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Abstract

Density Functional Perturbation Theory and Adaptively Compressed Polarizability
Operator

by

Ze Xu

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Associate Professor Lin Lin, Chair

Kohn-Sham density functional theory (KSDFT) is by far the most widely used elec-
tronic structure theory in condensed matter systems. Density functional perturbation the-
ory (DFPT) studies the response of a quantum system under small perturbation, where the
quantum system is described at the level of first principle electronic structure theories like
KSDFT. One important application of DFPT is the calculation of vibration properties such
as phonons, which can be further used to calculate many physical properties such as infrared
spectroscopy, elastic neutron scattering, specific heat, heat conduction, and electron-phonon
interaction related behaviors such as superconductivity . DFPT describes vibration proper-
ties through a polarizability operator, which characterizes the linear response of the electron
density with respect to the perturbation of the external potential. More specifically, in vi-
bration calculations, the polarizability operator needs to be applied to d × NA ∼ O(Ne)
perturbation vectors, where d is the spatial dimension (usually d = 3), NA is the number of
atoms, and Ne is the number of electrons. In general the complexity for solving KSDFT is
O(N3

e ), while the complexity for solving DFPT is O(N4
e ). It is possible to reduce the com-

putational complexity of DFPT calculations by “linear scaling methods”. Such methods can
be successful in reducing the computational cost for systems of large sizes with substantial
band gaps, but this can be challenging for medium-sized systems with relatively small band
gaps.

In the discussion below, we will slightly abuse the term “phonon calculation” to refer to
calculation of vibration properties of condensed matter systems as well as isolated molecules.
In order to apply the polarizability operator to O(Ne) vectors, we need to solve O(N2

e ) cou-
pled Sternheimer equations. On the other hand, when a constant number of degrees of
freedom per electron is used, the size of the Hamiltonian matrix is only O(Ne). Hence
asymptotically there is room to obtain a set of only O(Ne) “compressed perturbation vec-
tors”, which encodes essentially all the information of the O(N2

e ) Sternheimer equations. In
this dissertation, we develop a new method called adaptively compressed polarizability oper-
ator (ACP) formulation, which successfully reduces the computational complexity of phonon
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calculations to O(N3
e ) for the first time. The ACP formulation does not rely on exponential

decay properties of the density matrix as in linear scaling methods, and its accuracy depends
weakly on the size of the band gap. Hence the method can be used for phonon calculations
of both insulators and semiconductors with small gaps.

There are three key ingredients of the ACP formulation. 1) The Sternheimer equations
are equations for shifted Hamiltonians, where each shift corresponds to an energy level
of an occupied band. Hence for a general right hand side vector, there are Ne possible
energies (shifts). We use a Chebyshev interpolation procedure to disentangle such energy
dependence so that there are only constant number of shifts that is independent of Ne. 2)
We disentangle the O(N2

e ) right hand side vectors using the recently developed interpolative
separable density fitting procedure, to compress the right-hand-side vectors. 3) We construct
the polarizability by adaptive compression so that the operator remains low rank as well as
accurate when applying to a certain set of vectors. This make it possible for fast computation
of the matrix inversion using methods like Sherman-Morrison-Woodbury.

In particular, the new method does not employ the “nearsightedness” property of elec-
trons for insulating systems with substantial band gaps as in linear scaling methods. Hence
our method can be applied to insulators as well as semiconductors with small band gaps.

This dissertation also extend the method to deal with nonlocal pseudopotentials as well
as systems in finite temperature. Combining all these components together, we obtain an
accurate, efficient method to compute the vibrational properties for insulating and metallic
systems.
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Chapter 1

Density Functional Perturbation
Theory

1.1 Introduction

The theory of lattice vibrations is one of the best established chapters in modern solid-state
physics. A wide variety of physical properties of solids depend on their lattice-dynamical
behavior. Infrared spectroscopy, elastic neutron scattering, specific heat, heat conduction,
and electron-phonon interaction related behaviors such as superconductivity are among the
list of them (see [5] for a review). The understanding of phonons is considered to be one of
the most convincing pieces of evidence that our current quantum picture of solids is correct.

The early theory of lattice vibrations dates back to the thirties in the twenties century, in
which the formulations were mainly concerned with establishing the general properties of the
dynamical matrices without even considering their connections with the electronic properties
that determine them. It is actually important to exploit the relationship of the electronic
and the lattice-dynamical properties of a system as it is only possible then to calculate the
lattice-dynamical properties of the system.

Pioneered by Hohenberg and Kohn, first established by Kohn and Sham, the Kohn-Sham
density functional theory is by far the most widely used electronic structure theory and made
it possible for calculating specific properties of specific (simple) materials using ab initio
quantum-mechanical techniques whose only input information is the chemical composition
of the materials. In the specific case of lattice-dynamical properties, a large number of ab
initio calculations based on the linear response theory of lattice vibrations have been made
possible by the development of density functional perturbation theory based on Kohn-Sham
Density functional theory.

Density functional perturbation theory (DFPT) [3, 21, 5, 11] studies the response of
a quantum system under small perturbation, where the quantum system is described at
the level of first principle electronic structure theories such as Kohn-Sham density functional
theory (KSDFT) [26, 31]. One important application of DFPT is the calculation of vibration
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properties such as phonons, which can be further used to calculate many physical properties
. DFPT describes vibration properties through a polarizability operator, which characterizes
the linear response of the electron density with respect to the perturbation of the external
potential. More specifically, in vibration calculations, the polarizability operator needs to be
applied to d×NA ∼ O(Ne) perturbation vectors, where d is the spatial dimension (usually
d = 3), NA is the number of atoms, and Ne is the number of electrons. In general the
complexity for solving KSDFT is O(N3

e ), while the complexity for solving DFPT is O(N4
e ).

It is possible to reduce the computational complexity of DFPT calculations by “linear scaling
methods” [19, 45, 8]. Such methods can be successful in reducing the computational cost for
systems of large sizes with substantial band gaps, but this can be challenging for medium-
sized systems with relatively small band gaps.

In the discussion below, we will slightly abuse the term “phonon calculation” to re-
fer to calculation of vibration properties of condensed matter systems as well as isolated
molecules. In order to apply the polarizability operator to O(Ne) vectors, we need to solve
O(N2

e ) coupled Sternheimer equations. On the other hand, when a constant number of
degrees of freedom per electron is used, the size of the Hamiltonian matrix is only O(Ne).
Hence asymptotically there is room to obtain a set of only O(Ne) “compressed perturbation
vectors”, which encodes essentially all the information of the O(N2

e ) Sternheimer equations.
In the first chapter, we include the minimum details of Kohn-Sham density functional

theory, density functional perturbation theory, for the purpose of phonon calculation. The
rest of the chapter is organised as follows. Section 1.2 briefly introduces the basic components
of the Kohn-Sham density functional theory, followed by section 1.3 for the self-consistent
field iteration and section 1.4 for more details of density matrix. Section 1.5 briefly introduces
the basics of linear response theory, which is applied to Kohn-Sham density functional theory
and hence lead to the discussion of density functional perturbation theory in section 1.6.
Section 1.7 introduces the calculation of phonon frequency as an important application of
DFPT, which will be discussed in detail through this dissertation.

1.2 Kohn-Sham Density Functional Theory

In this section, we briefly review the formulation of Kohn-Sham Density Functional The-
ory. It is by far the most widely used electronic structure theory, which achieves the best
compromise between accuracy and efficiency. Having full knowledge of the arrangement of
the electrons is the foundation and the first step for the calculation of phonon and other
properties.

1.2.1 Quantum many body problem and Born-Oppenheimer
approximation

The microscopic properties of electrons in chemistry, biology and material science are de-
scribed by the many body Hamiltonian of the Schödinger equation. The many body Hamil-
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tonian with NA nuclei and Ne electrons is

H =
Ne∑
i=1

−1

2
∆ri +

Ne∑
i=1

Vext(ri; {RI}) +
Ne∑
i<j

1

|ri − rj|
+

NA∑
I<J

ZIZJ
|RI −RJ |

≡ T + Ven + Vee + EII,

(1.1)

where the Hamiltonian is partitioned into kinetic, electron-ion interaction, electron-electron
interaction, and ion-ion interaction respectively:

T =
Ne∑
i=1

−1

2
∆ri , Ven =

Ne∑
i=1

Vext(ri; {RI})

Vee =
Ne∑
i<j

1

|ri − rj|
, EII =

NA∑
I<J

ZIZJ
|RI −RJ |

.

(1.2)

Here {RI} are the positions of the nuclei, {ri} are the spatial coordinates of the electrons.
{ZI} are the charge of the nuclei. This is a convention we follow throughout this dissertation
unless otherwise stated, that R is for position of a nucleus, whereas r stands for coordinates
of the electron.

In principle, the many body Hamiltonian 1.1 contains all the information of the system.
But in most cases, for a quantum many body system, the ground state is often the most
important state. It is characterized by the smallest eigenvalue and eigenvector of the many
body Hamiltonian:

HΨ = EΨ. (1.3)

(1.3) is referred to as the quantum many body problem. E is called the ground state energy
of the many body system, and Ψ is called the ground state wavefunction. According to the
Pauli’s exclusion principle for the identical electrons, Ψ changes sign if any pair of coordinates
ri

For a system containing both nuclei and electrons, all particles are quantum particles and
should be characterized by quantum mechanics. Using the fact that the mass of the electron
is much smaller compared to a nuclei of any element in the periodic table( around 0.0005
of hydrogen), Born and Oppenheimer proposed the adiabatic approximation that the nuclei
can be described by classical mechanics. The Born-Oppenheimer (BO) approximation [7]
separates the complexity due to the electrons and that due to the nuclei.

Under the BO approximation, the nuclei have a set of fixed positions {RI}NAI=1, which is
called the atomic configuration. Note that under this assumption, the ion-ion interaction
then become a constant shift to the Hamiltonian.
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Before we move on to the Kohn-Sham density functional theory, we introduce another
point of view of the quantum many body problem (1.3) from the minimization point of view.
The Courant-Fisher minimax theorem states that eigenvalue problem (1.3) is equivalent to
the following optimization problem

E = inf
|Ψ〉∈AN ,〈Ψ|Ψ〉=1

〈Ψ|H|Ψ〉 , (1.4)

where AN denotes the set of anti-symmetric functions. Eq. (1.4) is the variational principle
for ground state in quantum mechanics.

1.2.2 Kohn-Sham Density functional theory (KSDFT)

Born-Oppenheimer approximation reduces the quantum many body problem (1.3) to the
electronic structure problem. Still, it appears that one has to know the many body wave-
function Ψ in order to solve the quantum many body problem exactly. However, the fact is
that electron density ρ is all one needs to determine the quantum many body ground state,
thanks to Hohenberg and Kohn. According to Hohenberg and Kohn[26], no two different
potentials acting on the electrons of a given system can give rise to a same ground-state
electronic charge density. This theorem provides the foundation of density functional theory
(DFT). It provides a huge simplification of the quantum mechanical problem of a system of
interacting electrons. It replaces the traditional description based on wavefunctions, which
depend on 3Ne independent variables, with a much more tractable one in terms of the charge
density ρ.

The most widely used form of the density functional theory is called the Kohn-Sham
density functional theory (KSDFT)[31]. In the following discussion, we briefly introduce the
setup of KSDFT, including Kohn-Sham energy functional, Kohn-Sham equations, pseudopo-
tential setup, and other related concepts. In section 1.2.2.1, the setup in zero temperature is
first visited. Meanwhile in section 1.2.2.2, the generalization of KSDFT for system in finite
temperature is introduced.

1.2.2.1 Zero Temperature

Consider a system consisting of NA nuclei and Ne electrons. In the Born-Oppenheimer ap-
proximation, for each set of nuclear positions {RI}NAI=1, the electrons are relaxed to their
ground state. The ground state total energy is denoted by Etot({RI}NAI=1), and can be com-
puted in Kohn-Sham density functional theory [26, 31] according to the minimization of the
following Kohn-Sham energy functional
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EKS({ψi}; {RI}) =
1

2

Ne∑
i=1

∫
|∇ψi(r)|2 dr +

∫
Vion(r; {RI})ρ(r) dr

+
1

2

∫∫
vc(r, r

′)ρ(r)ρ(r′) dr dr′ + Exc[ρ] + EII({RI}).
(1.5)

Here the minimization is with respect to the Kohn-Sham orbitals {ψi}Nei=1 satisfying the
orthonormality condition ∫

ψ∗i (r)ψj(r) dr = δij, i, j = 1, . . . , Ne.

In Eq. (1.5), ρ(r) =
∑Ne

i=1 |ψi(r)|2 defines the electron density. In the discussion below we
will omit the range of indices I, i unless otherwise specified. In Eq. (1.5),

vc(r, r
′) =

1

|r− r′|
(1.6)

defines the kernel for Coulomb interaction in R3. Vion is a local potential characterizing
the electron-ion interaction in all-electron calculations, and is independent of the electronic
states {ψi}. More specifically, Vion is the summation of local potentials from each atom I

Vion(r; {RI}) =
∑
I

Vloc,I(r−RI). (1.7)

In a pseudopotential approximation, Vloc,I(r−RI) is defined as

Vloc,I(r−RI) :=

∫
vc(r, r

′)mI(r
′ −RI) dr′, (1.8)

where mI is a localized function in the real space and is called a pseudocharge [40, 48]. The
normalization condition for each pseudocharge is

∫
mI(r) dr = −ZI , and ZI is the atomic

charge for the I-th atom. The total pseudocharge is defined as m(r) =
∑

I mI(r−RI). We
assume the system is charge neutral, i.e.∫

m(r) dr = −
∑
I

ZI = −Ne.

Exc is the exchange-correlation energy, and here we assume semi-local functionals such as
local density approximation (LDA) [12, 50] and generalized gradient approximation (GGA)
functionals [6, 32, 49] are used. The last term in Eq. (1.5) is the ion-ion Coulomb interaction
energy. For isolated clusters in 3D,
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EII({RI}) =
1

2

∑
I 6=J

ZIZJ
|RI −RJ |

. (1.9)

We also note that for extended systems, modeled as infinite periodic structures, all the
terms with Coulomb kernel require special treatment in order to avoid divergence due to
the long-range 1/r nature of the Coulomb interaction [40].

The Euler-Lagrange equation associated with the Kohn-Sham energy functional gives
rise to the Kohn-Sham equations as

H[ρ]ψi =

(
−1

2
∆ + V [ρ]

)
ψi = εiψi∫

ψ∗i (r)ψj(r) dr = δij,

ρ(r) =
Ne∑
i=1

|ψi(r)|2 .

(1.10)

Here the eigenvalues {εi} are ordered non-decreasingly. ψ1, . . . , ψNe are called the occupied
orbitals, while ψNe+1, . . . are called the unoccupied orbitals. ψNe is often referred to as the
highest occupied molecular orbital (HOMO), and ψNe+1 the lowest unoccupied molecular
orbital (LUMO). The difference of the corresponding eigenvalues εg = εNe+1 − εNe defines
the HOMO-LUMO gap. A system with finite gap is called an insulating system or an
insulator, whereas a system with no gap εg = 0 is called a metallic system, or a metal. The
intermediate state where the gap is not zero but considerably small, the system is referred
to as the semiconducting system, or a semiconductor.

For a given electron density ρ, the effective potential V [ρ] is

V [ρ](r) = Vion(r; {RI}) +

∫
vc(r, r

′)ρ(r′) dr′ + Vxc[ρ](r)

=

∫
vc(r, r

′)(ρ(r′) +m(r′)) dr′ + Vxc[ρ](r).

(1.11)

Here

Vxc[ρ](r) =
δExc

δρ(r)
(1.12)

is the exchange-correlation potential, which is the functional derivative of the exchange-
correlation energy with respect to the electron density. The Kohn-Sham Hamiltonian de-
pends nonlinearly on the electron density ρ, and the electron density should be solved self-
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consistently. When the Kohn-Sham energy functional EKS achieves its minimum, the self-
consistency of the electron density is simultaneously achieved. Then the total energy can be
equivalently computed as [40]

Etot =
Ne∑
i=1

εi −
1

2

∫∫
vc(r, r

′)ρ(r)ρ(r′) dr dr′

−
∫
Vxc[ρ](r)ρ(r) dr + Exc[ρ] + EII({RI}).

(1.13)

Here Eband =
∑Ne

i=1 εi is referred to as the band energy.

1.2.2.2 Finite temperature

In this section, we introduce the extension of density functional theory formulation to the
finite temperature setup to include thermal effects. This is formulated first by Mermin [41].
In this setup, we consider a system of finite size with periodic boundary conditions. This
can be used to model isolated molecular systems as well as solid state systems with the
Gamma point sampling strategy of the Brillouin zone [40]. However, we do not explicitly
take advantage that {ψi(r)} are real, so that the formulation is applicable to real space and
Fourier space implementation, as commonly done in electronic structure software packages.
The spatial dimension d = 3 is assumed in the treatment of e.g. Coulomb interaction unless
otherwise specified. Since our numerical results involve real materials and systems of both
insulating and metallic characters, we include relevant technical details such as nonlocal
pseudopotential and temperature dependence in the discussion. Note that the discussion
overlap with section 1.2.2.1 by a lot. For the completion of the discussion for the setup of
KSDFT, the overlapping details are also mentioned in place.

Consider a system consisting of NA nuclei and Ne electrons at temperature T = 1/(kBβ),
where kB is the Boltzmann constant and β is the inverse temperature. In the Born-
Oppenheimer approximation, for each set of nuclear positions {RI}NAI=1, the electrons are
relaxed to their ground state. The ground state total energy is denoted by Etot({RI}NAI=1),
and can be computed in Kohn-Sham density functional theory [26, 31, 41] according to the
minimization of the following Kohn-Sham-Mermin energy functional

EKS({ψi}; {RI})

=
1

2

∞∑
i=1

fi

∫
|∇ψi(r)|2 dr +

∞∑
i=1

fi

∫
ψ∗i (r)Vion(r, r′; {RI})ψi(r′) dr dr′

+
1

2

∫∫
vc(r, r

′)ρ(r)ρ(r′) dr dr′ + Exc[ρ] + EII({RI})

+
1

β

∞∑
i=1

[fi log fi + (1− fi) log(1− fi)] .

(1.14)
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Here the minimization is with respect to the Kohn-Sham orbitals {ψi}∞i=1 satisfying the
orthonormality condition ∫

ψ∗i (r)ψj(r) dr = δij, (1.15)

as well as the occupation numbers {fi}∞i=1 satisfying 0 ≤ fi ≤ 1. In Eq. (1.14),

ρ(r) =
∞∑
i=1

fi |ψi(r)|2 (1.16)

defines the electron density with normalization condition∫
ρ(r) dr = Ne. (1.17)

In the discussion below we will omit the range of indices I, i unless otherwise specified. In
Eq. (1.14), vc(r, r

′) = 1
|r−r′| is the kernel for Coulomb interaction in R3 and the corresponding

term is called the Hartree energy. Vion is a collection of local and nonlocal potential charac-
terizing the electron-ion interaction, and is independent of the electronic states {ψi}. More
specifically, in a pseudopotential approximation [40], if we view Vion as an integral operator,
then the kernel of Vion can be expressed as the summation of contribution from each atom I

Vion(r, r′; {RI}) =
∑
I

Vloc,I(r−RI)δ(r− r′) +
∑
I

Vnl,I(r−RI , r
′ −RI)

≡ Vloc + Vnl.

