
UCLA
UCLA Previously Published Works

Title
A Fast Algorithm to Estimate the Deepest Points of Lakes for Regional Lake Registration

Permalink
https://escholarship.org/uc/item/0s9484tn

Journal
PLOS ONE, 10(12)

ISSN
1932-6203

Authors
Shen, Zhanfeng
Yu, Xinju
Sheng, Yongwei
et al.

Publication Date
2015

DOI
10.1371/journal.pone.0144700

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0s9484tn
https://escholarship.org/uc/item/0s9484tn#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

RESEARCH ARTICLE

A Fast Algorithm to Estimate the Deepest
Points of Lakes for Regional Lake Registration
Zhanfeng Shen1, Xinju Yu1*, Yongwei Sheng2, Junli Li3, Jiancheng Luo1

1 Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China,
2 Department of Geography, University of California, Los Angeles, CA 90095–1524, United States of
America, 3 Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830020,
China

* yuxj@radi.ac.cn

Abstract
When conducting image registration in the U.S. state of Alaska, it is very difficult to locate sat-

isfactory ground control points because ice, snow, and lakes cover much of the ground. How-

ever, GCPs can be located by seeking stable points from the extracted lake data. This paper

defines a process to estimate the deepest points of lakes as the most stable ground control

points for registration. We estimate the deepest point of a lake by computing the center point

of the largest inner circle (LIC) of the polygon representing the lake. An LIC-seeking method

based on Voronoi diagrams is proposed, and an algorithm based on medial axis simplifica-

tion (MAS) is introduced. The proposed design also incorporates parallel data computing. A

key issue of selecting a policy for partitioning vector data is carefully studied, the selected

policy that equalize the algorithm complexity is proved the most optimized policy for vector

parallel processing. Using several experimental applications, we conclude that the pre-

sented approach accurately estimates the deepest points in Alaskan lakes; furthermore, we

gain perfect efficiency using MAS and a policy of algorithm complexity equalization.

Introduction
Precise registration of images and lakes is required for lake change detection and analysis in
the North American state of Alaska. To perform this task, many ground control points
(GCPs), or tie points [1], are required. Because Alaska contains many lakes and is covered with
ice and snow much of the year, it is very difficult to locate valid GCPs in multi-phase remotely
sensed images or in lake extraction results. Despite the existence of many sophisticated regis-
tration algorithms, it is still difficult to register images acquired over such areas, owing to a
dearth of stable features [1]. The shapes and areas of lakes change significantly over time, thus,
it is necessary to locate the most stable points in the lakes as the GCPs. Sheng and Chintan pro-
posed methods that use the centroids of stable lakes as tie points for automated image registra-
tion [1, 2]. Compared with centroids of lakes, we contend that the lakes’ deepest points are
more suitable GCPs for image registration, because as lakes shrink or expand, the deepest point
of the lake will remain the same until the lake dries up [3]. A lake can be seen as a specific

PLOSONE | DOI:10.1371/journal.pone.0144700 December 14, 2015 1 / 15

OPEN ACCESS

Citation: Shen Z, Yu X, Sheng Y, Li J, Luo J (2015) A
Fast Algorithm to Estimate the Deepest Points of
Lakes for Regional Lake Registration. PLoS ONE 10
(12): e0144700. doi:10.1371/journal.pone.0144700

Editor: Andrew C Singer, NERC Centre for Ecology
& Hydrology, UNITED KINGDOM

Received: June 18, 2015

Accepted: November 23, 2015

Published: December 14, 2015

Copyright: © 2015 Shen et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All data in this paper
are available from the website: http://glovis.usgs.gov
and http://www.cresda.com.

Funding: This work was supported by the Chinese
863 project (No. 2013AA12A401), National Natural
Science Foundation project of China (No. 41101398),
the National Aeronautics and Space Administration
through the Terrestrial Hydrology Program (No.
NNX08AE51G).

Competing Interests: The authors have declared
that no competing interests exist.

Abbreviations: LIC, Largest Inner Circle; MAS,
Medical axis simplification; SDP, Sequential

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0144700&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://glovis.usgs.gov
http://www.cresda.com

shape of polygon; the boundary of the lake corresponds to the edge of a polygon, which can be
used to compute the deepest point of a lake for use as a valid GCP [4]. The deepest point of a
lake can be calculated by the distance from all the lakeshores to this inner point. Furthermore,
from a mathematical point of view, the center point of its largest inscribed circle is the deepest
point. Therefore, the problem of the deepest point estimation of a lake is indeed to find the cir-
cle center point of the largest inner circle (LIC) for an arbitrary polygon.

