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ORIGINAL RESEARCH

Recent cancer therapy efforts have focused on efficient 
and targeted tumor cell killing and hypoxia reduction 

(1,2). Adoptive cell therapy has emerged as the fourth pil-
lar of cancer therapy, offering specific eradication of hema-
tologic cancers. Therapeutic cell engineering is now being 
used to target solid tumors, which are proving to be more 
challenging (3,4). Roadblocks include tumor-induced im-
munosuppression and inefficient cell trafficking as well as 
poor tumor penetration and persistence (4,5). Importantly, 
these characteristics may be predictive of therapeutic out-
come. Tumor mechanisms of immunosuppression gener-
ate chronic inflammation and hypoxia in the vicinity of 
the tumor, which result in increased tumor angiogenesis, 
recurrence, and malignant progression (1,6). Effector cells 
in the tumor microenvironment can induce cell killing, 
and we hypothesize that tumor oximetry is altered as an 
indirect consequence of these apoptotic processes.

Recent advances in noninvasive imaging and biosen-
sor probe technologies enable the noninvasive, real-time 
observation of the intracellular partial pressure of oxygen 
(Po2) during T cell–mediated immunotherapy. Moreover, 
perfluorocarbon (PFC) exhibits weak molecular cohesion, 
enabling gas dissolution (7). This intrinsic property was 
first exploited in the 1990s (8) using emulsified PFC to 
form biocompatible and injectable oxygen-laden blood 
substitutes and breathing liquids (9,10). Gas dissolved in 
fluorinated emulsions is not bound to the carrier but rather 
is exchanged with the local environment (11). Dissolution 
of oxygen in PFC lowers the fluorine 19 (19F) spin-lattice 
relaxation time (T1) (10,12). The T1 varies linearly with 
the absolute Po2, which is calculated from a linear calibra-
tion curve (13–16). Thus, one can exploit the intracellular 
PFC label, with its intrinsic Po2 sensing properties, to per-
form cell-specific oximetry in vivo (15,16).

This copy is for personal use only. To order printed copies, contact reprints@rsna.org

Purpose: To assess the cell-specific, intracellular partial pressure of oxygen (Po2) dynamics of both tumor and chimeric antigen receptor 
(CAR) T cells in a murine immunotherapy model.

Materials and Methods: Human glioblastoma cells or human T cells were intracellularly labeled with perfluorocarbon nanoemulsion 
droplet sensors prior to in vivo injection in severe combined immunodeficient mice to measure Po2 in the two cell types in response to 
treatment. Two main sets of experiments were performed: (a) mice were injected in the flank with perfluorocarbon-labeled human glio-
blastoma cells and were then inoculated with either CAR T cells or untransduced T cells or were untreated 5 days after tumor inocula-
tion; and (b) mice with unlabeled glioblastoma tumors were inoculated with perfluorocarbon-labeled CAR T cells or untransduced T 
cells 5 days after tumor inoculation. Longitudinal fluorine 19 (19F) spin-lattice relaxation time measurements of the tumor mass were 
used to ascertain absolute Po2 in vivo. Results were analyzed for significance using an analysis of variance, a linear mixed-effect model, 
and a Pearson correlation coefficient test, as appropriate.

Results: The intracellular tumor cell Po2 temporal dynamics exhibited delayed, transient hyperoxia at 3 days after infusion of CAR T 
cells, commensurate with significant tumor cell killing and CAR T-cell infiltration, as observed by bioluminescence imaging and his-
tologic findings. Conversely, no significant changes were detected in CAR or untransduced T-cell intracellular Po2 over time in tumor 
using these same methods. Moreover, it was observed that the total 19F tumor cell signal quenches with treatment, consistent with rapid 
tissue clearance of probe from apoptotic tumor cells.

Conclusion: Cell-specific Po2 measurements using perfluorocarbon probes can provide insights into effector cell function and tumor 
response in cellular immunotherapeutic cancer models.

Supplemental material is available for this article.
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An alternative PFC nanoemulsion formulation displayed 
a cell-penetrating peptide as a component of the surfactant to 
boost cell labeling in T cells and other weakly phagocytic cell 
types (21), namely, the transactivating transcription sequence 
(TAT) of the human immunodeficiency virus. Details on the 
synthesis of the TAT conjugate are found in Appendix E2 
(supplement).