(1.18)

Here Vloc,I is the local pseudopotential as introduced in (1.8), and Vnl,I the nonlocal pseu-
dopotential. In the Kleinman-Bylander form [28], each nonlocal pseudopotential is a low
rank and symmetric operator with kernel

Vnl,I(r−RI , r
′ −RI) =

LI∑
l=1

γI,lbI,l(r−RI)b
∗
I,l(r

′ −RI). (1.19)

Here γI,l is a weight factor, and each bI,l(r) is a real valued function compactly supported
around r = 0. Exc is the exchange-correlation energy, and here we assume semi-local func-
tionals such as local density approximation (LDA) [12, 50] and generalized gradient approxi-
mation (GGA) functionals [6, 32, 49] are used. EII is the ion-ion Coulomb interaction energy
as introduced in (1.9)
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EII({RI}) =
1

2

∑
I 6=J

ZIZJ
|RI −RJ |

, (1.20)

while for periodic systems the contribution from all the image charges should be properly
taken into account via e.g. the Ewald summation technique [54]. The last term of Eq. (1.14)
is the entropy term related to the temperature. Again, spin degeneracy is neglected for
simplicity of the notation.

The Euler-Lagrange equation associated with the Kohn-Sham energy functional gives
rise to the Kohn-Sham equations as

H[ρ]ψi =

(
−1

2
∆ + V [ρ]

)
ψi = εiψi,∫

ψ∗i (r)ψj(r) dr = δij,

ρ(r) =
∞∑
i=1

fi |ψi(r)|2 ,

fi =
1

1 + eβ(εi−µ)
.

(1.21)

Here the eigenvalues {εi} are ordered non-decreasingly. Note that the occupation number fi
is given analytically by the Fermi-Dirac distribution with respect to the eigenvalue εi, and µ
is a Lagrange multiplier enforcing the normalization condition of the electron density. The
difference of the eigenvalues εg = εNe+1 − εNe defines the energy gap. If εg is positive then
the system is called an insulating system, and otherwise a metallic system. For insulating
systems, ψ1, . . . , ψNe are called the occupied orbitals, while ψNe+1, . . . are called the unoccu-
pied orbitals. ψNe is often referred to as the highest occupied molecular orbital (HOMO),
and ψNe+1 the lowest unoccupied molecular orbital (LUMO).

The effective potential V [ρ] depends on the electron density ρ as

V [ρ](r, r′) = Vion(r, r′) +

[∫
vc(r, r

′)ρ(r′) dr′ + Vxc[ρ](r)

]
δ(r− r′); (1.22)

Vxc[ρ](r) =
δExc

δρ(r)
. (1.23)

Here Vxc[ρ](r) is the exchange-correlation potential, which is the functional derivative of the
exchange-correlation energy with respect to the electron density. The Kohn-Sham Hamil-
tonian depends nonlinearly on the electron density ρ, and the electron density should be
solved self-consistently. When the Kohn-Sham energy functional EKS achieves its minimum,
the self-consistency of the electron density is simultaneously achieved. Note that both the
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Hartree potential and the exchange-correlation potential are local potentials. This plays an
important role in simplifying the density functional perturbation theory.

When the Kohn-Sham energy functional EKS achieves its minimum, the self-consistency
of the electron density is simultaneously achieved. Then the total energy can be equivalently
computed as [40]

Etot =
Ne∑
i=1

εi −
1

2

∫∫
vc(r, r

′)ρ(r)ρ(r′) dr dr′

−
∫
Vxc[ρ](r)ρ(r) dr + Exc[ρ] + EII({RI}).

(1.24)

Here Eband =
∑Ne

i=1 εi is referred to as the band energy.
At this point, it is worth noted that the Kohn-Sham Hamiltonian depends nonlinearly

on the electron density, and the electron density should be solved self-consistently, where the
details are discussed in section 1.3.

Before we finish the discussion of KSDFT, note that this energy functional (1.14) is indeed
a generalization of the zero temperature case as in (1.5): when T → 0, β → ∞, meanwhile
the occupation numbers fi are either 1 for occupied states or 0 for the unoccupied states.
Hence the entropy term is just 0. On the other hand, Vion defined in Eq. (1.18) is taking the
nonlocal pseudopotential into account, which is an extension of Eq. (1.7) where the nonlocal
pseodopotential is not considered. In the rest of the this dissertation, we will follow the
setup in this section and show the results in finite temperature if not otherwise stated.

1.3 Self-consistent field iteration

In section 1.2, KSDFT is introduced with exchange-correlation given as pure density func-
tionals. The Kohn-Sham Hamiltonian depends nonlinealy on the electron density ρ, and the
electron density should be solved self-consistently. In this section, we show the details of
solving the Kohn-Sham equatinos.

The map from the effective potential V to the electron density ρ is called the Kohn-Sham
map, denoted by

ρ = FKS[V ]. (1.25)

By solving a linear eigenvalue problem, the electron density can be evaluated. So ρ and
V should be iteratively determined by each other till convergence. This is called the self-
consistent field (SCF) iteration.

Starting from certain initial electron density denoted by ρ0, with ρk,Vk denoting the
electron density and the effective potential at the k-th SCF iteration, respectively, the SCF
iteration becomes
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· · · → ρk → Vk = V [ρk]→ ρk+1 → Vk+1 = V [ρk+1]→ · · · (1.26)

The relation (1.26) can be viewed as a mapping either from ρk to ρk+1, or from Vk to Vk+1.
These two viewpoints are called density mixing and potential mixing, respectively. There is
no qualitative difference between these two types of mixing schemes. In the sections 2.4 and
3.4 where numerical examples are discussed, potential mixing is used in the calculations. We
remark that both mixing schemes are widely used in electronic structure software packages,
and the Anderson’s method to be discussed below can be used for density mixing as well.

When self-consistency is reached, the converged effective potential is denoted by V ∗ and
satisfies the nonlinear equation

V ∗ = V [ρ] = V [FKS[V ∗]]. (1.27)

The simplest version of the SCF iteration is the fixed point iteration, where the potential
at the (k + 1)-th step is directly given by the output potential at the k-th step

Vk+1 = V [FKS[Vk]]. (1.28)

However, the simple fixed point iteration generally cannot be expected to converge, as the
map Vk 7→ Vk+1 in Eq. (1.28) is generally not a contraction map. A slight modification of
the fixed point iteration is more practically feasible, which is written as

Vk+1 = αV [FKS[Vk]] + (1− α)Vk. (1.29)

If we denote the residual error of the potential as

rk = Vk − V [FKS[Vk]], (1.30)

then the simple mixing scheme is written as

Vk+1 = Vk − αrk. (1.31)

Following this setup, a more widely used quasi-Newton type of method is called Broyden’s
method, which replaces α in Eq. 1.31 by Ck. The scheme reads

Vk+1 = Vk − Ckrk. (1.32)

Note that here Ck is an approximate matrix that should be easy to compute and to apply.
Specifically, Andersons method [2], as a variant of Broyden’s method, is widely used in
electronic structure software packages. Using Broyden’s technique [27], Ck is obtained by
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a sequence of low-rank updates to a certain approximation C0 of the Jacobian inverse J−1
k

using a recursive formula [16, 39] derived from the constrained optimization problem

min
C

1

2
‖C − Ck−1‖2

F (1.33)

s.t. Sk = CYk, (1.34)

where Ck−1 is the approximation to the Jacobian in the (k − 1)-th iteration. Here the
Jacobian matrix Jk is with respect to the residual map

δV 7→ δV − V [FKS[Vk + δV ]]. (1.35)

Matrices Sk and Yk in Eq. (1.34) are defined as

Sk = (sk, sk−1, . . . , sk−l), Yk = (yk, yk−1, . . . , yk−l), (1.36)

where sj and yj are defined by sj = Vj − Vj−1 and yj = rj − rj−1, respectively. Here the
number l is the length of history used in Broyden’s method.

Note that the difference of Anderson’s method to Broyden’s method is that it is replacing
Ck−1 by a fixed C0 in Eq. (1.33). Solving the constrained minimization problem in Eq. (1.33)
using the method of Lagrange multipliers, one get the solution

Ck = Ck−1 + (Sk − Ck−1Yk)Y
†
k , (1.37)

which is the update scheme used in Broyden’s method. Here Y †k denotes the Moore-Penrose

pseudoinverse of Yk, i.e. Y †k = (Y T
k Yk)

−1Y T
k . Replacing Ck−1 by C0 in Eq. (1.37) and plug

into Eq. (1.32), we arrive at the update scheme of Anderson’s method

Vk = Vk−1 − C0(I − YkY †k )rk − SkY †k rk. (1.38)

Particularly, C0 is chosen to be αI, we obtain Anderson’s method

Vk = Vk−1 − α(I − YkY †k )rk − SkY †k rk. (1.39)

This is the method that is commonly used in KSDFT solvers, and is used in the numerical
examples tested in this dissertation.



CHAPTER 1. DENSITY FUNCTIONAL PERTURBATION THEORY 13

1.4 Density matrix formulation

Density matrix is a central object in electronic structure theory. More specifically, density
matrix formulation is a more intrinsic way of constructing the Kohn-Sham equations. In
terms of numerical algorithms, the usage of density matrix is also preferable, especially for
large scale problems. In this section, we visit the density matrix formulation for both the
zero temperature case and the finite temperature case.

In the Kohn-Sham equations (1.10), orbitals {ψi} are defined. At the same time, density
matrix can be defined mathematically as

P (r′, r) =
Ne∑
i=1

ψ∗i (r
′)ψi(r). (1.40)

Note that the electron density takes the diagonal elements of the density matrix

ρ(r) = P (r, r) =
Ne∑
i=1

ψ∗i (r)ψi(r). (1.41)

One important point is that the density matrix can also be equivalently defined using
contour integrals from complex analysis using Cauchy integral formula

P =
1

2πι

∮
C
(λ−H)−1 dλ, (1.42)

where H is the Hamiltonian defined in Eq. (1.10); C is a contour which encloses all occupied
states εi

Ne
i=1 only. Such contour always exists whenever a gap is present. This means that

this contour integral formulation (1.42) is only valid for insulator and semiconductor.
On the other hand, when the finite temperature is considered, using the Kohn-Sham

equations (1.21) in which the orbitals are defined, density matrix can be defined mathemat-
ically as

P (r′, r) =
∞∑
i=1

fiψ
∗
i (r
′)ψi(r). (1.43)

Note that the corresponding electron density still takes the diagonal elements of the density
matrix

ρ(r) = P (r, r) =
∞∑
i=1

fiψ
∗
i (r)ψi(r). (1.44)

Also note that in Eq. (1.43), the summation involve only finite number of terms, as the
occupation number fi goes to zero.
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The density matrix can also be equivalently defined using contour integrals from complex
analysis using Cauchy integral formula

P =
1

2πι

∮
C
fβ(λ− µ)(λ−H)−1 dλ, (1.45)

where H is the Hamiltonian defined in Eq. (1.21); fβ is the Fermi-Dirac function

fβ(z) =
1

1 + exp(βz)
; (1.46)

C is a contour which encloses the entire spectrum of H as well as close to the real axis so
that it is away from the singular points of the Fermi-Dirac function.

The contour integral formalism provides a way for numerical approximation of the density
matrix. The discretized contour integral with proper choice of quadrature nodes and weights
would give an approximation of the density matrix with fair precision. [ZX:Figure as the
contour.].

1.5 Linear response theory

Many properties of chemical or material systems are characterized by how they respond to
external perturbations. Mathematically, when the external perturbation is small, only the
leading order perturbation is important. This is known as the linear response regime. In this
section, we discuss the basics of the linear response theory, for preparation of introducing
density functional perturbation theory in Section 1.6.

1.5.1 Perturbation of the density matrix

For a fixed Hamiltonian H, consider the perturbation of the density matrix. The contour
integral representation of the density matrix with finite temperature reads

P0 =
1

2πi

∮
C
f(z)(z −H)−1 dz. (1.47)

Consider that the Hamiltonian is perturbed to Hε = H0 + εg, in which the operator norm
of g is bounded. As C lies in the resolvent set of H0, we assume that when ε is small and so
is the perturbation, the perturbed density matrix Pε can be still computed using the same
contour as

Pε =
1

2πi

∮
C
f(z)(z −Hε)

−1 dz. (1.48)

Then we have
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Pε − P0 =
1

2πi

∮
C
f(z)

[
(z −Hε)

−1 − (z −H)−1
]

dz

=
1

2πi

∮
C
f(z)

[
(z −Hε)

−1εg(z −H)−1
]

dz

=
1

2πi

∮
C
f(z)

[
(z −H)−1εg(z −H)−1

]
dz +O(ε2).

(1.49)

The last line comes from the Neumann expansion of (z −Hε)
−1,

(z −Hε)
−1 = (z −H)−1

∞∑
n=0

(
εg(z −H)−1

)n
. (1.50)

Define an operator X0 as

X0g =
1

2πi

∮
C
f(z)

[
(z −H)−1g(z −H)−1

]
dz, (1.51)

we arrive at

Pε − P0 = εX0g +O(ε2). (1.52)

If we further note P (H) as the density matrix corresponds to H, we have

∂P (H + εg)

∂ε

∣∣∣∣
ε=0

= X0g. (1.53)

Mathematically, this means that the Gâteaux derivative of P in the g direction is given by
the operator X0g. In physical terms, the linear response of the density matrix when the
potential changes is given by the operator X0.

∂P

∂V
(g) = X0g. (1.54)

Using the spectral decomposition, we have
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X0g =
1

2πi

∮
C

∞∑
j,k=1

f(z)

[
ψjψ

∗
jgψkψ

∗
k

(z − εj)(z − εk)

]
dz

=
1

2πi

∞∑
j,k=1

∮
C

dz
f(z)

(z − εj)(z − εk)
[
ψjψ

∗
jgψkψ

∗
k

]
=
∞∑
j 6=k

fj − fk
εj − εk

[
ψjψ

∗
jgψkψ

∗
k

]
+
∞∑
j

f ′j
[
ψjψ

∗
jgψjψ

∗
j

]
=
∞∑
j,k

fj − fk
εj − εk

[
ψjψ

∗
jgψkψ

∗
k

]
,

(1.55)

where the
fj−fk
εj−εk

is interpreted as the derivative when j = k. Eq. (1.55) is called the Adler-

Wiser formula [1, 60].

1.5.2 Perturbation of the electron density

In Section 1.5.1, we show the perturbation of the density matrix. The perturbation of electron
density, which is of particular interest, follows directly from the definition. As ρ(r) = P (r, r)
is the diagonal of the density matrix, we have

∂ρ

∂V
(g) = diag (X0g) =: χ0g, (1.56)

where χ0 is defined as

(χ0g) (r) =(X0g)(r, r)

=
∞∑
j,k

fj − fk
εj − εk

[
ψj(r)

(
ψ∗jgψk

)
ψ∗k(r)

]
.

(1.57)

Eq. (1.55) is the Adler-Wiser formula for the electron density. The operator χ0 gives the
linear response of the density with respect to the change of the potential.

Before we go into the details, we make remarks on the notation throughout the discus-
sion in this dissertation, as the discussion using the notation r, r′, r′′ etc will quickly become
complicated. For simplicity in the discussion below, we will not distinguish the continuous
and discretized representations of various quantities. In the case when a discretized repre-
sentation is needed, we assume that the computational domain is uniformly discretized into
a number of grid points {rα}Ngα=1. After discretization all quantities can be called tensors.
For example, we will call u(r) an order 1 tensor (or a vector), A(r, r′) an order 2 tensor (or a
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matrix), and X(r, r′; r′′, r′′′) an order 4 tensor. The tensor contraction can be denoted using
either the continuous or the discrete notation. For example, X(r, r; r′′, r′′′) denotes an order
3 tensor. The tensor contraction between two order 1 tensors u and v should be interpreted
as u∗v =

∫
u∗(r)v(r) dr. The tensor contraction between an order 2 tensor A and an order 1

tensor v (i.e. a matrix-vector product) should be interpreted as (Av)(r) =
∫
A(r, r′)v(r′) dr′.

Similarly the contraction between an order 2 tensor A and an order 2 tensor g (i.e. matrix-
matrix product) should be interpreted as (Ag)(r, r′) =

∫
A(r, r′′)g(r′′, r′) dr′′, and the con-

traction between an order 4 tensor X and an order 2 tensor g should be interpreted as

(Xg)(r, r′) =

∫
X(r, r′; r′′, r′′′)g(r′′, r′′′) dr′′ dr′′′.

We also define two operations for order 1 tensors. The Hadamard product of two order 1
tensors u� v should be interpreted as (u� v)(r) = u(r)v(r). For an order 1 tensor v(r), we
define an associated order 2 tensor as (diag[v])(r, r′) = v(r)δ(r− r′). It is easy to verify the
Hadamard product u� v = diag[u]v.

1.6 Density functional perturbation theory

In this section, we will apply the result of linear response theory in Section 1.5 to case of
Kohn-Sham density functional theory. Note that the effective Hamiltonian depends self-
consistently on the electron density. Therefore when we consider the perturbation of the
electron density or more generally the perturbation of the density matrix, we also need
to take into account the change of the effective potential which is induced by the density
perturbation.

Recall that the effective Hamiltonian is defined as H[ρ] = −1
2

+ V [ρ], where V [ρ] is
the effective potential defined in Eq. (1.22). Consider a small perturbation to the external
potential Vion(r, r′), defined as g. This would induce a change in the electron density and
hence the effective potential V and the effective Hamiltonian H. Mathematically, we apply
the chain rule from Eq. (1.22) and then we have

u := Xg =
δP

δV
δV
δVion

g = X0g + X0fhxcXg = X0g + X0fhxcu. (1.58)

In Eq. (1.58),

fhxc(r, r
′; r′′, r′′′) =

(
vc(r, r

′′) +
δVxc[ρ

∗](r)

δρ(r′)

)
δ(r− r′′)δ(r′ − r′′′)

:=fhxc(r, r
′)δ(r− r′′)δ(r′ − r′′′)

(1.59)

is the kernel characterizing the dependence of the V with respect to the density matrix P
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in the linear regime. Here
δVxc[ρ

∗](r)

δρ(r′)
is called the exchange-correlation kernel, which is a

local operator in the LDA and GGA formulations of the exchange-correlation functionals. X
is called the reducible polarizability operator, which characterizes the self-consistent linear
response of the density matrix at (r, r′) with respect to an external nonlocal perturbation of
Vion at (r′, r′′′). X0 is the irreducible polarizability operator. Eq. (1.58) is called the Dyson
equation, and the solution u should be solved self-consistently.

The Dyson equation shows that how the computation of X should be obtained through
the quantity X0. It characterizes the self-consistent linear response of the density matrix
with respect to an external nonlocal perturbation of Vion. Mathematically, one could solve u
from Eq.(1.59) as

u = (I− X0fhxc)
−1 X0g. (1.60)

This requires that I−X0fhxc is invertible. If operator I−X0fhxc is not invertible, it means that
it is possible that a small perturbation of the potential generates a unbounded perturbation
to the density matrix and more specifically to the density. From a physical point of view,
This means that the electronic structure of the system is not stable with respect to external
perturbations. Therefore the invertibility of the operator I−X0fhxc is known as the stability
condition of electronic structure in Kohn-Sham density functional theory. [59]

In practice, Eq. (1.59) can be solved iteratively as a fixed point problem. A simplest
iteration scheme can be constructed recursively substitute u into the right hand side. This
leads to the Neumann series

u = X0g + X0fhxcX0g + X0fhxcX0fhxc X0g + · · · (1.61)

The iteration solution requires the application of X0 to a 2 tensor, which can be obtained by
using the Adler-Wiser formula in Eq. (1.55).

