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A Hybrid Consensus Protocol
for Pointwise Exponential Stability

with Intermittent Information

Sean Phillips ∗ Yuchun Li ∗ Ricardo G. Sanfelice ∗

∗ Department of Computer Engineering, University of California,
Santa Cruz, CA 95064 USA

(e-mail: seaphill, yuchunli, ricardo@ucsc.edu).

Abstract: We propose a solution to the problem of achieving consensus of the state of multiple
systems connected over a network (over a directed graph) in which communication events are
triggered stochastically. Our solution consists of a protocol design that, using intermittent
information obtained over the network, asymptotically drive the values of their states to
agreement, with stability, globally and with robustness to perturbations. More precisely, we
propose a protocol with hybrid dynamics, namely, an algorithm with variables that jump at the
communication events and evolve continuously in between such events. We design the protocols
by recasting the consensus problem as a set stabilization problem and applying Lyapunov
stability tools for hybrid systems. We provide sufficient conditions for exponential stability
of the consensus set. Furthermore, we show that under additional conditions this set is also
partially pointwise globally exponentially stable. Robustness of consensus to certain classes of
perturbations is also established. Numerical examples confirm the main results.

Keywords: Consensus Protocol, Set Stability of Hybrid Systems, Networked Systems

1. INTRODUCTION

The topic of consensus has gained massive traction in
recent years due to the wide range of applications sci-
ence and engineering. A challenge to the design of con-
sensus protocols is when information is only available at
intermittent time instances. Different from consensus of
continuous and discrete-time systems, which is throughly
understood in Olfati-Saber and Murray (2004) and Cortés
(2008), the introduction of a sampling period or impulsive
information transfer for first and higher order systems has
been studied in Jie and Zhong (2014); Liu et al. (2010);
Guan et al. (2012); Hu et al. (2013); Wen et al. (2013).
For such cases, the application of systems theory tools like
Lyapunov functions, contraction theory, and incremental
input-to-state stability have been proposed. Notably, re-
cent research efforts on sample-data systems and event
triggered control for the stabilization of sets provide results
that can become useful for consensus, though some of
the assumptions need to be carefully fit to the consensus
problem under intermittent communication networks.

This article deals with the problem of consensus of first-
order integrator systems communicating at stochastically
determined time instances over a network. The consensus
problem studied here consists of designing a protocol
guaranteeing that the state of each agent converges to a
common value by only using intermittent information from
their neighbors. To solve this problem, we design hybrid
state-feedback protocols that undergo an instantaneous
change in their states when new information is available,
and evolves continuously between such events. Due to the
combination of continuous and impulsive dynamics, we
use hybrid systems theory to model the interconnected
⋆ This research has been partially supported by the National Science
Foundation under CAREER Grant no. ECS-1450484 and Grant no.
CNS-1544396, and by the Air Force Office of Scientific Research
under Grant no. FA9550-16-1-0015.

systems, the controller, and the network topologies as well
as to design the protocols, for which, we apply a Lyapunov
theorem for asymptotic stability of sets for hybrid systems.
Aside from asymptotic stability, we specify the point to
which the consensus states converge to and, when the
communications graph is strongly connected and weight
balanced, write it as a function of their initial conditions.
We show that a diagonal-like set is, in fact, partially
pointwise globally exponentially stable, which is a stronger
notion than typical notions of asymptotic stability due
to the additional requirement that each point in the set
is Lyapunov stable; see e.g. Goebel (2010) and Bhat
and Bernstein (2003) for similar notions. Furthermore,
we show that the consensus condition is robust to a
class of perturbations on the information. Finally, we
give some brief insight into modeling and an asymptotic
stability result for the case when information may arrive
at asynchronous events for each agent.

The remainder of this paper is organized as follows. Sec-
tion 2 gives some preliminary background on graph theory
and hybrid systems. Section 3 introduces the consensus
problem, impulsive network model, and the control struc-
ture. In Section 4, we define a hybrid protocol and give
the main results. The preliminary results for asynchronous
update times are in Section 5.