Nanoemulsion concentrations and Po2 calibration curve were 
determined by nuclear magnetic resonance. Details are described 
in Appendix E3 (supplement).

Human T Cells and CAR Transduction
Using anonymous donor human blood (San Diego Blood 
Bank, San Diego, Calif ), primary human T cells were enriched 
by Ficoll (Histopaque-1077; Sigma Aldrich, St Louis, Mo) 
gradient density centrifugation and pan-T magnetic cell sort-
ing (MACS; Miltenyi Biotech, Auburn, Calif ). Protocol for 
CAR transduction of human T cells is found in Appendix E4 
(supplement).

Glioblastoma Cells
A human glioblastoma multiform cell line (23) overexpressing 
the epidermal growth factor receptor variant III and the lucif-
erase gene (U87-EGFRvIII-Luc) was maintained in T75 flasks 
(Sigma) in Roswell Park Memorial Institute medium, supple-
mented with 10% fetal bovine serum.

Ex Vivo Cell Labeling
For glioma labeling experiments, U87-EGFRvIII-Luc were 
plated at 90% confluence (triplicates of 1 3 106 cells in 2 mL 
media per well) and incubated overnight with different PFC 
nanoemulsion concentrations ranging from 2.5 to 20 mg/mL. 
For in vivo experiments, an optimal concentration of 20 mg/
mL PFC was added overnight to U87-EGFRvIII-Luc cells. 
Cells were counted and rinsed three times in phosphate-buff-
ered saline (PBS), and 5 3 106 cells were resuspended in buff-
ered 50% Corning Matrigel (Corning Life Sciences, Tewks-
bury, Mass) for a 100-mL flank injection volume.

For intratumoral injections, CAR and untransduced T cells 
were labeled overnight with 15 mg/mL TAT-PFC nanoemulsion 
with 107 cells per well in 5 mL of media using six-well plates. 
Cell viability after labeling was confirmed by the trypan blue 
exclusion assay. The cells were washed in 0.05% trypsin for 3 
minutes to remove possible extracellular label, de-beaded on a 
magnet, and rinsed twice in PBS. Cells were resuspended in PBS 
at a concentration of 107 cells per 50 mL for intratumoral injec-
tion. Measurement of PFC uptake after labeling is described in 
Appendix E3 (supplement).

Murine Model of Subcutaneous Glioblastoma
Animal protocols were approved by the University of Califor-
nia San Diego Institutional Animal Care and Use Commit-
tee. In the first cohort, female (n = 18) 6–8-week-old severe 
combined immunodeficient mice (Jackson Laboratories, Bar 
Harbor, Maine) received subcutaneous unilateral flank tumor 
injections composed of 5 3 106 PFC-labeled glioma cells. Five 

Our approach uses PFC nanoemulsion imaging tracer probes, 
used in conjunction with 19F MRI, for background-free cell de-
tection (16,17). Ex vivo labeling of cells with PFC nanoemul-
sion can be performed by addition to the culture media. The 
PFC nanoemulsion is only taken up by viable cells, which retain 
the tag without cell efflux. Following delivery of the labeled cells 
to the patient, 19F MRI enables quantitative cell detection (ie, in 
vivo cytometry), a method that has been demonstrated clinically 
(18). Upon death of the labeled cells, PFC droplets disperse and 
the 19F signal dissipates. Rose et al (19) suggested that fluorine 
retention can be used as a surrogate marker for cell survival.

In this study, we test the hypothesis that a measurable 
change in tumor and/or T-cell Po2 is commensurate with 
chimeric antigen receptor (CAR) T-cell apoptotic processes 
in a xenograft murine model of subcutaneous glioblastoma 
targeted with human CAR T cells. Overall, we found that 
monitoring of tumor and T-cell Po2 provides an in vivo marker 
for monitoring cellular immunotherapeutics, and potentially 
for optimizing therapeutic course, dosage, and elucidation of 
mechanisms of action.

Materials and Methods

PFC Nanoemulsion Formulations
Aqueous nanoemulsion was gravimetrically prepared from 
the PFC perfluoro-15-crown-5 ether (Exfluor Research, 
Round Rock, Tex) and 5% by weight Pluronic F68 (Spec-
trum Chemical, Gardena, Calif ) surfactant as previously 
described (20). Specific details of synthesis can be found in 
Appendix E1 (supplement).

