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Abstract 13 

Most bacterial genomes contain integrated bacteriophages—prophages—in various states of decay. 14 

Many are active and able to excise from the genome and replicate, while others are cryptic 15 

prophages, remnants of their former selves.  Over the last two decades, many computational tools 16 

have been developed to identify the prophage components of bacterial genomes, and it is a 17 

particularly active area for the application of machine learning approaches. However, progress is 18 

hindered and comparisons thwarted because there are no manually curated bacterial genomes that 19 

can be used to test new prophage prediction algorithms. 20 

Here, we present a library of gold-standard bacterial genome annotations that include manually 21 

curated prophage annotations, and a computational framework to compare the predictions from 22 

different algorithms. We use this suite to compare all extant stand-alone prophage prediction 23 

algorithms to identify their strengths and weaknesses.  24 

We provide a FAIR dataset for prophage identification, and demonstrate the accuracy, precision, 25 

recall, and f1 score from the analysis of seven different algorithms for the prediction of prophages. 26 

We discuss caveats and concerns in this analysis and how those concerns may be mitigated. 27 

  28 
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Introduction 29 

Bacteriophages (phages), viruses that infect bacteria, can be either temperate or virulent. 30 

Temperate phages may integrate into their bacterial host genome and the host-integrated phage 31 

genome is referred to as a prophage. Prophages are ubiquitous and may constitute as much as 20 32 

percent of bacterial genomes (Casjens, 2003). Prophages replicate as part of the host bacterial 33 

genomes until external conditions trigger a transition into the virulent lytic cycle, resulting in 34 

replication and packaging of phages and typically the death of the host bacteria. Prophages generally 35 

contain a set of core genes with a conserved gene order that facilitate integration into the host 36 

genome, assembly of phage structural components, replication, and lysis of the host cell (Kang et al., 37 

2017, Canchaya et al., 2003). As well as these core genes, phages can contain an array of accessory 38 

metabolic genes that can effect significant phenotypic changes in the host bacteria (Breitbart, 2012). 39 

For instance, many prophages encode virulence factors such as toxins, or they can encode fitness 40 

factors such as nutrient uptake systems (Brüssow et al., 2004). Lastly, most prophages encode a 41 

variety of super-infection exclusion mechanism to prevent concurrent phage infections, including 42 

restriction/modification systems, toxin/antitoxin genes, repressors, etc. (Calendar, 1988). The 43 

function of most prophage accessory genes remains unknown.  44 

Core (pro)phage genes have long been used for identifying prophage regions. However, there are 45 

other unique characteristics that can distinguish prophages from their host genomes: bacterial 46 

genomes have a GC skew that correlates with direction of replication, and the insertion of prophages 47 

will generally disrupt this GC bias (Grigoriev, 1998). Transcript direction (Campbell, 2002) and length 48 

of prophage proteins have also proven to be useful metrics in predicting prophages (Akhter et al., 49 

2012, Song et al., 2019), where phage genes are generally smaller and are oriented in the same 50 

direction (Dutilh et al., 2014). Likewise, gene density tends to be higher in phage genomes and 51 

intergenic space shorter (Amgarten et al., 2018, McNair et al., 2019). 52 

Over the last two decades many prophage prediction tools have been developed, and they fall into 53 

two broad classes: (1) web-based tools where users upload a bacterial genome and retrieve 54 

annotations including PHASTER (Arndt et al., 2016), Prophage Hunter (Song et al., 2019), Prophinder 55 

(Lima-Mendez et al., 2008), PhageWeb (Sousa et al., 2018), and RAST (Aziz et al., 2008); and (2) 56 

command-line tools where users download a program and database to run the predictions locally 57 

(although some of these also provide a web interface for remote execution). In this work we focus 58 

on this latter set of tools (Table 1) because web-based tools typically do not handle the large 59 

numbers of simultaneous requests required to run comparisons across many genomes.  60 

Despite the abundance of prophage prediction algorithms, there has never been either a set of 61 

reference genomes against which all tools can be compared, nor a unified framework for comparing 62 

those tools to identify their relative strengths and weaknesses or to identify opportunities for 63 

improvement. We generated a set of manually annotated bacterial genomes released under the 64 

