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SOFTWARE Open Access

RADAR: annotation and prioritization of
variants in the post-transcriptional
regulome of RNA-binding proteins
Jing Zhang1†, Jason Liu2,3†, Donghoon Lee2, Jo-Jo Feng3, Lucas Lochovsky3, Shaoke Lou2,3,
Michael Rutenberg-Schoenberg2,4 and Mark Gerstein2,3,5*

Abstract

RNA-binding proteins (RBPs) play key roles in post-transcriptional regulation and disease. Their binding sites cover
more of the genome than coding exons; nevertheless, most noncoding variant prioritization methods only focus on
transcriptional regulation. Here, we integrate the portfolio of ENCODE-RBP experiments to develop RADAR, a
variant-scoring framework. RADAR uses conservation, RNA structure, network centrality, and motifs to provide an
overall impact score. Then, it further incorporates tissue-specific inputs to highlight disease-specific variants. Our
results demonstrate RADAR can successfully pinpoint variants, both somatic and germline, associated with RBP-
function dysregulation, which cannot be found by most current prioritization methods, for example, variants
affecting splicing.

Keywords: RNA-binding protein, Post-transcriptional regulation, Variant prioritization, Variant functional impact

Background
Dysregulation of gene expression is a hallmark of many
diseases, including cancer [1]. In recent years, the accu-
mulation of transcription-level functional characterization
data, such as transcriptional factor binding, chromatin
accessibility, histone modification, and methylation, has
brought great success to annotating and pinpointing
deleterious variants. However, beyond transcriptional
processing, genes also experience various delicately con-
trolled steps, including the conversion of premature RNA
to mature RNA, and then the transportation, translation,
and degradation of RNA in the cell. Dysregulation in any
one of these steps can alter the final fate of gene products
and result in abnormal phenotypes [2–4]. Furthermore,

the post-transcriptional regulome covers an even
larger amount of the genome than coding exons and
demonstrates significantly higher cross-population and
cross-species conservation. Unfortunately, variant impact
in the post-transcriptional regulome has been barely
investigated, partially due to the lack of large-scale
functional mapping.
RNA-binding proteins (RBPs) have been reported to

play essential roles in both co- and post-transcriptional
regulation [5–7]. RBPs bind to thousands of genes in the
cell through multiple processes, including splicing, cleav-
age and polyadenylation, editing, localization, stability,
and translation [8–12]. Recently, scientists have made
efforts to complete these post- or co-transcriptional
regulome by synthesizing public RBP binding profiles
[13–16], which have greatly expanded our understanding
of RBP regulation. Since 2016, the Encyclopedia of DNA
Elements (ENCODE) Consortium started to release data
from various types of assays on matched cell types to
map the functional elements in post-transcriptional
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regulome. For instance, ENCODE has released large-
scale enhanced crosslinking and immunoprecipitation
(eCLIP) experiments for hundreds of RBPs [17]. This
methodology provides high-quality RBP binding profiles
with strict quality control and uniform peak calling to
accurately catalog the RBP binding sites at a single-
nucleotide resolution. Simultaneously, ENCODE
performed expression quantification by RNA-Seq after
knocking down various RBPs. Finally, ENCODE has
quantitatively assessed the context and structural
binding specificity of many RBPs by Bind-n-Seq
experiments [18].
In this study, we aimed to construct a comprehensive

RBP regulome and a scoring framework to annotate and
prioritize variants within it. We collected the full catalog
of 318 eCLIP (for 112 RBPs), 76 Bind-n-Seq, and 472
RNA-Seq experiments after RBP knockdown from EN-
CODE to construct a comprehensive post-transcriptional
regulome. By combining polymorphism data from large
sequencing cohorts, like the 1000 Genomes Project, we
demonstrated that the RBP binding sites showed increased
cross-population conservations in both coding and non-
coding regions. This strongly indicates the purifying selec-
tion on the RBP regulome. Furthermore, we developed a

scoring scheme, named RADAR (RNA BinDing Protein
regulome Annotation and pRioritization), to investigate
variant impact in such regions. RADAR first combines
RBP binding, cross-species and cross-population conser-
vation, network, and motif features with polymorphism
data to quantify variant impact described by a universal
score. Then, it allows tissue- or disease-specific inputs,
such as patient expression, somatic mutation profiles, and
gene rank list, to further highlight relevant variants (Fig. 1).
By applying RADAR to both somatic and germline
variants from disease genomes, we demonstrate that it can
pinpoint disease-associated variants missed by other
methods. In summary, RADAR provides an effective
approach to analyze genetic variants in the RBP regulome
and can be leveraged to expand our understanding of
post-transcriptional regulation. To this end, we have
implemented the RADAR annotation and prioritization
scheme into a software package for community use
(radar.gersteinlab.org).

