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Sex dependent effects of nicotine on the developing brain

Sarah J. Cross1, Kay E. Linker1, and Frances M. Leslie1,2

1Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA

2Department of Pharmacology, School of Medicine, University of California, Irvine, CA

Abstract

The use of tobacco products represents a major public health concern, especially among women. 

Epidemiological data have consistently demonstrated that women have less success quitting 

tobacco use and a higher risk for developing tobacco-related diseases. The deleterious effects of 

nicotine are not restricted to adulthood, as nicotinic acetylcholine receptors regulate critical 

aspects of neural development. However, the exact mechanisms underlying the particular 

sensitivity of women to develop tobacco dependence have not been well elucidated. In this review, 

we show that gonadal hormone-mediated sexual differentiation of the brain may be an important 

determinant of sex differences in the effects of nicotine. We highlight direct interactions between 

sex steroid hormones and ligand-gated ion channels critical for brain maturation, and discuss the 

extended and profound sexual differentiation of the brain. We emphasize that nicotine exposure 

during the perinatal and adolescent periods interferes with normal sexual differentiation and can 

induce long-lasting, sex-dependent alterations in neuronal structure, cognitive and executive 

function, learning and memory, and reward processing. We stress important age and sex 

differences in nicotine’s effects and emphasize the importance of including these factors in 

preclinical research that models tobacco dependence.

Graphical Abstract

Sex differences in the effects of nicotine may be due to gonadal hormone-mediated sexual 

differentiation of the brain during the perinatal and adolescent periods. Exposure to nicotine 

during these developmental periods can produce long-lasting, sex-dependent changes in neuronal 

structure and function by inhibiting aromatase or inducing corticosterone release, for example.
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Introduction

Nicotine exposure from tobacco products or electronic cigarettes (e-cigarettes) has numerous 

deleterious effects on overall health. Smoking remains one of the leading causes of 

preventable death in the United States despite heightened awareness of its dangers (Centers 

for Disease Control and Prevention 2011), and women seem to be particularly vulnerable. 

Women have lower success with cessation than men (Perkins 2001; Piper et al. 2010), and 

also have a higher risk of developing tobacco-related morbidity and mortality (Langhammer 

et al. 2003; Laviolette et al. 2007; Kiyohara and Ohno 2010; Allen et al. 2014). Preclinical 

research has also demonstrated that females are more sensitive than males to the rewarding 

effects of nicotine, as well as more sensitive to the aversive effects of nicotine withdrawal 

(O’Dell and Torres 2014).

In addition to negatively impacting overall health in adulthood, a large body of literature has 

indicated that nicotine can have detrimental effects on the brain throughout development, 

with important sex differences. Nicotine’s primary effects are mediated by activation and 

desensitization of neuronal nicotinic acetylcholine receptors (nAChRs), pentameric ligand-

gated ion channels consisting of α2-α10 and β2-β4 subunits (Dwyer et al. 2009). 

Cholinergic activity at nAChRs is critical for neuronal path-finding, patterning and 

organization of sensory systems, and regulation of neurochemical systems involved in 

tobacco addiction (Lipton et al. 1988; Pugh and Berg 1994; Rossi et al. 2001; Feller 2002; 

Gotti and Clementi 2004; Dwyer et al. 2009). Exposure to nicotine during these critical 

developmental events can have profound and long-lasting effects. Approximately 10% of 

women continue to smoke during pregnancy (Tong et al. 2013), despite increased risk for 

sudden infant death syndrome (SIDS), attentional and cognitive deficits, and drug addiction 

in offspring (McCartney et al. 1994; Weissman et al. 1999; Buka et al. 2003; Dietz et al. 

2010; Goldschmidt et al. 2012). Nicotine’s deleterious effects are not limited to the perinatal 

period, however, but extend to adolescence, a developmental period marked by continued 

maturation of brain regions critical for reward processing, learning and memory, and 
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executive function (Yuan et al. 2015). Even brief exposure to nicotine during the adolescent 

period can have long-lasting effects on neurochemistry and behavior, including decreased 

cognitive function and enhanced drug reward (Jacobsen et al. 2005; Treur et al. 2015; Yuan 

et al. 2015).