Many existing references focus on seeking LICs for convex polygons [5] or specific polygons
[6], rather than arbitrary polygons. Reference [7] provides an iterative approach for locating the
LICs of arbitrary polygons; however, there exist two main issues in the algorithm. First, a local
maximum circle, rather than the global LIC, may be obtained because of different initial iterative
points; second, the algorithm’s efficiency may be different when different iterative steps are
selected, and several uncertain problems may also appear. The Voronoi diagram is an important
mathematical method in computational geometry [8], and can describe the main skeleton of a
polygon. It has a strict mathematical definition and calculation method, and the center point of
the LIC must be an intersection of these Voronoi diagram lines or parabolas [9, 10]. Therefore,
we can locate the LIC by calculating the Voronoi diagram of a polygon corresponding to a lake.

Furthermore, the medial axis (MA) of a polygon is also developed for the LIC problem, and
its algorithm may be more efficient. The concept of medial axis transformation was first pro-
posed by Blum in 1967 [11] as a means to describe a figure. It is defined as follows: given a
polygon represented by G, the medial axisM(G) is the point set {q} internal to G such that
there are at least two points on the object’s boundary that are equidistant from {q} and are clos-
est to {q}. Hence, it is also referred to as a skeleton [11]. According to the definition above, an
intersection of medial axes is equidistant to at least three edges or vertexes (both belong to site
or elements); thus, the LIC’s center point must be one of the points from the medial axis inter-
section sets {o}. This technique has been proven useful in many engineering fields such as ele-
ment analysis, form analysis, path planning in robotics, solid modeling, and mesh generation
[12]. In the literature, different methods have been proposed for computing the medial axis
either approximately or exactly, including relying on discrete geometry [13–16], digital topol-
ogy [17,18], mathematical morphology [19], computational geometry [20,21], partial differen-
tial equations [22], or level-sets [23]. Generally, the methods for initial MA generation can be
divided into three types, namely, thinning-based methods, tracing methods, and methods
based on the Voronoi graph [24]. In this study, we obtain the medial axis result of a polygon by
simplifying a Voronoi diagram [5–7].

To expand upon the lakes registration problem and its application in Alaska, the medial
axis generation algorithm is first defined for an arbitrary vector polygon; based on this, the LIC
seeking algorithm is also presented. In addition, to better manage the large number of lakes
and large volumes of data, two improved methods for this algorithm are then respectively pro-
posed—medial axis simplification (MAS) and parallel computing; both methods can improve
the efficiency of the algorithm. The key issues involving the vector data partition policy were
then discussed in detail; the algorithm complexity equalizer policy (ACEP), defined later in the
paper, proved to be the most effective method for data partition. Finally, LIC-seeking experi-
ments were conducted in Alaska; in these experiments, the algorithm proposed in this paper is
proved to be feasible and efficient.

Methods

A largest inner circle-seeking algorithm for a vector polygon
The Voronoi diagram, which was defined in 1908 by Russian mathematician MG Voronoi, is a
very important mathematical model in computational geometry; it has been widely applied in

Deepest Points Estimation for Regional Lake Registration

PLOS ONE | DOI:10.1371/journal.pone.0144700 December 14, 2015 2 / 15

distribution policy; ADP, Attribute descending policy;
ACEP, Algorithm complexity equalization policy.

geometry, geography, and other fields [25–27]. We can obtain the polygon’s medial axis by
simplifying the Voronoi diagram.

1. Voronoi diagram generation algorithm based on “divide-and-conquer.”. The exist-
ing references use several classic Voronoi diagram generation algorithms; their algorithm com-

plexities are respectively o(n2) [28], oðn c
ffiffiffiffiffiffi
log n
p

Þ [29], O(n log3 n) [30], O(n log2 n) [10], O(logm
+ n log n) [31], O(nlog n) [9,10,32] and so on, where n is the edge number of the polygon and
m is the number of interior intersections. However, these references have not considered the
existence and influence of interior islands for a polygon, and this is a very important and inevi-
table issue when studying changes in lakes. In this paper, an algorithm whose complexity is
also O(n log n) is presented, and the influence of islands on algorithm complexity is analyzed
in detail. We separate arbitrary polygons into two classes: simple polygons and complex poly-
gons. Simple polygons have no interior island inside; in other words, the plane is divided into
only two regions, interior and exterior. In contrast, complex polygons contain one or more
islands inside. Fig 1 shows the algorithm implementation effect that locates the largest inner
circle of a polygon.