Results
Defining the RBP regulome using eCLIP data
We used the binding profiles of 112 distinct RBPs from
ENCODE to fully explore the human RBP regulome

Fig. 1 RADAR workflow. There are two RADAR score components: (1) a universal score derived from a pre-built data context including sequence
and structural conservation, network centrality, motif, and knockdown information; (2) a tissue-specific (user-defined) score consisting of
expression, gene, and mutation information to further highlight tissue-specific variants. The universal and tissue-specific scores sum together to
form the full RADAR score
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(Additional file 1: Table S1), which has been previously
under-investigated. Many of these RBPs are known to
play key roles in post-transcriptional regulation, includ-
ing splicing, RNA localization, transportation, decay, and
translation (Additional file 2: Figure S1 and Table S1).
Our definition of the RBP regulome covers 52.6 Mbp

of the human genome after duplicate and blacklist re-
moval (Fig. 2a). It is 1.5 and 5.9 times the size of the
whole exome and lincRNAs, respectively. In addition,
only 53.1% of the RBP regulome has transcription-level
annotations, such as transcription factor binding, open
chromatin, and active enhancers. 55.1% of the RBP
regulome is in the immediate neighborhood of the
exome regions, such as coding exons, 3′ or 5′ untrans-
lated regions (UTRs), and nearby introns (Fig. 2c; see
the “Methods” section and Additional file 2: Table S2 for
more details). Furthermore, we observed a significantly
higher cross-species conservation score in the peak re-
gions versus the non-peak regions in almost all annota-
tion categories, providing additional evidence of the
regulatory roles of RBPs (Fig. 2c). In summary, the large
size of the regulome, the limited overlap with existing
annotations, and the elevated conservation level high-
light the necessity of computational efforts to annotate
and prioritize the RBP regulome.

Using universal features for RADAR score
To annotate and prioritize variants in RBP binding sites,
we built a universal score framework for RADAR that

includes three components: (1) sequence and structure
conservation, (2) network centrality, and (3) nucleotide
impact from motif analysis.

Sequence and structure conservation in the RBP regulome
Cross-species sequence comparisons have been widely
used to discover regions with biological functions [19,
20]. For example, GERP score maps the human genome
to other species to identify nucleotide-level evolutional
constraints [21, 22]. Therefore, we used the GERP score
in our RADAR universal framework to detect potentially
deleterious mutations in the RBP regulome (see the
“Methods” section for more details).
Since the enrichment of rare variants indicates a puri-

fying selection in functional regions in the human gen-
ome [19, 23, 24], here, we inferred the conservation of
RBP binding sites by integrating population-level poly-
morphism data from large cohorts (i.e., the 1000 Ge-
nomes Project) [25, 26]. GC percentage may confound
such inference by introducing read coverage variations,
which is a sensitive parameter in the downstream variant
calling process [27, 28]. Therefore, we calculated the
fraction of rare variants, defined as those with derived
allele frequencies (DAFs) less than 0.5%, within the bind-
ing sites of each RBP. Then, we compared them with
those from regions with similar GC content as a back-
ground (see the “Methods” section for more details). In
total, 88.4% of the RBPs (99 out of 112) showed elevated
rare variant fraction in coding regions after GC

Fig. 2 RBP regulome and cross-species conservation. a Intersection of eCLIP peaks versus transcriptional-level annotations, with 25 Mbp unique
to the RBP regulome. b Average length of binding peak for RBP eCLIP data versus TF ChIP-Seq and the similar distribution of RBP coverage
between K562 and HepG2 cell lines. c Fraction of RBPs falling into each annotation category as well as boxplots of PhastCons scores of
annotations intersecting peaks (blue) versus annotations with no intersections (white)
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correction (Fig. 3A). Similarly, in the noncoding part of
the binding sites, 93.8% of RBPs (105 out of 112) exhib-
ited an enrichment of rare variants. This observation
convincingly demonstrates the accuracy of our RBP
regulome definition (Additional file 1: Table S2).
Some well-known disease-causing RBPs demonstrate

the largest enrichment of rare variants. For example, the
oncogene XRN2, which binds to the 3′ end of tran-
scripts to degrade aberrantly transcribed isoforms,
showed significant enrichment of rare variants in its
binding sites [29]. Specifically, it demonstrates 12.7%
and 10.3% more rare variants in the coding and noncod-
ing regions, respectively (adjusted P values at 1.89 × 10−9

and 2.85 × 10−118 for one-sided binomial tests) [30].
Hence, we used the enrichment of rare variants to infer
the selection pressure in RBP binding sites and adjust
the universal variant scores in such regulator regions
(see the “Methods” section for more details).
RNA secondary structures have been reported to affect

almost every step of protein expression and RNA stabi-
lity [31]. We incorporated structural features predicted
by Evofold, which uses a phylogenetic stochastic
context-free grammar to identify functional RNAs in the

human genome that are deeply conserved across species
[32]. We found that the RBP binding sites demonstrated
significantly higher conversation after intersecting with
conserved structural regions defined by Evofold
(Additional file 2: Figure S2). Thus, we used the Evofold
regions in our universal scoring system.