The exact mechanisms underlying women’s enhanced vulnerability to tobacco dependence 

have not been fully elucidated. However, as gonadal steroids coordinate sexual 

differentiation of the brain and can interact directly with ligand-gated ion channel receptors, 

they are likely determinants of sex differences in nicotine reward and reinforcement. The 

classical organizational-activational hypothesis says that gonadal hormones differentiate the 

brain into male and female early in development, while activity of estrogens, progesterone, 

and androgens activate neural circuits involved in reproductive function after puberty 

(Arnold 2009). However, a large body of literature has emerged in recent years highlighting 

the important role of gonadal hormones in modulating a variety of behaviors, including 

learning, memory, and drug reward and reinforcement. Further, in contrast to the short span 

of sexual differentiation suggested in the original hypothesis, recent data describe continued 

sexual differentiation throughout puberty and adolescence (Sisk and Zehr 2005; McCarthy 

and Arnold 2011).

In this review, we discuss critical interactions between gonadal hormones and neurochemical 

systems mediating nicotine reward and reinforcement. We argue that sexual differentiation, 

beginning in the perinatal period and persisting into adolescence, is an important 

determinant of sex differences in brain structure and function that underlie females’ unique 

sensitivity to nicotine.

Sexual differentiation, gonadal steroids, and ligand-gated ion channels

Sex differences in nicotine responses likely first emerge as a result of sexual differentiation 

of the brain. The earliest stages of sexual differentiation are determined by the SRY gene on 

the Y chromosome, which initiates testes development during the prenatal period. Absence 

of the SRY gene leads to the ‘default’ female phenotype, precluding masculinization and 

defeminization of the brain. Fetal masculinization then occurs under the control of gonadal 

hormones, with a surge of androgens that peaks at the end of the embryonic period in males 

before quickly falling after the first postnatal day (Konkle and McCarthy 2011). 

Testosterone is converted to estradiol via aromatase, an enzyme that is abundant and active 

during the perinatal androgen surge (George and Ojeda 1982; Roselli and Resko 1993) and 

is highly expressed in sexually dimorphic brain regions (Konkle and McCarthy 2011). In 

contrast, absence of the androgen surge and sequestration of excess estradiol by α-

fetoprotein in the female results in early feminization of the brain.

Sex steroid hormones signal predominantly by binding to intracellular receptors, inducing 

dimerization and translocation to the nucleus where they bind to hormone response elements 

on DNA to regulate gene transcription (King and Greene 1984; O’Malley and Tsai 1992). 

However, recent data suggest that estrogens can induce more rapid signaling, likely via 

membrane-bound ERα receptors (Schultz et al. 2009), and that sex steroid hormones and 

their metabolites can interact directly with ligand-gated ion channels to influence excitatory 
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and inhibitory neurotransmission (Hu et al. 2006). Ligand-gated ion channels coordinate 

multiple aspects of brain maturation and are influenced by gonadal hormones, providing one 

potential mechanism by which sex affects nicotine responses.

Estrogen and progesterone act as allosteric modulators of GABA, glutamate, and 

acetylcholine receptors, often with opposing effects. In particular, estrogen is a negative 

allosteric modulator of GABAA receptors (Murphy et al. 1998), whereas progesterone and 

its neuroactive metabolites (i.e., allopregnanalone and pregnanalone) promote inhibitory 

neurotransmission via enhancement of GABAA receptor function (Paul and Purdy 1992; Lan 

and Gee 1994; van Wingen et al. 2008; Gunn et al. 2011; Puia et al. 2012) and inhibition of 

glutamate-induced excitation and NMDA receptor binding (Smith et al. 1987; Cyr et al. 

2000). The specific effects of circulating hormones or their neuroactive metabolites on 

ligand-gated ion channels may depend on the overall hormone milieu. During puberty, when 

the hypothalamic pituitary gonadal axis reawakens and cyclical surges in estrogens and 

androgens begin, progesterone actually acts as a negative allosteric modulator of GABAA 

receptors (Smith et al. 2009). This effect of progesterone is only evident during puberty, as 

pre- and post-pubertal rodents show positive allosteric modulation of GABAA receptors.

Sex steroids also modulate nicotinic acetylcholine receptor (nAChR) function (Figure 1). 

Progesterone and its A-ring metabolites dose-dependently inhibit function of α3β4 and 

α4β2 nAChRs (Valera et al. 1992; Ke and Lukas 1996; Paradiso et al. 2000), although 

physiological levels of progesterone may not be sufficient to inhibit α4β2 nAChRs (Paradiso 

et al. 2000). In contrast, progesterone may enhance the function of α5-containing nAChRs 

by binding to a progesterone response element in the promoter region to increase α5 mRNA 

levels in cultured cells and in the brains of ovariectomized female rats (Gangitano et al. 