In Fig 1, the black lines marked from A to J show the boundary of a lake; Fig 1(a) and 1(b)
represent simple polygons, and Fig 1(c) and 1(d) represent complex polygons. The numbers
from 1 to 7 in 1(c) and 1(d) denote nodes that represent islands. The lines in the polygon are
the segments or parabolas generated by our algorithm (described in the following sections);
blue lines represent segments and red lines represent parabolas. The points marked a,b,. . . are
the intersections of the generated lines. Moreover, the green circle shows the largest inner circle
sought by the algorithm described. We will introduce the principle and implementation proce-
dure of the algorithm in the following sections.

1.1 Voronoi diagram generation method for a simple polygon: Because there will be numer-
ous generated Voronoi lines inside, and different algorithms may exhibit different levels of effi-
ciency when generating a Voronoi diagram, we adopt the “divide-and-conquer”method to

Fig 1. The algorithm to find the LIC based on Voronoi andmedial axis. (a) Voronoi diagram of a simple polygon. (b)Medial axis diagram of a simple
polygon. (c) Voronoi diagram of a complex polygon. (d)Medial axis diagram of a complex polygon.

doi:10.1371/journal.pone.0144700.g001

Deepest Points Estimation for Regional Lake Registration

PLOS ONE | DOI:10.1371/journal.pone.0144700 December 14, 2015 3 / 15

complete the Voronoi diagram. In Fig 1(a), the polygon consists of 10 edges: AB, BC , . . ., and

JA. These are evenly divided into two groups, and each group is computed to complete the
Voronoi diagram. Subsequently, the two results are merged and the final Voronoi diagram
result is obtained. Moreover, the five edges in each group can also be divided using the method
shown in Fig 2, until each leaf node has only one or two edges remaining.

As an example, consider the merging process of layer 2 in Fig 2. According to Figs 1(a) and
2, the Voronoi results should be merged from the second level to the first level of Fig 2; that is,

the method used to merge segment�AB;BC; . . . ; EF�and segment�FG;GH; . . . ; JA�. The fol-
lowing section (1.2) of this paper will discuss the algorithm. Using this method, we can obtain
all the leaf node shows in Fig 2, and the next section (1.3) of this paper will describe the Voro-
noi generation method for the leaf nodes.

1.2 Method to merge the Voronoi diagram for simple polygons: For simple polygons, Voronoi
diagrams can be calculated using the method shown in Fig 3, whose principle is similar to the
divide-and-conquer procedure of a binary tree. According to Fig 2, a simple polygon can be
divided into several Voronoi generation steps, and each step can be completed by the method
described in this section and the following section. In Fig 3, the black lines represent edges or seg-
ments of the lake boundary, the green dashed lines are the generated Voronoi straight lines, rays,
or segments, the red dashed lines correspond to the Voronoi parabolas, and the blue lines and red
parabolas (in Fig 3(c) and 3(d)) are the merged final results generated by the proposed algorithm.

Fig 3 shows the Voronoi diagram calculation process of a simple polygon, which is also
described in Fig 2. For a simple polygon with n edges, the Voronoi calculation process can be
implemented with the following steps: First, the edges in the polygon are divided averagely into
two parts (see Fig 3(a) and 3(b)), as shown in the first level of Fig 2. Second, each part’s Voro-
noi result is calculated separately and merged, as shown in Fig 3(c). The final Voronoi result
shown in Fig 3(d) is then achieved. Similarly, the parts shown in Fig 3(a) and 3(b) can also be
divided into two parts until each part only contains one or two sides, as shown in the last level
of Fig 2, similar to a binary tree bifurcation procedure.