Highlighting variants in binding hubs
It has been reported that genes within network hubs
demonstrate higher cross-population conservation—a
sign of strong purifying selection [23, 24, 33]. We hy-
pothesized that RBP binding hubs could show similar
characteristics because once mutated, they might intro-
duce larger regulation alterations. To test this, we sepa-
rated the regulome based on the number of associated
RBPs. Most regulome regions (62%) were associated with
only one RBP (Additional file 2: Figure S3). As the
number of RBPs increased, we observed a clear trend of
larger rare variant enrichment (Fig. 3d). For instance,
noncoding regions with at least five or 10 RBPs exhib-
ited 2.2% or 13.4% more rare variants, respectively (top
5% and 1%, Fig. 3d). This observation supports our hy-
pothesis that the RNA regulome hubs are under stronger

Fig. 3 Cross-population conservation of RBP peaks and binding hubs. a, b Rare variant percentage in coding/noncoding regions. The green dot
represents RBP peaks, and the yellow dot represents the genome average after GC correction. Shaded lines are the 95% confidence interval of
the rare variant percentage of the RBP peaks. c An example of RBP binding hubs. Red and orange shadings denote regions with the top 1%
(ultra-hot) and 5% (hot) RBPs binding, respectively. d Corrected rare variant percentage at positions with different cumulative hub numbers

Zhang et al. Genome Biology          (2020) 21:151 Page 4 of 13



selection pressure and, therefore, should be given higher
priority when evaluating the functional impact of muta-
tions (details in Additional file 2: Figures S4, S5, and S6).

Emphasizing genes differentially expressed after RBP
knockdown
RNA-Seq expression profiling before and after shRNA-
mediated RBP depletion from ENCODE can help to
infer the gene expression changes introduced by RBP
knockdown. Variants with disruptive effects on RBP
binding may affect or even completely remove the RBP
binding and hence affect gene expressions in a similar
way. Therefore, we extracted the differentially expressed
genes from RNA-Seq before and after shRNA-mediated
RBP depletion (Additional file 1: Table S3). Then, we
up-weighted all variants that were located near the dif-
ferentially expressed genes (Additional file 1: Table S4)
and simultaneously disrupted the binding of the
corresponding RBPs (schematic in Additional file 2:
Figure S7).

Using motif analysis to determine nucleotide-level impact
Mutations that change the RBP binding affinity may alter
the RBP regulation via motif disruption. We quantified
the difference of position weight matrix (PWM) scores of
the mutant allele against the reference allele. RADAR con-
sists of two sources of motifs. First, we used the motifs
identified from RNA Bind-n-Seq experiments from EN-
CODE because it has been reported that many RBP bind-
ing events in vivo can be captured by binding preferences
in vitro. Second, we used the de novo motifs discovered
directly from binding peaks using the default settings in
DREME (see details in the “Methods” section). For each
variant, we quantified the nucleotide effect using the
highest motif score from these two sources.

Incorporating user-specific features to re-weight variant
impact
Variant prioritization can be improved if informative
priors can be appropriately incorporated into the scoring
system. Therefore, our RADAR framework allows vari-
ous types of user inputs to help identify disease-relevant
variants. Specifically, we adopted a top-down scheme to
incorporate regulator- and element-level information to
up-weight factors that are possibly associated with
disease of interest.

Highlighting key regulators through expression profiles
Key regulators are often associated with disease progres-
sion, so variants that affect such regulation should be
prioritized [34]. RADAR finds such key regulators by
combining the RBP regulatory network information with
expression profiles. Specifically, for cancer, we first con-
structed the RBP network from eCLIP binding peaks

