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The domestication of the horse ∼5.5 kya and the emergence of
mounted riding, chariotry, and cavalry dramatically transformed
human civilization. However, the genetics underlying horse do-
mestication are difficult to reconstruct, given the near extinction
of wild horses. We therefore sequenced two ancient horse genomes
from Taymyr, Russia (at 7.4- and 24.3-fold coverage), both predat-
ing the earliest archeological evidence of domestication. We com-
pared these genomes with genomes of domesticated horses and
the wild Przewalski’s horse and found genetic structure within
Eurasia in the Late Pleistocene, with the ancient population con-
tributing significantly to the genetic variation of domesticated
breeds. We furthermore identified a conservative set of 125 po-
tential domestication targets using four complementary scans for
genes that have undergone positive selection. One group of genes
is involved in muscular and limb development, articular junctions,
and the cardiac system, and may represent physiological adapta-
tions to human utilization. A second group consists of genes with
cognitive functions, including social behavior, learning capabilities,
fear response, and agreeableness, which may have been key for
taming horses. We also found that domestication is associated
with inbreeding and an excess of deleterious mutations. This ge-
netic load is in line with the “cost of domestication” hypothesis
also reported for rice, tomatoes, and dogs, and it is generally at-
tributed to the relaxation of purifying selection resulting from the
strong demographic bottlenecks accompanying domestication.
Our work demonstrates the power of ancient genomes to recon-
struct the complex genetic changes that transformed wild animals
into their domesticated forms, and the population context in
which this process took place.

ancient DNA | horse domestication | Przewalski’s horse |
positive selection | cost of domestication

The domestication of the horse had a far-reaching impact on
the sociopolitical and economic trajectories of human soci-

eties (1). It not only provided meat and milk (2) but also enabled
the development of continent-sized nomadic empires, by trans-
forming warfare and allowing for the rapid spread of goods and
information over long distances. However, despite the charac-
terization of the genome of modern horses (3), an understanding

of the genetic processes underlying horse domestication is still
lacking. In other organisms, such an understanding is usually
achieved by comparing the genomes of domesticated species and
their wild relatives (4–6), but this approach is not directly ap-
plicable to horses. Recent genome-wide analyses have shown
that Przewalski’s horse, the last truly wild horse population
remaining today, is not the direct ancestor of domesticated
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horses (7, 8). Instead, it likely represents a sister population that
separated from the ancestral population of domesticated horses
some 38–72 kya (9). This date significantly predates not only the
widely accepted date for the beginning of horse domestication, ca.
5.5 kya (2), but also the earliest potential evidence for horse do-
mestication, ca. 7.5 kya (10). In addition, the current Przewalski’s
horse population descends from a captive stock consisting of only
13 founder individuals (7). This severe demographic bottleneck,
together with inbreeding resulting from unequal contributions
from different captive lineages, likely caused a substantial loss of
the diversity once present in Przewalski’s horses. As a result, no
modern horse population can fully represent the genetic diversity
ancestral to the modern, domesticated gene pool (11–13).
Ancient DNA allows tracking of past population histories

through time, accessing the gene pools of wild animals predating
domestication and exploring genetic variation that has been lost
in extant populations. Recovery of ancient DNA, coupled with
low-throughput gene candidate analyses, has previously been
used to investigate changes in the genetic diversity of horses over
time. This approach revealed coat color variation as one early
result of domestication, by showing that the selection of multiple
alleles driving diverse coloration patterns was already ongoing in
the Early Bronze Age (14). It has also revealed a loss of Y-
chromosomal haplotypes on both the Przewalski’s and domestic
horse lineages (12).
Using next-generation sequencing, the complete genome se-

quence of ancient individuals can now be deciphered (15), with
qualities rivaling the qualities of modern genomes (16–18). We
characterized complete genome sequences of two ancient horse
specimens predating the earliest evidence of horse domestication
to reveal the population context in which horse domestication
took place. We compared the genomic information of these
specimens with genomic information of six domestic horses,
representing five breeds, and one Przewalski’s horse (9), ranging
from a 7.4- to 32.7-fold average depth of coverage. We also in-
cluded the domestic donkey as an outgroup, which represents
a sister lineage of modern horses and shares a most common
recent ancestor with horses 4.0–4.5 Mya ago (9). This compari-
son enabled us to reconstruct the relationships between wild and
domesticated horses, and to explore the genetic mechanisms
underlying the behavioral, physiological, and other biological
changes that accompanied horse domestication.