Abbreviations
BLI = bioluminescence imaging, CAR = chimeric antigen receptor, 
PBS = phosphate-buffered saline, PFC = perfluorocarbon, Po2 = 
partial pressure of oxygen, RARE = rapid acquisition with relax-
ation enhancement, R1 = relaxation rate, TAT = transactivating 
transcription sequence, TE = echo time, TR = repetition time, TU-
NEL = terminal deoxynucleotidyl transferase–mediated dUTP nick 
end labeling, T1 = spin-lattice relaxation time, U87-EGFRvIII-Luc 
= cell line overexpressing epidermal growth factor receptor variant 
III and the luciferase gene 

Summary
Fluorine 19 (19F) MRI enables temporal measurements of tumor 
cell oxygen tension in response to chimeric antigen receptor T-cell 
therapy; these data support the view that 19F partial pressure of oxy-
gen MRI can provide insights into the modes of action of engineered 
T-cell immunotherapy against cancer.

Key Points
 n Longitudinal tumor cell oximetry displays a delayed, transient hy-

peroxia upon infusion of chimeric antigen receptor T-cell therapy, 
thus providing insights into effector cell function in vivo.

 n In contrast to tumor cell oximetry, oximetry changes in fluorine-
labeled T cells were not resolved using these methods.

 n The fluorine 19 (19F) MRI signal loss of labeled tumor cells upon 
T-cell treatment correlated to tumor killing, as observed by biolu-
minescence imaging, suggests effective tissue clearance of 19F probe 
in apoptotic cells.

http://radiology-ic.rsna.org
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Compostela, Spain). The mean Po2 of the tumor cells and CAR 
T cells was calculated from T1 using a calibration curve (15,16).

Histologic Examination
Additional animals identical to groups 1 and 2, referred to as 
groups 6 and 7, were prepared (n = 3, per group) for apop-
totic and T-cell counts in tumors. Details on histologic sample 
preparation and staining for CD3 and apoptotic cells are found 
in Appendix E6 (supplement).

Statistical Analysis
All measurements are presented as mean 6 standard error. Re-
sults were analyzed for significance using an analysis of vari-
ance, a linear mixed-effect model, and a Pearson correlation 
coefficient test, as appropriate. More details can be found in 
Appendix E7 (supplement).

Results

Longitudinal 19F MRI and Glioma Burden
To label glioma cells, PFC nanoemulsion was formulated 
with a mean droplet size of 176 nm 6 4 (standard devia-
tion) and polydispersity index of 0.10 6 0.02 as measured by 
dynamic light scattering. Prior to implantation, U87-EGFR-
vIII-Luc cells were labeled overnight ex vivo with PFC to an 
average level of approximately 7 3 1012 19F atoms per cell, as 
measured with 19F nuclear magnetic resonance (Fig E1 [sup-
plement]). Five days after flank tumor implantation, baseline 
imaging (day 0) was performed prior to cell therapy infusion. 
Anatomic 1H axial images show the presence of a solid tu-
mor in the right flank of mice (Fig 1, A, left). The 19F image 
reveals a bright hotspot in the tumor in the displayed field 
of view (Fig 1, A, right). The 19F signal was detected in one 
to three contiguous tumor sections, where only a single sec-
tion is displayed (Fig 1, A, right). Maximum pixel signal-to-
noise ratio at day 0 was approximately 51. The longitudinal 
composite 1H/19F images (day 0, 7, and 10) show clearance 
of PFC signal over time in CAR T-cell–treated tumors (Fig 
1, B). In untransduced T-cell–treated tumors, PFC hotspot 
remains stable at day 10 (Fig 1, C). We note that postpro-
cessing thresholding of the pseudocolor images (Fig 1) masks 
low-level 19F signal in image display.