and used the TCGA data to define the gene differential
expression status from disease and normal cell types (see
the “Methods” section). Then, for each RBP, we quanti-
fied its regulation potential by associating its network
connectivity with aggregated disease-to-normal differen-
tial expressions from many samples using regression.
We applied this approach to 19 cancer types from
TCGA, and the regulation potentials are given in Fig. 4.
The values of the regulation potential (β1, see the
“Methods” section) for all cancer types and RBPs are
provided in Additional file 1: Table S5. We found that
among the RBPs with larger regulation potential, many
have been reported as cancer-associated genes (Add-
itional file 1: Table S6). Our regression approach was
also performed on a patient level, and survival analysis
based on each patient’s regulatory potential was per-
formed (see Fig. 4c). Interestingly, the regulatory poten-
tial of two key RBPs PPIL4 and SUB1 was found to be
significantly associated with patient survival (Fig. 4c). In
our RADAR framework, we further highlight variants
that are associated with RBPs with high regulation
potential in their corresponding cancer types by adding
an extra score to their disease-specific scores (see more
details in the “Methods” section). We can easily extend
such analysis for other diseases by incorporating dif-
ferential expression profiles from other cohorts such as
GTEx [35, 36].

Up-weighting key elements from either prior knowledge or
mutational profiles
RADAR reconsiders the functional impact difference
among RBP peaks by their associated genes. For ex-
ample, genes that undergo significant expression or epi-
genetic changes are mostly cell type-specific and can be
used to highlight more relevant variants. Currently, our
RADAR framework can up-weight all the RBP peaks that
are close to genes with significant differential expression
(DESeq2 [37]).
In addition, RADAR can incorporate somatic variant

recurrence, which has been widely used to discover key
disease regions, to re-weight different RBP peaks. Peaks
with more somatic mutations than expected are often
considered to be disease-driving [38–40]. Here, we first
defined a local background somatic mutation rate from
a large cohort of cancer patients to evaluate the muta-
tion burden in each RBP peak (see details in the
“Methods” section). Variants that are associated with
burdened elements are given higher priority in our
scoring scheme.

Prioritizing variants with a RADAR-weighted scoring
scheme
By integrating the pre-built and user-specific data con-
text described above, our scoring scheme evaluated the
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functional impacts of variants that are specific to post-
transcriptional regulation (Fig. 1 and Table 1). We used
an entropy-based criterion to up-weight rarer annota-
tions. First, RADAR added up the (universal) score of
variants for all pre-built features, which include se-
quence and structure conservation, network binding
hub, RBP-gene association, and motif information, using
the entropy-based weights. Then, depending on user in-
puts, RADAR further up-weighted variants’ score based

on tissue-specific information from mutations in the key
RBP binding sites, nearby genes with differential expres-
sion, or the RBP regulatory potential (see Additional file 2:
Figure S8 for more details).

Applying RADAR to pathological germline variants
We calculated the universal RADAR scores on all patho-
logical variants from HGMD (version 2015) and com-
pared them with variant scores from 1000 Genomes

Table 1 Features used by RADAR

Category Feature Source Scoring scheme

Universal Cross-population conservation eCLIP Adjusted entropy

Cross-species conservation GERP Sigmoid function

Structural conservation Evofold Fixed value

RBP Binding hub eCLIP Adjusted entropy

RBP-gene association shRNA RNA-Seq Fixed value

Motif disruption Bind-n-Seq Adjusted entropy

DREME

User-specific RBP regulatory potential Expression Fixed value

Differentially expressed genes Prior knowledge Fixed value

Mutation recurrence Mutation profiles Fixed value

Fig. 4 Regulation potential inference of RBPs. a Schematic of RBP regulation potential calculation. b Heatmap of RBP regulation potential in 19
cancer types. c RBPs associated with patient survival. Patient survival data from TCGA, survival analysis performed using R package survival (2.42-3).
Differential expression within a patient is calculated as the difference between tumor and normal expression, converted to a Z-score
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variants as a background. As expected, the HGMD vari-
ants are scored significantly higher (Additional file 2:
Figure S9). For example, the mean RADAR score for
HGMD variants is 0.589, while it is only 0.025 for 1000
Genomes variants (P value < 2.2 × 10−16 for one-sided
Wilcoxon test). We further compared the universal
RADAR scores of HGMD and 1000 Genomes variants
within the RBP regulome to remove potential bias since
HGMD variants may be more likely to be within or
nearby to exons. We still observed a significantly higher
universal RADAR score in the HGMD ones (1.871
versus 1.337, P value < 2.2 × 10−16 for one-sided Wilcoxon
test, Additional file 2: Figure S9).
We further compared RADAR scores of HGMD vari-

ants with other methods. In total, 720 HGMD variants
were explained by our methods but could not be
highlighted by other methods (see details in the
“Methods” section, Additional file 1: Table S7). Many of
these variants are located nearby the splice junctions. An
example is shown in Fig. 5a (more details in Add-
itional file 1: Table S8). This variant is located 4 bp away
from the splice junction in BRCA1. eCLIP experiments
showed strong binding evidence in 5 RBPs (Fig. 5a).
Specifically, the T to C mutation strongly disrupts the
binding motif of PRPF8, increasing the possibility of
splicing alteration effects. Our finding is not highlighted
in previous methods for variant prioritization, such as
FunSeq, CADD, and FATHMM-MKL (Additional file 2:
Table S3).