2009). 17β-estradiol increases α7 nAChR subunit expression in the dorsal raphe and locus 

coeruleus of macaques (Centeno et al. 2006) and potentiates human, but not rat, α4β2 

nAChRs by direct actions at the C-terminus of the α4 subunit that result in an increase in the 

probability of open conformation (Figure 2; Paradiso et al. 2000; Paradiso et al. 2001; Curtis 

et al. 2002; Jin and Steinbach 2015). Both rodent and recombinant human α3β4 nAChRs are 

noncompetitively inhibited by estrogens, with more profound inhibition occurring after 

chronic exposure (Ke and Lukas 1996; Nakazawa and Ohno 2001). Alpha 7 nAChRs, as 

measured by α-bungarotoxin (α-BTX) binding, can be regulated by estradiol, as pre-

pubertal gonadectomy in females, but not males, decreases α-BTX binding in the 

suprachiasmatic nucleus. Binding can be normalized by semi-chronic (3 week) or long-term 

(5 week) estradiol replacement, while short-term replacement with estradiol has no effect 

(Miller et al. 1984).

Early sexual differentiation, nAChRs, and perturbation by nicotine

The gestational period is a dynamic and critical developmental window when sexual 

differentiation is initiated and the nervous system begins to form under the control of the 

cholinergic system. Even brief exposure to nicotine during this period can produce long-

lasting, sex-dependent alterations in neuronal structure and function.
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Development of the cholinergic system

Cholinergic activity is observed as early as the gastrulation phase with the detection of 

choline acetyltransferase (ChAT) and acetylcholinesterase in the fetus (Mansvelder and Role 

2006), and is implicated in morphogenic cell movements during early gestation (Lauder and 

Schambra 1999). Nicotine’s actions are mediated primarily by activation and desensitization 

of nAChRs, which appear during the first trimester in human brain and on the first day the 

rodent central nervous system forms, gestational day (G) 11. Each nAChR subtype has 

distinct and evolving patterns of distribution, implicating their differential roles in 

development and highlighting potential avenues for nicotine-associated perturbation (Dwyer 

et al. 2008).

nAChR activity is important for a variety of developmental functions and, in many cases, 

serves a critical ontogenetic role (for review, please see (Dwyer et al. 2009). Although most 

of the ontogenetic studies of nAChR function do not differentiate between sexes, one early 

study did note that α-BTX binding to α7 nAChRs in the mouse corticomedial amygdala was 

higher in males than females at postnatal day (P) 14, a sex difference that was eliminated by 

neonatal castration of males (Arimatsu 1983). Furthermore, nAChR-mediated excitation of 

corticothalamic neurons in layer VI of prefrontal cortex is significantly larger in male rats 

during the first postnatal month when prefrontal circuitry underlying attention is actively 

maturing (Alves et al. 2010). Sex differences have also been noted in the role of nAChRs in 

the development of rodent hippocampus (Figure 3). During gestation and the early postnatal 

period, hippocampal GABA activity evokes an excitatory cell response as a result of a high 

internal Cl− concentration produced by predominance of the immature Na+/K+/Cl− 

cotransporter 1 (NKCC1) over the mature K+/Cl− cotransporter 2 (KCC2) (Rivera et al. 

1999; Ben-Ari 2002). During the first two postnatal weeks, GABA switches to inhibitory 

signaling as levels of NKCC1 decline and KCC2 rise, a process that occurs significantly 

earlier in females than males (Nuñez and McCarthy 2007; Galanopoulou 2008). This switch 

in cotransporter expression is dependent on calcium influx into the cell, which is controlled 

by increased depolarization and activation of receptors with high calcium permeability, such 

as the α7 nAChR, which shows peak expression in hippocampus during this period 

(Galanopoulou et al. 2003; Galanopoulou 2008). Activation of presynaptic α7 nAChRs 

during this time also stimulates GABA release, as measured by giant depolarizing potentials 

(Maggi et al. 2001). Thus, the interaction of nAChR signaling with GABAergic transmission 

has a sex-dependent impact on early hippocampal development. Similar nAChR regulation 

of GABA signaling has been observed in other neural regions (Liu et al. 2006), some of 

which may exhibit sex-dependent transmitter regulation (McCarthy et al. 2002).