Results and Discussion
Genome-Wide Sequencing of Two Ancient Wild Horses. From 29
permafrost-preserved horse bones previously screened for DNA

preservation (9), we selected two samples, CGG10022 and
CGG10023, suitable for genome sequencing (SI Appendix, section
S1). These two samples were excavated from the Russian Siberian
permafrost of the Taymyr Peninsula (Fig. 1A) and radiocarbon-
dated to the Late Pleistocene [42,692 ± 891 calibrated y before
present (cal BP) and 16,099 ± 192 cal BP, respectively], clearly
placing them before the onset of domestication (2, 10). Because
our previous genetic characterization of these samples was limited
to a 1.8- to 0.2-fold depth of coverage (9), we generated additional
sequence data, achieving a final coverage of 24.3-fold and 7.4-fold
for CGG10022 and CGG10023, respectively. Ratios of X-chro-
mosomal and autosomal coverages indicated that CGG10022 is
a mare, whereas CGG10023 is a stallion.
The recovered DNA sequences exhibited signatures of post-

mortem DNA damage typical of ancient DNA, with preferential
fragmentation at purines and inflated rates of cytosine deamination
at single-stranded overhangs (19, 20). Additionally, we found an
∼10-bp periodicity in the size of ancient DNA library inserts for
fragments shorter than ∼150 bp. This periodicity is reminiscent of
the nucleosomal protection patterns characterized for DNA
sequences from other fossil material (21). Finally, the microbial
metagenome of both samples was dominated by Actinobacteria, as
observed for permafrost soils (22, 23) and other Arctic horse bones
(24). Altogether, these characteristics support the data as ancient
and authentic.

Relationship Between Wild and Domesticated Horses. To investigate
the genomic processes of horse domestication, we must first
understand the evolutionary relationships between domesticated
horses, Przewalski’s horses, and the two newly sequenced ancient
horses (SI Appendix, section S2). The mitochondrial genome
sequences of the two ancient horses clustered within the exten-
sive diversity present in modern horses, as previously reported
(9, 12, 25). The Y-chromosome haplotype reconstructed for
CGG10023 was distinct from those Y-chromosome haplotypes
present in the modern horses, supporting previous hypotheses
that domestication was associated with a significant loss of
Y-chromosomal diversity (12, 26).
Inferring the phylogenetic relationships of ancient and mod-

ern horses from their nuclear genomes is challenging because of
the recombination of the nuclear DNA. In particular, diversity of
the nuclear genome is unlikely to be reciprocally monophyletic
among subpopulations, a phenomenon called incomplete lineage
sorting, which results in support for different topologies across loci
(27). We therefore used several approaches and different nuclear
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markers to infer the phylogenetic relationships and to estimate the
amount of gene flow between ancient and modern horses.
Principal component analysis (PCA) of ∼54,000 SNPs present

in the EquineSNP50 (Illumina) assay placed the two ancient
horses close to a group of geographically and morphologically
disparate domesticated breeds (Belgian, Franches-Montagnes,
Icelandic, Mongolian, and Norwegian Fjord; Fig. 1B). However,
the EquineSNP50 assay is heavily affected by ascertainment bias
toward a subset of modern breeds, making PCA results difficult to
interpret. We therefore performed two independent phylogenetic
analyses based on larger subsets of the nuclear data, whole-exome
sequences and all polymorphic sites, to reconstruct the most likely
relationships between ancient and modern horses.
The average tree topology inferred from the coding sequences

of the whole exome is shown in Fig. 2A. In this phylogeny, the
two ancient horses cluster together outside of the diversity of all
living horses. Within living horses, domesticated horses form
a monophyletic clade that is a sister to Przewalski’s horse. Next,
we inferred patterns of population splits using TreeMix applied to
the genome-wide polymorphisms identified in our dataset, repre-
senting ∼4,200,000 SNPs called for each sample. This analysis
produced the same average topology as in Fig. 2A. We therefore
assumed that this topology best reflected the relationships between
ancient and living horse populations.
To place the horse evolutionary history in a chronological