Applying RADAR universal score to somatic variants in
cancer
We next aimed to leverage our universal RADAR
scheme to evaluate the deleteriousness of somatic vari-
ants from public datasets. Due to the lack of a gold
standard, we evaluated our results from two perspec-
tives. First, we reasoned that since hundreds of cancer-
associated genes are known to play essential roles
through various pathways [41, 42], variants associated
with these genes are likely to have a higher functional
impact [23]. To test this hypothesis, we first selected var-
iants within the 1-kb region of the COSMIC [43] genes
and compared them with other variants. We tested four
cancer types, breast, liver, lung, and prostate cancer, and
found in all cases that variants associated with COSMIC
genes showed significant enrichment, with a larger
RNA-level functional impact (Fig. 6 and Additional file 2:
Figure S10). For example, we found a 4.58- and 8.75-fold
increase in high-impact variants at a threshold level of 3 and
4, respectively, in breast cancer patients (P < 2.2 × 10−16,
one-sided Wilcoxon test).
In our second approach, we hypothesized that variant

recurrence could be a sign of functionality and may indi-
cate an association with cancer [19, 23, 24]. Thus, we

compared the variants’ scores from RBP binding peaks
with or without recurrence. Specifically, we separated
the RBP peaks with variants mutated in more than one
sample from those that were mutated in only one sam-
ple and then compared the universal RADAR scores.
We found that in most cancer types, peaks with recur-
rent variants were associated with a larger fraction of
high-impact mutations. For example, in breast cancer,
recurrent elements demonstrated a 1.67- and 2.57-fold
more high-impact variants with RADAR greater than 3.0
and 4.0, respectively, resulting in a P value of 2.2 × 10−16

in one-sided Wilcoxon test. We observed a similar trend
in most of the other cancer types (Additional file 2:
Figure S10).

A case study on breast cancer patients using disease-
specific features
We applied our method to a set of breast cancer somatic
variants from 963 patients released by Alexandrov and
Stratton [44]. We used the COSMIC gene list and expres-
sion and mutational profiles as additional features. In
total, we found that around 3% of the 687,517 variants
could alter post-transcriptional regulation to some degree.
We incorporated the above disease-specific features and
demonstrated how they could help to re-weight the vari-
ant scoring process on a coding variant in Fig. 5b. This
variant is located within an RBP binding ultra-hot region
and showed high sequence conservations (7% more rare
variants for its binding RBP). It also demonstrated a strong
motif disruption effect (PPIG in Fig. 5b). All such features
resulted in a universal RADAR score of 3.67, which is
ranked 290 out of all variants. However, we found that it
is located in the exon region of the well-known tumor
suppressor TP53 (orange track in Fig. 5b), and its binding
peaks demonstrated more than expected somatic muta-
tions (purple in Fig. 5). Besides, 3 out of the 6 RBPs bind-
ing there showed high regulation potential in breast
cancer (green in Fig. 5). Hence, these additional features
boost its overall RADAR score to 6.67, which is ranked 47
out of all variants. In comparison, this variant only shows
moderate scores for FunSeq2 (3) and CADD (7.46), while
it is scored in the top but showed a much lower rank than
RADAR.
RADAR aims to prioritize variants relevant to the post-

transcriptional regulome, while FunSeq2, FATHMM-
MKL, and CADD focus on those that affect the
transcriptional regulome. Therefore, we do find many
variants that demonstrate a high overall RADAR score
but only show moderate FunSeq2, CADD, and
FATHMM-MKL scores. For example, 127 coding and 78
noncoding variants that are ranked within the top 1% of
overall RADAR scores are not in the top 10% of CADD,
FunSeq2, or FATHMM-MKL scores (Additional file 1:
Table S9 and T10). Many of such variants are located in
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RBP binding hubs, undergo strong purifying selection,
demonstrate strong motif disruptiveness, and are regu-
lated by key RBPs that are associated with breast cancer
from multiple sources of evidence (Additional file 2:
Figure S11). We believe the discovery of such events
demonstrates the value of RADAR as an important and
necessary complement to the existing transcriptional-
level function annotation and prioritization tools.