Nicotine, sex, and nAChRs

Many studies have examined the long-term consequences of prenatal nicotine exposure 

(Dwyer et al. 2008), but few have examined potential sex differences in exposure outcomes 

(Table 1). However, the clinical literature on maternal smoking does suggest that such 

differences occur (Weissman et al. 1999). Although prenatal nicotine exposure induces 

complex alterations in brain structure and function, it has been shown to have more 

significant deleterious effects on cholinergic and serotonergic markers and β2-adrenergic 

function in males than females (Slotkin et al. 2007). Prenatal nicotine exposure also induces 
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sex-dependent changes in myelin-associated gene and protein expression (Cao et al. 2013), 

and in dendritic complexity of the prefrontal cortex and nucleus accumbens (Mychasiuk et 

al. 2013). Subsequent drug reward is also sex-dependently altered by in utero nicotine 

exposure, with exposed males exhibiting increased preference for oral nicotine but no effect 

of maternal nicotine in females (Klein et al. 2003). Gestational nicotine may also alter 

normal sex-dependent nicotine responses by inhibiting aromatase activity (Barbieri et al. 

1986). Prenatal nicotine also increases corticosterone levels via direct action on the adrenal 

gland, which deflates the pivotal testosterone surge during the perinatal period (Figure 4; 

von Ziegler et al. 1991; Sarasin et al. 2003). This nicotinic alteration of sex hormones levels 

leads to long-term changes in behavior, such as eliminating sex-specific sucrose preferences 

(Lichtensteiger and Schlumpf 1985).

Nicotine exposure during the early neonatal period of hippocampal maturation induces 

increased expression of the KCC2 cotransporter in male pups, a change that may influence 

the timing of the switch in GABA transmission from excitatory to inhibitory (Figure 3; 

Damborsky and Winzer-Serhan 2012). The long-term consequence of neonatal nicotine 

exposure is enhanced excitation in the adult hippocampal CA1, which is greater in males 

than females (Damborsky et al. 2012). Whereas this group has reported that neonatal 

nicotine treatment does not affect later cognitive function (Huang et al. 2007), others have 

noted that perinatal nicotine exposure produces a mild spatial learning deficit in in females 

(Eppolito and Smith 2006).

Adolescence: a second critical period of brain sexual differentiation and 

nicotine sensitivity

Continued sexual differentiation of the brain

Adolescence is a developmental period marked by dynamic maturation of limbic regions 

mediating reward and reinforcement, learning and memory, and executive function (Spear 

2000; Yuan et al. 2015). It is also the time of peak onset of tobacco use, with the vast 

majority of smokers initiating use before the age of eighteen (Substance Abuse and Mental 

Health Services Administration 2011). The continued organizational effects of gonadal 

hormones during this period solidify the uniqueness of the male and female brain and are 

reflected by the emergence of many sex differences in nicotine reward and reinforcement. 

Although our emphasis in this review is on sex steroid hormones, it is important to note that 

puberty and adolescence are not synonymous. Puberty lasts approximately 5 years in 

humans (Sun et al. 2002) and 10–20 days in rodents (Sisk and Zehr 2005; Schneider 2013). 

Adolescence is a protracted and elaborate developmental period that extends beyond puberty 

(Spear 2000), when a significant portion of brain maturation occurs independently of 

pubertal influences (Yuan et al. 2015).

Adolescence is a period of increased responsiveness to both stress- and sex-hormones 

(Sinclair et al. 2014). Sex hormones continue to have organizational effects, while 

activational effects also emerge. Multiple brain sexual dimorphisms develop during 

adolescence, including regions beyond those involved in sexual behavior and reproduction. 

Both androgens and estrogens modulate white matter volume during adolescence, with 
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estrogens having an inhibitory influence in both rats (Yates and Juraska 2008) and humans 

(Herting et al. 2012; Herting et al. 2014), whereas testosterone levels in adolescent boys are 

positively associated with white matter development (Herting et al. 2012). Both primary 

visual and medial prefrontal cortices show enhanced cell death in female but not male 

rodents during adolescence (Nuñez et al. 2001; Willing and Juraska 2015), and this 

divergence is prevented by pre-pubertal ovariectomy (Nuñez et al. 2001; Nuñez et al. 2002).