1.7 Lattice dynamics from KSDFT

Recall that in section 1.2, the Kohn-Sham energy functional (1.14) is introduced. The
associated Euler-Lagrange equation leads to Kohn-Sham equations (1.21). In section 1.3,
the self-consistent solution of the Kohn-Sham equations are obtained by the convergence
of SCF iteration. The self-consistent solution gives all the information, especially the total
energy of the system, given a atomic configuration {RI} is fixed. In this section, we will
visit the lattice dynamics of a system in electronic structure theory.
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1.7.1 Phonon frequency

In the BO approximation, the nuclei are treated as classical particles. So the equilibrium
geometry of the system is given by the condition that the forces acting on individual nuclei
vanish:

FI({RI}) = −∂Etot({RI})
∂RI

= 0. (1.62)

When the self-consistent ground state electron density ρ has been computed, the atomic
force can be obtained using the Hellman-Feynman theorem as

FI({RI}) = −∂Etot({RI})
∂RI

= −
∫
∂Vion

∂RI

(r, r′; {RI})P (r′, r) dr dr′ − ∂EII({RI})
∂RI

.

(1.63)

Assume the system deviates from its equilibrium position {RI} by some small magnitude,
then the changes of the total energy is dominated by the Hessian matrix with respect to the
atomic positions. This Hessian matrix is referred to as the matrix of the inter-atomic force
constants. The dynamical matrix D consists of d× d blocks in the form

DI,J =
1√

MIMJ

∂2Etot({RI})
∂RI∂RJ

, (1.64)

where MI is the mass of the I-th nuclei. The size of the dynamical matrix is d × NA by
d×NA. The equilibrium atomic configuration is at a local minimum of the total energy, and
all the eigenvalues of D are real and non-negative. Hence the eigen-decomposition of D is

Duk = ω2
kuk,

where uk is called the k-th phonon mode, and ωk is called the k-th phonon frequency. The
phonon spectrum is defined as the distribution of the eigenvalues {ωk} i.e.

%D(ω) =
1

dNA

∑
k

δ(ω − ωk). (1.65)

Here δ is the Dirac-δ distribution. %D is also referred to as the density of states of D [40,
34].

Mathematically, one direct way of computing the phonon frequency, or %D, immediately
follows the definition: using finite difference approximation. This approach is called the
frozen phonon approach in computational physics, which is elaborated as follows.

To compute the phonon frequency, one use the finite difference scheme to approximate
the dynamical matrix (1.64). Specifically, the a-th colomn of the I, J block is approximated
by
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DI,J,a ≈
1√

MIMJ

(
FI({RI ; RJ ← RJ + hea})− FI({RI})

h

)
, (1.66)

where FI({RI ; RJ ← RJ + hea}) is the atomic force when the J-th atom is perturbed by
a small magnitude h along the ea axis. In the rest of this dissertation, we will refer to this
approach as the finite difference (FD).

The finite difference approach provides the most intuitive way of computing the phonon
frequency of a system. It only requires solving the Kohn-Sham equations self-consistently for
the original system and several perturbed systems. On the other hand, this finite difference
approach computes an approximation of the Hessian matrix and the dynamical matrix. The
error of the method is depends heavily on the accuracy of the SCF iteration. Moreover what
is usually observed in practical application is that the error of the FD approach saturates
with the size of the perturbation goes to 0. This disadvantage prevents one from using FD
for phonon calculation if more accurate result is desired.

1.7.2 Phonon calculation using Density Functional Perturbation
Theory

As the application of the density functional perturbation theory, which is of particular in-
terest in this dissertation, we show the phonon calculation using Density Functional Per-
turbation Theory discussed in Section 1.6. In comparison to the finite difference approach,
it provides an analytical way of constructing the dynamical matrix and hence the phonon
structure of a system.

In order to compute the Hessian matrix, we obtain from Eq. (1.62) that

∂2Etot({RI})
∂RI∂RJ

=

∫
∂Vion

∂RI

(r, r′; {RI})
∂P (r′, r)

∂RJ

dr dr′

+

∫
∂2Vion

∂RI∂RJ

(r, r′; {RI})P (r′, r) dr dr′ +
∂2EII({RI})
∂RI∂RJ

.

(1.67)

Similar to the force calculation, the second term of Eq. (1.67) can be readily computed
with numerical integration, and the third term involves only ion-ion interaction that is in-
dependent of the electronic states. Hence the first term is the most challenging one due to
the response of the electron density with respect to the perturbation of atomic positions.
Applying the chain rule, we have
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∫
∂Vion

∂RI

(r, r′; {RI})
∂P (r′, r)

∂RJ

dr dr′

=

∫
∂Vion(r, r′; {RI})

∂RI

δP (r′, r)

δVion(r′′, r′′′)

∂Vion(r′′, r′′′); {RI})
∂RJ

dr dr′ dr′′ dr′′′

=

∫
∂Vion(r, r′; {RI})

∂RI

X(r, r′; r′′, r′′′)
∂Vion(r′′, r′′′); {RI})

∂RJ

dr dr′ dr′′ dr′′′

(1.68)

Here the Fréchet derivative X(r, r′; r′′, r′′′) =
δP (r, r′)

δVion(r′′, r′′′)
is referred to as the reducible polar-

izability operator. The calculation of applying X to g = ∂Vion(r′′,r′′′);{RI})
∂RJ

should be obtained
from solving the Dyson equation in Eq.(1.58).

Using the linear algebra type of notation, the key difficulty of phonon calculations is the
computation of the tensor contraction u = Xg, where g traverses d×NA order 2 tensors of the
form ∂Vion(r′′,r′′′;{RI})

∂RJ,a
, where RJ,a is the a-th direction of the atomic position RJ (a = 1, . . . , d).

According to Eq. (1.18), g can split into a local component and a nonlocal component as

g(r, r′) = gloc(r)δ(r− r′) + gnl(r, r
′), (1.69)

or equivalently g = diag[gloc] + gnl. For each g, only one atom J contributes to the order
1 tensor gloc and the order 2 tensor gnl. From the definition of nonlocal pseodopotential
Eq. (1.19), we have

gnl,I(r, r
′) =

LI∑
l=1

γI,l
[
bI,l(r−RI)db

∗
I,l(r

′ −RI) + dbI,l(r−RI)b
∗
I,l(r

′ −RI)
]
,

where dbI,l(r−RI) :=
∂bI,l(r−RI)

∂RI

.

(1.70)

We note that gnl is a symmetric operator of rank 2LI , where the factor 2 comes from the
Leibniz formula. In the rest of the dissertation, we shall use bl(r), dbl(r) to hide the explicit
dependence on the atom indices I or the atomic positions {RI}.

In order to solve the Dyson equation (1.58), we need to apply X0 to order 2 tensors of the
form g or fhxcu. By means of the eigenfunctions ψi, the eigenvalues εi, and the occupation
numbers fi, X0g can be expressed using the Adler-Wiser formula [1, 60]

(X0g)(r, r′) =
∞∑

i,a=1

fa − fi
εa − εi

ψa(r)

(∫
ψ∗a(r

′′)g(r′′, r′′′)ψi(r
′′′) dr′′ dr′′′

)
ψ∗i (r

′), (1.71)
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where the term when i = a should be interpreted as the limit when εa → εi. Recall that in
Eq. 1.55 we have the formula using the linear algebra notation of Eq. (1.71), which can be
written as

X0g =
∞∑

i,a=1

fa − fi
εa − εi

ψa(ψ
∗
agψi)ψ

∗
i . (1.72)

Since g is an Hermitian order 2 tensor, X0g is also an Hermitian order 2 tensor. If we
truncate the infinite sum in Eq. (1.72) to a finite sum of states, Eq. (1.72) and Eq. (1.58) can
be solved together to obtain u, and therefore the Hessian matrix (1.67) can be evaluated.

In order to observe the computational complexity of DFPT for phonon calculations, let
us first neglect the nonlocal pseudopotential Vnl,I . This leads to much simplification of the

notation. Since each g only involves the local contribution, Eq. (1.67) only requires
∂ρ(r)

∂RJ

.

Therefore one is only interested in computing

u(r) = u(r, r) =

∫
X(r, r; r′, r′)g(r′, r′) dr′ :=

∫
χ(r, r′)gloc(r

′) dr′. (1.73)

Here we have introduced χ(r, r′) = X(r, r; r′, r′), and used that the nonlocal component of
g vanishes. Similarly we can define χ0(r, r′) = X0(r, r; r′, r′). We also consider insulating
systems with a finite band gap. This allows us to simplify the temperature dependence of
the occupation number so that fi = 1 if i ≤ Ne and 0 if i ≥ Ne + 1. As a result, Eq. (1.72)
can be simplified as

χ0gloc =
Ne∑
i=1

∞∑
a=Ne+1

1

εi − εa
diag[ψ∗i ]ψa (ψ∗adiag[gloc]ψi) + h.c. (1.74)

Here h.c. means the Hermitian conjugate of the first term.
In order to overcome the difficulty of explicit computation of all the unoccupied or-

bitals {ψa}∞a=Ne+1, we first define the projection operator to the unoccupied space Q =

I −
∑Ne

i=1 ψiψ
∗
i . Then we can compute χ0gloc as

χ0gloc =
Ne∑
i=1

diag[ψ∗i ]Q(εi −H)−1Q(diag[gloc]ψi) + h.c.. (1.75)

In principle, the right hand side of Eq. (1.76) only requires one Q operator to be present.
However, we choose the form Q(εi − H)−1Q to emphasize that this operator is Hermitian.
Let ζi := Q(εi − H)−1Q(diag[gloc]ψi), the matrix inverse in Eq. (1.75) can be avoided by
solving the Sternheimer equations

Q(εi −H)Qζi = Q(diag[gloc]ψi). (1.76)
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This strategy has been used in a number of contexts involving the polarizability opera-
tor [21, 46, 56, 18, 44]. The Sternheimer equations can be solved using standard direct or
iterative linear solvers. The choice of the solver can depend on practical matters such as
the discretization scheme, and the availability of preconditioners. In practice for planewave
discretization, we find that the use of the minimal residual method (MINRES) [47] gives the
best numerical performance.

The complexity of phonon calculations using density functional perturbation theory can
now be analyzed as below. Even with local pseudopotential only, and assume the Dyson
equations always converge within a constant number of iterations that is independent of the
system size Ne, we need to apply χ0 to d×NA ∼ O(Ne) vectors of the form gloc. Each gloc

requires solving Ne Sternheimer equations (1.76), and the computational cost of applying
the projection operator Q to a vector is O(N2

e ). Hence the overall complexity is O(N4
e ) [5].

This is significantly more expensive than solving the KSDFT, of which the computational
complexity is typically O(N3

e ).

1.7.3 Existing software packages for phonon calculations

Below are some representative software packages for phonon structure calculation using quar-
tic scaling methods:

• Quantum ESPRESSO - PHonon: Density Functional Perturbation Theory.
https://www.quantum-espresso.org/

• ABINIT: Density Functional Perturbation Theory.
http://www.abinit.org/,https://docs.abinit.org/topics/Phonons/

• Phonopy: Finite difference method. Force computation could be done using most
popular packages.
https://atztogo.github.io/phonopy/

• VASP (Vienna Ab-initio Simulation Package) : Finite difference method.
https://www.vasp.at/

• CRYSTAL: Finite difference method.
http://www.crystal.unito.it/

• SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) :
Finite difference method.
https://departments.icmab.es/leem/siesta/

• LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator): Finite differ-
ence method.
https://lammps.sandia.gov/
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1.8 Summary of chapter 1

In Chapter 1, we started with the formulation of Kohn-Sham Density Functional Theory in
section 1.2. It is by far the most widely used electronic structure theory that best compro-
mises between accuracy and efficiency. We have reviewed the quantum many body problem
and Born-Oppenheimer approximation which reduces the quantum many body problem to
the electronic structure problem. Hohenberg and Kohn then stated that no two different
potentials acting on the electrons of a given system can give rise to a same ground-state
electronic charge density, which replaces the traditional description based on wavefunctions
with a much more tractable one in terms of the charge density ρ. With this huge simplifi-
cation, the setup of Kohn-Sham density functional theory in zero temperature is reviewed,
followed by the generalization for systems in finite temperature. After that in section 1.3, the
self-consistent field iteration is elaborated so that the Kohn-Sham equations can be solved
self-consistently. In section 1.4, we visited a central object in electronic structure theory,
which not only provides one with a more intrinsic way of constructing Kohn-Sham equa-
tions, but also helps with the implementation of many numerical algorithms. With the help
of density matrix, we visited the linear response theory in section 1.5, where Adler-Wiser
formula is introduced. In section 1.6, we apply the result of linear response theory to the
case of Kohn-Sham density functional theory and introduced the Dyson equations which
relates the reducible polarizability operator X with the irreducible polarizability operator
X0. The Dyson equation characterizes the self-consistent response of the density matrix
with respect to the external perturbation. Finally in section 1.7, we focus on the application
of phonon calculation, where the finite difference method (FD) and the approach of using
density functional perturbation theory (DFPT) is elaborated.

The computational cost for phonon calculation using FD and DFPT are both O(N4
e ). In

chapter 2, a new method is developed to reduce the computational cost to O(N3
e ) for the

first time. In chapter 3, the generalization of the new method is further discussed.
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Chapter 2

Adaptively Compressed Polarizability
Operator

2.1 Introduction

In principle, KSDFT provides an exact description of ground state properties of a many
body quantum system, such as electron density, energy, and atomic forces. Once the elec-
tronic ground state is obtained, many physical and chemical properties of the system can be
described by studying the response of the quantum system under small perturbation. The
theory for describing such response behavior is called the density functional perturbation
theory (DFPT) [3, 21, 5].

One important application of DFPT is the description of lattice vibrations. In the Born-
Oppenheimer approximation, lattice vibrations can be described by the dynamical matrix,
which is related to the Hessian matrix of the ground state energy with respect to the atomic
positions. The eigenfunctions of the dynamical matrix give the phonon modes, and the
eigenvalues give the phonon frequencies. A large variety of physical properties of solids
depend on such phonon calculations. A few examples include infrared spectroscopy, elastic
neutron scattering, specific heat, heat conduction, and electron-phonon interaction related
behaviors such as superconductivity [21, 5]. Furthermore, the computational procedure of
phonon calculations are largely transferable to the calculation of other types of response
behavior, such as response to homogeneous electric fields, piezoelectric properties, magnons,
and many body perturbation theory for the description of electrons at excited states such
as the GW theory [25, 46].

The term “phonon calculation” usually describes the calculation of vibrational properties
of condensed matter systems. In this dissertation, we slightly abuse this term to refer to
calculations of vibration properties of general systems, including condensed matter systems
as well as isolated molecule clusters, since such calculations share the same mathematical
structure. Mathematically, the procedure for phonon calculations can be straightforward.
When atoms are at their equilibrium positions, the atomic forces (i.e. first order derivatives
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of the energy with respect to the atomic position) are zero for all atoms. To compute the
Hessian matrix, one can move one atom at a time slightly away from its equilibrium position,
and compute the corresponding atomic forces. This amounts to the finite difference (FD)
approximation of the Hessian matrix, and is referred to as the “frozen phonon” [63, 4]
approach in physics. The FD approach is simple to implement and can be used to obtain
phonon spectrum quickly for systems of small sizes. However, FD requires in total d×NA ∼
O(Ne) KSDFT calculations, where d is the spatial dimension (usually d = 3), and NA is the
number of atoms. The computational complexity of a single KSDFT calculation typically
scales as O(N3

e ), where Ne is the number of electrons in the system. Since NA ∼ O(Ne), the
total cost of the FD approximation is O(N4

e ). This is prohibitively expensive for systems of
large sizes. Furthermore, the accuracy of the FD approximation is limited by the size of the
perturbation, which cannot be too small due to the numerical noise in the evaluation of the
atomic forces in KSDFT calculations (usually the accuracy of forces is set to be 10−4 ∼ 10−3

Hartree/Bohr). Such numerical noise also makes it difficult to compute non-linear response
properties, which can require even higher order derivatives of the energy.

DFPT, on the other hand, can be viewed as the “proper” way for computing derivative
quantities in the context of KSDFT. The central quantity in DFPT is the polarizability
operator, which characterizes the linear response of the electron density with respect to
the perturbation of the external potential. More specifically, phonon calculations requires
applying the polarizability operator to d × NA perturbation vectors induced by the change
of the atomic configuration. The polarizability operator can be obtained by solving a Dyson
equation iteratively [5], and each iteration step requires the solutions to O(N2

e ) Sternheimer
equations. In general the complexity of DFPT is still O(N4

e ). So the main advantage of
DFPT is that it gives accurate linear response properties. Furthermore, the same framework
can be used to compute non-linear response properties [22, 20, 5]. The mathematical aspect
of DFPT for reduced Hartree-Fock model systems have recently been analyzed [11]. It
is also possible to reduce the computational complexity of phonon calculations by “linear
scaling methods” [19, 8]. Such methods can be successful in reducing the computational
cost for systems of large sizes with substantial band gaps, but this can be challenging for
medium-sized systems with relatively small band gaps.

The main computational bottleneck of DFPT is the solution of the O(N2
e ) Sternheimer

equations [5]. KSDFT can be defined as a nonlinear eigenvalue problem with O(Ne) eigen-
functions. Each of the O(N2

e ) equations in DFPT represents the response of an eigenfunction
to a different external perturbation. Hence at first sight it is not possible to reduce the num-
ber of equations. However, as Ne becomes large, there will be asymptotically more equations
to solve than the size of the matrix. Hence there is potential room to obtain a set of “com-
pressed perturbations”, which leads to methods for solving DFPT with lower complexity.

At this point it might be enticing to compress the O(N2
e ) equations using standard

compression schemes such as singular value decomposition (SVD). However, there is some
immediate difficulty associated with SVD type of compression scheme: The matrix to be
compressed is of size O(N2

e ) × O(Ne) and of approximate rank O(Ne). The associated
cost of the SVD type of compression is O(N4

e ), and hence there is no saving in asymptotic
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complexity. Furthermore, the O(N2
e ) equations need to be solved self-consistently according

to the Dyson equation. Hence the initially compressed vectors might not be applicable
anymore as the iteration proceeds towards the converged solution. This leads to inaccurate
phonon calculations.

In this chapter, we develop a new method called the adaptively compressed polarizability
operator (ACP) to overcome the above difficulties. ACP reduces the complexity for applying
the polarizability operator to O(Ne) vectors as follows. 1) ACP compresses the O(N2

e ) right
hand side vectors of the Sternheimer equations intoO(Ne) vectors, using a recently developed
interpolative separable density fitting method [38]. Together with a Chebyshev interpolation
procedure to disentangle the energy dependence from the right hand side vectors, ACP re-
duces the number of equations from O(N2

e ) to only O(Ne). 2) ACP reformulates the Dyson
equation into an equivalent fixed point problem, where the compression of the Sternheimer
equations depends adaptively on the unknown solutions. Using such adaptive compression
procedure, we demonstrate that the self-consistent solution to the Dyson equation no longer
hinders the accuracy of the compressed polarizability operator. Such adaptive compression
strategy shares similar spirit to the recently developed adaptively compressed exchange oper-
ator (ACE) for accelerating KSDFT calculations with hybrid exchange-correlation function-
als [33]. We demonstrate that the overall computational complexity for phonon calculations
can be reduced to O(N3

e ), and the cost depends only weakly on the band gap of the system.
Hence the method can be applied to both insulators and semiconductors with small gaps. To
the extent of our knowledge, this is the first result of this type in literature. We demonstrate
the numerical performance of the ACP formulation for accelerating phonon calculations using
model systems for one-dimensional and two-dimensional systems, both for periodic lattices
and for systems with defects and random perturbations. Our numerical results confirm the
low complexity of the ACP formulation for computing the full dynamical matrix and hence
the phonon spectrum.