Longitudinal bioluminescence measurements show sig-
nificant tumor burden reduction 7 days after CAR T-cell 
treatment with an average radiance of 4 3 1010 photons/sec, 
which is half of the radiance measured for both naive T-cell–
treated and –untreated groups (F[2,12] = 7.585; P = .007) 
(Fig 2, A). The 19F content in the two control groups did 
not change significantly over 10 days (P = .1 and P = .2, re-
spectively), whereas the CAR T-cell–treated tumors exhibited 
significant 19F reduction (approximately 60% signal loss; P = 
.001) (Fig 2, B). Signal loss between groups was significant as 
early as day 3 (P = .03) (Fig 2, B). There was a strong negative 
correlation between absolute tumor 19F content and BLI radi-
ance in all groups (Pearson r = 20.85 , r , 20.98) (Fig 2, 
C). The PFC droplets are neither broken down, nor do they 

days after tumor inoculation (day 0 time point), mice were 
divided into three groups. Group 1 (n = 6) mice received 2 3 
107 CAR T cells injected intravenously in PBS. Group 2 (n 
= 6) mice received the same number of untransduced T cells 
intravenously. A second control group (group 3) remained un-
treated (n = 6).

In the second cohort, the same strain of mice (n = 12) re-
ceived subcutaneous unilateral flank injections of 5 3 106 un-
labeled glioma cells. Five days after tumor inoculation (day 0 
time point), mice were divided into two groups. Group 4 (n = 6) 
received 1 3 107 TAT-PFC–labeled CAR T cells in PBS injected 
intratumorally, and group 5 (n = 6) received the same number of 
TAT-PFC–labeled untransduced T cells intratumorally.

In Vivo Bioluminescence Imaging
Longitudinal bioluminescence imaging (BLI) was performed 
on day 0, 1, 3, 7, and 10 using an IVIS Spectrum system 
(PerkinElmer, Waltham, Mass). d-luciferin (Intrace Medical, 
Lausanne, Switzerland) was administered intraperitoneally at 
a dose of 150 mg/kg 10 minutes prior to imaging. Mice were 
anesthetized (2% isoflurane in oxygen) during BLI. Regions of 
interest were defined as a circle encompassing the luminescent 
signal from each tumor, and the total flux (photons/sec) was 
calculated using Living Image Software (PerkinElmer). Follow-
ing BLI, tumor sizes were measured using a caliper.

MRI Scans
MRI was performed on the same days as BLI. For groups 4 
and 5, day 0 corresponds to imaging 2 hours after intratumoral 
injection of T cells. MRI details can be found in Appendix 
E5 (supplement). MRI measurements were performed with an 
11.7-T Bruker BioSpec preclinical scanner (Bruker, Billerica, 
Mass) with a dual-tuned 1H/19F birdcage volume coil (Bruker).

The 19F images were acquired using a rapid acquisition with 
relaxation enhancement (RARE) sequence with the following 
parameters: repetition time (TR), 2000 msec; echo time (TE), 
13 msec; RARE factor, four; matrix, 64 3 46; field of view, 32 3 
24 mm2; spatial resolution, 0.5 3 0.5 mm2; section thickness, 1 
mm; 32 averages; and 12 sections. 1H anatomic images were also 
acquired using the RARE sequence, with TR, 2000 msec; TE, 
14 msec; RARE factor, two; matrix, 256 3 184; field of view, 32 
3 24 mm2; spatial resolution, 0.125 3 0.13 mm2; section thick-
ness, 1 mm; two averages; and 12 sections. The total tumor 19F 
signal (ie, total fluorine atoms) at each time point was calculated 
from raw image data using Voxel Tracker software (Celsense, 
Pittsburgh, Pa), which incorporates the external reference and 
image noise as described elsewhere (24,25).

The 19F T1 values were measured using a point-resolved spec-
troscopy sequence, by defining a voxel encompassing the entire 
tumor mass (approximately 8 3 8 3 8 mm3). Twelve TR values 
were used, ranging between 0.1 and 6 seconds, with a total ac-
quisition time of approximately 30 minutes. Imaging bandwidth 
was adjusted to exclude potential interference of the isoflurane 
signals on spectra, as described elsewhere (26). The T1 values 
were fit using a three-parameter single exponential equation in 
MNova software (version 6.0.2; Mestrelab Research, Santiago de 
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In Vivo Glioma Oximetry
Localized 19F MR spectroscopy, with a single voxel encom-
passing the tumor, was used to measure relaxation rate (R1) 
values. Absolute tumor Po2 was calculated from the measured 
R1 using a calibration curve (Fig E2 [supplement]). A sum-
mary of the longitudinal tumor cell Po2 results is shown in 

undergo exocytosis by the cell (27). Signal loss is presumably 
attributed to glioma cell death as well as scavenging and re-
moval of cell contents by itinerant macrophages, as described 
elsewhere (22). Thus, the 19F signal is inversely proportional 
to tumor burden and therefore may function as a therapeutic 
marker in preclinical models.