FAIR principles (Findable, Accessible, Interoperable, and Reusable), and developed an openly 65 

available and accessible framework to compare prophage prediction tools.  66 

Methods 67 

Running the tools 68 
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To assess the accuracy of the different prophage prediction tools, a set of 49 gold-standard publicly 69 

available bacterial genomes with manually curated prophage annotations was generated. The 70 

genomes and prophage annotations currently included are available in Tables S1 and S2. The 71 

genomes are in GenBank format and file conversion scripts are included in the framework to convert 72 

those files to formats used by the different software. The tools that are currently included in the 73 

framework are outlined in Table 1. Snakemake (Köster and Rahmann, 2012) pipelines utilising conda 74 

(Anaconda Software Distribution. Conda. v4.10.1, April 2021) package manager environments were 75 

created for each tool to handle the installation of the tool and its dependencies, running of the 76 

analyses, output file conversion to a standardized format, and benchmarking of the run stage. 77 

Where possible, annotations from the GenBank files were used in the analysis to promote 78 

consistency between comparisons. Additional pipelines were created for running PhiSpy using the 79 

included training sets for the appropriate genera, and for running PhiSpy with pVOG (Grazziotin et 80 

al., 2017) HMMs and these are also available in the repository. DBSCAN-SWA was not able to 81 

consistently finish when using GenBank files as input, and instead the genome files in fasta format 82 

were used. Another pipeline was created to pool the results from each tool and some comparisons 83 

are illustrated in the included Jupyter notebook. Testing and development of the pipelines were 84 

conducted on Flinders University’s DeepThought HPC infrastructure. The final benchmarking analysis 85 

was performed on a stand-alone node consisting of dual Intel® Xeon® Gold 6242R processors 86 

(40 cores, 80 threads), 768 GB of RAM, and 58 TB of disk space. Each tool was executed on all 87 

genomes in parallel (one thread per job), with no other jobs running. 88 

Benchmark metrics 89 

There are many potential ways to compare prophage predictions: For instance, is it more important 90 

to capture all prophage regions or minimise false positives? Is it more important to identify all the 91 

phage-encoded genes, or the exact locations of the attachment site core duplications (attL and 92 

attR)? The runtime and CPU time in seconds, peak memory usage and file write operations were 93 

Box 1. Benchmark Metrics Used in this Analysis 

Accuracy was calculated as the ratio of correctly labelled genes to 
all CDS features from the GenBank file. 
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Precision was calculated as the ratio of correctly labelled phage 
CDS features to all predicted prophage CDS features 

��

�� � ��
 

 
Recall was calculated as the ratio of correctly labelled prophage 
CDS features to all known prophage CDS features 

��

�� � ��
 

 
The f1 Score was calculated as the harmonic mean of Precision 
and Recall 
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Accuracy provides an overall impression of correctness but is distorted by the vast difference in the 

numbers of prophage and non-prophage CDS features present in the genomes. The current gold-standard 

set includes 7,729 prophage proteins and 177,649 non-prophage proteins. Therefore, predicting everything 

as not coming from a prophage will result in an accuracy of 0.96. Similarly, identifying everything as coming 

from a prophage will result in high Recall, since that favours minimising false negatives. In contrast, 

Precision favours minimising false-positives and so only predicting very confident regions will result in high 

precision. The f1 Score is the most suitable for comparing predictions as it gives equal weighting to both 

precision and recall, and thus balances the unevenness inherent in this data. 
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captured by Snakemake for the steps running the prophage tools only (not for any file conversion 94 

steps before or after running each tool). The predictions were then compared to the gold standard 95 

annotations and the number of true positive (TP), true negative (TN), false positive (FP) and false 96 

negative (FN) gene labels were used to calculate the performance metrics. Each application marks 97 

prophages slightly differently, and therefore we used the designation of coding sequence (CDS) 98 

features as phage or not to assess prophage predictions.  99 

Adding new genomes  100 

We developed the framework to simplify the addition of new genomes to the benchmarks. Each 101 

genome is provided in the standard GenBank format, and the prophages are marked by the inclusion 102 

of a non-standard flag for each genomic feature that indicates that it is part of a prophage. We use 103 

the qualifier /is_phage=”1” to indicate prophage regions.  104 

Results and Discussion 105 

Software Compared 106 

We compared the availability, installation, and results from ten different prophage prediction 107 

algorithms (Table 1). Two—ProphET (Reis-Cunha et al., 2019) and LysoPhD (Niu et al., 2019) —could 108 

not be successfully installed and were not included in the current framework (see below). The 109 

remaining eight PhiSpy (Akhter et al., 2012), Phage Finder (Fouts, 2006), VIBRANT (Kieft et al., 2020), 110 