The rest of the chapter is organized as follows. Section 2.2 reviews the interpolative
separable density fitting method. Section 2.3 describes the ACP formulation. Numerical
results are presented in section 2.4, followed by conclusion and discussion in section 2.5.

2.2 Interpolative separable density fitting

In this section, we setup the interpolative separable density fitting (ISDF) method in the
context of solving Sternheimer equations. The method is first developed in by Lu and Ying
in ref [38].

Given the Kohn-Sham orbitals {ψi(r)}, and the local perturbations {gj(r)}, let us denote
by M the collection of the right hand side of all Sternheimer equations

Mij = ψi � gj, or Mij(r) = ψi(r)gj(r). (2.1)

Here we have used ij as a stacked column index for the matrix M . The dimension of M
is Ng × O(N2

e ). Typically, the computational complexity for the compression for such a
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dense matrix M with approximate rank O(Ne) is O(N4
e ), even with the help of the recently

developed randomized algorithms (see [24] for a review). Nonetheless, note that for a fixed
row index rα, the row vector given by {Mij(rα)}i=Ne,j=d×NAi,j=1 is the Kronecker product between

the row vector given by {gj(rα)}d×NAj=1 and that given by {ψi(rα)}Nei=1. As will be seen below,
this structure allows the computational complexity of the compression of M to be reduced
to O(N3

e ).

Figure 2.1: Interpolative decomposition of Mij(r).

To this end, we seek for the following interpolative decomposition (ID) type of compres-
sion [14] for the matrix M , i.e.

Mij(r) ≈
Nµ∑
µ=1

ξµ(r)Mij(rµ) ≡
Nµ∑
µ=1

ξµ(r)ψi(rµ)gj(rµ). (2.2)

Here {rµ}Nµµ=1 denotes a collection of selected row indices (see Fig. 2.1 for an illustration).
Mathematically, the meaning of the indices {rµ} is clear: Eq. (2.2) simply states that all
rows M:(r) can be approximately expressed as the linear combination of the selected rows
{M:(rµ)}. However, we are not aware of any direct physical interpretation of such selected
indices. Since Ng ∼ Ne, as Ne increases, the column dimension of M (which is O(N2

e )) can
be larger than its row dimension (which is Ng), and we can expect that the vectors {ψi�gj}
are approximately linearly dependent. Such observation has been observed in the electronic
structure community [58, 52, 17, 57, 51], and the numerical rank of the matrix M after
truncation can be only O(Ne) with a relatively small pre-constant. In the context of the
interpolative decomposition, our numerical results also indicate that it is sufficient to choose
Nµ ∼ O(Ne), and the pre-constant is small.

One possible way of finding interpolative decomposition is to use a pivoted QR factor-
ization [13, 23]. However, the cost of the pivoted QR factorization applied to the matrix M
is O(NgN

2
eNµ) ∼ O(N4

e ), and is therefore not desirable. The interpolative separable density
fitting method [38] employs a two-step procedure to reduce this cost (see Fig. 2.2 for an
illustration). The first step is to use a fast pre-processing procedure, such as a subsampled

random Fourier transform (SRFT) [61], to transform the matrix M into a matrix M̃ of
smaller dimension Ng × rNe, with r a relatively small constant so that rNe is slightly larger
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than Nµ. The second step is to apply the pivoted QR decomposition to M̃

M̃T Π̃ = Q̃R̃, (2.3)

where Π̃ is a permutation matrix and encodes the choice of the row indices {rµ} from M̃ . The
interpolation vectors {ξµ} in Eq. (2.2) can be also be computed from this pivoted QR decom-
position. It should be noted that the pre-processing procedure does not affect the quality of
the interpolative decomposition, while the cost of the pivoted QR factorization in Eq. (2.3)
is now reduced to O(NgN

2
µ) ∼ O(N3

e ). We summarize the procedure for compressing M in
Alg. 1.

Figure 2.2: The two-step procedure of the interpolative separable density fitting method.

We remark that in Alg. 1, step 1.(a), it is possible to avoid the explicit construction of
the matrix M . Instead of performing SRFT on the entire matrix M , we could apply SRFT
only to the matrix G, and select r columns as a matrix G̃. Then for a fixed row index rα, the
Kronecker product between the rows of subsampled matrix G̃, {g̃i(rα)}ri=1, and {ψi(rα)}Nei=1

gives one row for M̃ . In practice we find that this heuristic procedure also works well for
compressing the matrix M in phonon calculations.

2.3 Adaptively compressed polarizability operator

In this section, we develop a new method for reducing the computational complexity of
DFPT from O(N4

e ) to O(N3
e ). The reduction of the computational complexity is achieved

by means of reducing the O(N2
e ) equations in DFPT to O(Ne) equations with systematic

control of the accuracy. In particular, our method does not employ the “nearsightedness”
property of electrons for insulating systems with substantial band gaps as in linear scaling
methods [30]. Hence our method can be applied to insulators as well as semiconductors
with small band gaps. In section 1.7.2, we have reduced the problem of computing the
dynamic matrix to the computation of χgI,a, where {gI,a} is a set of fixed vectors given by
the derivative of the local pseudopotential with respect to the atomic positions. Let us stack
the indicies I, a into a single index j, and denote by

G := [g1, . . . , gj, . . . , gd×NA ] (2.4)

the matrix collecting all these vectors. More generally, G can be any fixed matrix with O(Ne)
columns as required in different applications of DFPT. Then our method consists of two main
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Algorithm 1: Interpolative decomposition for M using an interpolative separable den-
sity fitting method [38].

Input: Matrix M . Threshold tolerance ε.
Output: Selected row indices {rµ}, and interpolation vectors {ξµ}.

1. Subsampled random Fourier transform of M :

a) Compute for ν = 1, . . . , Ne × d×NA the discrete Fourier transform

M̂ν(r) =

Ne×d×NA∑
I=1

e−2πıIν/(Ne×d×NA)ηIMI(r),

where ηI is a random complex number with unit modulus for each I.

b) Choose a submatrix M̃ of matrix M̂ by randomly choosing rNe columns. In practice,
r = 8 and r = 16 are used in our implementation for one-dimensional and
two-dimensional numerical examples, respectively.

2. Compute the pivoted QR decomposition of the rNe ×Ng matrix M̃T : M̃T Π̃ = Q̃R̃, where the

absolute values of the diagonal entries of R̃ are ordered non-increasingly.

3. Determine the number of selected columns Nµ, such that |R̃Nµ+1,Nµ+1| < ε|R̃1,1| ≤ |R̃Nµ,Nµ |.
Form {rµ}, µ = 1, . . . , Nµ such that the rµ-column of M̃T corresponds to the µ-th column of

M̃T Π̃.

4. Denote by R̃1:Nµ,1:Nµ the submatrix of R̃ consisting of its first Nµ ×Nµ entries, and R̃1:Nµ,: the

submatrix consisting of the first Nµ rows of R̃. Compute

ΞT = R̃−1
1:Nµ,1:Nµ

R̃1:Nµ,:Π̃
−1.

Then the µ-th column of the Ng ×Nµ matrix Ξ gives the interpolation vector ξµ.

steps: 1) Find a compressed representation of χ0, which allows the computation of χ0G by
solving only O(Ne) linear equations. 2) Update the compressed representation of χ0, which
allows the accurate computation of χG without significant increase of the computational
cost. In particular, step 2) requires the compression strategy of χ0 to be adaptive to the
solution of the Dyson equation

U := χG = χ0g + χ0fhxcU. (2.5)

Hence we refer our representation of χ0 as the adaptively compressed polarizability operator
(ACP). Note that Eq. (2.5) is the a special case of Eq. (2.5). The steps 1) and 2) of the ACP
formulation are given in section 2.3.1 and 2.3.2, respectively.
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2.3.1 Compression of χ0

Consider first the computation of χ0G as required in the initial step in Eq. (2.5). In general,
the singular values of χ0 decay slowly, and a forcefully applied low rank decomposition of
χ0 such as those based on the singular value decomposition (SVD) will lead to inaccurate
results. Nonetheless, it is possible to find a compressed representation of χ0 when we only
need to evaluate χ0G for a fixed matrix G.

As is shown in section 1.7.2, computing χ0G involves solving the following O(N2
e ) Stern-

heimer equations

Q(εi −H)Qζij = Q(ψi � gj), i = 1, . . . , Ne, j = 1, . . . , d×NA. (2.6)

As Ne becomes large, asymptotically there can be many more equations to solve than the
dimension of the matrix Ng ∼ O(Ne), and hence it should be possible to compress the
redundant information in the right hand side vectors. In fact this observation has been used
in various contexts in computational chemistry for compressing the Hadamard product of
occupied and unoccupied orbitals, which is called “density fitting” (DF) or “resolution of
identity” (RI) techniques to compress O(N2

e ) vectors into O(Ne) vectors with a relatively
small pre-constant [58, 51]. The detailed setup is already discussed in section 2.2.

It should be noted that ISDF techniques alone do not reduce the number of equations to
solve. The reason is that the Eqs. (2.6) have the dependence on the shift εi on the left hand
side. Hence even if the number of right hand side vectors is reduced to O(Ne), multiplied
with the Ne shifts, we still have O(N2

e ) equations to solve! Therefore, in order to reduce
the complexity for computing χ0G, we must disentangle the right hand side vectors and the
shifts. Note that all {εi} are eigenvalues corresponding to occupied orbitals, and are typically
contained in a relatively small interval (in the order of eV), at least in the pseudopotential
framework.

More specifically, consider the following parameterized equation

Q(ε−H)Qζ = ξ, (2.7)

where ξ is any vector in the range of Q. Since ε ∈ I ≡ [ε1, εNe ] , we can systematically
obtain the solution to the parameterized equation by evaluating on a few sampled points in
I. In this work, we choose the Chebyshev nodes {ε̃c}Ncc=1, which are obtained by a linear map
the Chebyshev nodes in the reference interval [−1, 1] to I, i.e.

ε̃c =
ε1 + εNe

2
+
ε1 − εNe

2
cos θc, θc =

π(c− 1
2
)

Nc

, c = 1, . . . , Nc.

Typically it is sufficient to choose the number of Chebyshev nodes Nc to be 10 ∼ 40. Denote
by ζ̃c the solution to Eq. (2.7) corresponding to ε = ε̃c, c = 1, . . . , Nc, then any solution ζ
with ε ∈ I can be obtained by a Lagrange interpolation procedure as

ζ =
Nc∑
c=1

ζ̃c
∏
c′ 6=c

ε− ε̃c′
ε̃c − ε̃c′

. (2.8)
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Asymptotically, the number of Chebyshev points needed to reach a given error tolerance
is O(

√
εg/|I|), where |I| is the width of the interval I. To understand this, let us consider

the error of the Chebyshev interpolation for the following scalar function

f(z) =
|I|

(z − 1) |I|
2
− εg

, z ∈ [−1, 1]. (2.9)

Note that

f(−1) =
|I|

−|I| − εg
=

|I|
ε1 − εNe+1

, f(1) =
|I|
−εg

=
|I|

εNe − εNe+1

.

Therefore f(z) reflects the worst case behavior of the operator Q(ε − H)−1Q. It is known
that (see e.g. [55]) the L∞ error of Chebyshev interpolation with Nc points on the interval
[−1, 1], denoted by ENc , should satisfy

ENc ≤
2M

(α− 1)αNc
.

Here the function f(z) is analytic in the region bounded by the ellipse with foci ±1 and major
and minor semiaxis lengths summing to α > 1, and |f(z)| < M is bounded in this region. For
the specific function f(z) in Eq. (2.9) with the presence of the band gap εg, the major semiaxis
could be chosen to be 1+εg/|I|, which means that α ≈ 1+

√
2εg/|I|+εg/|I| ≈ 1+

√
2εg/|I|.

Within this ellipse, we obtain the bound M = 2|I|/εg. This gives the error bound of
Chebyshev interpolation as

ENc ≤ C

(
I
εg

)3/2

e−Nc
√

2εg/|I|. (2.10)

When εg/|I| is sufficiently small, C is a constant that is independent of εg/|I|. Therefore
Nc should scale as

√
|I|/εg log(|I|/εg). Our numerical results in section 2.4 indicates that

Nc = 10 ∼ 30 often yields sufficiently accurate results. We also remark that if εg/|I| is
very small, one can further reduce the number of interpolation points using contour integral
techniques [15], where Nc = O(log(|I|/εg)) is sufficient. However, we observe that the
preconstant of such technique tend to be larger than that of the Chebyshev interpolation.
Hence we choose to present the method using Chebyshev interpolation in this chapter.

Using Chebyshev interpolation (2.8), we need to solve Eq. (2.6) with εi replaced by ε̃c. At
first sight, the number of equations does not decrease but actually increase by a factor of Nc

compared to the original formulation (2.6). However, Chebyshev interpolation disentangles
the index i that appears both in the shift and in the right hand side. Since Nc is a constant
that is independent of the system size, if we can find a compressed representation of the
right hand side vectors using O(Ne) vectors, we reduce the overall number of equations to
solve to O(Ne).
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Once the compressed representation (2.2) is obtained, we solve the following set of mod-
ified Sternheimer equations

Q(ε̃c −H)Qζ̃cµ = Qξµ, c = 1, . . . , Nc, µ = 1, . . . , Nµ. (2.11)

Here cµ is the stacked column index for ζ̃. The number of equations is hence reduced to
NcNµ ∼ O(Ne). Using Eq. (2.8), we construct the quantity W =

[
W1, . . . ,WNµ

]
. Each

column of W is defined by

Wµ = 2
Ne∑
i=1

ψi �

(
Nc∑
c=1

ζ̃cµ
∏
c′ 6=c

εi − ε̃c′
ε̃c − ε̃c′

)
ψi(rµ). (2.12)

Combining Eq. (2.12) with Eq. (1.76), we obtain directly χ0gj as

χ0gj ≈
Nµ∑
µ=1

Wµgj(rµ). (2.13)

It should be noted that in Eq. (2.13), we have avoided the explicit reconstruction of the
solution vectors ζij as in Eqs. (2.6), of which the computational cost is again O(N4

e ).
Formally, Eq. (2.13) can further be simplified by defining a matrix Π with Nµ columns,

which consists of selected columns of a permutation matrix, i.e.Π = Π̃:,1:Nµ as the first
Nµ columns of the permutation matrix obtained from pivoted QR decomposition. More
specifically, Πµ = erµ and erµ is a unit vector with only one nonzero entry at rµ such that
eTrµgj = gj(rµ). Then

χ0gj ≈ WΠTgj := χ̃0gj. (2.14)

Note that the compressed polarizability operator χ̃0 = WΠT is formally independent of the
right hand side vector {gj}, and the rank of χ̃0 is only Nµ, while the singular values of
χ0 have a much slower decay rate. This is because χ̃0 only agrees with χ0 when applied
to vectors gj. In other words, the difference between χ̃0 and χ0 is not controlled in the
space orthogonal to that spanned by G. Alg. 2 summarizes the algorithm for computing the
compressed polarizability operator χ̃0.

The computational complexity of Alg. 2 can be analyzed as follows. For simplicity we
neglect all possible logarithmic factors in the complexity analysis, The cost for constructing
the compressed representation of M is O(N3

e ). Eqs. (2.11) require solving NcNµ ∼ O(Ne)
equations. Assuming the computational cost for applying H to a vector is O(Ng), and as-
suming that the number of iterations using an iterative solver to solve Eqs. (2.11) is bounded
by a constant, then the cost for solving all equations is dominated by the computation of
{Qξµ} which is O(N3

e ). In order to construct W , for each µ and i, we can first compute the
term in the parenthesis in the right hand side of Eq. (2.12). Then the computational com-
plexity for constructing W is again O(N3

e ). Therefore, the overall asymptotic computational
cost for constructing the compressed polarizability operator χ̃0 is O(N3

e ). In practice, we
find that the computational cost is dominated by solving the O(Ne) linear equations in step
2 of Alg. 2.
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Algorithm 2: Computing compressed polarizability operator χ̃0.

Input: Vectors {gj}. Hamiltonian matrix H.
Eigenpairs corresponding to occupied orbitals {ψi, εi}

Output: χ̃0 = WΠT .

1. Use Alg. 1 to obtain {rµ}, Π, and hence the compressed representation of M .

2. Solve compressed Eqs. (2.11).

3. Compute W using Eq. (2.12).

2.3.2 Compression of χ

According to Eq. (2.5), χ0G is the leading order approximation to U = χG, and this approx-
imation can be inaccurate if χ0fhxc is not small. From the perspective of section 2.3.1, the
self-consistent solution to the Dyson equation (2.5) introduces two additional difficulties: 1)
we need to find compressed representation χ̃0 that agrees with χ0 when applied to both G
and vhxcU ; 2) U is not known a priori. Hence if we apply Alg. 2 directly, we may need to
increase the rank of χ̃0 to 2Nµ or higher to maintain the accuracy. Below we introduce the
adaptively compressed polarizability operator (ACP) method that simultaneously addresses
the above two difficulties.

We assume that fhxc is invertible, and f−1
hxcg for a vector g can be computed easily. This

is the case in the absence of the exchange-correlation kernel fxc, and f−1
hxcg = v−1

c g can simply
be obtained by applying the Laplacian operator to g. This approximation is referred to as
the “random phase approximation” (RPA) in physics literature [46]. In the presence of fxc

in the LDA and GGA formulations, fxc is a diagonal matrix, and f−1
hxcg = (fxc + vc)

−1g can
be solved using iterative methods.

We introduce the following change of variable

U = Ũ −B, B = f−1
hxcG, (2.15)

and the Dyson equation (2.5) becomes

Ũ = χ0fhxcŨ +B. (2.16)

The advantage of using Eq. (2.16) over (2.5) is that formally, we only need to find χ̃0 that

is accurate when applied to fhxcŨ . In an iterative algorithm, for a given matrix Ũ , we can
use Alg. 2 to construct χ̃0[Ũ ] by replacing G with fhxcŨ , with Ũ in the bracket to highlight

the Ũ -dependence of the compression scheme, i.e.

Ũ = χ̃0[Ũ ]fhxcŨ +B. (2.17)

We note that when self-consistency is reached for Eq. (2.17) with the self-consistent solution

denoted by Ũ∗, χ̃0[Ũ∗]fhxcŨ
∗ remains a good approximation to χ0fhxcŨ

∗, even if Ũ∗ deviates
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away from the initial guess. In each step, the approximate rank of χ̃0[Ũ ] remains to be Nµ.

Hence χ̃0[Ũ ] is adaptive to the solution Ũ , and hence is called the adaptively compressed
polarizability operator (ACP). This concept of adaptively constructing a low rank matrix
shares similar spirit to the recently developed adaptively compressed exchange operator
(ACE) for the efficient solution of Hartree-Fock-like calculations [33].

Eq. (2.17) can be solved using the fixed point iteration or more advanced methods for
solving fixed point problems, similar to that in Eq. (2.5) in DFPT. However, thanks to
the low rank structure of χ̃0 in Eq. (2.14), we can significantly accelerate the convergence.