Discussion
In this study, we integrated the full catalog of eCLIP,
Bind-n-Seq, and shRNA RNA-Seq experiments from
ENCODE to build an RNA regulome for post-
transcriptional regulation. Our defined RBP regulome is
remarkably larger than one may think. It covers up to
52.6 Mbp of the genome (Fig. 2a), and the majority of it
is not covered by previous annotations focusing on

Fig. 5 Example of breast cancer somatic variant with high overall RADAR score. a An example of a top-scoring BRCA1 intron HGMD variant
highlighted by the universal RADAR score. This variant is in an RBP binding hotspot, shows a high GERP score, and breaks the motif of the
splicing factor PRPF8 (red). b We selected an exonic variant with a high RADAR score on chromosome 17 as an example. It was inside an RBP
binding hub with a high GERP score and breaks the motif of PPIG. It also has several tissue-specific features, like within the well-known cancer-
associated gene TP53 (orange track), and its associated binding peaks were significantly burdened (dark green). Also, adding expression profiles
from TCGA shows that 3 out of the 6 RBPs binding there demonstrated high regulation potentials in driving tumor-specific expression pattern. All
these external pieces of evidence further boost this variant’s tissue-specific score.
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transcriptional-level regulation, such as DHS, TFBS, and
enhancers. We found that the RBP regulome demon-
strated noticeably higher conservation in two aspects:
higher cross-species conservation in almost all annota-
tion categories (Fig. 2c) and higher cross-population
conservation by showing significant enrichment in rare
variants (Fig. 3). These two sources of evidence support
the notion that the RBP regulome is under a strong
purifying selection and carries out essential biological
functions. Also, these results signify the necessity of
computational tools to annotate and prioritize variants
in the RBP regulome. Furthermore, we showed that the
cross-population conservation in eCLIP binding sites
demonstrates strong importance when predicting disease
versus common germline variants (Additional file 2:
Figure S12 and Table S4).
By integrating a variety of regulator-, element-, and

nucleotide-level features, we propose an entropy-based
scoring frame, RADAR, to investigate the impact of
somatic and germline variants. The variant prioritization
framework of RADAR contains two parts. First, by in-
corporating eCLIP, Bind-n-Seq, shRNA RNA-Seq exper-
iments with conservation and structural features, we
built a pre-defined data context to quantify the universal
variant impact score. This approach is suitable for mul-
tiple disease analysis or cases where no other prior infor-
mation can be used. We applied this RADAR universal
score to HGMD pathological variants and highlighted
many candidates that cannot be highlighted by other
methods. Besides, our RADAR framework provided
detailed explanations of the underlying disease-causing
mechanism (Fig. 5a). In addition to the universal score,
RADAR also allows user-specific inputs such as prior
gene knowledge and patient expression and mutation
profiles for a re-weighting process to highlight relevant

variants in a disease-specific manner. As an example, we
applied the RADAR disease-specific scores to variants
from several cancer types and showed that RADAR
could identify relevant variants in key cancer-associated
genes (Fig. 5b). We additionally showed that the RADAR
framework trained in a closely matched cell type has
better power to pinpoint pathological variants in a par-
ticular disease, which is promising as new eCLIP experi-
ments are performed in various other cell types (see
Additional file 2: Figures S13 and S14).
It is important to note that as compared to ChIP-Seq

experiments which generate peaks with up to kilobase
pair resolution, eCLIP experiments provide a higher
resolution functional site annotation (even single-
nucleotide resolution). Such accurate and compact
annotation can greatly improve our variant function in-
terpretations. We also want to mention that most of the
current eCLIP peak calling approaches call peaks on the
annotated transcribed regions (Additional file 2: Figure
S15). With the development of computational ap-
proaches for eCLIP peak calling, we hope that the size of
our annotated RBP regulome can be further expanded.

Conclusions
In summary, we have shown that RADAR is a useful tool
for annotating and prioritizing post-transcriptional regu-
lome for RBPs, which has not been covered by most of
the current variant impact interpretation tools. Our
method provides additional layers of information to the
current gene regulome. Importantly, the RADAR scoring
scheme can be used in conjunction with existing
transcriptional-level variant impact evaluation tools,
such as FunSeq [23, 24], to quantify variant impacts.
Given the fast-expanding collection of RBP binding pro-
files from additional cell types, we envision that our

Fig. 6 Performance of universal RADAR score on somatic variants. a Enrichment of high RADAR universal score variants associated with COSMIC
genes in breast cancer. b Enrichment of high RADAR universal score variants within RBP peaks with recurrent variants in breast cancer
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RADAR framework can better tackle the functional con-
sequence of mutations from both somatic and germline
genomes.