Fig 2. Voronoi generation tree based on “divide-and-conquer”method.

doi:10.1371/journal.pone.0144700.g002

Deepest Points Estimation for Regional Lake Registration

PLOS ONE | DOI:10.1371/journal.pone.0144700 December 14, 2015 4 / 15

Fig 3(a) and 3(b) can be merged to achieve the result shown in Fig 3(c). The calculation proce-
dure should start from an intersection of the two parts, e.g., point 1 or point 5. In this example,
we start from point 5, and the angle of point 5’s two sides (ff456) should then be calculated. If the
angle is acute, the bisector of the angle is the result (explained later in 1.3); if the angle is obtuse,

the two perpendicular lines should be adopted. In this case, the bisector 5N of ff456 is calculated;
the sources of the two sides are also recorded, denoted here as 5N ð54; 56Þ (see Fig 3(c)). In
the next phase, the other intersection of

*
5N is judged after moving downwards. After calculating

the intersection of segment
*
5N with the Voronoi line from point 4 (4E) and point 6 (6G), the

first intersectionN is selected (5N intersects with 6G at pointN before intersecting with 4E). As
the process continues to judge the intersection sequence and record the corresponding sources,

we obtainNO ð54; 67Þ. By searching in the same manner,
_
OP ð4;$67Þ can be obtained,

where
_
OP is a parabola generated from focus 4 and directrix

$
67. The above process continues

until the other intersection of the two parts is found, e.g., point 1. Here
_
PQ ð4;$78Þ,

QR ð43; 78Þ,_RS ð8;$43Þ, ST ð43; 89Þ, TU ð32; 89Þ,UV ð21; 89Þ, V1
ð21; 91Þ are calculated sequentially and the search procedure is completed.

According to Figs 2, 3(a) and 3(b) can be divided and calculated in the same manner, and
the results are combined gradually as described in the procedure above. All the procedures are
similar to the division and combination processes of the binary tree, and we refer to this proce-
dure as a Voronoi generation process based on the "divide-and-conquer" technique. Section 1.3
shows some basic Voronoi diagram results generated by the leaf nodes of Fig 2.

1.3 Several basic Voronoi diagram generation methods: For the leaf of the “divide-and-con-
quer” binary tree, several basic Voronoi diagram generation methods are defined in Fig 4.

In Fig 4, black lines and points denote the input conditions (sites or elements), and blue and
red lines are the generated Voronoi output results. Furthermore, blue lines represent straight
lines, rays or segments, and red lines represent parabolas. Orange solid lines in Fig 4(d) and 4
(e) represent the generated external Voronoi results, and the green dashed lines shown in Fig 4
(b) and 4(c) are the lines perpendicular to the black input lines. Fig 4(a) is the Voronoi result of

a line segment AB, and the results are two straight lines perpendicular to segment AB, denoted

in this paper as
$
CD ðAB;AÞ and$EF ðAB;BÞ Fig 4(b) is the Voronoi result of a point A

with a line segment BC According to the definition of the Voronoi diagram, it is composed by

Fig 3. Voronoi diagram generation algorithm based on the binary tree principle for a simple polygon.

doi:10.1371/journal.pone.0144700.g003

Deepest Points Estimation for Regional Lake Registration

PLOS ONE | DOI:10.1371/journal.pone.0144700 December 14, 2015 5 / 15

the rays! DF and! EG, and a parabola
_
DE , where! DF and! EG are respectively the

perpendicular bisectors of line segment AB and AC , denoted in this paper as! DF ðA;BÞ
and! EG ðA;CÞ. Point A is the focus of parabola, and the straight line

$
BC is the directrix

of parabola, denoted here as
_
DE ðA; BCÞ. Fig 4(c) is the Voronoi result of two segments AB

and CD, which consists of rays! GI and! HJ , line segment EF , and two parabolas
_
GE and

_
FH , where! GI ðA;CÞ,! HJ ðB;DÞ. Line segment EF is the angle bisector of angle

AB and CD, which is expressed as EF ðAB;CDÞ. Similarly, the other two parabolas can be

expressed as
_
GE ðA;CDÞ and_FH ðD;ABÞ. Fig 4(d) and 4(e) show the Voronoi results

of two situations in which ffABC is respectively an acute angle and an obtuse angle. In Fig 4(d),
because ffABC is an acute angle and point B is convex, its internal Voronoi result is the angle

bisector! BD, denoted as! BD ðAB;BCÞ, and its external Voronoi results are two per-
pendicular segments, expressed here as! BE ðAB;BÞ and! BF ðBC ;BÞ. In Fig 4(e),
ffABC is an obtuse angle and point B is a reflex point, and its result is contrary to the case
shown in Fig 4(d). For those simple polygons, the Voronoi diagram results refer only to the
internal Voronoi lines (blue lines in Fig 4(d) or 4(e)). For the complex polygons, the internal
Voronoi results of the outer ring and the external Voronoi results of the inner ring should be
calculated and then combined into the final Voronoi results (see section 1.4).