context, we estimated the divergence time between the ancestors
of the ancient horse population and ancestors of the modern
horse populations, as well as the divergence time between the
ancestors of Przewalski’s horses and domesticated horses. We
first calibrated the whole-exome phylogeny using the time to the
most recent common ancestor (TMRCA) of Equus (donkey vs.
horses) at 4.0–4.5 Mya (9) and tip dates for ancient samples,
assuming that the combined evolution of protein-coding genes
follows a molecular clock (Fig. 2A). Because the estimated
TMRCA of two populations predates the actual population split
event, this estimate provides upper boundaries of the population
split times. Next, we used F-statistics and coalescent simulations
to estimate population split times directly between the ancestors
of Przewalski’s horses and domesticated horses, under the as-
sumption of no gene flow between populations (Fig. 2B and SI
Appendix, Table S20). When considering the split between the
ancient population and the ancestors of modern domesticated

horses, where we identified significant amounts of gene flow
(below), this method underestimates the population split time,
and therefore provides a lower boundary for the population split
time estimate (SI Appendix, section 2.8.2). Here, we disregarded
sites containing transitions, because transitions may represent
DNA damage-related sequencing errors. Our analyses indicated
that the ancient horses from Taymyr split from the common
ancestors of domesticated and Przewalski’s horses at least 127–
159 kya (credible interval = 89–211 kya; SI Appendix, Table S20).
We further refined this estimate using ∂a∂i analyses to allow for
gene flow (SI Appendix, Table S27) and found that the pop-
ulation time split occurred 169 kya. This timing predates the
second-to-last interglacial, a time period during which warmer
climatic conditions prevailed and grasslands contracted (28), and
is associated with an ∼40% demographic decrease for horses, as
inferred by pairwise sequential Markovian coalescent (PSMC)
analyses (Fig. 3A) (29). The common ancestor of Przewalski’s
horses diverged from the common ancestor of domesticated
horses at least 43–52 kya (confidence interval = 41–70 kya; SI
Appendix, Table S20), in line with previous results (9). This time
period coincides with an ∼60% demographic decline for horses
inferred using PSMC analyses (Fig. 3A), potentially resulting
from ongoing fragmentation of horse habitats around that time.
In addition to incomplete lineage sorting, the nuclear phy-

logeny and relationships among lineages can be influenced by
gene flow that occurs between populations after their initial di-
vergence. We therefore tested for the presence or absence of
gene flow across populations using admixture tests based on the
D-statistic (30). This analysis revealed a statistically significant
excess of shared derived polymorphisms between the ancient and
domesticated horses in the following quartets (Przewalski’s,
Domesticated; Ancient, Donkey), where “Domesticated” rep-
resents any of the six domesticated horse genomes included in
this study (SI Appendix, section S2.7). This excess of shared de-
rived mutations suggests the presence of gene flow between the
population ancestral to domesticated horses and the population
descended from the one to which our ancient horses belonged, as
confirmed by the ∂a∂i analyses, which also showed statistically
significant support for population models including migration
over models without migration (SI Appendix, section S2.9).
The D-statistics revealed that no domesticated horse shares

more derived alleles than any other domesticated horse with the
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ancient horses when examining quartets, including two domes-
ticated horses, one ancient horse, and the domestic donkey
(Domesticated1, Domesticated2; Ancient, Donkey). This obser-
vation suggests that both ancient horses are equidistant to all
domesticated breeds investigated here, and that admixture pre-
dated the divergence of modern breeds and occurred between
the population ancestral to domesticated horses and the pop-
ulation to which our ancient horses belonged. Alternatively, this
admixture could have occurred at comparable levels in all do-
mesticated breeds after they diverged. The large majority of the
quartets including two domesticated horses, the Przewalski’s
horse, and the domestic donkey (Domesticated1, Domesticated2;
Przewalski’s, Donkey) were nonsignificant. These results sug-
gested an absence of a detectable admixture between the do-
mesticated and Przewalski’s horse populations after their initial
divergence, in line with previous results (9).
Overall, our analyses suggest two possible models to explain

horse evolutionary history before domestication (Fig. 3 B and C).
Both models suggest some levels of genetic structure among
Eurasian horse populations during the Late Pleistocene, which
was not apparent in the temporal and geographic distribution of
mitochondrial haplotypes (31). In the first model (Fig. 3B), the
population including our ancient horses and their descendants
first separated from common ancestors of domesticated horses
and Przewalski’s horses, and later admixed with the population
ancestral to domesticated horses after it diverged from the
Przewalski’s horse population. This admixture could have oc-
curred before domestication or during the early stages of the
domestication process, following restocking from the wild as
previously suggested (13, 32, 33). Following the methods of
Durand et al. (30) and Cahill et al. (34), and assuming in-
stantaneous admixture, we can estimate that at least 12.9–17.8%
of the genomic variation present in domesticated horse genomes,
and potentially as much as 29.4–60.7%, could result from such
predomestication admixture or postdomestication restocking (SI
Appendix, section S2.7.3 and Table S19). In the second model
(Fig. 3C), population structure was present among Late Pleis-
tocene horses in Eurasia, with the ancient horse population