Notation The set of natural numbers is denoted as N,
i.e., N := {0, 1, 2, 3, . . .}. The set eig(A) contains the
eigenvalues of A. Given two vectors u, v ∈ R

n, |u| :=√
u⊤u, notation [u⊤ v⊤]⊤ is equivalent to (u, v). Given

a function m : R≥0 → R
n, |m|∞ := supt≥0 |m(t)|. Given a

symmetric matrix P , λ(P ) := max{λ : λ ∈ eig(P )} and
λ(P ) := min{λ : λ ∈ eig(P )}. Given matrices A,B with
proper dimensions, we define the operator He(A,B) :=
A⊤B +B⊤A. 1N is a vector of N ones.



2. PRELIMINARIES ON GRAPH THEORY AND
HYBRID SYSTEMS

2.1 Preliminaries on graph theory

A directed graph (digraph) is defined as Γ = (V , E ,G). The
set of nodes of the digraph are indexed by the elements of
V = {1, 2, . . . , N} and the edges are pairs in the set E ⊂
V×V . Each edge directly links two different nodes, i.e., an
edge from i to k, denoted by (i, k), implies that agent i can
send information to agent k. The adjacency matrix of the
digraph Γ is denoted by G = (gik) ∈ R

N×N , where gik = 1
if (i, k) ∈ E , and gik = 0 otherwise. The in-degree and

out-degree of agent i are defined by din(i) =
∑N

k=1 gki and

dout(i) =
∑N

k=1 gik. The largest (smallest) in-degree in the

digraph is given by d = maxi∈V d
in(i) (d = mini∈V d

in(i)).
The in-degree matrix D is the diagonal matrix with entries
Dii = din(i) for all i ∈ V . The Laplacian matrix of
the digraph Γ, denoted by L, is defined as L = D − G.
The Laplacian has the property that L1N = 0. The set
of indices corresponding to the neighbors that can send
information to the i-th agent is denoted by N (i) := {k ∈
V : (k, i) ∈ E}.
In this article, we will make varying assumptions on the
complexity of the underlying graph structure correspond-
ing to the network. For self-containedness, we summarize
the needed notions and results from the literature.
Definition 2.1. A directed graph is said to be

• weight balanced if, at each node i ∈ V , the out-
degree and in-degree are equal; i.e., for each i ∈ V ,
dout(i) = din(i);

• complete if every pair of distinct vertices is connected
by a unique edge; that is gik = 1 for each i, k ∈ V ,
i 6= k;

• strongly connected if and only if any two distinct
nodes of the graph can be connected via a path that
traverses the directed edges of the digraph. �

Lemma 2.2. ((Olfati-Saber and Murray, 2004, Theorem
6),(Fax and Murray, 2004, Propositions 1, 3, and 4))
For an undirected graph, L is symmetric and positive
semidefinite and each eigenvalue of L is real. For a directed
graph, zero is a simple eigenvalue of L if the directed graph
is strongly connected.

Lemma 2.3. (Godsil and Royle (2013)) Consider an n×n
symmetric matrix A = {aik} satisfying

∑n
i=1 aik = 0 for

each k ∈ {1, 2, . . . , n}. The following statements hold:

(i) There exists an orthogonal matrix U such that

U⊤AU =

[
0 0
0 ⋆

]
(1)

where ⋆ represents any nonsingular matrix with an
appropriate dimension and 0 represents any zero
matrix with an appropriate dimension.

(ii) The matrix A has a zero eigenvalue with eigenvector
1n ∈ R

n.

2.2 Preliminary on Hybrid Systems

A hybrid system H has data (C, f,D,G) and is defined by

ż = f(z) z ∈ C,

z+ ∈ G(z) z ∈ D,
(2)

where z ∈ R
n is the state, f defines the flow map capturing

the continuous dynamics and C defines the flow set on

which f is effective. The set-valued map G defines the
jump map and models the discrete behavior, while D
defines the jump set, which is the set of points from where
jumps are allowed. A solution 1 φ to H is parametrized
by (t, j) ∈ R≥0 × N, where t denotes ordinary time and
j denotes jump time. The domain dom φ ⊂ R≥0 × N is
a hybrid time domain if for every (T, J) ∈ dom φ, the
set dom φ ∩ ([0, T ] × {0, 1, . . . , J}) can be written as the
union of sets ∪J

j=0(Ij × {j}), where Ij := [tj , tj+1] for a
time sequence 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ+1. The tj ’s
with j > 0 define the time instants when the state of the
hybrid system jumps and j counts the number of jumps.
The set SH contains all maximal solutions to H, and the
set SH(ξ) contains all maximal solutions to H from ξ.