Sexual differentiation of major neurotransmitter systems also occurs during this period 

(Table 2). The noradrenergic locus coeruleus, for example, becomes a female-biased 

structure during late adolescence, with females exhibiting a more sustained increase in cell 

number as compared to males (Pinos et al. 2001). This sex difference is eliminated by 

neonatal androgen treatment of females, but not orchiectomy of males (Guillamón et al. 

1988). The cholinergic system becomes sexually diergic almost entirely as a result of 

pubertal surges in gonadal hormones rather than perinatal hormone effects. Ovariectomy 

reduces ChAT mRNA and function, as well as choline uptake, in female rats, and this can be 

reversed by estradiol replacement (Gibbs et al. 1994; Yamamoto et al. 2007). Females also 

have greater basal acetylcholine release in the medial prefrontal cortex, premotor cortex, and 

supplementary motor cortex than males, likely due to sex differences in the number of 

ChAT-positive cells in the nucleus basalis of Meynert (Gibbs 1997; Takase et al. 2007; 

Takase et al. 2009). Furthermore, endogenous or supplemental estrogen enhances serotonin-

mediated increases in acetylcholine release, likely through a 5-HT1A receptor mechanism 

(Matsuda et al. 2002).

The dopaminergic system is critically involved in mediating the rewarding properties of 

drugs of abuse and exhibits prolonged maturation during adolescence (Yuan et al. 2015), as 

well as a variety of sex differences that are determined at varying times across development. 

Dopamine neurons in the ventral tegmental area and substantia nigra are more numerous in 

females than males, a sex difference that is eliminated by gonadectomy of males (Johnson et 

al. 2010a; Johnson et al. 2010b). Striatal dopamine receptors also exhibit major 

overproduction followed by pruning in adolescent males, with only a minor increase seen in 

females. By adulthood, dopamine receptor levels in the dorsal striatum are similar across 

sexes, whereas males have a higher density of D1 receptors in the nucleus accumbens. 

Gonadal steroid hormones do not contribute to the pruning of D2 receptors observed during 

adolescence in males (Andersen et al. 1997; Andersen and Teicher 2000; Andersen et al. 

2002; Azam et al. 2007).

While basal levels of dopamine are comparable between males and females, electrical or 

psychostimulant evoked-dopamine release is greater in the dorsal striatum of females 

(Walker et al. 2000; Kuhn et al. 2010). Striatal dopamine dynamics are positively modulated 

by estrogens (Morissette and Di Paolo 1993; Becker 1999; Becker and Hu 2008), whereas 

androgens have a greater modulatory role over dopamine in the frontal cortex (Adler et al. 

1999; Kritzer and Pugach 2001; Kritzer 2003). Interestingly, it seems that genetic sex, rather 

than gonadal hormones per se, determine sex differences in dopaminergic projections to the 

forebrain (Beyer et al. 1991; Kolbinger et al. 1991). In the prefrontal cortex, glutamatergic 

inputs have a unique, sex-dependent influence over dopamine function. In males, signaling 

at AMPA and NMDA receptors stimulate and inhibit, respectively, mesocortical dopamine 
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release, suggesting that actions at these receptors oppose one another to balance dopamine 

system regulation. In contrast, both glutamate receptor subtypes appear to drive dopamine 

release in the female prefrontal cortex (Locklear et al. 2016).

We have shown alterations in the pharmacology of nAChR-mediated striatal dopamine 

release across the developmental spectrum, from the fetal period on (Azam et al. 2007). In 

particular, in the transition from adolescence to adulthood, there is a complex pattern of 

functional maturation of nAChRs in ventral, but not dorsal, striatum. In males, but not 

females, there are significant changes in both nicotine potency and efficacy during this 

developmental period. Chronic nicotine treatment during this period has also been shown to 

produce acute and long-term changes in dopamine systems that are more pronounced in 

males (Trauth et al. 2001).

The emergence of sex differences in nicotine reward and reinforcement

Continued divergence of the male and female brain during adolescence contributes to the sex 

differences in nicotine’s effects that typically emerge during this period. There is relatively 

little data directly examining interactions between age and sex on nicotine reward. However, 

female adolescents have been shown to exhibit greater withdrawal-related craving than 

males (Dickmann et al. 2009). A slowly growing body of literature in rodents also supports 

the view that female adolescents have a greater biological vulnerability to nicotine 

dependence.