VirSorter (Roux et al., 2015), Virsorter2 (Guo et al., 2021), Phigaro (Starikova et al., 2020), 111 

PhageBoost (Sirén et al., 2021), and DBSCAN-SWA (Gan et al., 2020) were each used to predict the 112 

prophages in 49 different manually curated microbial genomes. 113 

Most of these programs utilize protein sequence similarity and HMM searches of core prophage 114 

genes to identify prophage regions. PhageBoost leverages a large range of protein features (such as 115 

dipeptide and tripeptide combinations) with a trained prediction model. PhiSpy was originally 116 

designed to identify prophage regions based upon seven distinct characteristics: protein length, 117 

transcript directionality, AT and GC skew, unique phage words, phage insertion points, optionally 118 

phage protein similarity and sequence similarity. DBSCAN-SWA likewise uses a range of gene metrics 119 

and trained prediction models to identify prophages.  120 

Regardless of whether annotations are available, Virsorter2, Phigaro, and PhageBoost all perform de 121 

novo gene prediction with Prodigal (Hyatt et al., 2010) and VirSorter uses MetaGeneAnnotator 122 

(Noguchi et al., 2008) for the same purpose. VIBRANT can take proteins if they have ‘Prodigal format 123 

definition lines’ but otherwise performs predictions with Prodigal. PhageBoost can take existing 124 

annotations but this requires additional coding by the user. DBSCAN-SWA can take annotations or 125 

can perform gene predictions with Prokka (Seemann, 2014). PhiSpy takes an annotated genome in 126 

GenBank format and uses the annotations provided. 127 

  128 
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Table 1: Prophage identification tools currently included in benchmarking framework 129 

Tool (year) Version Package 

manager 

Dependencies Database 

size 

Approach Citation 

Phage Finder 

(2006) 

2.1  Aragorn, blast-legacy, 

hmmer, infernal, 

mummer, trnascan-se 

 

93 MB  

 

Legacy-BLAST, 

HMMs 

(Fouts, 

2006) 

PhiSpy 

(2012) 

4.2.6 conda, 

pip 

Python3, biopython, 

numpy, scipy 

47 MB 

required, 

733 MB 

optional 

(pVOGs) 

Gene and 

nucleotide 

metrics, 

AT/CG skew, 

kmer 

comparison, 

machine 

learning, 

HMMs, 

annotations 

(Akhter 

et al., 

2012) 

VirSorter 

(2015) 

1.0.6 conda mcl, muscle, blast+, 

bioperl, hmmer, 

diamond, 

metagene_annotator 

13 GB Alignments, 

HMMs 

(Roux et 

al., 2015) 

Phigaro 

(2020) 

2.3.0 conda, 

pip 

Python3, 

beautifulsoup4, 

biopython, bs4, 

hmmer, lxml, numpy, 

pandas, plotly, 

prodigal, pyyaml, shsix 

1.6 GB HMMs (Starikova 

et al., 

2020) 

DBSCAN-

SWA (2020) 

2e61b95  Numpy, Biopython, 

sklearn, Prokka 

2.2 GB Gene metrics, 

alignments 

(Gan et 

al., 2020) 

VIBRANT 

(2020) 

1.2.1 conda Python3, Prodigal, 

HMMER3, BioPython, 

Pandas, Matplotlib, 

Seaborn, Numpy, Scikit-

learn, Pickle 

11 GB HMMs (KEGG, 

Pfam, VOG), 

machine 

learning 

(Kieft et 

al., 2020) 

PhageBoost 

(2021) 

0.1.7 pip Python3 13 MB Gene and 

nucleotide 

metrics, 

machine 

learning 

(Sirén et 

al., 2021) 

VirSorter2 

(2021) 

2.2.1 conda Python3, snakemake, 

scikit-learn, 

imbalanced-learn, 

pandas, seaborn, 

hmmer, prodigal, 

screed 

12 GB Alignments, 

HMMs 

(Guo et 

al., 2021) 

 130 

Ease of installation 131 

The prophage prediction packages Phigaro, PhiSpy, VIBRANT, VirSorter, and VirSorter2 are all able to 132 

be installed with conda from the Bioconda channel (Grüning et al., 2018), while Phispy, Phigaro, and 133 

