]
. Then

P(n + 1) = [X(n)>, xn+1]

[
K(n) K(n),n+1

Kn+1,(n) α−1

]−1 [
X(n)
xn+1

]
= P(n) + (X(n)>K(n)>K(n),n+1 − xn+1)d(Kn+1,(n)K(n)X(n)− xn+1)

= P(n) + A(n) ,

(S.3)
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where d = (α−1 −Kn+1,(n)K(n)−1K(n),n+1) > 0 and A(n) is positive semi-definite symmetric
matrix. Thus, λmin(P(n + 1)) = λmin(P(n) + A(n)) ≥ λmin(P(n)).

Remark S.5. When X(n) ∼ MN(0,K(n), Σ∗) for some Σ∗, β is posterior consistent.

Proof. Let K(n)−
1
2 be the square root of K(n)−1. Then, K(n)−

1
2 X(n) ∼ MN(0, In, Σ∗) and the

strong law of large numbers ensures limn→∞{ 1
n P(n)}ij = Σ∗ij a.s. for 1 ≤ i, j ≤ p. Hence,

λmin(P(n))→ ∞.

Remark S.6. If X(n) ∼ MN(0, In, Σ∗) for some Σ∗, then β is posterior consistent

Proof. For any n, there exists an orthogonal matrix Q(n) and a diagonal matrix D(n) with diagonal
entries di for i = 1, 2, . . . , n such that C(S(n),S(n)) = Q(n)>D(n)Q(n). This yields

P(n) = X(n)>Q(n)>(D(n) + (α−1 − 1)In)
−1Q(n)X(n)

= Z(n)>diag
(
{ 1

di + (α−1 − 1)
}n

i=1

)
Z(n) =

n

∑
i=1

1
di + (α−1 − 1)

ziz>i ,
(S.4)

where Z(n) = [zi : · · · : zn]> ∼ MN(0, In, Σ∗) and ∑n
i=1 di = n, di ≥ 0, i = 1, . . . , n. Letting

Vi = ziz>i for i = 1, . . . , n and applying the matrix version of Cauchy-Schwarz inequality (see, e.g.,
equation 4 in Marshall and Olkin, 1990) we obtain

n

∑
i=1

(di + (α−1 − 1))
n

∑
i=1

1
di + (α−1 − 1)

Vi ≥

 n

∑
i=1

√
di + (α−1 − 1)

V
1
2
i√

di + (α−1 − 1)


2

,

where V
1
2
i V

1
2
i = Vi, and, hence, P(n) ≥ α

{
n

∑
i=1

V
1
2
i /
√

n

}2

. Letting Vi = ziz>i = λiuiu>i where

λi = z>i zi = ‖zi‖2 and ui =
zi
‖zi‖

, we have V
1
2
i =

√
λiuiu>i . Changing n into np and rewriting

∑n
i=1 V

1
2
i into ∑n

i=1 ∑
p
k=1 V

1
2
ik, where {∑p

k=1 V
1
2
ik} for each i is a full rank p× p matrix with probability

1, we obtain

P(np) ≥ α

p

{
∑n

i=1 ∑
p
k=1
√

λikuiku>ik√
n

}2

(S.5)

We now argue that the smallest eigenvalue of the matrix on the right side goes to infinity as n→ ∞,

which will imply that λmin(P(np))→ ∞. Since ∑
p
k=1 V

1
2
ik = ∑

p
k=1
√

λikuiku>ik ∼ Wp(Σ
∗ 1

2 , p), where
Wp is Wishart distribution, {ui1, . . . , uip} make up the bases of the space Rp with probability 1.
For any u ∈ Rp, ‖u‖ = 1, we have

u>
p

∑
k=1

(√
λikuiku>ik

)
u ≥ min

k=1,...,p
{
√

λik}

Hence, λmin(∑n
i=1 ∑

p
k=1
√

λikuiku>ik) ≥ ∑n
i=1 min

k=1,...,p
{
√

λik}. Since λik = ‖zik‖2 where zik ∼

N(0, Σ∗), min
k=1,...,p

{
√

λik} are independent and identically distributed with a positive mean E( min
k=1,...,p