Figure 3: Longitudinal glioma tumor partial pressure of oxygen (Po2) after chimeric antigen receptor (CAR) T-cell therapy. A, Summary 
of tumor cell Po2 results following systemic delivery of CAR T cells or untransduced T cells as well as results of untreated controls. A significant 
increase in tumor Po2 in CAR T-cell–treated animals was observed at day 3 after infusion (*P = .0114). The Po2 is calculated from the fluorine 
19 (19F) relaxation rates (R1), measured from magnetization recoveries of the recorded 19F signal. Data are presented as mean ± standard 
error. B, Box plots of R1 data for each experimental group on day 0, 1, 3, 7, and 10.

Figure 1: In vivo fluorine 19 (19F) signal in glioma tumor after intravenous chimeric antigen receptor T-cell (CAR T) therapy. A, Proton (1H) axial MRI of mouse abdomen 
(left) with flank tumor (*) and 19F image (right) with perfluorocarbon-labeled glioma cells appearing as a bright hotspot. B, Composite 1H/19F images of a mouse receiving 
CAR T cells at day 0 (D0, left), 7 (D7, middle), and 10 (D10, right). Representative longitudinal overlays of a CAR T-cell–treated mouse show modest tumor growth and 
decreased 19F signal as a result of cytotoxic T-cell therapy. C, In comparison, mice receiving untransduced T cells exhibit persistent fluorine signal at day 10 (D10). Here, 19F 
signal is detected in one to three contiguous tumor sections, where only a single section is displayed at each time point.

Figure 2: Effect of intravenously delivered chimeric antigen receptor (CAR) T cells on tumor growth and total fluorine content. A, Longitudinal bioluminescence measure-
ments show half as much radiance in CAR T-cell–treated animals compared with controls at day 7 (*P = .01). By day 10 the radiance gap widens, representing significant 
tumor growth reduction in the CAR T-cell–treated group (*P = .01). Data are presented as mean ± standard error. B, Total fluorine 19 (19F) content in the tumors as measured 
by longitudinal MRI. Here, the total 19F content is measured in all contiguous sections in tumor region that shows detectable signals. Control groups do not exhibit significant 
19F signal loss over 10 days, whereas in CAR T-cell–treated animals 19F signal decreases by approximately 60% in the same period. Data are presented as mean ± standard 
deviation (*P = .01). C, Comparison of total fluorine atoms to bioluminescence signal in tumors yields a strong negative correlation (Pearson r = −0.85 < r < −0.98) in all 
groups (n = 25 per group), suggesting that total fluorine signal is an indicator of tumor killing and putative therapeutic efficacy.
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Histologic Assessment of the Tumor Environment after T-cell 
Treatment
Histologic analyses confirm intracellular localization of PFC 
in glioma cells and the presence of T cells in tumors (Fig E4 
[supplement]). Green fluorescent protein–expressing U87 cells 
labeled with fluorescently conjugated PFC nanoemulsion (28) 
prior to implantation display intracellular localization of PFC 
droplets and green fluorescent protein (group 8), thus support-
ing the origins of the measured Po2 values. Overall, viable cells 
retain PFC label in lysosomal vesicles long term, as detailed 
elsewhere (27).