In this paper, we consider the following stability notions.

Definition 2.4. (global exponential stability) Let a hybrid
system H be defined on R

n. Let A ⊂ R
n be closed. The

set A is said to be globally exponentially stable (GES) for
H if there exist κ, α > 0 such that every maximal solution
φ to H is complete and satisfies

|φ(t, j)|A ≤ κe−α(t+j)|φ(0, 0)|A
for each (t, j) ∈ domφ. �

Definition 2.5. (partial pointwise global exponential sta-
bility) Consider a hybrid system H with state z = (p, q) ∈
R

n. The closed set A ⊂ R
r × R

n−r where r ∈ N and
0 < r ≤ n is partially pointwise global exponentially stable
with respect to the state component p for H if

1) every maximal solution φ to H is complete and has a
limit belonging to A;

2) A is exponentially attractive for H, namely, for each
φ ∈ SH there exist κ, α > 0 such that |φ(t, j)|A ≤
κe−α(t+j)|φ(0, 0)|A for all (t, j) ∈ domφ; and

3) for each p∗ ∈ R
r such that there exists q ∈ R

n−r sat-
isfying (p∗, q) ∈ A, it follows that for each ε > 0 there
exists δ > 0 such that every solution φ = (φp, φq) to
H with φp(0, 0) ∈ p∗ + δB satisfies |φp(t, j)− p∗| ≤ ε
for all (t, j) ∈ domφ. �

A hybrid system is said to satisfy the hybrid basic condi-
tions if (Goebel et al., 2012, Assumption 6.5) holds. We
refer the reader to Goebel et al. (2012) for more details
on these notions and the hybrid systems framework. The
asymptotic version of the notion in Definition 2.5 can be
found in Goebel and Sanfelice (2016).

3. CONSENSUS USING INTERMITTENT
INFORMATION

3.1 Problem Description

Consider a group of N agents with dynamics

ẋi = ui i ∈ V := {1, 2, . . . , N} (3)

that exchange information over a digraph Γ = (V , E ,G),
where xi ∈ R is the state and ui ∈ R is the control input
of the i-th agent. Our goal is to design a control protocol
(or feedback controller) assigning the input ui to drive the
solutions of each agent to a common constant value. In
particular, we are interested in the following asymptotic

1 A solution to H is called maximal if it cannot be extended, i.e., it
is not a truncated version of another solution. It is called complete
if its domain is unbounded. A solution is Zeno if it is complete and
its domain is bounded in the t direction. A solution is precompact if
it is complete and bounded.



convergence property of the states xi, known as static
consensus; see Olfati-Saber and Murray (2004, 2002).

Definition 3.1. (static consensus). Given the agents in (3)
over a digraph Γ, a control protocol ui is said to solve
the consensus problem if every resulting maximal solution
with u = (u1, u2, . . . , uN) is complete and its x component
t 7→ (x1(t), x2(t), . . . , xN (t)) satisfies

lim
t→∞

|xi(t)− xk(t)| = 0

for each i, k ∈ V , i 6= k. �

We consider the scenario where the state of each system
is available to each other system only at isolated time
instances. Namely, the i-th agent receives information from
its neighbors at time instances ts, where s ∈ N \ {0} is the
communication event index; specifically, agent i receives

yki(ts) = xk(ts) ∀k ∈ N (i)

at each ts. Given positive numbers T2 ≥ T1, we assume
that the time between these events is governed by a
discrete random variable with some bounded probability
distribution. Namely, for each i ∈ V , the random variable
Ωs ∈ [T1, T2] determines the time elapsed between such
communication events for each i-th system, i.e.,

ts+1 − ts = Ωs ∀ s ∈ N \ {0}. (4)

The scalar values T1 and T2 define the lower and upper
bounds, respectively, of the time allowed to elapse between
consecutive transmission instances. In this way, the ran-
dom variable Ωs may take values only on the bounded
interval [T1, T2], while the probability density function
governing its distribution can be arbitrary as long as it
assigns values to Ωs that are in [T1, T2].