{
√

λik}) =

c∗ > 0 and a finite variance σ2∗. By law of large numbers, we have limn→∞ ∑n
i=1 min

k=1,...,p
{
√

λik}/n =
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c∗ a.s.. Therefore,

λmin

{∑n
i=1 ∑

p
k=1
√

λikuiku>ik√
n

}2
 ≥ 1

n

{
n

∑
i=1

min
k=1,...,p

{
√

λik}
}2

→ ∞

By (S.5), limn→∞ λmin(P(n)) = ∞.

S.3. Multivariate Response NNGP Model with Misalignment

The conjugacy in conjugate multivariate response model is violated with misalignment. Therefore,
for datasets with misalignment, we need to drop data on the location with misalignment and use
the “cleaned up” data to obtain quick inference through the conjugate model. However, for NNGP
based response model, we can provide a modified algorithm that can utilize the “dropped” data
to improve the inference of the conjugate multivariate response NNGP model.

Assume S is the set of observed locations, where at least one response is recorded,Mi ⊂ S
is the set of locations where the ith response has not been observed. Let M = ∪{Mi}

q
i=1 and

assumeM has nm locations, then R = S \M is the observed nr locations with no misalignment.
We label YR and XR as the responses and design matrix over R. The posterior distributions
p(Σ |YR) and p(β |Σ, YR) are given in (III.3) using R instead of S . For s ∈ M, we use footnote
os to denote the index of observed responses on s, the vector of observed responses on location
s is y(s)os and the corresponding coefficient matrix is βos. Then, the posterior distribution of Σ

given all observed data is

p(Σ |YR, {y(s)os}s∈M) ∝ {
∫

p({y(s)os}s∈M |Σ, β, YR)p(β |Σ, YR)dβ}p(Σ |YR)

∝ p({y(s)os}s∈M |Σ, YR)p(Σ |YR) .
(S.1)

Now consider the formulation of p({y(s)os}s∈M |Σ, YR). Let R be the reference set for the
response processes. Define the m nearest neighbor of s in R as Nm(s) and nR as the number of
locations in R, we have

p({y(s)os}s∈M |Σ, β, YR) = ∏
s∈M

N(y(s)os | vec[x(s)>β + L>s {YR − XRβ}]os, Ds) ,

where Ls is a nR × 1 vector whose i-th element is zero if si /∈ Nm(s). Define the index of nonzero
elements in Ls as Pa[s], then we have

Ls[Pa[s]] = [K(s, Nm(s))K(Nm(s), Nm(s))−1]> ,

Ds = [K(s, s)−K(s, Nm(s))K(Nm(s), Nm(s))−1K(Nm(s), s)]Σ[os,os]
(S.2)

where Σ[os,os] denotes the sub-matrix extracted from Σ with row and column index os. Let
β |Σ, YR ∼ MN(µ∗, V∗, Σ) and define Vpr = Σ⊗V∗, by intergrating out β we have

{y(s)os}s∈M |Σ, YR ∼ N(H1vec(µ∗) + H2vec(YR), diag({Ds}s∈M) + H1VprH>1 ) , (S.3)

where
H1 = {Iq[os,:] ⊗ x(s)>}s∈M −H2[Iq ⊗ XR] ,

H2 = {Iq[os,:] ⊗ L>s }s∈M .
(S.4)
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Here, Iq[os,:] is the osth row of a q× q identity matrix, thus H2 provides the index of observed
response and weights of neighbors for s ∈ M. Once q and p are relatively small, we can use
matrix determinant lemma and Sherman-Morrison-Woodbury formulas

det(diag({Ds}s∈M) + H1VprH>1 ) = det(Vupdate)det(Vpr) ∏
s∈M

det(Ds) ;