Immunohistochemical staining of tumors at day 3 after cell 
transfer confirms the presence of numerous CAR T cells in the 
tumor (group 6) and, to a lesser extent, untransduced T cells 
(group 7), as shown in Figure 6, A. Terminal deoxynucleotidyl 
transferase–mediated dUTP nick end labeling staining revealed 
numerous apoptotic cells in the vicinity of CAR T cells, whereas 
few to no apoptotic cells were seen in untransduced T-cell–
treated tumors (Fig 6, A). In groups 6 and 7, more than twice 
the number of CAR T cells infiltrated the tumor compared with 
untransduced T cells (P , .001) (Fig 6, B). CAR T-cell–treated 
tumor slices display numerous apoptotic tumor cells, whereas 
few apoptotic cells were found in untransduced T-cell–treated 
tumors (P , .001) (Fig 6, C). The number of CAR T cells pres-
ent correlated with the number of apoptotic cells per field (Pear-
son r = 0.67) whereas untransduced T cells did not (Pearson r = 
20.31) (Fig 6, D). These observations are consistent with CAR 
T cells exhibiting specific cytotoxic activity toward glioma cells 
in vivo. Untransduced T cells, despite reaching the tumor site, 
did not induce significant cell apoptosis.

Discussion
We investigated the use of PFC probe biosensors and 19F MRI 
for real-time monitoring of the intracellular Po2 response to 
CAR T-cell therapy against glioma. Peak glioma Po2 was ob-
served 3 days after infusion and suggests significant CAR T-
cell infiltration and targeted tumor cell killing, compared with 
untransduced T cells. Loss of glioma cell fluorine signal in the 
tumor correlated to reduction in tumor bioluminescence sig-
nal, suggesting effective tissue clearance of probe from apop-
totic cells. In addition, CAR T-cell numbers in the tumor at 
day 3 correlated to cancer cell apoptosis, whereas untransduced 
T cells did not generate significant apoptosis. CAR T-cell and 
untransduced T-cell Po2 did not change significantly upon 
contact with tumor cells; nonetheless, the inoculated cells re-
mained in the tumor vicinity during the imaging period (10 
days). The observation of a transient increase in Po2 in glioma 
target with therapeutic T-cell infusion can be viewed as a real-
time assay of anticancer effect and can potentially be used to 
evaluate cell therapy candidates preclinically, as well as to pre-
dict the optimal timing for redosing to maximize therapeu-
tic efficacy. Moreover, Po2 increase in the CAR T-cell–treated 
group was short-lived, suggesting insufficient therapeutic cell 
homing to the tumor and possible CAR T-cell exhaustion or 
tumor immunosuppression (29), each being a key bottleneck 
in adoptive cell therapy.

Figure 3, A. Notably, a transient spike was observed in tumor 
Po2 3 days after CAR T-cell infusion (R1 = 0.99 sec-1 6 0.12; 
Po2 = 134 mm Hg 6 25) (Fig 3), which was not observed for 
untransduced T cells (Po2 = 61 mm Hg 6 20) or controls 
(Po2 = 40 mm Hg 6 9, F[2,12] = 6.653; P = .0114 for analy-
sis of variance of all day 3 groups) (Table E1 [supplement]). 
There was no significant Po2 change in the control groups at 
day 3 (t test; P = .35). By day 7, tumor oxygenation returned 
to baseline in the CAR T cell (Fig 3, A). These data suggest 
specific CAR T-cell homing to the tumor tissue, presumably 
initiating a target killing cascade that transiently alters intra-
cellular Po2.

In further analysis, the R1 values for groups 1–3 are displayed 
as box plots in Figure 3, B. The linear mixed-effects statistical 
model demonstrates a significant difference in R1 between CAR 
T-cell–treated and untransduced T-cell–treated mice (treatment 
effect, 0.23; adjusted 95% CI: 0.01, 0.45) and untreated mice 
(treatment effect, 0.26; adjusted 95% CI: 0.05, 0.47) (Table E1 
[supplement]) on day 3 with respect to day 0 that returns to 
baseline by day 7.