3.2 Proposed Controller Design

We propose a hybrid control protocol and design proce-
dure for consensus of (3) over networks with intermittent
transmission of information as defined in the previous
section. For the i-th agent, the proposed control proto-
col assigns a value to ui based on the measured out-
puts of the neighboring agents obtained at communication
events. In particular, the controller assigns ui to a control
variable ηi which is allowed to be impulsively updated
via η+i =

∑
k∈N (i)G

ki
c (xi, yki, ηi) at each communication

event, where Gki
c : R

3 → R is the update law using
information from the k-th neighbor. Furthermore, the con-
troller state ηi is allowed to evolve continuously between
such events. Due to the nonperiodic arrival of informa-
tion and impulsive dynamics, classical analysis tools (for
continuous-time or discrete-time systems) do not apply to
the design of the proposed controller. This motivates us to
design the proposed controller by recasting the intercon-
nected systems, the impulsive network, and such a control
protocol in a hybrid system framework; specifically, the
one given in Goebel et al. (2012).

4. MAIN RESULTS

4.1 Hybrid Modeling

A timer state τ is introduced to model the network
communication times given by (4). We design its hybrid
dynamics as follows: from positive values it decreases to
zero as ordinary time increases and, whenever it reaches
zero, it is reset to an arbitrary value in the interval [T1, T2].
Such dynamics lead to the hybrid system

τ̇ = −1 τ ∈ [0, T2]

τ+ ∈ [T1, T2] τ = 0
(5)

Due to its set-valued jump map in particular, this sys-
tem effectively generates any sequence of communication
events at times satisfying (4) with Ω determined by any
bounded probability distribution function that assigns Ω
to a value in [T1, T2].

At communication times, each system shares its state
information to its neighboring agents. A control protocol
using this impulsive information is proposed next. As we
show in Section 5, multiple timers can be used to trigger
communication events for each agent asynchronously.

Protocol 4.1. Given parameter T2 of the network, the i-th
hybrid controller has state ηi with the following dynamics:

ui = ηi
η̇i = 0 τ ∈ [0, T2]

η+i = −γ
∑

k∈N (i)

(xi − xk) τ = 0
(6)

where γ > 0 is the controller gain parameter.

Using Protocol 4.1, we employ the hybrid system frame-
work outlined in Section 2 and the properties of the Lapla-
cian matrix to build the interconnected state-feedback
network system, which we denote by H. The state of H
is given by ξ = (x, η, τ) ∈ R

N × R
N × [0, T2] =: X , where

x = (x1, x2, . . . , xN ) and η = (η1, η2, . . . , ηN ) comprise the
agents’ system states and controller states, respectively.
By combining the agents’ continuous dynamics in (3), the
timer’s hybrid dynamics in (5), and the protocol in (6), we
arrive to the hybrid system H given by

ξ̇ =

[
η
0
−1

]
=: f(ξ) ξ ∈ C := X ,

ξ+ ∈
[

x
−γLx
[T1, T2]

]
=: G(ξ) ξ ∈ D := R

N × R
N × {0}.

(7)

Remark 4.2. Due to the fact that the timer variable being
zero is the only trigger of the jumps, some properties of
the domain of solutions can easily be characterized. In
particular, a solution φ to the hybrid system H is such
that, with t0 = 0, the assumption that T1 ≤ tj+1− tj ≤ T2
for all j ≥ 2, and 0 ≤ t1 ≤ T2, leads to the hybrid time
domain having the following property for the flow time t:

(j − 1)T1 ≤ t ≤ (j + 1)T2 ∀ j ≥ 1

for all (t, j) ∈ domφ. Moreover, due to the assumption
that T1 > 0, every φ ∈ SH is complete and the hybrid
time domain is unbounded in both t and j. �

Our goal is to show that Protocol 4.1 not only guarantees
the static consensus property in Definition 3.1 with an
exponential decay rate, but also renders Lyapunov stable
the set of points such that xi = xk for all i, k ∈ V . To this
end, we define the set to exponentially stabilize as