originating, albeit earlier, from a similar background to the an-
cestral population of domesticated horses, whereas Przewalski’s
horses derived from a different background. The data presented
in this paper do not, however, allow us to select between these
two possible models.
Our analyses reveal that a substantial fraction of the genome-

wide variation that is present in domesticated horses is not
present in Przewalski’s horses. These genetic differences may
have been exacerbated by the recent bottleneck, and consequent
loss of diversity, within Przewalski’s horses. We found the pres-
ence of highly homozygous tracks indicative of inbreeding within
the Przewalski’s horse genome (Fig. 4A and SI Appendix, Fig.
S36), as would be expected given the founder effect resulting
from only 13 individuals (7). Such tracks were also found among
domesticated horses but were almost absent from the ancient
genomes (Fig. 4A and SI Appendix, Figs. S36–S38). Together, the
distinct evolutionary histories of the lineages leading to domes-
ticated horses and Przewalski’s horses and the recent loss of
variation within the Przewalski’s horse population limit what can
be learned about horse domestication using only genomic data
from living horses. Thus, the ancient horse genomes offer an
unprecedented opportunity to investigate changes associated
with domestication.

Genetic Changes Associated with Horse Domestication. By compar-
ing genetic information of ancient and modern domesticated
horses, we could pinpoint the genetic changes associated with
domestication shared by all modern breeds. This methodology
contrasts with scans for outlier genomic regions among modern
breeds (35), which can, at best, identify genes that are specific to
breeds, in the absence of knowledge of the predomesticated
genetic background and sources of variation.
We first screened the ancient genomes for 50 SNPs associ-

ated with known Mendelian traits in modern horses. We ob-
served the reference allele at most loci, including the reference
alleles associated with diseases and coat color variation. Excep-
tions included the ZFAT gene, which is associated with varia-
tion in wither height (36), for which both ancient individuals
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carried a mixture of reference and alternative alleles. Addi-
tionally, we found that CGG10023 carried the alternative allele
at ACN9 homologue (S. cerevisiae; ACN9), CKM, and COX4/1,
all of which are associated with increased winning performance
in modern race horses (37, 38). For ACN9, the alternative al-
lele was also observed in CGG10022. In contrast, the short-
distance, performance-enhancing allele for the “speed gene,”
MSTN, (39) was not observed in either of the predomesticated
horses. These results suggest that some genetic variants as-
sociated with the desirable phenotypes of elite Thoroughbreds
have existed in the horse population for at least ∼16,000–
43,000 y. The presence of these SNPs in the ancient horses
implies that selection for these traits did not occur on de novo
mutations but on existing variation, which was either con-
tributed to the domesticated stock by the ancient population
through admixture or was cosegregating in both the ancestors
of the ancient horses and the ancestors of the domesticated
horses after their split.
We next used four complementary methods to scan the

genomes of modern and predomesticated horses for regions that
have undergone positive selection during domestication (Fig. 5
and SI Appendix, section S4). Despite exploiting signatures dis-
playing different statistical properties, these methods individually
detected genes previously identified as undergoing selection in do-
mesticated horses, such as KITLG (9) and melanocortin 1 receptor
(MC1R) (40), providing important validation of the approach as
a whole. We focused on a conservative set of 125 loci that were
identified by at least two of the above methods so as to limit
method-specific bias and narrow the list of candidates. Annota-
tions showed genes involved in gastrointestinal and neurological
diseases; endocrine system disorders; metabolism; perception;
bone and limb morphogenesis; growth; and the development of
the muscular, cardiovascular, and nervous systems.
Of the 125 genes undergoing positive selection during do-