Methods
eCLIP data processing and quality control
We collected 318 eCLIP experiments of 112 unique
RBPs from the ENCODE data portal (encodeprojects.
org, released and processed by July 2017). eCLIP data
was processed through the ENCODE 3 uniform data
processing pipeline, and peaks with score 1000 were
used in our analysis. We then removed peaks that over-
lapped with blacklisted regions. We further separated
the peaks into coding regions and the noncoding regions
in our analysis to infer the selection pressure. We also
provide versions of the eCLIP peaks that are annotated
by RBP’s function, such as splicing—which is the
most common function aside from RNA binding (see
radar.gersteinlab.org).

Universal RADAR score
Cross-population conservation inference
The cross-population conservation score consists of two
components. The Shannon entropy considers the length
effect of the RBPs while the selection pressure inference
aims to determine the conservation of regions. For the
Shannon entropy, for each RBP, we define f to be:

f ¼ nin
ntotal

ð1Þ

where nin represents the number of 1000 Genomes vari-
ants falling in that RBP peaks, and ntotal is the total num-
ber of 1000 Genomes variants (fixed number). In this
way, f considers the binding site coverage of an RBP,
since a larger coverage is more likely to have a larger
value of nin. The Shannon entropy is therefore equal to:

S f ¼ 1þ f � log2 f þ 1− fð Þ � log2 1− fð Þ ð2Þ

We then calculate the selection pressure from the en-
richment of rare germline variants from the 1000 Ge-
nomes Project. Our analysis at each step is separated
into coding and noncoding parts. For a given RBP, we
suppose its binding peaks contain nr rare variants
(DAF ≤ 0.005) and nc common variants. The percentage
of rare variants in that RBP’s binding peaks is defined as:

ρ ¼ nr
nr þ nc

ð3Þ

The value of ρ is often confounded by factors such as
GC content. To correct for potential GC content bias,
we bin the genome into 500 bp bins and group them ac-
cording to their GC percentage. Then, we compute the
background rare variant percentage using the same rare

and common variants from the 1000 Genomes Project
for each group (see Additional file 2: Figures S16 and
S17). For a given RBP with GC percentage g, we select
the background group with the closest GC, to obtain a
background rare variant percentage ρgb . Therefore, after
adjusting for GC bias, the enrichment of rare variants is
defined to be:

ρadj ¼ ρ=ρgb ð4Þ
RBPs with a ρadj larger than 1 suggests a higher-than-

expected selection pressure. We then adjust the popula-
tion conservation entropy score as follows:

Spopulation conservation ¼ ρadj � S f ð5Þ
Given a variant falling in the RBP regulome that inter-

sects a set of RBP eCLIP peaks, set P, the cross-
population conservation score of that variant is equal to
the maximum Spopulation _ conservation for all RBPs in set P.

Cross-species conservation using GERP
We use the GERP score to measure the cross-species
conservation. For each position, a GERP of greater than
2 is often used to define bases that are conserved. The
transformation of GERP to a RADAR component score
is adapted from Fu et al. Therefore, a sigmoidal trans-
formation is used to fit the GERP scores between 0 and
1, and the parameters are used to force the curve to be
sharp at GERP equal to 2 (Additional file 2: Section
13.2).

Structural conservation
We use the output of Evofold as an indicator of cross-
species RNA structure. A variant falling in a region given
by Evofold as conservative receives a score of 1 while a
variant that does not fall in such region receives a score
of 0.

RBP binding hubs and networks
We define the number of RBPs binding at a position to
as H. We first separated the RBP peaks into the coding
and noncoding regions and then grouped the regions on
the genome based on H. For each group of regions with
hub number H, we calculated the GC-corrected enrich-
ment of rare variants ρadj ∣ H for each group in coding
and noncoding regions by Eqs. (3) and (4). We deter-
mine the hub numbers, Hnormal, Hhot, and Hultra − hot as-
sociated with normal, hot, and ultra-hot regions,
respectively. Hhot and Hultra − hot are associated with the
top 5% and 1% of binding RBPs (Fig. 3) to represent rare
and ultra-rare events, respectively. Our values of ρadj ∣ H

are altered in such a way to reflect this phenomenon.
The ρadj j H<Hhot

associated with hub scores less than that

of the hot regions are converted to 0. The
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ρadj jHhot ≤H<Hultra−hot
associated with hot regions demon-

strate a mostly increasing trend and are smoothed using
a kernel smoother. The ρadj j H ≥Hhot

of the ultra-hot re-

gion is kept constant, equal to the max ρadj j H⊂hot
of the

hot region.
We also compute f for the set of regions associated with

a fixed H (from Eq. (1)). For each value of f, we compute
the Shannon entropy from Eq. (2) to be SH. Finally, we
multiply the values of ρadj by its respective Shannon en-
tropy, S. A variant falling in the regulome with hub score
H would have a score equal to the ρadj ∣ H ∗ SH.