Adolescent female rodents have been found to be more likely than males to acquire nicotine 

self-administration, to acquire the behavior more rapidly, and have higher nicotine intake 

(Lynch 2009; Li et al. 2014; Sanchez et al. 2014). Furthermore, female rodents display a 

late-emerging enhancement of motivation, as measured by progressive ratio, compared to 

males. The enhanced motivation for nicotine is positively correlated with the ratio of 

estradiol to progesterone and negatively correlated with levels of progesterone alone (Lynch 

2009). Other groups reporting increased motivation in females have not found differences in 

responding across the estrous cycle (Donny et al. 2000; Li et al. 2014). Acetaldehyde, a non-

nicotine constituent in tobacco smoke, enhances nicotine self-administration in adolescents 

of both sexes. However, males display a reduction in responding for the combination of 

nicotine and acetaldehyde as adolescence proceeds whereas females do not (Belluzzi et al. 

2005; Park et al. 2007). A similar age- and sex-dependent interaction has been observed with 

nicotine alone (Levin et al. 2011).

Whether adolescent females are more sensitive than adult females to nicotine reward is 

unclear. Torres et al. (2009) did not find a significant age difference in females, whereas 

adolescent males displayed higher nicotine reward than adult males. A more recent study, 

using a conditioned place preference (CPP) paradigm, has found adolescent females to be 

more sensitive to the rewarding properties and less sensitive to the aversive properties of 

nicotine than adult females (Lenoir et al. 2015). Whereas adolescent females had a higher 

preference to a mid-range dose (0.4 mg/kg) of nicotine than adolescent males, this sex 

difference was not apparent in adults. In parallel to the behavioral results, only females 

displayed an increase in nAChR binding in the nucleus accumbens after 0.4 mg/kg nicotine 
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and adolescent, but not adult, females had higher nAChR binding in the caudate putamen 

(Lenoir et al. 2015).

Stress is an important factor in the initiation and maintenance of smoking (Torres and O’Dell 

2016), with female smokers showing heightened negative responses to stressful situations 

(Swan et al. 1993), and an association between smoking and depressive symptoms during 

adolescence (Jamner et al. 2003). Recent data also demonstrate that female college students 

are more likely than their male peers to report initiation of tobacco use as a way to alleviate 

negative mood states (Morrell et al. 2010). Furthermore, nicotine acutely activates the 

hypothalamic pituitary adrenal (HPA) axis, (al’Absi 2006; Cao et al. 2010), and the 

anxiolytic effects of acute nicotine are more pronounced in adolescent males than females 

(Damaj 2001; Cao et al. 2010). The pharmacological stressor, yohimbine, has been shown to 

stimulate nicotine self-administration and reinforcement efficacy in both male and female 

adolescent rats (Li et al. 2014). However, adolescent females are more sensitive to this 

effect, showing significantly increased progressive ratio responding at yohimbine and 

nicotine infusion doses to which males do not respond.

Anxiety-like and depressive-like behaviors during withdrawal from chronic nicotine are also 

influenced by age of exposure and sex, although data are equivocal. In an open-field test of 

anxiety-like behavior, one group reported a late-emerging depression of locomotor activity 

(P60) in females with nicotine exposure from P30–44, without any change in behavior 

during drug exposure or in early withdrawal. Exposed males were not different from 

controls at any time point (Trauth et al. 2000). In contrast, Thanos et al. (2013) observed 

decreased locomotor activity in females during short-term withdrawal from adolescent 

nicotine. This effect was normalized after a protracted withdrawal, whereas males displayed 

enhanced anxiety- and depressive-like behaviors after a 30-day withdrawal. Physical 

symptoms of nicotine withdrawal are similar in male and female adolescents (Kota et al. 

2007; Kota et al. 2008; Torres et al. 2013).

Sustained sex differences in nicotine’s effects in adulthood

Sex differences in nicotine responses persist in adulthood. The effects of gonadal hormones 

on these responses are not always directly assessed, but increasing data emphasize their role. 