Let us denote the value of Ũ at the k-th iteration as Ũk, which gives rise to the ACP
χ̃0[Ũk] = W k(Πk)T . Eq. (2.16) indicates that if the magnitude of χ0fhxc is small, then

Ũ0 = B is a good initial guess to start the iteration. Then we can reformulate Eq. (2.17)
and obtain the following iteration scheme

Ũk+1 =
(
I −W k(Πk)Tfhxc

)−1
B = B +W k

(
I − (Πk)TfhxcW

k
)−1

(Πk)TfhxcB. (2.18)

The second equality in Eq. (2.18) uses the Sherman-Morrison-Woodbury identity for com-
puting the inverse. The cost of the inversion is O(N3

e ) due to the low rank structure of

χ̃0[Ũk]. Numerical results indicate that the iteration scheme (2.18) can converge much more
rapidly compared to the fixed point iteration for Eq. (2.5). In fact often two to four iterations
are sufficient to obtain results that are sufficiently accurate. Alg. 3 describes the algorithm
for using ACP to compute χG.

Algorithm 3: Computing χG with adaptively compressed polarizability operator
Input:
Vectors {gj}. Stopping criterion δ.
Eigenpairs corresponding to occupied orbitals {ψi, εi}
Output: U ≈ χG

1. Compute Ũ0 = B = f−1
hxcG. k ← 0.

2. Do

a) Use Alg. 2 by replacing G with fhxcŨ
k to obtain W k and Πk, and obtain χ̃k0 = W k(Πk)T .

b) Update Ũk+1 according to Eq. (2.18).

c) k ← k + 1

until ‖Ũk − Ũk−1‖ < δ or maximum number of iterations is reached.

3. Compute U ← Ũk −B.
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2.4 Numerical examples of ACP

In this section, we demonstrate the performance of ACP proposed in section 2.3, and compare
it with the density functional perturbation theory (DFPT), and with the finite difference
approach (FD) through three examples. The first example consists of a one-dimensional
(1D) reduced Hartree-Fock model problem that can be tuned to resemble an insulating or
a semi-conducting system. The second example is a two-dimensional (2D) model problem
with a periodic triangular lattice structure. The third example is a 2D triangular lattice with
defects and random perturbations of the atomic positions. Since our computational domain
involve a large number of atoms, our treatment of using a system of finite size with periodic
boundary conditions is equivalent to the Gamma point sampling strategy of the Brillouin
zone for an infinite sized system [40]. All results in this section are performed on a single
computational core of a 1.4 GHz processor with 256 GB memory using MATLAB.

2.4.1 One-dimensional reduced Hartree-Fock model

The 1D reduced Hartree-Fock model was introduced by Solovej [53], and has been used for
analyzing defects in solids in e.g. [9, 10]. The simplified 1D model neglects the contribution
of the exchange-correlation term. As discussed in previous sections, the presence of exchange-
correlation functionals at LDA/GGA level does not lead to essential difficulties in phonon
calculations.

The Hamiltonian in our 1D reduced Hartree-Fock model is given by

H[ρ] = −1

2

d2

dx2
+

∫
K(x, y) (ρ(y) +m(y)) dy. (2.19)

Here m(x) =
∑

I mI(x − RI) is the summation of pseudocharges. Each function mI(x)
takes the form of a one-dimensional Gaussian

mI(x) = − ZI√
2πσ2

I

exp

(
− x2

2σ2
I

)
, (2.20)

where ZI is an integer representing the charge of the I-th nucleus. In our numerical simula-
tion, we choose all σI to be the same.

Instead of using a bare Coulomb interaction which diverges in 1D when x is large, we
use a Yukawa kernel as the regularized Coulomb kernel

K(x, y) =
2πe−κ|x−y|

κε0
, (2.21)

which satisfies the equation

− d2

dx2
K(x, y) + κ2K(x, y) =

4π

ε0
δ(x− y). (2.22)
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As κ→ 0, the Yukawa kernel approaches the bare Coulomb interaction given by the Poisson
equation. The parameter ε0 is used so that the magnitude of the electron static contribution
is comparable to that of the kinetic energy. The ion-ion repulsion energy EII is also computed
using the Yukawa interaction K in the model systems.

The parameters used in the model are chosen as follows. Atomic units are used through-
out the discussion unless otherwise mentioned. For all systems tested in this subsection,
the distance between each atom and its nearest neighbor is set to 2.4 a.u.. The Yukawa
parameter κ = 0.1. The nuclear charge ZI is set to 1 for all atoms, and σI is set to be 0.3.
The Hamiltonian operator is represented in a plane wave basis set.

By adjusting the parameter ε0 = 1.0 or 10, the reduced Hartree-Fock model can be tuned
to resemble an insulator or a semiconductor, respectively. We apply ACP to both cases. We
use Anderson mixing for SCF iterations, and the linearized eigenvalue problems are solved
by using the locally optimal block preconditioned conjugate gradient (LOBPCG) solver [29].

For systems of size NA = 60, the converged electron density ρ associated with the two 1D
test cases as well as the 70 smallest eigenvalues associated with the Hamiltonian defined by
the converged ρ are shown in Fig. 2.3. For the insulator case, the electron density fluctuates
between 0.1935 and 0.6927. There is a finite HOMO-LUMO gap, εg = ε61 − ε60 = 0.6763.
The electron density associated with the semiconductor case is relatively uniform in the
entire domain, with the fluctuation between 0.3576 and 0.4788. The corresponding band
gap is 0.1012. Fig. 2.3 is obtained by a system with 60 atoms, and we find that systems
with different sizes show similar patterns in the band structure for both insulating and
semiconducting systems, respectively.

All numerical results of the ACP method below are benchmarked with results obtained
from DFPT. In order to demonstrate the effectiveness of the ACP formulation for com-
pressing U = χG, we directly measure the relative L2 error, defined as ‖U − UACP‖2/‖U‖2,
where UACP is obtained from Alg. 3. We also report the error of the phonon spectrum by
computing the L∞ error of the phonon frequencies {ωk}. Due to the presence of acoustic
phonon modes for which ωk is close to 0, we report the absolute error instead of the relative
error for the phonon frequencies. In DFPT, we use MINRES [47] to solve the Sternheimer
equations iteratively. The initial guess vectors for the solutions are obtained from previous
iterations in the Dyson equation to reduce the number of matrix-vector multiplications. The
same strategy for choosing the initial guess is implemented for the ACP formulation as well.
Anderson mixing is used to accelerate the convergence of Dyson equations in DFPT. In ACP
we find that the fixed point iteration (2.18) is sufficient for fast convergence.

In Tables 2.1 and 2.2, we calibrate the accuracy of our algorithm with different number
of Chebyshev points Nc and different number of columns Nµ, for both insulating and semi-
conducting systems, respectively. We choose Nµ = lNe, where l = 3, 4, . . . , 8. Tables 2.1
and 2.2 show that for both insulating and semiconducting systems, with fixed Chebyshev
interpolation points Nc, the numerical accuracy increases monotonically with respect to Nµ,
until limited by the accuracy of the Chebyshev interpolation procedure. Note that when
the accuracy is limited by the Chebyshev interpolation, the error can saturate as shown in
each column of both Tables 2.1 and 2.2. Similarly the increase of Chebyshev interpolation
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Figure 2.3: The electron density ρ(x) of the 60-atom (a) insulating, and (c) semiconduct-
ing systems in the left panel. The corresponding occupied (blue circles) and unoccupied
eigenvalues (red diamonds) are shown in the right panel in (b), (d), respectively.

reduces the error until being limited by the choice of Nµ. When both Nµ and Nc are large
enough, the error of χ0G can be less than 10−6.

In order to show how Nc scales with respect to the size of εg/|I|, we adjust the parameter
ε0 = 1.8i−1, i = 1, . . . , 6 to get systems with different band gaps. The result is reported in
Fig. 2.4. By selecting Nµ = 6Ne, the number of Chebyshev nodes which is required to get
relative L2 error |χ̃0G − χ0G|/|χ0G| ∼ 10−5 scales as

√
εg/|I|, which matches the analysis

in section 2.3.1.
In Table 2.3, we choose Nµ based on the entries of R̃ as is shown in Alg. 1, and compare

the results to those obtained from the FD. In the FD approach, we set the convergence
tolerance for LOBPCG to be 10−6, and the SCF tolerance to be 10−8. δ = 0.01 denotes the
deviation of atom positions to their equilibrium ones. We remark that the varying δ from 0.01
to 0.0001 does not change too much in the phonon spectrum. The same parameters for SCF
and LOBPCG are used to converge the ground state calculation in the ACP formulation.
The absolute error of the phonon spectrum is smaller than 10−3. The ACP formulation can
lead to very accurate phonon spectrum by solving a relatively small number of equations.

In order to demonstrate the effectiveness of the adaptive compression strategy, the relative
L2 error for the approximation of U = χG with respect to the iteration in Alg. 3 is given in
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Nc

Nµ 3Ne 4Ne 5Ne 6Ne 7Ne 8Ne

5 6.90E-03 8.91E-04 7.56E-05 9.17E-06 8.49E-06 8.45E-06
10 6.83E-03 7.83E-04 7.31E-05 2.32E-06 4.65E-07 3.40E-07
15 7.84E-03 8.66E-04 4.92E-05 2.59E-06 3.22E-07 1.11E-07
20 7.53E-03 8.20E-04 5.61E-05 2.68E-06 2.93E-07 2.89E-07
25 8.77E-03 8.80E-04 5.48E-05 2.41E-06 3.95E-07 1.23E-07
30 1.08E-02 8.04E-04 5.71E-05 2.95E-06 3.36E-07 2.76E-07

Table 2.1: The relative L2 error |χ̃0G− χ0G|/|χ0G| for the insulating system with εg/|I| =
1.1911.

Nc

Nµ 3Ne 4Ne 5Ne 6Ne 7Ne 8Ne

5 2.87E-02 1.02E-02 1.01E-02 1.01E-02 1.01E-02 1.01E-02
10 3.96E-02 4.99E-04 1.82E-04 1.71E-04 1.71E-04 1.71E-04
15 1.75E-02 6.30E-04 6.07E-05 9.33E-06 5.59E-06 4.78E-06
20 4.84E-02 4.47E-04 7.04E-05 8.45E-06 3.24E-06 4.05E-07
25 3.04E-02 5.08E-04 6.95E-05 6.71E-06 2.55E-06 4.57E-07
30 2.29E-02 5.50E-04 5.95E-05 9.66E-06 2.56E-06 3.69E-07

Table 2.2: The relative L2 error |χ̃0G − χ0G|/|χ0G| for the semiconducting system with
εg/|I| = 0.1253.

Method and parameter L∞-norm error
FD δ = 0.01 5.6779e-04

ACP Nµ = 241 for ε = 10−3 3.6436e-04
ACP Nµ = 359 for ε = 10−5 2.7380e-06

Table 2.3: L∞ error of the phonon spectrum. System is insulating with size NA = 60.
Chebyshev nodes Nc = 20. Nµ is determined such that |R̃Nµ+1,Nµ+1| < ε|R̃1,1| ≤ |R̃Nµ,Nµ| in
Alg. 1.

Fig. 2.5. For ε = 10−5, the error is around 10−5 after 4 iterations. For ε = 10−3, the error
is reduced to 0.0008. In this case, if we stop after the first iteration in Alg. 3, the relative
error of χG is 0.0339. Numerical results show significant improvement after two to four
iterations. This indicates that the self-consistent solution of the Dyson equation is crucial
for the accurate computation of phonon spectrum.

We perform phonon calculations for systems of size from 30 to 150 for both insulating and
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Figure 2.4: Scale of Nc with respect to the size of εg/|I|, compared to the theoretical square
root scaling. System size NA = 60. Nµ = 6Ne. The relative L2 error |χ̃0G− χ0G|/|χ0G| ∼
10−5.
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Figure 2.5: Convergence of adaptive compression.

semiconducting systems. In terms of accuracy, Fig. 2.6 shows that as Nµ increases linearly
with respect to the system size, the accuracy of phonon spectrum (L∞ error) remains to
be roughly the same, which is empirically around the ε = 10−3 used to determine Nµ in
Alg. 1. For the computation of the phonon frequency, we find that Nc = 20 and Nµ = 4Ne is
sufficient to achieve error around 10−3, and the phonon spectrum is already indistinguishable
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Figure 2.6: L∞ error of the phonon frequencies {ωk} obtained from ACP and FD. For ACP
formulation Nc = 20. Nµ ≈ 4Ne.
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Figure 2.7: Phonon spectrum for the 1D systems computed using ACP, DFPT, and FD, for
both (a) insulating and (b) semiconducting systems.

from that obtained from DFPT. Fig. 2.7 reports the phonon spectrum %D for the systems
of size NA = 150. We remark that Fig. 2.7 plots the density of states % by replacing the
Dirac-δ distribution in Eq. 1.65 with regularized delta function

δσ(x) =
1√

2πσ2
e−

x2

2σ2 .

Here the smear parameter σ is chosen as 0.01.
To demonstrate the efficiency of the ACP algorithm, Fig. 2.8 compares the computational

time of ACP, DFPT, and FD, respectively. We observe that the computational cost of DFPT
matches to that of FD due to the choice of initial guess of Sternheimer equations and the
Anderson mixing strategy for solving the Dyson equation. Compared to DFPT, the ACP
formulation benefits both from that it solves less number of Sternheimer equations, and
from that the Sherman-Morrison-Woodbury procedure (2.18) is more efficient than Anderson
mixing for solving the Dyson equation. In fact for all systems, Alg. 3 converges within 4
iterations, while the Anderson mixing in DFPT may require 20 iterations or more for systems
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Figure 2.8: Computational time of 1D examples. Comparison among DFPT, ACP, and FD
for (a) insulating, and (b) semiconducting systems, respectively.

of all sizes. Hence for both insulating and semiconducting systems, the ACP formulation
becomes more advantageous than DFPT and FD for systems merely beyond 40 atoms.
For the largest system with 150 atoms, ACP is 6.28 and 6.87 times faster than DFPT for
insulating and semiconducting systems, respectively.

Method Insulator Semiconductor
FD 3.4403 3.3047

DFPT 2.8997 2.9459
ACP 2.5040 2.1065

Table 2.4: Computational scaling measured from NA = 90 to NA = 150.

Table 2.4 measures the slope of the computational cost with respect to system sizes from
NA = 90 to NA = 150. In theory, the asymptotic computational cost of FD and DFPT
should be O(N4

e ), and the cost of ACP should be O(N3
e ). Numerically we observe that for

the 1D examples up to NA = 150, the computational scaling is still in the pre-asymptotic
regime.

2.4.2 2D lattice model

In the previous section, we have validated the accuracy of ACP compared to both FD and
DFPT. We also find that the efficiency of FD and DFPT can be comparable. Hence for
the 2D model, we only compare the efficiency and accuracy of ACP with respect to DFPT.
Our first example is a periodic triangular lattice relaxed to the equilibrium position. The
distance between each atom and its nearest neighbor is set to be 1.2 a.u., and ε0 = 0.05.
The nuclear charge ZI is set to 1 for all atoms, and σI is set to be 0.24.

For a system of size NA = 98, the converged electron density ρ as well as the 108 smallest
eigenvalues associated with the Hamiltonian at the converged ρ are shown in Fig. 2.9. There
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Figure 2.9: The electron density ρ of the 98-atom insulating system (a), and the occupied
and unoccupied eigenvalues (b).
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Figure 2.10: Computational time. Comparison of ACP to ACP for the 2D periodic lattice
model.

is a finite HOMO-LUMO gap, εg = ε99 − ε98 = 1.2637, which suggests that the system is
an insulator. Fig. 2.10 shows the computational time of ACP and DFPT as the system size
grows from 2× 22 to 2× 72. We choose ε = 10−3 in Alg. 1, and we find that this amounts to
around Nµ = 14Ne columns selected in the ACP procedure. We choose Nc = 30, and hence
the ACP formulation solves 420Ne equations, compared to the 2NANe = 2N2

e equations
needed for DFPT. We iterate Alg. 3 for two iterations. We find that when the system size
increases beyond NA = 18, the ACP formulation becomes more advantageous compared to
DFPT. For the largest system NA = 98, ACP is 4.61 times faster than DFPT. Table 2.5
measures the computational scaling from NA = 32 to NA = 98, which matches tightly with
O(N3

e ) and O(N4
e ) theoretical scaling of ACP and DFPT, respectively. Fig. 2.11 reports the

phonon spectrum %D for the system of size NA = 98. Here the smear parameter σ = 0.08.
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Method Slope
DFPT 3.9295
ACP 3.0249

Table 2.5: Computational scaling measured from NA = 32 to NA = 98.
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Figure 2.11: Phonon spectrum for the 2D periodic lattice. System size NA = 98. ε = 10−3,
Nµ ≈ 14Ne.

2.4.3 2D model with random vacancies

Our final example in this section is a 2D triangular lattice with defects. We start from
a periodic system with NA = 72 atoms, randomly remove three atoms, and then perform
structural relaxation for 15 steps. We terminate the structural relaxation before the system
reaches its equilibrium position to obtain a disordered structure.

The converged electron density ρ and the smallest 79 eigenvalues are shown in Fig. 2.12.
For this system, there is a finite gap εg = ε70 − ε69 = 1.3500. Fig. 2.13 shows the phonon
spectrum computed from ACP and DFPT, plotted with the smear parameter σ = 0.08. The
computational time for DFPT is 53883 sec and that for ACP is 8741 sec, and the speedup
factor for ACP is 6.16. We observe that for the disordered structure, DFPT requires more
iterations to converge, while the number of iterations for ACP to converge can remain to
be chosen to be 2. More specifically, compared to the periodic structure with NA = 72, the
computational time for DFPT is 35501 sec, while that for ACP is 8854 sec.
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Figure 2.12: The electron density ρ of the 2D system with defects (a), and the occupied and
unoccupied eigenvalues (b).
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Figure 2.13: Phonon spectrum for the 2D system with defects. System size NA = 69,
ε = 10−3, Nµ ≈ 14Ne.

2.5 Conclusion of chapter 2

We have introduced the adaptively compressed polarizability operator (ACP) formulation.
To the extent of our knowledge, the ACP formulation reduces the computational complex-
ity of phonon calculations from O(N4

e ) to O(N3
e ) for the first time. This is achieved by

reducing the O(N2
e ) equations in density functional perturbation theory (DFPT) to O(Ne)

equations with systematic control of accuracy. Moreover, the accuracy of the ACP formula-
tion depends weakly on the size of the gap, and hence can be applied to both insulator and
semiconductor systems. Our numerical results for model problems indicate that the compu-
tational advantage of the ACP formulation can be clearly observed compared to DFPT and
finite difference, even for systems of relatively small sizes. While for simplicity our model
problems do not include several components of KSDFT calculations for real materials, such
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as the nonlocal pseudopotentials and the exchange-correlation kernels, our model problems
capture the essential difficulty in phonon calculations, and we expect that the asymptotic
behavior of the ACP method for model problems is transferable to real materials simulation.
We have also tuned the parameters of our model problem (such as the lattice constants and
the band gaps) to mimic those of real materials. In the next chapter, we will present the
ACP formulation in the presence of the nonlocal pseudopotential, and its application for
computing the phonon spectrum for real materials.