mestication, a subset is related to the differentiation, organiza-
tion, and contraction of skeletal muscles, including ACTA1,
C-SKI, MYBPC1, and delta-sarcoglycan (SGCD). Defects in
these genes are associated with several forms of myopathies (41),
including limb-girdle muscular dystrophy 2F, which causes limb
musculature wasting and locomotory troubles in juvenile individ-
uals. Additionally, many selected genes are involved in balance
and motor coordination, including VRK1 and TCTN1, with defects
associated with underdevelopment of the cerebellum, motor dys-
function and muscle hypotonia (42, 43), and CNTN6, loss of which

causes motor coordination and equilibrium impairment in KO
mice (44). This set of genes also includes a member of the collagen
protein family, COL22A1, which localizes to myotendinous and
articular junctions (45). Taken together, these observations reveal
that genes influencing muscles, joints, balance, and locomotion
have represented important targets of selection during horse
domestication.
The cardiac system appears to be another key domestication

target, with multiple related genes showing evidence for posi-
tive selection, including acyl-CoA dehydrogenase family, member 8
(ACAD8), B-raf proto-oncogene (BRAF), fanconi anemia, com-
plementation group A (FANCA), SGCD, and calcium channel,
voltage-dependent, L type, alpha 1D subunit (CACNA1D). Defects
in these genes are associated with cardiomyopathy, cardiac malfor-
mation, sinoatrial node dysfunction, arrhythmia, and bradycardia
(46). We also identify genes involved in electrolyte metabolism and
homeostasis, including NR3C2, SCPEP1, WNK2, and CACNA1D,
with important direct (47, 48) and indirect (49) physiological con-
sequences for blood pressure regulation. These genes may have
enabled the adaptation of the equine physiology to the increased
energetic demands following their use in transportation, racing,
chariotry, and agriculture.
Interestingly, our scans also identify genes associated with

syndromes resulting in facial dysmorphy, skeletal dysplasia with
severe growth retardation, and malformed or shortened limbs,
including ACSF3, beta 1,3-galactosyltransferase-like (B3GALTL),
N-acetylglucosamine-1-phosphate transferase, alpha and beta sub-
units (GNPTAB), nipped-B homolog (Drosophila; NIPBL), and
POP1, as well as ACAD8, BRAF, and FANCA, which are also
involved in cardiac pathologies (50–53). These genes may have
been essential in skeletal and bone remodeling processes, pos-
sibly in relation to size shifts documented in the horse archeo-
logical record as early as the Late Bronze Age (54).
Finally, a large subset of genes is linked to brain devel-

opment, including neural growth (NINJ1, NTM), axon and glial
guidance (MATN2, DCC, ASTN1), synapse plasticity (DLGAP1),
neurogenesis (ALK, NUMB) and a variety of neurological dis-
orders. The latter include B3GALTL, GNPTAB, NIPBL, and
voltage-dependent anion-selective channel protein 1 (VDAC1),
which are associated with mental and psychomotor retardation
and learning disability. A second set of genes is associated with
behavioral syndromes, including JPH3, which is involved in
Huntington disease-like 2 and is associated with movement
impairment and chorea, as well as subcortical dementia (55).
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The voltage-dependent channel VDAC1 is involved in the
behavioral fear response, and GRID1 is associated with social
behavior and schizophrenia (56). CACNA1D has also been
associated with schizophrenia (57) and has been reported in
selection scans of cattle (58). These findings may enable
characterization of the mechanisms facilitating the emergence
of learning capabilities, social interactions, and behavioral
responses compatible with human interactions, which are
hallmarks of animal domestication (59).
In addition to the 125 genes considered above, many of the

genes identified as associated with domestication by only one
of the four methods are potentially interesting and worthy of
further research. These genes include synaptojanin 2 (SYNJ2),
which has been detected with PAML [phylogenetic analysis
by maximum likelihood; false discovery rate (FDR) = 5%]
and represents a longevity gene candidate associated with
variation in levels of agreeableness and cognitive abilities (60,
61). Such changes could have been instrumental in the de-
velopment of tameness and increased social interactions
with humans.