A := {ξ ∈ X : xi = xk, ηi = 0 ∀i, k ∈ V , τ ∈ [0, T2]}. (8)

We establish exponential stability by changing to coordi-
nates obtained through a key property of the Laplacian
matrix. More precisely, let Γ be a strongly connected
digraph. Using Lemma 2.2 and Lemma 2.3, its associated
Laplacian L is such that there exists a nonsingular matrix

T = [1N , T1] such that T−1LT =

[
0 0
0 L̄

]
, which is a



diagonal matrix containing the eigenvalues of L, where L̄ is
a diagonal matrix with diagonal elements (λ2, λ3, . . . , λN )
with λi’s being the positive eigenvalues of L. Then, we
change the coordinates ξ of H to the new coordinates
χ defined using x̄ = T−1x and η̄ = T−1η. By applying
the transformation T−1 to both sides of the continuous
dynamics of the state x and η of H in (7), we have ˙̄x = η̄
and ˙̄η = 0. During jumps, the difference equations of
the states x and η of H in (7) become x̄+ = x̄ and

η̄+ = −γ
[
0 0
0 L̄

]
x̄. Then, the new coordinates denoted

as χ are defined by collecting the scalar states x̄1 and η̄1
into z̄1 = (x̄1, η̄1) and the remaining states of x̄ and η̄ into
z̄2 = (x̄2, x̄3, . . . , x̄N , η̄2, η̄3, . . . , η̄N ), so as to write χ as
χ = (z̄1, z̄2, τ) ∈ X . The new coordinates lead to a hybrid

system denoted as H̃ with the following data:

f̃(χ) :=

[
Af1z̄1
Af2z̄2
−1

]
∀χ ∈ C̃ := X

G̃(χ) :=

[
Ag1z̄1
Ag2z̄2
[T1, T2]

]
∀χ ∈ D̃ := {χ ∈ X : τ = 0}

(9)

where

Af1 =

[
0 1
0 0

]
, Ag1 =

[
1 0
0 0

]
, Af2 =

[
0 I
0 0

]
, Ag2 =

[
I 0

−γL̄ 0

]

(10)

and γ > 0. Moreover, in the new coordinates, the set to

stabilize for the hybrid system H̃ in (9) is defined as

Ã := {(z̄1, z̄2, τ) ∈ X : z̄1 = (x∗, 0), x∗ ∈ R, z̄2 = 0}. (11)

4.2 Global Exponential Stability Results

Inspired by Ferrante et al. (2015), we have the following
stability results for H.

Proposition 4.3. Let T1 and T2 be two positive scalars such
that T1 ≤ T2. The set A is GES for the hybrid system H
if either one of the following properties hold:

(1) the digraph is strongly connected, and there exist a
positive scalar γ and a positive definite symmetric
matrix P satisfying

A⊤
g2e

A⊤

f2
νPeAf2νAg2 − P < 0 ∀ν ∈ [T1, T2], (12)

where the matrices Ag2 and Af2 are given in (10).
(2) the digraph is completely connected, and there exist

a positive scalar γ and a positive definite symmetric
matrix P satisfying

A⊤
g e

A⊤

f νPeAfνAg − P < 0 ∀ν ∈ [T1, T2], (13)

where Ag =

[
0 1
0 0

]
and Af =

[
1 0
−γ 0

]
.

Furthermore, if the digraph Γ is weight balanced, then ev-
ery solution φ = (φx, φη, φτ ) ∈ SH(φ(0, 0)) is complete and
satisfies limt+j→∞ φη(t, j) = 0 and limt+j→∞ φx(t, j) =
ρ(φ(0, 0)), where

ρ(φ(0, 0)) :=

(
1

N

(
1
⊤

Nφx(0, 0) + 1
⊤

Nφη(0, 0)φτ (0, 0)
))

1N . (14)

The property that A being GES under condition (1)
can be established using the Lyapunov function V (χ) =