The availability of fast phonon calculations provides a possible way to accelerate struc-
tural relaxation optimization of large scale molecules and solids. In this chapter we have
restricted ourselves to zero temperature calculations. We will show the extension of the ACP
formulation to treat systems at finite temperature and hence metallic systems. We have used
phonon calculation as an example to demonstrate the effectiveness of the compressed polar-
izability operator. The same strategy can be applied to applications of DFPT other than
phonon calculations.
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Chapter 3

Split Representation of Adaptively
Compressed Polarizability Operator

3.1 Introduction

Density functional perturbation theory (DFPT) [3, 21, 5, 11] studies the response of a
quantum system under small perturbation, where the quantum system is described at the
level of first principle electronic structure theories such as Kohn-Sham density functional
theory (KSDFT) [26, 31]. One important application of DFPT is the calculation of vibration
properties such as phonons, which can be further used to calculate many physical properties
such as infrared spectroscopy, elastic neutron scattering, specific heat, heat conduction, and
electron-phonon interaction related behaviors such as superconductivity. DFPT describes
vibration properties through a polarizability operator, which characterizes the linear response
of the electron density with respect to the perturbation of the external potential. More
specifically, in vibration calculations, the polarizability operator needs to be applied to d×
NA ∼ O(Ne) perturbation vectors, where d is the spatial dimension (usually d = 3), NA

is the number of atoms, and Ne is the number of electrons. In general the complexity for
solving KSDFT is O(N3

e ), while the complexity for solving DFPT is O(N4
e ). It is possible to

reduce the computational complexity of DFPT calculations by “linear scaling methods” [19,
45, 8]. Such methods can be successful in reducing the computational cost for systems of
large sizes with substantial band gaps, but this can be challenging for medium-sized systems
with relatively small band gaps.

The term “phonon calculation” usually describes the calculation of vibrational properties
of condensed matter systems. In this paper, we slightly abuse this term to refer to calculations
of vibration properties of general systems, including condensed matter systems as well as
isolated molecule clusters, since such calculations share the same mathematical structure.

In order to apply the polarizability operator to O(Ne) vectors, we need to solve O(N2
e )

coupled Sternheimer equations. On the other hand, when a constant number of degrees
of freedom per electron is used, the size of the Hamiltonian matrix is only O(Ne). Hence
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asymptotically there is room to obtain a set of only O(Ne) “compressed perturbation vec-
tors”, which encodes essentially all the information of the O(N2

e ) Sternheimer equations. In
chapter 2, we developed a new method called adaptively compressed polarizability operator
(ACP) formulation following this route, and successfully reduces the computational com-
plexity of phonon calculations to O(N3

e ) for the first time. The ACP formulation does not
rely on exponential decay properties of the density matrix as in linear scaling methods, and
its accuracy depends weakly on the size of the band gap. Hence the method can be used for
phonon calculations of both insulators and semiconductors with small gaps.

There are three key ingredients of the ACP formulation. 1) The Sternheimer equations
are equations for shifted Hamiltonians, where each shift corresponds to an energy level
of an occupied band. Hence for a general right hand side vector, there are Ne possible
energies (shifts). We use a Chebyshev interpolation procedure to disentangle such energy
dependence so that there are only constant number of shifts that is independent of Ne. 2)
We disentangle the O(N2

e ) right hand side vectors in the Sternheimer equations using the
recently developed interpolative separable density fitting procedure, to compress the right-
hand-side vectors. 3) We construct the polarizability operator by adaptive compression so
that the operator remains low rank as well as accurate when applying to a certain set of
vectors. This make it possible for fast computation of the matrix inversion using methods
like Sherman-Morrison-Woodbury. In particular, the ACP method does not employ the
“nearsightedness” property of electrons for insulating systems with substantial band gaps as
in linear scaling methods [30]. Hence the ACP method can be applied to insulators as well
as semiconductors with small band gaps.

In this chapter, we introduce a generalization the ACP formulation for efficient phonon
calculations of real materials called split representation of ACP. In the split representation,
the nonlocal pseudopotential is taken into account, as well as temperature effects especially
for metallic systems. The new split representation maintains the O(N3

e ) complexity, and
improves all key steps in the ACP formulation, including Chebyshev interpolation of energy
levels, iterative solution of Sternheimer equations, and convergence of the Dyson equations.

The rest of the chapter is organized as follows. Section 3.2 introduces the basic formula-
tion of KSDFT and DFPT, and reviews the formulation of ACP. Section 3.3 describes the
split representation of the ACP formulation. Numerical results are presented in section 3.4,
followed by conclusion and discussion in section 3.5.

3.2 Review of adaptively compressed polarizability

operator

In this section we briefly review the ACP formulation in the context of phonon calculations
for insulating systems using local pseudopotentials. If we label the possible gloc using a single
index j, the Sternheimer equation (1.76) can be written as

Q(εi −H)Qζij = Q(ψi � gloc,j). (3.1)
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Here we have used the relation diag [gloc]ψ = ψ�gloc to place gloc and ψ on a more symmetric
footing. Then reduction of the computational complexity is achieved by means of reducing
the O(N2

e ) equations in Eq. (3.1) to O(Ne) equations with systematic control of the accuracy.
The compression of the right hand side vectors is performed via the interpolative separable

density fitting method by Lu and Ying [38]. Let us denote by M the collection of right hand
side vectors in Eq. (3.1) without the Q factor, i.e. Mij = ψi� gloc,j. Here we have used ij as
a stacked column index for the matrix M . The dimension of M is Ng ×O(N2

e ). Due to the
large number of columns of M , we seek for the following interpolative decomposition (ID)
type of compression [14] for the matrix M , i.e.

Mij(r) ≈
Nµ∑
µ=1

ξµ(r)Mij(rµ) ≡
Nµ∑
µ=1

ξµ(r)ψi(rµ)gloc,j(rµ). (3.2)

Here {rµ}Nµµ=1 denotes a collection of selected row indices (see Fig. 2.1 for an illustration).
Mathematically, the meaning of the indices {rµ} is clear: Eq. (3.2) simply states that for
any grid point r, the corresponding row vector M:(r) can be approximately expressed as
the linear combination of the selected rows {M:(rµ)}. Since Ng ∼ Ne, as Ne increases, the
column dimension of M (which is O(N2

e )) can be larger than its row dimension (which is
Ng), and we can expect that the vectors {ψi � gj} are approximately linearly dependent.
Such observation has been observed in the electronic structure community under the name
of density fitting or resolution of identity (RI) [58, 52, 17, 57, 51], and the numerical rank of
the matrix M after truncation can be only O(Ne) with a relatively small pre-constant. This
dimension reduction property has also been recently analyzed in [37]. In the context of the
interpolative decomposition, our numerical results also indicate that it is sufficient to choose
Nµ ∼ O(Ne), and the pre-constant is small.

One possible way of finding interpolative decomposition is to use a pivoted QR factor-
ization [13, 23]. However, the computational complexity for compressing the dense matrix
M using the interpolative decomposition is still O(N4

e ). The interpolative separable den-
sity fitting method [38] employs a two-step procedure to reduce this cost. The first step
is to use a fast down-sampling procedure, such as a subsampled random Fourier transform
(SRFT) [61], to transform the matrix M into a matrix M̃ of smaller dimension Ng × rNe,
with r a relatively small constant so that rNe is slightly larger than Nµ. The second step is

to apply the pivoted QR decomposition to M̃

M̃∗Π̃ = Q̃R̃, (3.3)

where Π̃ is a permutation matrix and encodes the choice of the row indices {rµ} from M̃ .
The interpolation vectors {ξµ} in Eq. (3.2) can be also be computed from this pivoted QR
decomposition. It should be noted that the pre-processing procedure does not affect the
quality of the interpolative decomposition, while the cost of the pivoted QR factorization in
Eq. (3.3) is now reduced to O(NgN

2
µ) ∼ O(N3

e ).
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Once the compressed representation (3.2) is obtained, we solve the following set of mod-
ified Sternheimer equations

Q(εi −H)Qζ̃cµ = Qξµ, i = 1, . . . , Ne, µ = 1, . . . , Nµ.

Note that there are still O(N2
e ) equations to solve, but this time the number of equations

arises from the energy dependence on the left hand side of the equation. If the band gap is
positive, we can solve a set of equations of the form

Q(ε̃c −H)Qζ̃cµ = Qξµ, c = 1, . . . , Nc, µ = 1, . . . , Nµ. (3.4)

where the number of shifts Nc is independent of the system size Ne. For example, this can
be achieved using the Chebyshev points on the occupied band [ε1, εNe ], and the number of
Chebyshev points needed to achieve a certain error tolerance scales weakly with respect to
the band gap as

√
|I|/εg. Here εg is the band gap and |I| = εNe − ε1 is the width of the

occupied band [35].
Then define

Wµ =
Ne∑
i=1

diag[ψ∗i ]�

(
Nc∑
c=1

ζ̃cµ
∏
c′ 6=c

εi − ε̃c′
ε̃c − ε̃c′

)
ψi(rµ) + h.c., (3.5)

and we can combine Eq. (3.5) with Eq. (1.76) to compute χ0gloc,j as

χ0gloc,j ≈
Nµ∑
µ=1

Wµgloc,j(rµ). (3.6)

Formally, Eq. (3.6) can further be simplified by defining a matrix Π with Nµ columns,

which consists of selected columns of a permutation matrix, i.e. Π = Π̃:,1:Nµ as the first
Nµ columns of the permutation matrix obtained from pivoted QR decomposition. More
specifically, Πµ = erµ and erµ is a unit vector with only one nonzero entry at rµ such that
eTrµgj = gj(rµ). Then

χ0gloc,j ≈ WΠTgloc,j := χ̃0[{gloc,j}]gloc,j. (3.7)

Note that the notation χ̃0[{gloc,j}] emphasizes the dependence on the vectors that χ̃0 applies
to. In other words, χ̃0[{gloc,j}] is designed to only agree with χ0 when applied to vectors
{gloc,j}, and the difference between χ̃0 and χ0 is not controlled in the space orthogonal to
that spanned by these vectors. The rank of χ̃0[{gloc,j}] is only Nµ, while the singular values
of χ0 have a much slower decay rate.

In the case when only local pseudopotential is used, the Dyson equation (1.58) is simplified
as

uj = χgloc,j = u0,j + χ0fhxcuj. (3.8)

Here u0,j := χ0gloc,j is called the non-self-consistent response, and has been computed using
the algorithm described above.
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In order to solve Eq. (3.8), we not only need to evaluate χ0gloc,j, but also the application
of χ0 to the self-consistent response fhxcuj which is not known a priori. If we build a library
of right hand side vectors so that the application of χ0 remains accurate throughout the
iteration process of solving Eq. (3.8), the computational complexity can quickly increase.
Instead it is much more efficient to adaptively compress the polarizability operator χ0.

Note that for any given set of functions {uj}, we can construct an operator χ̃0[{fhxcuj}]
so that χ̃0 agrees well with χ0 when applied to the vectors {fhxcuj}. The Dyson equation
can be rewritten as

uj = (I − χ̃0[{fhxcuj}])−1u0,j. (3.9)

Note that χ̃0[{fhxcuj}] is a low rank operator, and the matrix inverse in Eq. (3.9) can be
efficiently evaluated using the Sherman-Morrison-Woodbury formula.

Eq. (3.9) yields an iterative scheme

uk+1 = (I − χ̃0[{fhxcu
k}])−1u0. (3.10)

In the equation we omitted the j subindex of u. The convergence of the modified fixed point
iteration (3.10) can be understood as follows.

At the iteration step k, the scheme and the true solution respectively satisfy

uk+1 = u0 + χ̃0[{fhxcu
k}]fhxcu

k+1,

u∗ = u0 + χ0fhxcu
∗.

(3.11)

Let ek = uk − u∗ be the error at the iteration step k. We have

ek+1 = χ̃0[{fhxcu
k}]fhxcu

k+1 − χ0fhxcu
∗

= χ̃0[{fhxcu
k}]fhxcu

k+1 − χ0fhxcu
k+1 + χ0fhxcu

k+1 − χ0fhxcu
∗

= ηk + χ0fhxce
k+1.

(3.12)

Here
ηk := (χ̃0[{fhxcu

k}]− χ0)fhxcu
k+1, (3.13)

which characterizes the discrepancy between χ̃0 and χ0 when applied to the unknown vector
fhxcu

k+1.
Therefore the error at the (k + 1)-th step satisfies

ek+1 = (I − χ0fhxc)
−1ηk. (3.14)

Since χ0 is negative semi-definite, the norm of (I −χ0fhxc)
−1 is bounded from above by one.

Hence the error goes to zero if the error of compression ηk converges to 0.
To summarize, the ACP formulation has three key ingredients: Compress the right hand

side; Disentangle the energy dependence; Adaptively compress the polarizability operator.
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3.3 Split representation of the adaptively compressed

polarizability operator

In this section, we demonstrate the details of the split representation of the adaptively
compressed polarizability operator. It is a generalization of the ACP formulation which
takes into account the presense of the nonlocal pseudopotential as well as the treatment of
finite temperature.

Recall the Adler-Wiser formula in Eq. (1.72):

X0g =
∞∑

i,a=1

fa − fi
εa − εi

ψa(ψ
∗
agψi)ψ

∗
i . (3.15)

The split representation of the polarizability operator first chooses two cutoff energies εÑcut
>

εNcut ≥ µ, and splits the right hand side of Eq. (3.15) into two terms

X0g ≈

Ncut∑
i=1

Ñcut∑
a=Ncut+1

fa − fi
εa − εi

ψa(ψ
∗
agψi)ψ

∗
i + h.c.


+

Ncut∑
i=1

Ncut∑
a=1

fa − fi
εa − εi

ψa(ψ
∗
agψi)ψ

∗
i

]

+

Ncut∑
i=1

∞∑
a=Ñcut+1

fi
εi − εa

ψa(ψ
∗
agψi)ψ

∗
i + h.c.


:=X

(s)
0 g + X

(r)
0 g.

(3.16)

Here the first and second brackets split X0g into a singular component X
(s)
0 g and a regular

component X
(r)
0 g, respectively. The Hermitian conjugate appears for the same reason as in

Eq. (1.74) when treating insulating systems. X
(s)
0 is called the singular component because

for systems with small gaps, the ratio (fa − fi)/(εa − εi) can be as large as 1/εg. When the
physical band gap εg is small, this term becomes numerically singular to treat in the iterative
solution of Sternheimer equations as well as the Chebyshev interpolation. On the other hand,
the term fi/(εi − εa) is bounded from above by 1/ε̃g. As the effective gap ε̃g increases, the

magnitude of X
(r)
0 also decreases. In order to efficiently treat the singular part, we assume

that the eigenfunctions {ψk}Ñcut
k=1 have been computed using an iterative eigensolver. The

cost for obtaining the additional eigenvectors is modest, given that the ground state DFT
calculation already prepares the eigenvectors {ψk}Ncut

k=1 .
The approximation in Eq. (3.16) only comes from that as ε increases above the chemical

potential µ, the occupation number fi = 1
1+eβ(εi−µ)

decays exponentially. Then we can choose
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εNcut large enough so that f (εNcut+1) is sufficiently small and can be approximated by 0. For
insulating systems we can simply choose Ncut = Ne. The second energy cutoff εÑcut

defines
an effective gap as ε̃g = εÑcut

− εNcut , of which the role will be discussed later. The split

representation requires the solution of eigenpairs (εi, ψi) of H for i ≤ Ñcut. Fig. 3.1 illustrates
the position of the cutoff energies along the energy spectrum, with respect to the occupation
number given by the Fermi-Dirac distribution.
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Figure 3.1: Schematic illustration of the cutoff energies with respect to the Fermi-Dirac
distribution.

3.3.1 Compression of the regular component of the polarizability
operator

One advantage of the split representation is that in the regular component, the contribution
from fa vanishes, and hence X

(r)
0 g can be evaluated using Sternheimer equations to eliminate

the need of computing all the unoccupied orbitals as follows

X
(r)
0 g =

Ncut∑
i=1

fiQc(εi −H)−1Qc(gψi)ψ
∗
i + h.c. (3.17)

Here the projection operator Qc = I −
∑Ñcut

i=1 ψiψ
∗
i projects a vector to the orthogonal space

spanned by {ψi}Ñcut
i=1 . When all order 2 tensors {gj} are considered together, Eq. (3.17)
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requires the solution of

Qc(εi −H)Qcζij = Qc(gjψi), i = 1, . . . , Ncut, j = 1, . . . , d×NA. (3.18)

Here each solution ζij is still a vector. The adaptive compression of X0gj then parallels the
adaptive compression of χ0gloc,j as in section 2.3, as detailed below.

The first step is to construct the collection of the right hand side vectors Mij = gjψi.
Since the kernel of the nonlocal pseudopotential from each atom is compactly supported
in the real space, the computational cost for generating M is in fact dominated by the
cost associated with the local component gloc,j. Hence the overall cost is still O(N3

e ). The
interpolative separable density fitting procedure can then proceed as before, and generate a
set of compressed vectors {ξµ}Nµµ=1 as well as the selected columns {rµ}Nµµ=1. The interpolation
decomposition then reads

Mij(r) = (gjψi)(r) ≈
∑
µ

ξµ(r)(gjψi)(rµ). (3.19)

The second step is the disentanglement of the energy dependence. We choose the Cheby-
shev interpolation points on the interval I = [ε1, εNcut ]. Since the number of Chebyshev
interpolation points is now controlled by the effective gap as Nc ∼ O(

√
I/ε̃g). Note that

the gap εg (which can be small or zero) is now replaced by the effective gap ε̃g. In practice
we observe that it is often sufficient to choose Nc to be 5 ∼ 10.

With the Chebyshev interpolation procedure, the Sternheimer equation still takes the
form (3.4), with Q replaced by Qc. The operator Qc(εc−H)Qc is a negative definite operator,
with eigenvalue bounded from above by −ε̃g. As the effective gap increases, the linear system
associated with the Sternheimer equation also becomes better conditioned and the number
of MINRES iterations can decrease. Typically we observe that MINRES can converge with
around 10 steps.

After the solution of the Sternheimer equations, Eq. (3.17) becomes

X
(r)
0 gj ≈

Ncut∑
i=1

Nµ∑
µ=1

fi(gjψi)(rµ)

(
Nc∑
c=1

ζ̃cµ
∏
c′ 6=c

εi − ε̃c′
ε̃c − ε̃c′

)
ψ∗i + h.c. (3.20)

Since that gj can be split into a local and a nonlocal component, we have

(gjψi)(rµ) = gloc,j(rµ)ψi(rµ) + (gnl,jψi)(rµ). (3.21)

Define

W(r)
µ =

Ncut∑
i=1

(
Nc∑
c=1

ζ̃cµ
∏
c′ 6=c

εi − ε̃c′
ε̃c − ε̃c′

)
ψi(rµ)fiψ

∗
i + h.c., (3.22)
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and introduce the permutation matrix Π as in Eq. (3.7), then Eq. (3.20) becomes

X
(r)
0 gj ≈

Nµ∑
µ=1

W(r)
µ (ΠT

µgloc,j)

+

[
Ncut∑
i=1

Nµ∑
µ=1

fi(gnl,jψi)(rµ)

(
Nc∑
c=1

ζ̃cµ
∏
c′ 6=c

εi − ε̃c′
ε̃c − ε̃c′

)
ψ∗i + h.c.

] (3.23)

At first glance, Eq. (3.23) does not lead to any simplification compared to Eq. (3.20). How-
ever, since the nonlocal component of gj is compactly supported, for each gnl,j there are
only O(1) number of points {rµ} that contributes to (gnl,jψi)(rµ). Hence the last term in
Eq. (3.23) is much easier to evaluate than the direct evaluation of Eq. (3.20).

3.3.2 Compression of the singular component of the
polarizability operator

In practical calculations, numerical results indicate that it can be sufficient to choose Ñcut ≤
2Ne, and hence the computation of X

(s)
0 g can even be directly evaluated according to

Eq. (3.16). Compared to Eq. (1.72), the computation of X
(s)
0 g still scales as O(N4

e ), but
the preconstant is much smaller. In this section we demonstrate that with a contour integral
reformulation, we can compress the singular component as well with O(N3

e ) complexity.

According to the derivation in Appendix A, X
(s)
0 g can be evaluated using the contour

integral formulation as

X
(s)
0 g =

[
1

2πı

∮
C
f(z)(z −Hc,2)−1g(z −Hc,1)−1 dz + h.c.