Women have less success with cessation than men (Perkins 2001; Piper et al. 2010), 

experiencing more intense craving, higher cortisol levels during tobacco abstinence, and 

higher rates of tobacco withdrawal-associated depression and anxiety (al’Absi 2006; Schnoll 

et al. 2007; Xu et al. 2008). There is some evidence for interactions between circulating 

hormones or menstrual cycle phase with smoking behavior and cessation success. In women, 

estrogen seems to promote smoking behavior while progesterone discourages smoking 

(Sofuoglu et al. 2009; Lynch and Sofuoglu 2010). As a result, drug reward is greatest during 

times of high estradiol and low progesterone, such as the follicular phase. Indeed, women 

report reduced craving and decreased enjoyment or feelings of pleasure from smoking 

during the luteal phase (Allen et al. 2015; Goletiani et al. 2015). This relationship is 

mirrored in rodents, where midbrain dopamine neuron firing rate and burst firing is higher 

during estrous and diestrous compared to proestrous (Zhang et al. 2008), and dopamine 

release is inhibited by progesterone but promoted by estradiol (Becker and Beer 1986; 

Cross et al. Page 9

J Neurosci Res. Author manuscript; available in PMC 2017 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Walker et al. 2012). Interestingly, a recent meta-analysis reported greater and more intense 

withdrawal symptoms during the luteal phase (Weinberger et al. 2015), suggesting that 

progesterone might contribute to decreased dopamine levels during tobacco withdrawal that 

are associated with craving.

In rodent models, the influence of sex on nicotine reward and reinforcement in adults is less 

consistent. Some groups report higher or more rapid acquisition in females (Donny et al. 

2000; Lynch 2009), faster acquisition in males (Swalve et al. 2016), or no sex differences 

(Feltenstein et al. 2012). In the maintenance phase of self-administration, females tend to 

have higher drug intake than males (Donny et al. 2000; Chaudhri et al. 2005; Rezvani et al. 

2008; Grebenstein et al. 2013), although some studies report no effect of sex (Feltenstein et 

al. 2012; Swalve et al. 2016). Some sex differences are potentially mediated by ovarian 

hormone-induced changes in nicotine metabolism. Repeated intravenous nicotine produces 

higher plasma levels of nicotine in females than males, which may contribute to enhanced 

nicotine reinforcement. This sex difference is eliminated by ovariectomy (Harrod et al. 

2007). Non-drug conditioned cues are also more salient to females than males during self-

administration, extinction, and potentially withdrawal/craving (Perkins et al. 1999; Chaudhri 

et al. 2005). In addition, females experience more robust withdrawal from chronic nicotine 

compared to males (Torres and O’Dell 2016), an effect that seems to be due to ovarian 

hormones (Torres et al. 2015).

Research examining the rewarding properties of nicotine, frequently measured by CPP, is 

conflicting. Whereas one group reported that higher doses of nicotine are necessary for the 

development of CPP in females compared to males (Lenoir et al. 2015), another group 

reported no CPP in females at any dose tested (Yararbas et al. 2010). These studies are in 

contrast to Isiegas et al. (2009) who showed that female mice exhibited a greater magnitude 

of nicotine preference than males, and Torres et al. (2009) who reported that adult females 

display place preference over a wider range of nicotine doses than males. Interestingly, 

ovarian hormones seem to be necessary for nicotine reward, as ovariectomy precludes 

nicotine CPP (Torres et al. 2009). Similarly, ovarian hormones may also protect against the 

aversive properties of nicotine, as a high dose of nicotine (1.2 mg/kg) induced a significant 

aversion in intact females, but not ovariectomized females or intact males (Torres et al. 

2009).

Nicotine enhances anxiety-like behavior in female rodents, but not males, as measured by 

elevated plus maze (Elliott et al. 2004; Caldarone et al. 2008) and open-field behavior (Cao 

et al. 2010). Furthermore, chronic nicotine treatment is anxiogenic in females, but not males 

(Caldarone et al. 2008). These sex differences may reflect differential sensitivity of the stress 

system that increases females’ vulnerability to tobacco use (Torres and O’Dell 2016). 

Females have greater expression than males of CRF-1 receptors and hypersecretion of CRF 

in the locus coeruleus (Curtis et al. 2006; Bangasser et al. 2010; Bangasser et al. 2013), as 

well as lower levels of β-arrestin2, an intracellular protein that internalizes CRF-1 receptors 

to inactivate them (Bangasser et al. 2010; Bangasser and Valentino 2012). Furthermore, 

acute nicotine stimulates HPA axis activity and peripheral corticosterone secretion to a 

greater extent in adult females than in males (Cao et al. 2010; Gentile et al. 2011).
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Although clinical data suggest important interactions between circulating hormones and 

tobacco smoking, they are correlational. Additionally, the majority of preclinical reports of 

sex differences in nicotine reward and reinforcement do not see an effect of circulating 

gonadal hormones (i.e., no variation across the estrous cycle). Instead, pre-pubertal 

gonadectomy can attenuate or even completely prevent these normal sex differences (Harrod 

et al. 2007; Torres et al. 2009). Ultimately, this highlights the critical organizational 

influence of gonadal hormones during perinatal and adolescent development as the primary 

determinants of sex differences in nicotine’s effects.