V1(χ)+V2(χ), where V1(χ) = z̄⊤1 e
A⊤

f1
τeAf1τ z̄1 and V2(χ) =

z̄⊤2 e
A⊤

f2
τPeAf2τ z̄2. Note that there exist positive scalars

α1, α2 such that α1|χ|2
Ã
≤ V (χ) ≤ α2|χ|2

Ã
. For each χ ∈ C̃,

〈∇V (χ), f̃(χ)〉 = 0 and, in light of (12) and the update law

for z̄1 and z̄2, for each χ ∈ D̃\Ã and each g ∈ G̃(χ), V (g)−
V (χ) < 0. By continuity of condition (12), there exists a

positive scalar β such that V (g)− V (χ) ≤ − β
α2

V (χ). Let

λd = ln
(
1− β

α2

)
. Pick α ∈

(
0, |λd|

1+T2

]
and R ∈

[
T2|λd|
1+T2

,∞
)

and φ ∈ S
H̃
. From Remark 4.2, we have that λdj ≤ R −

α(t+j) |φ(t, j)|
Ã
≤ eR/2

√
α2/α1e

−α/2(t+j)|φ(t, j)|
Ã
for all

(t, j) ∈ domφ. Since all maximal solutions are complete,

we have that Ã is GES for H̃. The proof is completed by

noticing that GES of Ã for H̃ is equivalent to GES of A
for H.

Remark 4.4. Conditions (12) and (13) may be difficult
to satisfy numerically. In fact, these conditions are not
convex in γ and P , and need to be verified for infinitely
many values of ν. In Ferrante et al. (2014), the authors
use a polytopic embedding strategy to arrive to a linear
matrix inequality in which one needs to find some matrices
Xi such that the exponential matrix is an element in
the convex hull of the Xi matrices. Those results can be
adapted to our setting. �

Remark 4.5. Condition (12) has a form that is similar to
the discrete Lyapunov equation A⊤PA − P < 0. Due
to this, condition (12) is satisfied if |eAf2νAg2| ≤ 1 for
every ν ∈ [T1, T2]. This property can be exploited using
the specific forms of Af2 and Ag2. In fact, it can be

checked that eAf2νAg2 =

[
(I − γL̄ν) 0

−γL̄ 0

]
, so its eigenvalues

are those of the matrix I − L̄γν and 0, the latter with
multiplicity N . If |I − γL̄ν| < 1 for each ν ∈ [T1, T2]
then condition (12) is satisfied. For a strongly connected
digraph, L̄ is a diagonal matrix containing the eigenvalues
λi > 0 for each i ∈ {2, 3, . . . , N}, we have that the matrix
I − γL̄ν is also diagonal where each diagonal element is
given by 1 − γλiν. In light of the above and since the
eigenvalues λi are fixed by the digraph, γ > 0 must satisfy
|1 − γλiν| < 1 for each i ∈ {2, 3, . . . , N} and ν ∈ [T1, T2].
Therefore, given a digraph Γ = (V , E ,G), if one picks γ
such that γ < 2/(λ(L̄)T2), then condition (12) holds. �

Using the above results, we can now give sufficient con-
ditions for the set A to be partially pointwise globally
exponentially stable with respect to (x, η) for H . Along
with GES established in Proposition 4.3, partially point-
wise globally exponentially stable requires that each point
in the diagonal-like set A is stable with respect to (x, η).

Theorem 4.6. Given 0 < T1 ≤ T2 and a weight balanced
digraph Γ = (V , E ,G). Suppose either (1) or (2) in Proposi-
tion 4.3 hold. Then, the set A is partially pointwise globally
exponentially stable with respect to (x, η) for the hybrid
system H.

Example 4.7. Consider five agents with dynamics as in (3)
over the strongly connected graph with adjacency matrix

G =




0 1 1 0 1
1 0 1 0 0
1 0 0 1 0
0 0 1 0 1
1 0 1 1 0


 . (15)

Let T1 = 0.5 and T2 = 1.5. If γ = 0.3, then a matrix
P can be found such that condition (12) is satisfied.
Figure 1 shows the xi components i ∈ {1, 2, 3, 4, 5} of a
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Fig. 1. (top) The x and τ components of a solution
φ = (φx, φη, φτ ) toH with G in (15) using Protocol 4.1
which satisfies Proposition 4.3. (bottom) Note that

since V2(χ) for H̃ deceases to zero with respect to flow
time, it indicates that the solution reaches consensus.