PhageBoost can be installed with pip—the Python package installer. Phigaro, VIBRANT, VirSorter, 134 

and VirSorter2 require a manual one-time setup to download their respective databases. Phigaro 135 

uses hard-coded file paths for its database installation, either to the user’s home directory or to a 136 

system directory requiring root permissions. Neither option is ideal as it is impossible to have 137 
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isolated versions or installations of the program, and it prevents updating the installation paths of its 138 

dependencies. For PhageBoost to be able to take existing annotations, a custom script was created 139 

to skip the gene prediction stage and run the program. Basic PhiSpy functionality is provided without 140 

requiring third-party databases. However, if the HMM search option is invoked, a database of phage-141 

like proteins— e.g. pVOG (Grazziotin et al., 2017), VOGdb (https://vogdb.org), or PHROGS (Terzian P 142 

et al., 2021)—must be manually downloaded before it can be included in PhiSpy predictions. 143 

DBSCAN-SWA is not currently available on any package manager and must be pulled from GitHub, 144 

however all its dependencies are available via conda and it could easily be added in the future. All 145 

the above “manual” installation and setup steps are uncomplicated and are automatically executed 146 

by the Snakemake pipelines provided in the framework. 147 

Phage Finder was last updated in 2006 and is not available on any package manager that we are 148 

aware of. The installation process is dated with the package scripts liberally utilising hard-coded file 149 

paths. The Snakemake pipeline for this package resolves this with soft links between the 150 

framework’s directory to the user’s home directory (where the package expects to be installed). The 151 

dependencies are available via conda allowing the complete installation and setup to be handled 152 

automatically by Snakemake.  153 

LysoPhD does not appear to be available to download anywhere and was dropped from the 154 

comparison. ProphET requires the unsupported BLAST legacy and EMBOSS packages. It is not 155 

available on any package manager and instructions for a clean installation are incomplete and not 156 

compatible with conda. The codebase was last updated in 2019. Numerous issues were encountered 157 

installing dependencies and despite significant effort we were not able to create a working 158 

installation. ProphET’s installation script reported many errors during setup, but alarmingly finished 159 

with an exit code zero to indicate a successful installation. Preparing the necessary GFF files in a 160 

format that the program could use was non-trivial. The program reported errors during runtime that 161 

we believe are related to the errors encountered during installation; ProphET terminated with 162 

incomplete output but again returned an exit code zero to indicate a successful run. ProphET was 163 

dropped from the comparison. 164 

Prophage prediction performance 165 

There was minimal difference in the performance metrics for the different methods of running 166 

PhiSpy, and we have recently shown (Roach et al in preparation) that including HMM searches with 167 

PhiSpy results in less than one additional prophage being identified. Therefore, only PhiSpy using 168 

default settings will be discussed in comparison to the other tools. PhiSpy, VIBRANT, and Phigaro 169 

performed best for mean accuracy (Figure 1a; Table S3) while DBSCAN-SWA performed the worst. 170 

PhiSpy, Phigaro, and Phage Finder performed best for mean precision (Figure 1b; Table S3). DBSCAN-171 

SWA, PhageBoost, VirSorter, and VirSorter2 all performed poorly for mean precision. This was 172 

mostly driven by a high false-positive rate compared to the other tools (Figure S1). PhiSpy, VirSorter, 173 

VirSorter2, VIBRANT, DBSCAN-SWA and PhageBoost all had high mean recall scores.  174 

Each tool balances between recall and precision. For example, the more conservative Phage Finder 175 

performed relatively well in terms of precision, making very confident predictions, but had one of 176 

the lower mean recall ratios and was not predicting prophages based on limited information. In 177 

contrast, the more speculative DBSCAN-SWA and PhageBoost both exhibited the opposite trend.  178 

The f1 Score is a more nuanced metric, as it requires high performance in both precision and recall. 179 

PhiSpy, VIBRANT, Phigaro, VirSorter, and VirSorter2 all averaged above 0.5, while the remaining 180 

tools suffered from too many false predictions (FP or FN) (Figure 1d). 181 
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 182 

 183 

Figure 1: Prediction performance metrics for prophage callers. Violin plots for each tool are 184 
shown with individual points for each genome indicated. The graphs show: ‘Accuracy’ (a) as 185 
the ratio of correctly labelled genes to all genes, ‘Precision’ (b) as the ratio of correctly 186 
labelled phage genes to all predicted phage genes, ‘Recall’ (c) as the ratio of correctly 187 
labelled phage genes to all known phage genes, and ‘f1 Score’ (d) as defined in the 188 
methods. For all graphs, more is generally better. 189 