(diag({Ds}s∈M) + H1VprH>1 )
−1 = diag({D−1

s }s∈M)−
diag({D−1

s }s∈M)H1V−1
updateH>1 diag({D−1

s }s∈M) ,

(S.5)

with Vupdate = V−1
pr +H>1 diag({D−1

s }s∈M)H1 to facilitate the calculation of p({y(s)os}s∈M |Σ, YR).
Plugging the above two equations into the log-likelihood of {y(s)os}s∈M |Σ, YR

log{p({y(s)os}s∈M |Σ, YR)} = −
1
2

log{det(diag({Ds}s∈M) + H1(Σ⊗V∗)H>1 )}−

1
2
{µ>M(diag({Ds}s∈M) + H1(Σ⊗V∗)H>1 )

−1µM ,

µM = H1vec(µ∗) + H2vec(YR) ,

(S.6)

then we can use the likelihood and (S.1) to conduct MCMC algorithm for Σ.
Since Σ is positive-definite, we represent Σ through LL> and update L in the MCMC chain

instead. The MCMC update requires transforming the prior by the Jacobian 2q ∏
q
i=1 Lq−i+1

ii to
account for the map between L and Σ. Benefit from an informative prior Σ |YR, we can estimate
the covariance matrix of the posterior distribution of elements in L through Σ |Y, and design a
Gaussian distribution with a covariance matrix equals 2.382 times the estimated covariance matrix
as the proposal distribution. The Cholesky decomposition of E(Σ |YR) = Ψ/(ν∗ − q− 1) also
serves as a good initial value for L.

The posterior inference of β is more straightforward after obtaining the samples of
Σ |YR, {y(s)os}s∈M. We formulate β |Σ, YR | β, Σ and {y(s)os}s∈M | β, Σ as the following aug-
mented linear system, vec(D−

1
2
R (I−AR)YR)

{y(s)os}s∈M −H2vec(YR)
vec(L−1

r µβ)


︸ ︷︷ ︸

Y∗

=

 Iq ⊗D−
1
2
R (I−AR)XR

H1
Iq ⊗ L−1

r


︸ ︷︷ ︸

X∗

 β1
...

βq


︸ ︷︷ ︸
vec(β)

+

 η1
η2
η3


︸ ︷︷ ︸

η

, (S.7)

where AR and DR are the Aρk and Dρk defined in Section III with ρψk (s, s′) replaced by
ρψ(s, s′) + (α−1 − 1)δs=s′ and S replaced by R, η follows a zero-centered Gaussian distribution
with covariance matrix

Vη =

 Σ⊗ IR 0 0
0 diag({Σ[os,os]}s∈M) 0
0 0 Σ⊗ Ip

 . (S.8)

The posterior distribution of vec(β) |Σ, YR, {y(s)os}s∈M follows MVN(µ∗β, V∗β) with

V∗β = (X∗>V−1
η X∗)−1 , µ∗β = V∗β(X

∗>V−1
η Y∗) . (S.9)
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The posterior prediction over unobserved and misaligned locations Taking R as the reference
set, the full conditional posterior distribution of a new location u is

y(u) |YR, Σ, β ∼ MVN(x(u)>β + Ã>u [YR − XRβ], D̃uΣ) , (S.10)

where Ãu is a nR × 1 vector whose i-th element is zero if si /∈ Nm(u). Define the index of nonzero
elements in Ãu as Pa[s], then

Ãu[Pa[u]] = {K(u, Nm(u))[K(Nm(u), Nm(u)) + (α−1 − 1)Im]
−1}> ,

D̃u = α−1 − Ãu[Pa[u]]>K(Nm(u), u) .
(S.11)

For s ∈ M, label the index of unobserved responses at s by us, by the definition of NNGP,

y(s)us |YR, {y(s)os}s∈M, Σ, β = y(s)us |YR, y(s)os, Σ, β (S.12)

follows a Gaussian distribution with mean E{y(s) |YR}us−Σ[us,os]Σ
−1
[os,os]{y(s)os−E(y(s) |YR)os}

and covariance matrix D̃s(Σ[us,us]−Σ[us,os]Σ
−1
[os,os]Σ[os,us]) where E{y(s) |YR} = x(s)>β+ Ã>s [YR−

XRβ]. The following gives the detailed algorithm:

Algorithm 2: Obtaining inference of {β, Σ} and predictions for conjugate multivariate response NNGP with misalignment.