solution φ = (φx, φη, φτ ) from initial conditions given by
φx(0, 0) = (1,−1, 2,−2, 0), φη(0, 0) = (0,−3, 1,−4,−1),
and φτ (0, 0) = 0.2 as well as the the function V2(χ)
below Proposition 4.3 evaluated along φ projected onto
the ordinary time domain. 2 △

4.3 Robustness to Perturbations on Communication Noise

In a realistic setting, the information transmitted is af-
fected by communication noise. In this section, we consider
the systems under the effect of communication noise mi
when agent i sends out information. Specifically, if the k-
th agent receives information of the i-th agent perturbed
by mi ∈ R, i ∈ V , we have that when communication
occurs, 3 the output of each agent is given by yi = xi+mi.
In such a case, the controller from Protocol 4.1 becomes

η̇i = 0 τ ∈ [0, T2]

η+i = −γ
∑

k∈N (i)

(yi − yk) τ = 0

which, different than (6), leads to an update law with noise
given by η+i = −γ∑k∈N (i)(xi−xk)−γ

∑
k∈N (i)(mi−mk).

We show that the hybrid system H in (7) is input-to-state
stable (ISS) 4 with respect to such measurement noise.

The perturbed hybrid system, which we denote by Hm,
can be written in the compact form

ẋ = η
η̇ = 0
τ̇ = −1

}
τ ∈ [0, T2],

x+ = x
η+ = −γLx− γLm
τ ∈ [T1, T2]




 τ = 0.

(16)

where m = (m1,m2, . . . ,mN ). Then, using the change
of coordinates as in Section 4.1, we can show that global
exponential stability of A in (11) for Hm in (9) is robust
to communication noise.

Theorem 4.8. Let 0 < T1 ≤ T2 be given. Suppose the
digraph Γ = (E ,V ,G) is strongly connected. If there exists
γ > 0 and a positive definite symmetric matrix P such

2 Code at https://github.com/HybridSystemsLab/ConsSyncTimes
3 In this way, mi can account for errors local to the i-th agent as
well as communication noise.
4 We use the ISS definition in Cai and Teel (2009).

that (12) holds for all ν ∈ [T1, T2], then the hybrid system
Hm with input m̄ is ISS with respect to A as in (11).

5. ON ASYNCHRONOUS EVENT TIMES

In this section, we present results for the scenario where
each agent receives information asynchronously. To model
such events, we attach a local timer to each agent so
that when it reaches zero it triggers the transmission of
information of its connected neighbors.

Protocol 5.1. Given parameter T2 of the network, the i-th
hybrid controller has state ηi with the following dynamics:

ui = ηi
η̇i = hηi τi ∈ [0, T2]

η+i = γ
∑

k∈N (i)

(xi − xk) τi = 0
(17)

where h, γ ∈ R are the controller’s parameters.

Define x̄i = xi − 1
N

∑N
k=1 xk and θi = γ

∑
k∈N (i)(xi −

xk)− ηi. From the interconnection between (3), (17), and
each τi with dynamics as in (5), the continuous dynamics

of x̄i and θi are given by ˙̄xi = ηi − 1
N

∑N
k=1 ηk and

θ̇i = γ
∑

k∈N (i)(ηi−ηk)−hηi. Denote x̄ = (x̄1, x̄2, . . . , x̄N ),

η = (η1, η2, . . . , ηN ) and θ = (θ1, θ2, . . . , θN ). From the
definition of θi and noting that x̄i− x̄k = xi−xk, it follows
that

θ = γLx̄− η.
With the definitions of x̄i and θi and the assumption
of Γ being weight balanced 5 , we have that ˙̄x = γLx̄ −(
I − 1

N 1N1⊤
N

)
θ and θ̇ = x̄ − (γL − hI)θ for each τ ∈

[0, T2]
N . At each jump, say, there exists i ∈ V such that

τi = 0, x̄i and θi are updated as x̄+i = x̄i and θ+i = 0,
while all other states are updated by the identity.