Genetic Load as the Cost of Domestication. Previous scans of do-
mesticated genomes have revealed an accumulation of deleteri-
ous mutations in rice (62, 63), tomatoes (64), and dogs (4). This
phenomenon has been termed the “cost of domestication” and
is proposed to be driven by the repetitive bottlenecks associated

with domestication, which reduce the efficiency of purifying
selection (4).
We estimated the deleterious mutation load before and after

domestication using genomic evolutionary rate profiling (GERP)
scores to measure the strength of purifying selection (65) (SI
Appendix, section S3). We disregarded CGG10023, due to in-
sufficient genome coverage and high error rate, and Twilight,
which represents the Thoroughbred horse used for generating
the EquCab2.0 assembly and is therefore expected to show
a strong deficit of derived alleles. We found significantly higher
deleterious mutation loads in the genomes of the modern do-
mesticated horses (Fig. 4B), where a higher proportion of sites
under strong purifying selection were affected by mutations (SI
Appendix, Fig. S30). The higher mutational load in domesticated
horses is consistent with both the cost of domestication hy-
pothesis and the recent major demographic bottleneck detected
in horses (9) (SI Appendix, section S2.10). We note a striking
difference in the estimated mutational loads for the two Icelandic
genomes, which does not have an impact on the significance of our
tests, however, and is likely explained by the different methodol-
ogy used for generating the P5782 genome (66).
The observed difference in deleterious mutation loads be-

tween ancient and domesticated horses could also reflect the
difference in their inbreeding levels (Fig. 4A and SI Appendix,
Fig. S38). This is because the presence of a heterozygous mu-
tation at a highly conserved site, which is assumed to be dele-

A B

C D

Fig. 5. Scans for positive selection. (A) Detection of selection by an increased and nonneutral ω-ratio, which represents the rate of nonsynonymous over
synonymous mutations in the clade containing the domesticated horses (red). Examples include the SYNJ2, SLC43A1, and ALDH1L2 genes. (B) Detection of
selection by a deficit in the observed rate of derived alleles in CGG10022 (blue) vs. the expected rate of derived alleles (red) among 32 modern breeds
(represented here by the Belgian horse); the position of MC1R within the region under selection, indicated in yellow, is signified by a black dot. (C) Detection
of selection defined by regions associated with decreased genetic diversity in domesticated horses relative to predomesticated horses [indicated by an in-
creased log-ratio of the Watterson estimator (θw)] and showing potential deviation from neutrality (indicated by decreased Tajima’s D values). Such a si-
multaneous decrease in genetic diversity and deviation from neutrality is exemplified by the region overlapping the MC1R gene. (D) Detection of selection
defined by a hidden Markov model that identifies long genomic tracks with a high probability (≥0.80) of carrying advantageous mutations cosegregating
within the six modern breeds.
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terious, implies a lower mutational load than a similar homozy-
gous mutation. Consequently, long homozygosity tracts and
a deficit of heterozygous sites resulting from inbreeding would
inflate the estimated genetic load. We therefore made the cal-
culation of mutational loads robust to inbreeding by conditioning
the analyses on homozygous sites. We found that sites under
especially strong selective constraint (GERP ≥ 4) remained
enriched for mutations in the genomes of the domesticated
horses relative to CGG10022 (P = 0.033). This relative enrichment
suggests that our findings are not simply due to inbreeding but,
instead, support the cost of domestication for horses. Interestingly,
we also found that the deleterious mutation load in the genome of
the wild Przewalski’s horse was similar to the deleterious mutation
load observed in domesticated horses (Fig. 4B), which may result
from their recent population collapse (7).

Conclusions
Many wild progenitors of domesticated animals have gone ex-
tinct or have experienced massive demographic bottlenecks (67),
making them poor surrogates for the gene pool from which
domesticated animals arose. Our results showcase how ancient
genomes can reveal the genetic background in which domesti-
cation took place, thereby illuminating the molecular changes
underlying domestication processes. Genome-wide information
from time series recapitulating major domestication stages will
be essential to understand fully the complex origins of the di-
versity of domesticated species that surround us today.

Methods
Detailed descriptions of samples and methods are provided in SI Appendix.

Sequencing of Ancient Samples. A total of three and eight new indexed
Illumina DNA libraries were built for CGG10022 and CGG10023, respectively.
Libraries were prepared based on previously reported procedures (9, 24, 68),
and contamination was monitored through mock extractions and amplifi-
cation blanks. All controls were negative. Libraries were sequenced on Illu-
mina platforms at the Danish National High-Throughput DNA Sequencing
Center. The sequencing data generated in this study for CGG10022 and
CGG10023 are available from the European Nucleotide Archive, using ac-
cession no. PRJEB7537.

Read Processing, Mapping, and Genotyping. Reads were processed from
trimming to genotyping using the PALEOMIX pipeline (69). Mapping and
genotyping was done separately for the nuclear genome (plus chrUn) and
for the mitochondrial genome. Default settings were used, except that
a minimum mapping quality of 25 was required, the seed option was
disabled, and uncollapsed paired-ended reads were excluded for an-
cient samples, given the expectation that ancient DNA templates are
predominantly short-sized.