]
+

1

2πı

∮
C
f(z)(z −Hc,1)−1g(z −Hc,1)−1 dz

(3.24)

Here Hc,1 =
∑Ncut

i=1 ψiεiψ
∗
i , Hc,2 =

∑Ñcut

i=Ncut+1 ψiεiψ
∗
i are the Hamiltonian operators projected

to the subspace spanned by the first Ncut states, and to the subspace spanned by the following
(Ñcut − Ncut) states, respectively. Before moving on to further discussion, we note that
the numerically exact spectral decomposition of Hc,1 and Hc,2 is the key to reducing the
complexity.

The contour integral in Eq. (3.24) can be discretized to obtain a numerical scheme. Let

the integration nodes and weights be denoted by {zp, ωp}Npp=1, i.e.

1

2πı

∮
C
h(z) dz ≈

Np∑
p=1

ωph(zp), (3.25)
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for suitable h(z), and the discretization scheme can be obtained using rational approximation
methods [36, 43, 42]. Then we have

X
(s)
0 gj ≈

[
Np∑
p=1

ωp(zp −Hc,2)−1gj(zp −Hc,1)−1 + h.c.

]

+

Np∑
p=1

ωp(zp −Hc,1)−1gj(zp −Hc,1)−1

=

[
Np∑
p=1

ωp

Ncut∑
i=1

(zp −Hc,2)−1(gjψi)(zp − εi)−1ψ∗i + h.c.

]

+

Np∑
p=1

ωp

Ncut∑
i=1

(zp −Hc,1)−1(gjψi)(zp − εi)−1ψ∗i ,

(3.26)

where the equality is derived from the spectral decompositions of Hc,1, Hc,2. When all {gj}
are considered together, we use again the interpolative separable density fitting (3.19) and
obtain

X
(s)
0 gj ≈

[
Np∑
p=1

ωp

Ncut∑
i=1

(zp −Hc,2)−1

Nµ∑
µ=1

ξµ(gjψi)(rµ)(zp − εi)−1ψ∗i + h.c.

]

+

Np∑
p=1

ωp

Ncut∑
i=1

(zp −Hc,1)−1

Nµ∑
µ=1

ξµ(gjψi)(rµ)(zp − εi)−1ψ∗i

=

[
Ncut∑
i=1

Nµ∑
µ=1

(gjψi)(rµ)

(
Np∑
p=1

ζ̃
(s)
2,pµωp(zp − εi)−1

)
ψ∗i + h.c.

]

+
Ncut∑
i=1

Nµ∑
µ=1

(gjψi)(rµ)

(
Np∑
p=1

ζ̃
(s)
1,pµωp(zp − εi)−1

)
ψ∗i .

(3.27)

In the last equation of (3.27), we have defined the solution ζ̃
(s)
θ,pµ := (zp −Hc,θ)

−1ξµ, θ = 1, 2,
which can be numerically exactly computed from the spectral decompositions of Hc,1, Hc,2

respectively. We use the same strategy as in Eq. (3.23) to handle the contribution from
(gjψi)(rµ). Define

W(s)
µ =

[
Ncut∑
i=1

ψi(rµ)

(
Np∑
p=1

ζ̃
(s)
2,pµωp(zp − εi)−1

)
ψ∗i + h.c.

]

+
Ncut∑
i=1

ψi(rµ)

(
Np∑
p=1

ζ̃
(s)
1,pµωp(zp − εi)−1

)
ψ∗i ,

(3.28)
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and use the same permutation matrix Π as in Eq. (3.7), then Eq. (3.27) becomes

X
(s)
0 gj ≈

Nµ∑
µ=1

W(s)
µ (ΠT

µgloc,j)

+

[
Ncut∑
i=1

Nµ∑
µ=1

(gnl,jψi)(rµ)

(
Np∑
p=1

ζ̃
(s)
2,pµωp(zp − εi)−1

)
ψ∗i + h.c.

]

+
Ncut∑
i=1

Nµ∑
µ=1

(gnl,jψi)(rµ)

(
Np∑
p=1

ζ̃
(s)
1,pµωp(zp − εi)−1

)
ψ∗i .

(3.29)

3.3.3 Adaptive compression for solving the Dyson equation

Recall the Dyson equation (1.58), and so far we have computed the non-self-consistent re-
sponse u0,j := X0gj using the split representation. In order to solve the Dyson equation,
we still need to evaluate X0fhxcu self-consistently. Use the locality structure of fhxc as in
Eq. (1.59), we have

(X0fhxcu)(r, r′) =

∫
X0(r, r′; r′′, r′′)fhxc(r

′′, r′′′)u(r′′′, r′′′) dr′′ dr′′′. (3.30)

It is important to observe that Eq. (3.30) only requires the diagonal elements of u. Hence
the self-consistent solution of the Dyson equation (1.58) only requires a set of equations for
these diagonal elements:

uj(r, r) = u0,j(r, r) +

∫
X0(r, r; r′′, r′′)fhxc(r

′′, r′′′)u(r′′′, r′′′) dr′′ dr′′′. (3.31)

Define uj(r) = uj(r, r) and u0,j(r) = u0,j(r, r) and use the linear algebra notation, then
Eq. (3.31) becomes a reduced Dyson equation

uj = u0,j + χ0fhxcuj. (3.32)

Note that Eq. (3.32) becomes precisely the same as Eq. (3.8), which does not involve nonlocal
pseudopotentials. However, the important difference is that in Eq. (3.32), u0,j is taken from
the diagonal elements of u0,j, which properly takes into account the nonlocal pseudopotential
both in the Hamiltonian and in the non-self-consistent response.

Before moving on to the discussion of solving the reduced Dyson equation, we write out
the explicit format of the diagonal part u0,j = u0,j. Define W

(r)
µ (r) = W

(r)
µ (r, r),W

(s)
µ (r) =

W
(s)
µ (r, r), the diagonal part of Eq. (3.23) reads(
X

(r)
0 gj

)
(r, r) ≈

Nµ∑
µ=1

W (r)
µ (r)(ΠT

µgloc,j)

+

[
Ncut∑
i=1

Nµ∑
µ=1

fi(gnl,jψi)(rµ)

(
Nc∑
c=1

ζ̃cµ(r)
∏
c′ 6=c

εi − ε̃c′
ε̃c − ε̃c′

)
ψ∗i (r) + h.c.

]
.

(3.33)
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The diagonal part of Eq. (3.29) reads(
X

(s)
0 gj

)
(r, r) ≈

Nµ∑
µ=1

W (s)
µ (r)(ΠT

µgloc,j)

+

[
Ncut∑
i=1

Nµ∑
µ=1

(gnl,jψi)(rµ)

(
Np∑
p=1

ζ̃
(s)
2,pµ(r)ωp(zp − εi)−1

)
ψ∗i (r) + h.c.

]

+
Ncut∑
i=1

Nµ∑
µ=1

(gnl,jψi)(rµ)

(
Np∑
p=1

ζ̃
(s)
1,pµ(r)ωp(zp − εi)−1

)
ψ∗i (r).

(3.34)

The reduced Dyson equation (3.32) can be readily solved using the same adaptive com-
pression strategy in section 2.3. More specifically, we can replace gj by the local potential
diag[fhxcuj], and only take the diagonal elements in Eq. (3.23) and (3.29) to obtain χ0fhxcuj.

Moreover, since both the regular part χ
(r)
0 and the singular part χ

(s)
0 preserve a low-rank

nature, Sherman-Morrison-Woodbury formula can still be used in the fixed point iteration.
The separated treatment of the singular and regular parts reduces the error of the compressed
χ0 as in Eq. (3.13). Therefore it also accelerates the convergence of the Dyson equation.
The complete iteration process to solve the Dyson equations is defined in Alg. 4.

Once the self-consistent uj(r, r) are obtained, one can formally reconstruct u(r, r′) by
using the split representation again in Eq. (3.23) and (3.29). Finally uj will be integrated
with gj′ as in Eq. (1.67) to compute the Hessian matrix for phonon calculations, which will
be further discussed in detail in the next section.

3.3.4 Phonon Calculation

For the purpose of phonon calculation, uj (representing a component of
∂P

∂RI

) will be inte-

grated with gj′ (representing a component of
∂Vion

∂RJ

) as in Eq. (1.67) to compute the Hes-

sian matrix for phonon calculations. The integration with local components can be readily
computed once the self-consistent response uj(r) is obtained by solving the reduced Dyson
equation. The integration with nonlocal components gnl,j would require the construction of
u(r, r′). However since gnl,j is compactly supported, one could avoid the full construction
of u(r, r′) by embedding the integration process into the construction of u(r, r′). This is
important for maintaining the reduced scaling of the algorithm.

In this section, we show the construction of integral in Eq. (1.68). For simplicity, the
indexes I, J are ignored. Starting from the Dyson equation,

u(r, r′) = (X0g)(r, r′) + (X0fhxcu)(r, r′), (3.35)

an element of the Hessian matrix requires calculation of∫
g(r, r′)u(r, r′) dr dr′ =

∫
[g(r, r′)(X0g)(r, r′) + g(r, r′)(X0fhxcu)(r, r′)] dr dr′. (3.36)
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Algorithm 4: Computing U := [uj] with the split representation of adaptively com-
pressed polarizability operator.
Input:
{gj}. Stopping criterion δ.

Eigenpairs corresponding to occupied orbitals {ψi, εi}, i = 1, . . . , Ñcut

Output: U ≈ χG

1. Compute U0 := [u0,j ] using Eq. (3.23) and (3.29) (only the diagonal elements).

2. Do

a) Replace {gj} with diag[fhxcu
k
j ] to obtain W (r)k and W (s)k and Πk in Eq. (3.22)

and (3.28) . Define W k = W (s)k +W (r)k.

b) Update Uk+1 using Sherman-Morrison-Woodbury formula

Uk+1 =
(
I −W k(Πk)T fhxc

)−1
U0

= U0 +W k
(
I − (Πk)T fhxcW

k
)−1

(Πk)T fhxcU0

.

c) k ← k + 1

until ‖U
k−Uk−1‖
‖Uk−1‖ < δ or maximum number of iterations is reached.

Recall that g(r, r′) = gloc(r)δ(r′−r)+gnl(r, r
′), the integral for the local part of can be easily

calculated (letting u(r) = u(r, r))∫
gloc(r, r

′)u(r, r′) dr dr′ =

∫
gloc(r)u(r) dr. (3.37)

For the non-local potential, using Eq. (3.23) and Eq. (3.29), we have∫
gnl(r, r

′)u(r, r′) dr dr′ =

∫
gnl(r, r

′) [(X0g)(r, r′) + (X0fhxcu)(r, r′)] dr dr′. (3.38)

Recall that (fhxcu)(r, r′) = δ(r − r′)
∫
fhxc(r, r

′′)u(r′′) dr′′. So (fhxcu)(r, r′) behaves as a
local potential gloc when applying X0 to it. So the integral in Eq. (3.38) breaks down to four
parts:
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∫
gnl(r, r

′)(X
(r)
0 g)(r, r′) dr dr′

=

∫
−

L∑
l=1

γl(bl(r) db∗l (r
′) + dbl(r)b∗l (r

′))(X
(r)
0 g)(r, r′) dr dr′

=−
∫

dr dr′
L∑
l=1

γl(bl(r) db∗l (r
′) + dbl(r)b∗l (r

′))

Nµ∑
µ=1

W(r)
µ [g](r, r′)(Πµ[g]Tgloc)

+

[
−

L∑
l=1

γl

Ncut∑
i=1

Nµ∑
µ=1

fi(gnlψi)(rµ)

(
Nc∑
c=1

∫
drζ̃cµ(r)bl(r)

∏
c′ 6=c

εi − ε̃c′
ε̃c − ε̃c′

)∫
drψ∗i (r

′) db∗l (r
′)

−
L∑
l=1

γl

Ncut∑
i=1

Nµ∑
µ=1

fi(gnlψi)(rµ)

(
Nc∑
c=1

∫
drζ̃cµ(r) dbl(r)

∏
c′ 6=c

εi − ε̃c′
ε̃c − ε̃c′

)∫
drψ∗i (r

′)b∗l (r
′)

]
+ h.c. of previous bracket

(3.39)

∫
gnl(r, r

′)(X
(s)
0 g)(r, r′) dr dr′

=

∫
−

L∑
l=1

γl(bl(r) db∗l (r
′) + dbl(r)b∗l (r

′))(X
(s)
0 g)(r, r′) dr dr′

=−
∫

dr dr′
L∑
l=1

γl(bl(r) db∗l (r
′) + dbl(r)b∗l (r

′))

Nµ∑
µ=1

W(s)
µ [g](r, r′)(Πµ[g]Tgloc)

+

[
−

L∑
l=1

γl

Ncut∑
i=1

Nµ∑
µ=1

(gnl,jψi)(rµ)

(
Np∑
p=1

∫
drζ̃

(s)
2,pµ(r)bl(r)ωp(zp − εi)−1

)∫
dr′ψ∗i (r

′) db∗l (r
′)

−
L∑
l=1

γl

Ncut∑
i=1

Nµ∑
µ=1

(gnl,jψi)(rµ)

(
Np∑
p=1

∫
drζ̃

(s)
2,pµ(r) dbl(r)ωp(zp − εi)−1

)∫
dr′ψ∗i (r

′)b∗l (r
′)

]
+ h.c. of previous bracket

−
L∑
l=1

γl

Ncut∑
i=1

Nµ∑
µ=1

(gnl,jψi)(rµ)

(
Np∑
p=1

∫
drζ̃

(s)
1,pµ(r)bl(r)ωp(zp − εi)−1

)∫
dr′ψ∗i (r

′) db∗l (r
′)

−
L∑
l=1

γl

Ncut∑
i=1

Nµ∑
µ=1

(gnl,jψi)(rµ)

(
Np∑
p=1

∫
drζ̃

(s)
1,pµ(r) dbl(r)ωp(zp − εi)−1

)∫
dr′ψ∗i (r

′)b∗l (r
′)

(3.40)
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∫
gnl(r, r

′)(X
(r)
0 fhxcu)(r, r′) dr dr′

=

∫
−

L∑
l=1

γl(bl(r) db∗l (r
′) + dbl(r)b∗l (r

′))(X
(r)
0 fhxcu)(r, r′) dr dr′

=−
∫

dr dr′
L∑
l=1

γl(bl(r) db∗l (r
′) + dbl(r)b∗l (r

′))

Nµ∑
µ=1

W(r)
µ [fhxcu](r, r′)(Πµ[fhxcu]Tfhxcu)

(3.41)

∫
gnl(r, r

′)(X
(s)
0 fhxcu)(r, r′) dr dr′

=

∫
−

L∑
l=1

γl(bl(r) db∗l (r
′) + dbl(r)b∗l (r

′))(X
(s)
0 fhxcu)(r, r′) dr dr′

=−
∫

dr dr′
L∑
l=1

γl(bl(r) db∗l (r
′) + dbl(r)b∗l (r

′))

Nµ∑
µ=1

W(s)
µ [fhxcu](r, r′)(Πµ[fhxcu]Tfhxcu)

(3.42)

We remark that the W quantity depends on the tensors to which X0 is applied. Note that
in Eqs. (3.39), (3.40), (3.41), (3.42), terms like

∫
dr′ψ∗i (r

′)b∗l (r
′) appear many times, hence

computing and storing them is necessary. Also one important fact is that gnl,jψi(rµ) is only
non-zero for several rµ. This would result in a “fake” summation of Nµ, which is essential
in reducing the complexity. Computation of Eq. (3.39) and Eq. (3.40) is only O(Ne). The
complexity is discussed in detail in the following section.

3.3.5 Complexity

In this section we analyze the complexity of phonon calculation using the split representation
of ACP formulation, especially those related to nonlocal pseudopotential.

The first part of the algorithm is to compute the diagonal elements u0,j in Eq. (3.33)
and (3.34). For the local pseudopotential, the cost of constructingW (r) andW (s) isO(NµNcutNcNg) ∼
O(N3

e ) andO(NµNcutNpNg) ∼ O(N3
e ) respectively, sinceNµ, Ncut, Ng ∼ O(Ne), andNc, Np ∼

O(1). Note that the construction of W (r),W (s) does not depend on the index j, hence there
is no factor of dNA involved. For the nonlocal pseudopotential, as is discussed in Section
3.3.1, each nonlocal component of gj is compactly supported in the real space. Denote Nb as
the grid points for the support of gnl,j. Hence for each gnl,j there are only Nb ∼ O(1) number
of points rµ that contributes to (gnl,jψi)(rµ). So the cost associated with the nonlocal contri-
bution is O(dNANcutNbNcNg) ∼ O(N3

e ) in Eq. (3.23) and O(dNANcutNbNpNg) ∼ O(N3
e ) in
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Eq. (3.29). Note that the dNA factor comes from the fact that gnl,jψi(rµ) depends on index
j = 1, 2, . . . , dNA.

In every iteration step when solving the reduced Dyson equation, the complexity of the
construction of W k still cost O(N3

e ), as we just replaced gj by diag[fhxcu
k
j ]. Using Sherman-

Morrison-Woodbury formula, the update of Uk+1 costO(NgNµdNA+N3
µ+N2

µdNA) ∼ O(N3
e ).

In practice, we observe we observe that the number of iterations does not increase with
respect to the system size. To summarize, we know that the computation of uj(r) cost
O(N3

e ) in total.
In order to assemble the information stored in uj to obtain the dynamical matrix for

phonon calculations, uj will be integrated with gj′ as in Eq. (1.67). Before we move on to
further discussion, we note that uj(r, r

′),Wµ(r, r′) are never constructed or stored. They are
only stored in its factorized format. The integration with local components can be readily
computed once the self-consistent response uj(r) is obtained by solving the reduced Dyson
equation. The corresponding cost is O(d2N2

ANg). The integration with nonlocal components
gnl,j would require certain off-diagonal entries u(r, r′). However since gnl,j is compactly
supported, one could avoid the full construction of u(r, r′) by embedding the integration
process into the construction of u(r, r′). As shown in Eqs. (3.39) and (3.40), the complexity
for this integration is O(d2N2

aNbNcutNc+2d2N2
aNcutNbNc) ∼ O(N3

e ) and O(d2N2
aNbNcutNp+

2d2N2
aNcutNbNp) ∼ O(N3

e ), respectively. As for Eqs. (3.41) and (3.42), the complexity is
O(d2N2

aNbNcutNc) ∼ O(N3
e ) and O(d2N2

aNbNcutNp) ∼ O(N3
e ), respectively. Diagonalizing

the Hessian matrix costs O(N3
a ). In summary, the complexity of phonon calculation scales

as O(N3
e ). This is further confirmed by numerical examples in 1D in the following section.

Table 3.1 summarizes the complexity of all computation steps of split ACP.