In the coordinates x̄ and θ, we define the hybrid system
Ha with state ξa = (ψ, τ) ∈ R

N × R
N × [0, T2]

N =: Xa
where ψ = (x̄, θ) and data (Ca, fa, Da, Ga) given by

fa(ξa) :=

[
Aψ
−1N

]
, A :=


 γL −

(
I − 1

N
1N1⊤

N

)

γ2LL − hγL −(γL− hI)




for each ξa ∈ Ca := Xa, and Ga(ξa) := {Gi(ξa) :
ξa ∈ Di, i ∈ V} for each ξa ∈ Da :=

⋃
i∈V Di, where

Di := {ξa ∈ Ca : τi = 0} and

Gi(ξa) :=

[
x̄

(θ1, θ2, . . . , θi−1, 0, θi+1, . . . , θN)
(τ1, τ2, . . . , τi−1, [T1, T2], τi+1, . . . , τN )

]
.

The definition of Gi is such that the i-th component of θ
and τ are updated only when τi = 0.

It follows that the set to stabilize is given by

Aa := {ξa ∈ Xa : ξa = (x̄∗1N , 0, ν), x̄
∗ ∈ R, ν ∈ [0, T2]

N}
(18)

for the hybrid system Ha with data (Ca, fa, Da, Ga). We
have the following stability result for Ha.

Proposition 5.2. Let T1 and T2 be two positive scalars such
that T1 ≤ T2 and a digraph Γ be strongly connected and
weight balanced. If there exist scalars γ, h ∈ R, and σ > 0,
positive definite diagonal matrices P and Q such that

5 For a weight balanced digraph, 1⊤

N
L = 0

⊤.



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

0

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-4

-2

0

2

4

φxi

φτi

x̄i

t [Flow time]

x1
x2
x3
x4

Fig. 2. The x, τ components of a solution φ = (φx, φη, φτ )
to a hybrid system with with agent dynamics (3),
communication governed by local timers τi with dy-
namics in (5), and Protocol 5.1. The coordinate x̄ is
also plotted over flow time.
[
γHe(P,L) −PΠ+K⊤

1 QE(τ)
⋆ −σQE(τ)−He(QE(τ),K2)

]
≤ 0 (19)

for each τ ∈ [0, T2]
N , where Π = I− 1

N 1N1⊤
N , K1 = γK2L,

K2 = γL−hI, and E(τ) = diag(eστ1 , eστ2 , . . . , eστN ), then
the set Aa in (18) is globally asymptotically stable 6 for
the hybrid system Ha.

Example 5.3. Consider four agents with dynamics as in

(3) over a digraph with adjacency matrix G =



0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0




which is strongly connected and weight balanced. Let T1 =
0.4. For T2 = 0.8, and parameters γ = −0.4, h = −0.4,
and σ = 2, we find the matrices P = 5.06I and Q = 1.58I
satisfy condition (19) in Proposition 5.2. Figure 2 shows
a solution φ to a hybrid system with agent dynamics (3),
communication governed by local timers τi with dynamics
in (5), and Protocol 5.1 from initial conditions φx(0, 0) =
(−5,−2, 5, 0), φη(0, 0) = (−1, 1, 0,−10), and φτ (0, 0) =
(.4, 1, 0.1, 0.25). 7 Furthermore, as indicated by Figure 2,
it follows that the new states x̄i asymptotically converge to
zero over time indicating that the xi’s achieve consensus.

△
6. CONCLUSION

We showed that hybrid consensus protocols are viable
algorithms for the consensus of first order systems with
stochastically determined communication events over a
general graph. Using a hybrid systems framework, we
defined the communication events between the systems
using a hybrid decreasing timer. Recasting consensus as a
set stability problem, we took advantage of several prop-
erties of the graph structure and employed a Lyapunov
based approach to certify that this set is partially point-
wise globally exponentially stable. We further showed that
global exponential stability of the consensus set is robust
to communication noise. Lastly, we presented a protocol
for reaching state consensus where agents receive local up-
dates asynchronously. The results in this paper can be used
6 Global asymptotic stability is defined in Goebel et al. (2012).
7 Code at https://github.com/HybridSystemsLab/ConsAsyncTimes

to design large-scale networked systems that communicate
at stochastic time instants over general communication
graphs.
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