Metagenomic Analyses and Postmortem Damage. Cytosine deamination rates
and fragmentation patterns were plotted using mapDamage2.0 (70), based on
100,000 randomly selected alignments against EquCab2.0. Metagenomic
analyses was carried out using MetaPhlan (71) implemented in the PALEOMIX
pipeline, as previously described (69). Shotgun reads were mapped using
Bowtie2, using end-to-end mode and default parameters, and taxon abun-
dances were examined in the statistical environment R, version 3.0.1 (72), as
described previously (24, 69).

Mitochondrial Phylogeny and Dating. Mitochondrial genomes were typed
following mapping against the horse reference mitochondrial genome
(Genbank accession no. NC_001640), using a majority rule, and requiring
three or more independent unique reads showing base qualities ≥30. We
partitioned the alignment into ribosomal RNA; tRNA; a control region; and
the first, second, and third codon positions for coding DNA sequences (CDSs)
and followed previously described procedures (9) to perform Bayesian
analyses in MrBayes (73) and Beast (74). In Beast, we used radiocarbon dates
and/or stratigraphic context information for tip calibration and selected
a Bayesian Skyline model assuming a log-uncorrelated relaxed clock (7.764 ≤
log Bayes Factor ≤ 44.985) to reconstruct the past demographic profile
of horses.

Y-Chromosome Haplotype. Y-chromosome haplotypes were recovered by
aligning reads against previously identified Y-chromosome contigs (12, 75),
first against the contigs alone and then remapped against the full nuclear
genome, including the Y-chromosome contigs, to control for repetitive
regions. Mapping and genotyping were as described above, except that a
minimum depth of 4 and a maximum depth of 50 were used when filtering
SNPs. Median joining networks (76) were obtained using Network v4.612.

PCA. PCA was carried out using SNPs overlapping with the genomic coor-
dinates covered by the equine SNP array for nine Przewalski’s horses, as well
as 14 (8) and 32 (40) domestic breeds, representing a total of 348 and 729
individuals, respectively. Individual genotypes were converted into PLINK
format (77) and further analyzed using “smartpca” of EIGENSOFT 4.0 (78).
The two ancient samples were combined using a Procrustes transformation
as implemented by the “proc” function of the Comprehensive R Archive
Network (CRAN) library vegan (79).

Whole-Exome Phylogeny. Phylogenetic inference was carried out using
a partitioned (codon positions 1–2 and 3) supermatrix of 20,384 protein-
coding genes from Ensembl v72 (80) following quality filtering, using the
longest transcript for each gene. One hundred bootstrap pseudoreplicate
alignments were generated from the supermatrix, and parsimony starting
trees were generated using Randomized Axelerated Maximum Likelihood
(RAxML) v7.3.2 (81) for both the original supermatrix and the bootstrap
supermatrices. Phylogenetic inference was carried out for each supermatrix
using Exascale Maximum Likelihood (ExaML) v1.0.2 (sco.h-its.org/exelixis/
software.html) under the “GAMMA” model of nucleotide substitutions and
the starting trees generated above.

TreeMix Analyses. Patterns of population splits and migration events were
analyzed using TreeMix (82) and the intersection of SNPs passing quality
filters for the ancient specimens, all modern horses, and the domestic don-
key (when included). In the first analysis, each sample was considered in-
dividually. In the second analysis, breeds were grouped according to their
known historical affinities and up to one migration edge was considered.
Both sets of analyses were run with or without the domestic donkey and
provided identical topologies.

Admixture Tests Using D-Statistics. The D-statistic was used to examine the
presence of gene flow between the ancient horse population, the Przewalski’s
horse population, and the population of domesticated horses. The D-statistic
was originally described by Green et al. (83), and was implemented as de-
scribed in Orlando et al. (9). Because the horse reference genome EquCab2.0
was generated from the Thoroughbred (Twilight) sample, this horse was ex-
cluded from the D-statistics.