In Vivo MRI and MR Spectroscopy of T-cell Po2

To monitor effector cell oximetry in vivo, we labeled CAR T 
cells prior to intratumoral delivery to the flank glioma model. 
T cells labeled overnight with TAT-PFC nanoemulsion show 
no significant viability impairment (Fig E3A, E3B [supple-
ment]). Additionally, phenotypic studies show no changes 
in CD4 and CD8 expression following TAT-PFC labeling 
(Figure E3C, E3D [supplement]). Longitudinal MRI 1H/19F 
overlay images of labeled CAR T cells and untransduced T 
cells are displayed in Figure 4. For mice receiving CAR or 
untransduced T cells (groups 4 and 5, respectively), day 0 
corresponds to imaging 2 hours after T-cell injection. The 
inoculated cells remained in the tumor vicinity during the 
10-day imaging period (Figs 4, 5, D). CAR T cells and un-
transduced T cells do not show significant changes in Po2 
upon contact with tumor cells (Fig 5, A, B). The longitudinal 
Po2 measurements for these groups are displayed in Figure 
5, A, and R1 values are displayed as box plots in Figure 5, B. 
The linear mixed-effects model shows no statistical signifi-
cance between CAR T cells and untransduced T cells at ei-
ther time point with respect to day 0 (treatment effect day 1, 
−0.17 [adjusted 95% CI: 20.42, 0.08]; day 3, 20.06 [95% 
CI: 20.32, 0.19]; day 7, 20.10 [95% CI: 20.36, 0.16]; day 
10, 0.09 [95% CI: 20.17, 0.35]). When injected, CAR T 
cells remained cytotoxic toward cancer cells compared with 
untransduced T cells, as evidenced by lower tumor BLI sig-
nal as early as day 7 (P = .001) (Fig 5, C). Absolute fluorine 
content of locally injected T cells in groups 4 and 5 did not 
change over 10 days (P = .79 and P = .26, respectively) (Fig 5, 
D), in contrast to labeled glioma cells (Fig 2, B). Importantly, 
persistence of intracellular fluorine label in viable T cells has 
previously been established in vitro and in vivo in the same 
CAR T-cell–glioma treatment model used in this study using 
a fluorescent PFC emulsion and subsequent colocalization of 
the fluorescent signal in T cells by histopathology (22).

http://radiology-ic.rsna.org
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Neither CAR T cells nor control T cells exhibited significant 
Po2 changes over the course of 10 days by these techniques in 
this model. Generally, T cells undergo metabolic activation (30) 
upon binding to their specific antigen, resulting in increased 
oxygen consumption rate with the initiation of the killing cas-
cade (31). We speculate that CAR T cells may tightly regulate 
their intracellular oxygen content, resulting in no apparent Po2 
change despite increased oxygen consumption rate. In addi-
tion, CAR T cells in the tumor are likely to be heterogeneous 

metabolically, with some cells clearly displaying effector func-
tions, as evidenced by active tumor cell killing, and some T cells 
being exhausted or of CD41 phenotype. Nonetheless, CAR T 
cells injected intratumorally generated significant tumor growth 
reduction compared with their untransduced T-cell counter-
parts. As expected from the high number of cells delivered to the 
tumor, intratumoral injection of CAR T cells showed evident 
advantage over systemic injection based on BLI measurements 
(P = .04 at day 10). CAR T cells were not injected systemically 

Figure 4: Longitudinal in vivo imaging of perfluorocarbon-labeled chimeric antigen receptor (CAR) T cells delivered 
intratumorally. Shown are time-series proton and fluorine 19 images of the mouse abdomen bearing a flank tumor (*) with, 
A, perfluorocarbon-labeled CAR T cells (CAR T) or, B, untransduced T cells (untransduced T) at day (D) 0, 3, 7, and 10 after 
intratumoral injection. The data demonstrate accurate intratumoral delivery of T cells (hotspots) and persistent signal consistent 
with T-cell survival.

http://radiology-ic.rsna.org
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in the present study because homing efficiency to tumor is low 
in this model (19) and does not result in sufficient signal to yield 
reliable T1 measurements.

PFC labeling of tumor or T cells prior to injection enables 
uniform label distribution and circumvents biases resulting from 
local or systemic injection of tracer agent. Labeled cells retain the 
PFC label in situ, and mitosis results in symmetric partitioning 
of the PFC label to daughter cells (27). Po2 sensing by 19F MR 
spectroscopy is independent of the concentration of PFC in the 
cell (16); thus, cell division and probe dilution is not predicted 
to affect R1 measurement. Labeled cell death results in PFC dis-
persion and uptake predominately to Kupffer cells of the liver, as 
discussed elsewhere (22).