  190 
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 191 

Figure 2: Runtime and peak memory usage comparison. Violin plots for each tool are shown 192 

with individual points for each genome indicated. The graphs show total runtime in seconds 193 

(a), peak memory usage in MB (b), total file writes in MB (c) and the final total disk usage (all 194 

genomes) in MB (d). For all graphs, less is better.  195 

Runtime performance 196 

Many users will not be too concerned about runtime performance, for instance if they are 197 

performing a one-off analysis on a genome of interest all the tools will finish in a reasonable time. 198 

However, efficient resource utilization is an important consideration for large-scale analyses. 199 

Provisioning computing resources costs money and a well optimised tool that runs fast translates to 200 

real-world savings. The runtime distributions across the genomes are shown for each tool in Figure 201 

2a. The slowest prophage predictors were generally VirSorter and VirSorter2 with mean runtimes of 202 

1,316 and 2,118 seconds respectively, except for a single DBSCAN-SWA run taking 4,697 seconds. 203 

PhiSpy using the trained datasets was by far the fastest performing tool (8.4 seconds mean runtime), 204 

although if an appropriate training set is not available for the genus of interest it would first need to 205 

be generated to benefit from these reduced runtimes. PhageBoost was the next fastest (37.8 206 

seconds mean runtime) and Phage Finder, Phigaro, and PhiSpy with default parameters all 207 

performed similarly well in terms of runtime.  208 

Memory requirements also remain an important consideration for provisioning resources for large-209 

scale analyses. For instance, inefficiency is encountered where the memory required by single-210 

threaded processes exceeds the available memory per CPU. Peak memory usage for each tool is 211 

shown in Figure 2b. Memory requirements were lowest for VirSorter and trained PhiSpy with 210 212 

and 450 MB mean peak memory respectively. There was a single notable exception for trained 213 
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PhiSpy (predicting prophages in E. coli O157:57 EDL933) with a peak memory usage of 6.13 GB. 214 

DBSCAN-SWA had the highest mean peak memory of 6.0 GB with one run requiring 35 GB at its 215 

peak. Apart from the DBSCAN-SWA outlier, there were no situations where the peak memory usage 216 

would prevent the analysis from completing on a modest personal computer, but at larger-scales, 217 

Phigaro, PhiSpy, VirSorter, and VirSorter2 have an advantage in terms of peak memory usage. 218 

Another important consideration for large-scale analyses are the file sizes that are generated by the 219 

different tools. Large output file sizes can place considerable strain on storage capacities, and large 220 

numbers of read and write operations can severely impact the performance of a system or HPC 221 

cluster for all users. Total file writes for the default files (in MB, including temporary files) are shown 222 

in Figure 2c and the final disk usage for all genomes for each tool is shown in Figure 2d. VirSorter, 223 

DBSCAN-SWA, and VirSorter2 performed the most write operations with mean file writes of 2.063, 224 

0.262, and 0.034 GB respectively. The other tools performed similarly well and have a clear 225 

advantage at scale as they perform far fewer disk writes. VirSorter and DBSCAN-SWA removed most 226 

of their generated files, however, the final disk usage for these tools were still the highest at 5.36 227 

and 2.96 GB respectively. Disk usage for PhageBoost and PhiSpy was by far the lowest at 0.14 and 15 228 

MB respectively. 229 

Caveats 230 

Every bioinformatics comparison involves many biases. In this comparison, PhiSpy performs well, but 231 

we developed PhiSpy and many of the gold-standard genomes were extensively used during its 232 

development to optimize the algorithm. VirSorter and VirSorter2 were primarily developed to 233 

identify viral regions in metagenomes rather than prophages in bacterial genomes—although they 234 

have been used for that e.g. in Glickman et al. (2020)—and filtering VirSorter and VirSorter2 hits 235 

with CheckV (Nayfach et al., 2021) is recommended. By openly providing the Prophage Prediction 236 

Comparison framework, creating a framework to install and test different software, and defining a 237 

straightforward approach to labelling prophages in GenBank files, we hope to expand our gold-238 

standard set of genomes and mitigate many of our biases. We welcome the addition of other 239 

genomes (especially from beyond the Proteobacteria/Bacteroidetes/Firmicutes that are 240 

overrepresented in our gold-standard database). 241 

Recent developments in alternative approaches to predict prophages, including mining phage-like 242 

genes from metagenomes and then mapping them to complete genomes (Nayfach et al., 2021) and 243 

using short-read mapping to predict prophage regions from complete bacterial genomes (Kieft and 244 