Motif analysis and disruption
We used the changes of PWMs introduced by a variant
to quantify the motif disruptiveness effect through
motiftools (https://github.com/gersteinlab/MotifTools).
Specifically, we defined the disruption score, Dscore, as in
Eq. (6) to represent the difference between sequence
specificities to an alternative sequence.

Dscore ¼ Mref−Malt ¼ −10� log10
Pref

Palt

� �
ð6Þ

where Pref and Palt are the PWM scores from the refer-
ence and alternative allele, respectively. Here, the motif
scores for reference and alternate sequences are given
as:

Mref ¼ −10� log10 Prefð Þ;Malt ¼ −10� log10 Paltð Þ

To quantify a motif-breaking event, we require that
the P value for the reference allele is at least 5 × 10−4.
There are two motif sources in our analysis. First, we
identified RBP motifs using the DREME software (ver-
sion 4.12.0) directly from RBP peaks [45]. Then, we also
incorporated motifs from RNA Bind-n-Seq (RBNS) [18]
to characterize sequence and structural specificities of
RBPs. For each variant that affected multiple RBP bind-
ing profiles, we used the max score (Additional file 2:
Table S5). A threshold of Dscore > 3 is used to describe a
disruption event that is significant, and a variant having
a Dscore less than this threshold receives a score of 0. For
variants receiving a Dscore larger than the threshold, we
additionally compute the Shannon entropy given for a
variant with Dscore =D as:

Smotif ¼ 1þ f v;Dð Þ � log2 f v;Dð Þ
þ 1− f v;Dð Þð Þ � log2 1− f v;Dð Þð Þ

ð7Þ

where f(v, D) represents the number of the 1000 Ge-
nomes Project variants, v, that have a Dscore greater than
D divided by the total number of 1000 Genomes Project
variants. This entropy is then weighted by the popula-
tion conservation score.

RBP-gene association using shRNA RNA-Seq
To determine if an RBP, R, is associated with a gene, g,
we intersect the peaks of R with the transcript annota-
tion of g. If an intersect exists, we form a linkage be-
tween the intersected peak of R and g. If some variant
falls in that specific peak of R, the variant significantly
disrupts the motif of RBP R, and gene g demonstrates at
least a 2.5-fold change in its expression after KD of RBP
R, we give the variant an additional score of 1.

Tissue-specific score
RBP regulatory potential
RADAR allows inputs in addition to the pre-built con-
text to calculate the disease-specific variant score. In this
paper, we used the TCGA expression profiles as an ex-
ample of the cancer variant prioritization. Specifically,
we downloaded expression profiles of 19 cancer patients
of 24 types from TCGA. In order to get a robust differ-
ential expression analysis, we excluded several cancer
types that have less than 10 normal expression profiles
and used DESeq2 [37] to find tumor-to-normal differen-
tially expressed genes (corrected P from DESeq2 < 0.05).
Let yki represent the differential expression status of gene
i of the kth cancer type.
We inferred the regulatory power of each RBP, R,

through a regression approach of the above differential
expression and RBP network connectivity as:

y!k;R ¼ β0
k;R þ β1

k;R x!R þ εk;R ð8Þ

where x!R
is the binary connectivity vector for all

genes and R (1 if the gene is a target, otherwise 0). We
used the absolute value of β1

k, R to indicate the regula-
tion potential of RBP R in cancer type k. If a variant falls
in a region with at least one RBP binding, and at least
one of the P values associated with β1

k, R is significant,
then we consider variants falling in that particular RBP
to have an additional score of 1.

Recurrence in somatic mutations
We prioritized variants in RBP binding sites are with
more-than-expected somatic mutations. To evaluate the
somatic mutation burden, we first separated the genome
into 1 Mbp bins and calculated a local background mu-
tation rate in each window. Then, for each eCLIP peak,
we counted the number of somatic mutations and com-
pared it to the nearest local 1 Mbp context using a one-
sided binomial test. If a specific RBP binding site was
enriched for somatic mutations, the variant falling in
that site was given a higher priority.

Differentially expressed key genes
For each peak of each RBP, we find the associated gene
of that peak by intersecting with the GENCODE gene
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definitions. Using the DESeq2 results, we consider genes
with q values that are less than 0.05 to be differentially
expressed. If an RBP peak is associated with a gene that
is significantly differentially expressed in a tissue type,
we increase the score of the variant falling in such peak
by 1.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13059-020-01979-4.

Additional file 1: Large Supplemental Tables from RADAR providing
results and summaries regarding the data used, but are too large to be
put in PDF format.
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