Although the mechanism of oxygen regulation in cancer cells 
after treatment is understudied, we speculate that the perforins 
released by CAR T cells upon binding to their cancer target is 
responsible for increased oxygen tension in the apoptotic cancer 
cell (32). The apoptotic pathway initiated by CAR T cells is ex-
pected to lead to tumor cell mitochondrial membrane permeabi-
lization and reduced oxidative phosphorylation (33,34) and, po-
tentially, reduced oxygen consumption. The Po2 measurements 
presented here build on prior results using 19F MR oximetry to 

monitor response to chemotherapy (15) and cytotoxic T cells 
(16). With similar methods used here, Kadayakkara et al (15) re-
ported basal Po2 of approximately 45 mm Hg in rat glioma cells, 
and treatment with a chemotherapeutic agent resulted in a sus-
tained Po2 increase to approximately 165 mm Hg over 72 hours. 
Zhong et al (16) used a murine model of glioma treated with 
Pmel-1 cytotoxic T cells and showed a transient Po2 increase (ap-
proximately 94 mm Hg) 2 days after infusion. In earlier studies, 
PFC nanoemulsion was directly injected intravenously, thereby 
enabling vasculature imaging (35–37) and tissue oximetry mea-
surements in vivo (38–41).

Established methods for in vivo oxygenation measurements, 
such as electrodes or fiber-optic sensors (42,43), require inva-
sive insertion of probes in tumors, resulting in tissue and vas-
cular damage, inflammation, and probe sampling bias. Blood 
oxygen level changes can be indirectly observed by monitoring 
relative levels of diamagnetic oxyhemoglobin and paramagnetic 
deoxyhemoglobin via conventional 1H MRI (44). Hemoglobin, 
devoid of oxygen, shortens the relaxation times of surround-
ing water protons, particularly T2, giving rise to blood oxygen 
level–dependent MRI contrast. Blood oxygen level–dependent 
MRI signal changes reflect vasculature and nearby parenchyma 

Figure 5: In vivo chimeric antigen receptor (CAR) T-cell partial pressure of oxygen (Po2) in tumor microenvironment. A, Summary of 
longitudinal T-cell Po2 measurements for intratumoral perfluorocarbon-labeled CAR T cells and untransduced T cells. B, Correspond-
ing relaxation rate (R1) data as box plots are shown. CAR T-cell and untransduced T-cell Po2 did not vary significantly over a 10-day 
monitoring period. C, Bioluminescence measurements show significantly lower radiance in CAR T-cell–treated animals compared 
with controls at day 7 (*P < .001), indicating a therapeutic effect. By day 10, the radiance gap widens, representing significant tumor 
growth reduction in the CAR T-cell–treated group (*P = .009). D, Absolute fluorine content of locally injected CAR T cells and control 
cells, by 19F MR spectroscopy, did not change significantly over 10 days (P = .79 and P = .26, respectively), suggesting labeled T-cell 
persistence.
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oxygenation and not cell-specific intracellular partial pressure. 
Moreover, poorly vascularized tumors may not show a blood ox-
ygen level–dependent effect. Our view is that cell-targeted PFC 
and 19F MR oximetry is an important advance, as it eliminates 
tissue injury and measurement errors, and it yields absolute Po2 
(in millimeters of mercury) in a defined cell population.

Intracellular tumor Po2 sensing using 19F is only applicable 
to preclinical models in its current form, but Po2 monitoring 
of PFC-labeled cell therapy products (18) is potentially trans-
latable. These same methods could be extended to other cell 
types of therapeutic interest, such as natural killer, dendritic, and 
stem-progenitor cells. Moreover, reliable detection of potential 
Po2 changes is ultimately limited by the obtainable 19F signal-to-
noise ratio of the labeled cells; thus, measurement reliability may 
suffer at lower clinical magnetic field strengths compared with 
the high field strength (11.7 T) used in the present study.

Overall, we show that 19F MRI enables temporal measure-
ments of tumor cell oxygen tension in response to CAR T-cell 
therapy. These data support the view that 19F Po2 MRI can pro-
vide insights into the modes of action of engineered T-cell im-
munotherapy against cancer. Ongoing efforts aim to understand 
the cellular basis of the delayed, transient hyperoxia measured in 
tumor cells with adoptive cell transfer, an observation that devi-
ates from the sustained hyperoxic state seen with conventional 
chemotherapy delivery (15); these insights may help to improve 

the design of future engineered T cells and to inform the course 
of administered immunotherapy.
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