Anantharaman, 2021) have the potential to generate many more ground-truth prophage 245 

observations. However, both approaches are limited as they will identify prophages that are active, 246 

but are unable to identify quiescent prophage regions, and thus for prophage prediction algorithms 247 

they will provide useful true positive datasets but may not provide accurate true negative datasets.  248 

Conclusions 249 

In this comparison, PhiSpy, VIBRANT, and Phigaro were the best performing prophage prediction 250 

tools for f1 score. PhiSpy and Phigaro were also among the best in terms of runtime performance 251 

metrics. Phage Finder performs well in terms of precision at the expense of false-negatives, whereas 252 

VirSorter, VirSorter2, DBSCAN-SWA and PhageBoost perform well for recall at the expense of false-253 

positives. Currently, DBSCAN-SWA, VirSorter, and VirSorter2 are not as well suited for large-scale 254 

identification of prophages from complete bacterial genomes when compared to the other tools. 255 

More genomes with manually curated prophage annotations are needed, and we anticipate that 256 

these benchmarks will change with the addition of new genomes, the addition of new tools, and as 257 
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the tools are updated over time. Developers are strongly encouraged to contribute by adding or 258 

updating their tool and adding their manually curated genomes to be included in the benchmarking. 259 

Users are strongly encouraged to check the GitHub repository for the latest results before making 260 

any decisions on which prophage prediction tool would best suit their needs. 261 

Author contributions 262 

RAE conceived of the study; KM and PD generated the initial gold-standard set and SKG, LI, and EP 263 

contributed to the gold-standard set; RAE and MJR created the framework; RAE, MJR, and SR 264 

performed the analysis. All authors contributed to the manuscript writing. 265 

Acknowledgments 266 

This work supported by the National Institute Of Diabetes And Digestive And Kidney Diseases of the 267 

National Institutes of Health under Award Number RC2DK116713 to RAE. The support provided by 268 

Flinders University for HPC research resources is acknowledged. 269 

Data availability 270 

All the data is available at DOI: 10.5281/zenodo.4739878 and from 271 

https://github.com/linsalrob/ProphagePredictionComparisons/tree/v0.1-beta 272 

Figure captions 273 

Figure 1: Prediction performance metrics for prophage callers. Violin plots for each tool are shown 274 

with individual points for each genome indicated. The graphs show: ‘Accuracy’ (a) as the ratio of 275 

correctly labelled genes to all genes, ‘Precision’ (b) as the ratio of correctly labelled phage genes to 276 

all predicted phage genes, ‘Recall’ (c) as the ratio of correctly labelled phage genes to all known 277 

phage genes, and ‘f1 Score’ (d) as defined in the methods. For all graphs, more is generally better. 278 

Figure 2: Runtime and peak memory usage comparison. Violin plots for each tool are shown with 279 

individual points for each genome indicated. The graphs show total runtime in seconds (a), peak 280 

memory usage in MB (b), total file writes in MB (c) and the final total disk usage (all genomes) in MB 281 

(d). For all graphs, less is better. 282 
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Table S1. Genomes provided in the gold-standard library with manually curated prophages 284 

Table S2. Prophages identified in the genomes 285 

Table S3. Mean metrics for each tool as measured from our gold-standard set of genomes 286 

Figure S1. False positive comparison. Violin plots for each tool show ‘False Positives’ as the number 287 

of genes incorrectly labelled prophage genes in each genome. Less is better. 288 
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Table S3. Mean metrics for each tool as measured from our gold-standard set of genomes. 387 

Tool Accuracy Precision Recall f1 score 

DBSCAN-SWA 0.72 0.30 0.72 0.33 
Phage Finder 0.95 0.76 0.35 0.43 

PhageBoost 0.94 0.45 0.70 0.45 

Phigaro 0.98 0.82 0.61 0.65 

PhiSpy 0.99 0.88 0.87 0.85 

VIBRANT 0.99 0.70 0.75 0.72 
VirSorter 0.96 0.49 0.83 0.58 

VirSorter2 0.93 0.42 0.82 0.54 

 388 

 389 

Figure S1. False positive comparison. Violin plots for each tool show ‘False Positives’ as the 390 
number of genes incorrectly labelled prophage genes in each genome. Less is better. 391 

 392 
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