Demographic Inference Using PSMC. PSMC (29) was performed as described
previously (9), with slight modifications of the maximum coverage
threshold per sample. We set up input parameters to values recommended
by the developers (29): number of iterations = 25, maximum 2N0 co-
alescent time = 15, initial θ∕ρ = 5. 100; bootstrap pseudoreplicates were
performed by splitting chromosomal sequences into shorter fragments of
500 kb and randomly selected regions, with replacement, to evaluate the
spread of the PSMC reconstructions. Demographic inferences were scaled
using the genome-wide substitution rate of 7.242 × 10−9 per site per
generation and a generation time of 8 y (9).

Population Split Times Using F-Statistics. The TMRCAs of major phylogenetic
clades observed in the whole-exome tree represent upper boundaries for
population split times. These TMRCAs were calculated for each bootstrap
tree in r8s using the Langley-Fitch (LF) method and POWELL algorithm (84),
by constraining the root height to 4.0–4.5 Mya (9) and fixing the dates of
CGG10022 and CGG10023 at 43 kya and 16.5 kya, respectively. We also
used coalescent simulations and F-statistics (83) to estimate lower bound-
aries of population split times. Coalescent simulations were performed
using fastsimcoal2 (85) under an isolation model and a composite de-
mographic model. This latter model was derived from the PSMC in-
ference for times older than 10 kya. Because the PSMC approach does
not provide reliable demographic information for recent times, the de-
mographic trajectory of the past 10,000 y was derived from previous
Bayesian Skyline reconstructions (11, 12). Posterior distributions of
population split times were obtained by simulating over a discrete grid
of possible times (every 5,000 y for the past 200,000 y) and by using
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F-statistics and a standard local linear regression approach within an
approximate Bayesian computation framework (86).

Genetic Load. GERP scores computed from the alignment of 35 mammals
to the human genome reference were used to quantify the level of evolu-
tionary constraint at polymorphic sites (65). We converted the EquCab2.0
genomic coordinates of the horse polymorphic sites into the hg19 coor-
dinates with the liftover tool (87), and the GERP score at each site was de-
termined. Functional classifications into exons and nonsynonymous sites
were obtained with ANNOVAR (88) applied to the Ensembl horse tran-
scripts. Analyses were restricted to CDSs from Ensembl v72, as well as 10 bp
upstream and downstream of each exon. For each polymorphic site ob-
served in a given horse sample, we defined the ancestral state using the
donkey sequence data and computed a measure of genetic load as the
product of the GERP score at each site and the number of derived alleles
carried by this individual at this site, averaged across sites for each in-
dividual. We considered only sites with GERP scores of −2 or greater be-
cause only those sites are considered as being under selection. We
compared the distribution of genetic load measures among individuals
using QQ plots and Kolmogorov–Smirnov tests.

Inbreeding Coverage. Inbreeding was estimated following previously
described methods (16) in which the proportion of mostly homozygous ge-
nomic segments is calculated; heterozygosity was estimated across the samples
by calculating the individual Watterson estimator for sliding windows of 50 kb
with a 10-kb step size using analysis of next-generation sequencing data
(www.popgen.dk/angsd/), excluding regions where less than 90% of bases
(45 kb) were covered and excluding transitions to account for the presence
of postmortem DNA damage in CGG10022 and CGG10023. Segments with
local changes in Watterson estimator values were estimated using the R
package “changepoints,” utilizing the binary segmentation algorithm.
Segment coordinates and corresponding heterozygosity estimates [mean
log(Watterson estimator)] were extracted. We excluded the X-chromo-
some for males.

Genome-Wide Selection Scans. First, we used branch tests as implemented in
PAML to identify genes where the fixation rate of nonsynonymous mutations
was significantly faster than the fixation rate of synonymous mutations in the
domesticated horses (FDR = 5%). Second, we calculated Tajima’s D-statistics
and the Watterson estimator to identify genomic regions where the genetic
diversity decreased in the domesticated horses and significantly deviated from
neutral expectations. Third, we capitalized on the recent publication of known
genotypes at 54,602 SNP loci for ca. 400 horses from 32 modern domesticated
breeds (8). We examined whether domesticated alleles at each locus coalesce
more recently than ancient alleles, as would be expected if domestication
results in a selective sweep. Finally, we developed a hidden Markov model to
identify regions of the genome with longer than expected tracks in which
alleles shared among the domesticated horses coalesce more recently than
alleles in the predomesticated horses. Hits from each of the four methods
were ranked on a scale (0, 1) separately for each analysis, and weights were
calculated as the sumof ranks for each gene.We selected genes with a weight>1
as a conservative set of candidate genes.
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