Conclusion

Tobacco use, and increasingly e-cigarette use, are a major public health concern. Data at 

epidemiological, clinical, and preclinical levels consistently demonstrate that females are 

especially sensitive to the aversive effects of nicotine withdrawal. Age interacts strongly 

with sex in determining responses to nicotine as well, which is evidenced by recent findings 

that the rate of decline in smoking over the last ten years is slowing in adolescent girls 

(Allen et al. 2014).

Despite this, preclinical research has predominantly focused on adult males, failing to model 

a significant portion of the population. As a result, the exact mechanisms underlying 

females’ unique sensitivity to the effects of nicotine are poorly understood. However, sex 

steroid hormones represent an important potential mediator of nicotine’s differential effects 

in females. Early in development, gonadal hormones begin the extended process of sexual 

differentiation of the brain, which is predominantly mediated by masculinization and 

defeminization of the male brain via aromatization of testosterone into estradiol. The process 

of sexual differentiation is not completed until the end of adolescence, a period also marked 

by major reorganization of brain regions critical for executive function, reward processing, 

and motivated behavior. Ultimately, it may be the extended and profound organizational 

effects of gonadal hormones on neuronal structure, function, and neurochemistry, rather than 

the acute effects of circulating steroids, that primarily underlie female sensitivity to the 

effects of nicotine and tobacco.
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Significance Statement

There are substantial sex differences in the effects and outcomes of nicotine exposure, but 

the exact mechanism underlying these sex differences is unclear. This review highlights 

the developmental impacts of nicotine on sexual differentiation, and describes how 

nicotine exposure during the perinatal and adolescent periods can have gender-specific 

effects on neuronal structure and function. It further emphasizes the importance of 

including age and sex as factors in preclinical research that models tobacco use.
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Figure 1. Ovarian hormones influence nicotinic acetylcholine receptors
Progesterone and estradiol modulate both expression and function of multiple nAChR 

subtypes, often with opposing effects. nAChR = nicotinic acetylcholine receptor
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Figure 2. Nicotinic acetylcholine receptor (nAChR) activity is modulated by different sex 
hormones throughout development
Progesterone allosterically inhibits α4 nAChR subunits via a site outside the membrane pore 

(Valera et al., 1992), whereas estradiol potentiates the activity of human α4-containing 

nAChRs by increasing the opening probability (Curtis et al., 2002). The abundance of these 

steroids changes throughout development and across sexes. How this complex relationship 

between sex, nAChRs and development affects brain maturation and function is still being 

elucidated.
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Figure 3. The role of α7 nAChRs in regulating GABAA receptor signaling in rodent neonatal 
hippocampus
The GABAA receptor switches from depolarizing to hyperpolarizing during the early 

neonatal period as a result of changes in intracellular Cl−. This change, which is mediated by 

a shift in the expression of the Cl− cotransporters from NKCC1 to KCC2, occurs later in 

males than females as a result of high estradiol in males having an inhibitory effect on 

KCC2 expression. Levels of the Cl− channel, ClC2, and the Cl− cotransporters NKCC1 and 

KCC2, are pictured, with darker shades indicating higher expression levels. Activation of α7 

nAChRs increases intracellular calcium levels both directly and through increased GABA 

release and GABAA receptor-induced depolarization, resulting in higher expression of 

KCC2. This regulates the switch of GABAA receptor signaling from depolarization to 

hyperpolarization. ACh = acetylcholine. T = testosterone. E2= estradiol.
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Figure 4. Schematic of fetal brain sexual differentiation and the effects of nicotine
Male sexual differentiation is induced by estradiol, which is produced via aromatization of 

testosterone. Females are protected from circulating maternal estrogen by α-fetoprotein (α-

FP). Nicotine inhibits aromatase activity, leading to a decrease in male brain estradiol. 

Nicotine also increases corticosterone levels during gestation, which then inhibits 

testosterone production.
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