Step Equation Complexity

Interpolation decomposition Eq. (3.19)
O(NgdNANcut)
+O(NgNcutNµ)

Diagonal element construction
regular part

Eq. (3.33)
O(NµNcutNcNg)

+O(dNANcutNbNcNg)
Diagonal element construction

Singular part
Eq. (3.34)

O(NµNcutNpNg)
+O(dNANcutNbNpNg)

The Dyson equation update
Step 2.(b)
in Alg. 4

O(NgNµdNA)
+O(N3

µ +N2
µdNA)

Reconstruction
local potential

Eq. (3.37) O(d2N2
ANg)

Reconstruction
nonlocal pseudopotential

Eq. (3.39)
Eq. (3.40)
Eq. (3.41)
Eq. (3.42)

O(d2N2
aNbNcutNc + 2d2N2

aNcutNbNc)
O(d2N2

aNbNcutNp + 2d2N2
aNcutNbNp)

O(d2N2
aNbNcutNc)

O(d2N2
aNbNcutNp)

Table 3.1: Summary of the complexity of each component of the split ACP algorithm.
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3.4 Numerical examples

In this section, we demonstrate the performance of split ACP and compare it with DFPT
and finite difference (FD) through two examples. The first example consists of a 1D reduced
Hartree-Fock model problem that can be tuned to resemble a metallic system. The second
one is a 3D aluminum cluster calculation performed using KSSOLV [62], which is a MATLAB
toolbox for solving Kohn-Sham equations for small molecules and solids in three-dimensions.
KSSOLV uses plane wave expansion to discretize the Kohn-Sham equations. All calculations
are carried out using the Berkeley Research Computing (BRC) High Performance Computing
service. Each node consists of two Intel Xeon 10-core Ivy Bridge processors (20 cores per
node) and 64 GB of memory.

3.4.1 1D reduced Hartree-Fock model with nonlocal
pseudopotential

The 1D reduced Hartree-Fock model was introduced by Solovej [53], and has been used for
analyzing defects in solids in e.g. [9, 10]. The simplified 1D model neglects the contribution
of the exchange-correlation term. As discussed in previous sections, the presence of exchange-
correlation functionals at LDA/GGA level does not lead to essential difficulties in phonon
calculations. Furthermore, the nonlocal pseudopotential in the Kleinman-Bylander form [28]
is added to this reduced model to test the availability for the split ACP to handle the case
in presence of nonlocal potential.

The Hamiltonian in our 1D reduced Hartree-Fock model is given by

H[ρ] = −1

2

d2

dx2
+

[∫
K(x, y) (ρ(y) +m(y)) dy

]
δ(x, x′) +γ

∑
I

b(x−RI)b
∗(x′−RI). (3.43)

Here m(x) =
∑

I mI(x−RI) is the summation of pseudocharges. Each function mI(x) takes
the form of a one-dimensional Gaussian

mI(x) = − ZI√
2πσ2

I

exp

(
− x2

2σ2
I

)
, (3.44)

where ZI is an integer representing the charge of the I-th nucleus. In our numerical simula-
tion, we choose all σI to be the same.

Instead of using a bare Coulomb interaction which diverges in 1D when x is large, we
use a Yukawa kernel as the regularized Coulomb kernel

K(x, y) =
2πe−κ|x−y|

κε0
, (3.45)

which satisfies the equation

− d2

dx2
K(x, y) + κ2K(x, y) =

4π

ε0
δ(x− y). (3.46)
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As κ→ 0, the Yukawa kernel approaches the bare Coulomb interaction given by the Poisson
equation. The parameter ε0 is used so that the magnitude of the electron static contribution
is comparable to that of the kinetic energy. The ion-ion repulsion energy EII is also computed
using the Yukawa interaction K in the model systems.

The last term in H[ρ] represents the kernel of the nonlocal pseudopotential, which is the
summation of rank-1 real symmetric operator with real valued function

b(x) =
1√

2πσ2
b

exp

(
− x2

2σ2
b

)
. (3.47)

γ is a scaling factor used to control the magnitude of the nonlocal pseudopotential, which
is, in practice, much smaller than the local pseudopotential.

The parameters used in this model are chosen as follows. Atomic units are used through-
out the discussion unless otherwise mentioned. For all systems tested in this subsection, the
distance between each atom and its nearest neighbor is set to 2.4 a.u. The Yukawa parameter
κ = 0.1. The nuclear charge ZI is set to 1 for all atoms, and σI is set to 0.3. The parameter
ε0 is chosen to be 80 so that the reduced Hartree-Fock model can be tuned to resemble a
metallic system. In the nonlocal pseudopotential, the scaling factor γ = −0.01, as well as σb
set to be 0.1 (this will cause the total energy to change by 1.47%). The temperature T is set
to be 5000 K to emphasize the influence of partial occupation. The Hamiltonian operator is
represented in a plane wave basis set.

For the system of size NA = 80, the 110 smallest eigenvalues as well as the occupational
status near the chemical potential are shown in Fig. 3.2. There is no evident energy gap
within the spectrum of the Hamiltonian. Orbitals can be partially occupied due to the finite
temperature. Specifically, we identify an orbital to be (fully) occupied if the occupation
number fi > 1 − 10−6, unoccupied if fi < 10−6, otherwise partially occupied. In this case,
there are 20 partially occupied orbitals, whose eigenvalues are around the chemical potential.
The total number of (fully) occupied and partially occupied orbitals Nocc is 89, and we choose
Ncut = Nocc for all the split ACP computations. Also we fix the number of pole expansion
nodes Np to be 40 unless otherwise mentioned.

In the ground state calculation, we use Anderson mixing [2] for accelerating the self-
consistent field (SCF) iterations, and the linearized eigenvalue problems are solved by us-
ing the locally optimal block preconditioned conjugate gradient (LOBPCG) solver [29]. In
DFPT, we use MINRES [47] to solve the Sternheimer equations iteratively. The initial guess
vectors for the solutions are obtained from previous iterations in the Dyson equation to re-
duce the number of matrix-vector multiplications. The same strategy for choosing the initial
guess is implemented for the split ACP formulation as well. Anderson mixing is used to
accelerate the convergence of Dyson equations in DFPT, and in split ACP we use the fixed
point iteration with Sherman-Morrison-Woodbury formula.

All numerical results of the split ACP method and FD approach below are bench-
marked with results obtained from DFPT. We test the accuracy of the split ACP method
in three different level: the diagonal elements diag(X0g), the diagonal elements of solu-
tion to Dyson equations diag(Xg), and the phonon frequencies {ωk}. For the diagonal
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Figure 3.2: Eigenvalues of the 1D system with NA = 80.

elements diag(X0g) and diag(Xg), we directly measure the relative L2 error, defined as

‖diag(X0g)− diag(X̃0g)‖2/‖diag(X0g)‖2. For the phonon frequencies, due to the presence of
acoustic phonon modes for which ωk is close to 0, instead of the relative error, we measure
the absolute L∞ error defined as maxk |ωk− ω̃k|, where ω̃k is obtained from FD or split ACP.
We also demonstrate the efficiency of the split ACP method by comparing the computational
time and scaling of split ACP with that of DFPT and FD.

In Table 3.2 and 3.3, we calibrate the accuracy of the split compression with differ-
ent choices of the numbers of Chebyshev nodes Nc and the numbers of columns Nµ, for

two different choices of Ñcut, respectively. We measure the accuracy by relative L2 error
‖diag(X0g) − diag(X̃0g)‖2/‖diag(X0g)‖2, and choose Nµ = lNocc where l = 3, 4, · · · , 8. Ta-
ble 3.2 and 3.3 both show that, with a fixed number of Chebyshev nodes Nc, the error
decreases monotonically with respect to Nµ, until limited by the accuracy of the Chebyshev
interpolation procedure. Similarly, with a fixed number of selected columns, the numerical
accuracy improves as more Chebyshev nodes are used in interpolation until limited by the
choice of Nµ. Comparing Table 3.3 with Table 3.2, we also find that numerical accuracy

can be better with a larger Ñcut. This is due to the increase of the effective energy gap
ε̃g, which leads to a smaller numerical error in the Chebyshev interpolation procedure. For

Ñcut/Ncut ≈ 1.28, the relative L2 error of χ0G can be less than 10−6 for large enough Nc and
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Nc

Nµ 3Nocc 4Nocc 5Nocc 6Nocc 7Nocc 8Nocc

3 2.38E-02 2.17E-02 2.13E-02 2.12E-02 2.12E-02 2.12E-02
4 2.06E-02 9.43E-03 6.25E-03 6.21E-03 6.21E-03 6.21E-03
5 2.01E-02 7.88E-03 2.86E-03 2.85E-03 2.84E-03 2.84E-03
6 1.64E-02 6.76E-03 1.73E-03 1.65E-03 1.65E-03 1.65E-03
7 1.65E-02 9.30E-03 8.10E-04 6.85E-04 6.87E-04 6.87E-04
8 1.62E-02 9.07E-03 5.86E-04 2.53E-04 2.50E-04 2.50E-04
9 1.81E-02 7.24E-03 7.86E-04 1.51E-04 1.47E-04 1.47E-04
10 1.49E-02 6.53E-03 5.83E-04 7.99E-05 7.24E-05 7.24E-05

Table 3.2: The relative L2 error ‖diag(X0g)−diag(X̃0g)‖2/‖diag(X0g)‖2 for Ñcut/Ncut ≈ 1.06
with the effective gap ε̃g/|I| ≈ 0.1408.

Nc

Nµ 3Nocc 4Nocc 5Nocc 6Nocc 7Nocc 8Nocc

3 1.56E-02 8.52E-03 9.45E-04 7.42E-04 7.39E-04 7.39E-04
4 1.72E-02 7.79E-03 6.82E-04 1.02E-04 9.67E-05 9.67E-05
5 1.74E-02 9.49E-03 8.90E-04 6.00E-05 2.50E-05 2.50E-05
6 1.56E-02 7.80E-03 5.89E-04 7.06E-05 5.40E-06 5.38E-06
7 1.62E-02 9.07E-03 6.11E-04 5.51E-05 8.45E-07 8.42E-07
8 1.61E-02 9.04E-03 5.97E-04 4.73E-05 5.55E-07 3.21E-07
9 1.85E-02 9.08E-03 6.45E-04 4.52E-05 4.88E-07 3.20E-07
10 1.55E-02 9.52E-03 8.12E-04 5.72E-05 4.97E-07 3.20E-07

Table 3.3: The relative L2 error ‖diag(X0g)−diag(X̃0g)‖2/‖diag(X0g)‖2 for Ñcut/Ncut ≈ 1.28
with the effective gap ε̃g/|I| ≈ 0.6777.

Nµ.

We further study how different choices of Nc and Ñcut affect the computational accuracy
on diag(X0g). Here for all Nc and Ñcut, Nµ is fixed to be 480 ≈ 5.4Nocc or 560 ≈ 6.3Nocc. This

is determined the same way as that in the regular ACP formulation so that |R̃Nµ+1,Nµ+1| <
ε|R̃1,1| ≤ |R̃Nµ,Nµ| in Algorithm 2 in [35], with ε = 10−4 and 10−5, respectively. Fig. 3.3

compares the relative L2 errors ‖diag(X0g)− diag(X̃0g)‖2/‖diag(X0g)‖2 under different Ñcut

and Nc. We find that it can be sufficient to choose Ñcut ≤ 2Ncut to achieve the best accuracy
possible where further improvement is hindered by the the choice of Nµ (around 3 × 10−5

for Nµ ≈ 5.4Nocc and 1 × 10−6 for Nµ ≈ 6.3Nocc). Under the split ACP formulation, the
number of Chebyshev nodes is significantly reduced. Specifically, 4-8 nodes can already
perform fairly accurate calculation while no less than 20 nodes are needed in the regular
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Figure 3.3: The relative L2 errors ‖diag(X0g) − diag(X̃0g)‖2/‖diag(X0g)‖2 under different

Ñcut and Nc

ACP formulation. Furthermore, the more Chebyshev nodes are used, the smaller Ñcut we
can choose to achieve the same accuracy. For example, if 5 nodes are adopted in Chebyshev
interpolation, we need to choose Ñcut as large as 1.55Ncut to achieve the best accuracy, while
Ñcut ≈ 1.2Ncut is sufficient if Nc increases to 8.

In order to demonstrate the effectiveness of the split representation, the relative L2 error
‖diag(Xg) − diag(X̃g)‖2/‖diag(Xg)‖2 during the fixed point iteration when solving Dyson
equation is shown in Fig. 3.4. For each choice of Nµ, numerical results show significant
improvement after only one iteration, and the self-consistent iteration converges within two
steps. After convergence, the error is around 1.4×10−3 for ε = 10−3, 6.2×10−5 for ε = 10−4,
and 6.4× 10−6 for ε = 10−5.

Method and parameters L∞-norm error
FD, δ = 0.01 7.79E-05

split ACP, Np = 20, Nµ ≈ 5.4Nocc for ε = 10−4 5.90E-05
split ACP, Np = 40, Nµ ≈ 6.3Nocc for ε = 10−5 1.51E-05

Table 3.4: L∞ error of the phonon frequencies. System size is NA = 80. Chebyshev nodes
Nc = 5 in split ACP.

Next we compare the split ACP with DFPT and FD in terms of the accuracy of phonon
frequencies. Table 3.4 presents L∞ error of the phonon spectrum obtained by FD and split
ACP with different parameters benchmarked with that from DFPT. In the FD approach,
the convergence tolerance for LOBPCG is set to be 10−8, and the SCF convergence tolerance
is 10−10. δ denotes the perturbation of each atom position to the origin. We remark that
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Figure 3.4: Convergence for solving the Dyson equation using the split ACP formulation.

further smaller δ can lead to slightly larger numerical error due to the numerical instability
of FD approach, and the numerical error of FD approach is usually around 10−4. As for the
split ACP, the same parameters for LOBPCG and SCF are chosen to converge the ground
state calculation, and 5 nodes are used in the Chebyshev interpolation procedure. We find
that it is sufficient to choose Np = 20 and Nµ ≈ 5.4Nocc to achieve comparable accuracy with
FD approach. Furthermore, with more nodes in pole expansion and more selected columns,
the L∞ error of split ACP can be as small as around 10−5, in which case split ACP can be
more accurate than FD approach.

Method Computational scaling
DFPT 4.0036

FD 3.8057
split ACP 3.1587

split ACP 1 iteration 3.1433

Table 3.5: Computational scaling measured from NA = 90 to NA = 140.

In the end we perform phonon calculations for systems of size from 30 to 140. We choose
δ = 0.01 for FD approach. Fig. 3.5a shows that the accuracy of phonon spectrum (L∞

error) from FD approach remains roughly the same as the system size increases, which is
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Figure 3.5: (a) L∞ error of the phonon frequencies {ωk}. (b) Phonon spectrum for the 1D
system.

empirically around 10−4. For the split ACP, we find that ε = 10−4, Nc = 4, Np = 20 and

Ñcut ≈ 1.7Ncut is sufficient to achieve error around 10−4. Since the convergence of the split
adaptive compression can be very fast, as discussed before, we also carry out the phonon
calculation by split ACP with only 1 step of iteration on solving Dyson equation, and the
numerical accuracy is almost the same as that of split ACP. Fig. 3.5b reports the phonon
spectrum %D for system of size NA = 140. We remark that Fig 3.5b plots %D by smearing
the Dirac-δ distribution in (1.65) using a regularized function

δσ(x) =
1√

2πσ2
e−

x2

2σ2 ,

where the smear parameter σ is chosen to be 0.005.
To demonstrate the efficiency of the split ACP formulation, Fig. 3.6 compares the compu-

tational time of different methods. We observe that the split ACP can be more advantageous
than DFPT for systems merely beyond 40 atoms, and become more advantageous than FD
for systems beyond 60 atoms. Due to the less iterations on solving Dyson equation, the
split ACP with 1 iteration can be faster than the split ACP. For the largest system with
140 atoms, split ACP with 1 iteration is 3.83 and 1.91 times faster than DFPT and FD,
respectively.

Table 3.5 measures the slope of the computational cost with respect to system sizes
from NA = 90 to NA = 140. In theory, the asymptotic computational cost of DFPT and
FD should be O(N4

e ), and the cost of split ACP should be O(N3
e ). For all the methods,

numerical scalings shown in Table 3.5 match closely with the theoretical ones.
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3.4.2 3D aluminum cluster

In this section, we present the result of phonon calculations of a 3D aluminum cluster. Each
unit cell is a 7.65×7.65×7.65 a.u. with 4 Al atoms. The computational supercell consists of
2×2×1 unit cells and has 16 atoms and 48 electrons. We use the spin-restricted formulation
and the Perdew-Zunger pseudopotential [50], and the temperature is set to 1000K. Ecut is set

to 10 Hartree. We set Ncut = 33, Ñcut = 47, and the number of Chebyshev interpolation Nc

to be 6. For the system size tested, we found that using Eq.(3.16) directly for computing the
singular part of the polarizability matrix much more faster than using the pole expansion.
So the computation is done using Eq.(3.16) for the purpose of testing the accuracy of the
algorithm. This results in much shorter computational time given the size of the system
tested is small.

Figure 3.7 reports the relative error in the iteration of solving the Dyson equation. We
remark that for this system, Nµ = 1584. In comparison, the total grid points in the dis-
cretization is Ng = 42592. This means that the numerical rank of the operator χ far less
than the number of grid points. The iteration is converged to 10−6 relative error for 6 steps.

Figure 3.8 reports the phonon spectrum computed from both FD and split ACP. The
smearing parameter for plotting the spectrum is chosen as 0.008. The L∞ error on the
density of states is 5.62E-05.

We remark that the purpose of the test above is to illustrate that the split ACP formula-
tion can indeed be used to accurately obtain the phonon spectrum for 3D metallic systems,
with fractionally occupied states and nonlocal pseudopotentials. However, due to the small



CHAPTER 3. SPLIT REPRESENTATION OF ADAPTIVELY COMPRESSED
POLARIZABILITY OPERATOR 71

1 2 3 4 5 6 7

10-4

10-2

Dyson Equation Iteration Error

Figure 3.7: The Dyson Equations iteration error.

system size, the computational time of the split representation of ACP is in fact much longer
than that of FD. Also we remark that there is difficulty in the DFPT approach in 3D. The
Sternheimer equations are ill-conditioned and the MINRES iteration fail to converge. This
result also emphasizes the necessity of introducing the effective gap in the split ACP.

Since KSSOLV is only designed to solve Kohn-Sham equations for systems with relatively
small sizes, our implementation cannot reveal the efficiency of the split ACP approach yet
for 3D systems, and this will be our future work.

3.5 Conclusion

In this chapter, we have introduced the split representation of a recently developed method
called the adaptively compressed polarizability operator. The split-ACP formulation incor-
porate nonlocal pseudopotentials and finite temperature effects successfully, hence generalizes
the ACP formulation to solve for phonons in metallic systems as well. Our numerical results
for model problems indicate that the computational advantage of the split ACP fomulation
can be clealy observed compared to DFPT and finited difference, even for systems of rela-
tively small sizes. The numerical example for 3D Aluminum cluster shows that accuracy of
the split ACP formulation in the application for computing the phonon spectrum for real
materials.

The new split representation of ACP provides a systematic and complete solution to
treating systems at finite temperature. We have used phonon calculation as an example



CHAPTER 3. SPLIT REPRESENTATION OF ADAPTIVELY COMPRESSED
POLARIZABILITY OPERATOR 72

-0.2 0 0.2 0.4 0.6 0.8 1
phonon frequency

0

5

10

15

20

25

30
split ACP
FD

Figure 3.8: Phonon spectrum of 3D Aluminum Cluster.

to demonstrate the effectiveness as well as accuracy of the split representation of adap-
tively compressed polarizability operator. The same strategy can be applied to applications
of DFPT other than phonon calculations, when the polarizability operator χ need to be
applied to a large number of vectors. Moreover, Meanwhile, all numerical tests are on single-
threaded. Parallelized implementation would help fully test whether split representation of
ACP formulation can achieve the goal of reducing complexity to asymptotically O(N3

e ).
Through the discussion in chapter 3, we have generalized the ACP method taking into ac-

count the nonlocal pseudopotential and treating finite temperature. We obtain an accurate,
efficient method to compute the vibrational properties for insulating and metallic systems.
The ACP method along with the split representation is by far the first method to achieve
the asymptotical complexity of O(N3

e ) in phonon calculations.
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