1. Obtain µ∗, V∗, Ψ∗ and ν∗ defined in (III.3) in Σ |YR ∼ IW(Ψ∗, ν∗).
The reader may refer to Section 2 and step 1 of Algorithm 1 in Zhang et al. (2020) for a more detailed algorithm.

2. Generate posterior samples of Σ |YR, {y(s)os}s∈M through MCMC algorithm.

(a) Take the Cholesky decomposition of E(Σ |YR) as the starting point L(0) of the MCMC chains

(b) Design proposal distribution for elements of L(l) as a multivariate Gaussian with 2.382 times the covariance
estimated from IW(Ψ∗, ν∗)

(c) Construct Ls and Ds for s ∈ M as described in (S.2) O(nmm3)

(d) Construct H1, H2 in (S.4) and calculate µM in (S.6) O(nmm2)

(e) For l in 1 : L

i. Propose new Σ∗ = L∗L∗> based on Σ(l−1) = L(l)L(l)>

ii. Calculate the likelihood of the new proposed Σ∗ and Σ(l) given F(l)

• Obtain the Cholesky decomposition Lupdate of Vupdate in (S.5) O(p2q2nm)

• Generate u = L−1
updateH1diag({D−1

s }s∈M)µM O(pq2nm)

• Calculate log-likelihood l(Σ |YR, {y(s)os}s∈M) through O(nm)

l(Σ |YR)−
1
2
(logdet(Vupdate) + logdet(Vpr)− ∑

s∈M
logdet(Ds) + µ>Mdiag({D−1

s }s∈M)µM − u>u)

• Add the log of the Jacobian 2q ∏
q
i=1 Lii to the log-likelihood from last step with Σ = LL>

iii. Accept the new Σ∗ as Σ(l) with the probability of the ratio of the likelihood of Σ∗ and Σ(l). Let Σ(l) =
Σ(l−1) when the new proposal is rejected.

3. Generate posterior samples of β

(a) Construct AR and DR in (S.7) O(nrm3)

(b) Construct X∗ and Y∗ in (S.7) O(nr(m + 1)(p + q))

(c) For each Σ(l) after burn-in

i. Construct Vη in (S.8) and V∗β, µ∗β in (S.9) O((p + q)q2n)

ii. Generate vec(β(l)) from MVN(µ∗β, V∗β)
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4. Generate posterior predictive samples of unobserved responses on U andM.

(a) Obtain Ãu,D̃u in (S.11) for all u ∈ U . O(n′m3)

(b) For each pair of β(l), Σ(l)

i. Generate y(u) | β(l), Σ(l), YR for u ∈ U through (S.10) O(q2n′)

ii. Generate y(s)us | β(l), Σ(l), y(s)os for s ∈ M through (S.12) O(q2nm)

We estimate the hyper-parameter set {ψ, α} through Algorithm 3 in Zhang et al. (2020), where in
step 1 we use S−k to denote the location of R without Sk.

S.4. Maps of predictions for 10 responses of the factor BLMC model in

Real Data Analysis
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(a) NDVI (b) EVI (c) GPP

(d) PsnNet (e) red refl (f) blue refl

(g) LE (h) ET (i) PLE

(j) PET

Figure 3: Maps (a)-(j) of predicted value on 1, 020, 000 observed locations for 10 variables in
Section V. The deeper the color, the higher the value. Some variables are transformed for better
model fitting. All values are estimated by posterior mean. Each map has its own color scale.
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