1.4 Voronoi diagram for a complex polygon with Islands inside: For the complex polygons
with internal islands, we should calculate not only the internal Voronoi diagram of the outer

ring (�AB:::JA�) (see Fig 1(c)), but also the external Voronoi diagram of the inner ring (�123�and
�4567�). Moreover, we must calculate the Voronoi diagram result between the outer and the
inner ring, and here we use Fig 1(c) as an example to explain the procedure of the algorithm.

We must select a point from the inner ring as the starting point (see Fig 1(c)); in this exam-
ple, we use point 1: First, we find the edge in the outer ring of the polygon having the shortest

distance to point 1, i.e., edge BC . Then, we can obtain the Voronoi diagram from point 1 and

edge BC according to Fig 1(c), and the result is a parabola
_
ghi (the arc

_
hi is substituted by seg-

ment hi because of the subsequent searching process). As we continue to search downward in

the same direction, we obtain the parabola
_
gf ; both sides are also recorded and denoted here

as
_
gf ð1;ABÞ. As this searching method is repeated, we obtain

_
fe ð1;AJ Þ (here, the

Fig 4. Several basic Voronoi diagram generation results. (a) Voronoi calculation method for a line segment. (b) Voronoi calculation method for a point
and a line segment. (c) Voronoi calculation method for two segments. (d) Voronoi calculation method (ffABC is an acute angle). (e) Voronoi calculation
method (ffABC is an obtuse angle).

doi:10.1371/journal.pone.0144700.g004

Deepest Points Estimation for Regional Lake Registration

PLOS ONE | DOI:10.1371/journal.pone.0144700 December 14, 2015 6 / 15

intersection f of arc
_
gf and arc

_
fe should be computed), ed ð13;AJ Þ,_dc ð3;AJ Þ,

_
cb ð3; JIÞ, ba ð32; JIÞ,_aj ð2; IHÞ and so on. We then search in the reverse direction

from point 1, and we obtain hi ð12;BCÞ,_ij ð2; BCÞ and so on. At last, we combine the

results and obtain the Voronoi diagram between the inner and outer rings, i.e.,�abc:::ja�. When
the outer ring has more than one inner ring, the algorithm above should judge the distance not
only to the outer ring, but also to the other rings, because the existence of other inner rings
might lead to a change in the Voronoi diagram results.

2. Medial axis generation algorithm for a polygon. As mentioned above, the medial axis
of the polygon can be obtained directly from its Voronoi diagram [5]. According to the defini-
tion of the medial axis [30], the MA can be obtained by removing the reflex vertices from the
outer ring and convex vertices from the inner rings of its Voronoi diagram, Fig 1(b) and 1(d)
are the respective medial axes of Fig 1(a) and 1(c). Because we have removed the two perpen-
dicular lines from both the reflex vertices of the outer ring and the convex vertices of the inner
rings, the intersection number of MA will be 2(ner + nic) less than that of the Voronoi diagram,
where ner is the number of reflex vertices on the outer ring and nic is the number of convex ver-
tices on the inner rings. By removing some intersections that do not require computation, the
efficiency of the center point seeking algorithm will be significantly improved (see section 3).

3. Methods to find the largest inner circle. According to the definition and characteristics
of the Voronoi diagram, the LIC center point of the polygon must fall on the intersection of the
Voronoi diagram. In other words, we can seek the center point from the point a,b,c,. . .,k for
Fig 1(a) or seek from point a,b,. . .,ac for Fig 1(c) (red solid points in Fig 1); the seeking method
involves computing the minimum distance from these points to all the sides. For Fig 1(a), the

distance from point a to the line segment AB is equal to the distance from this point to BC and

JA. Therefore, the circle whose center is point a will be tangent to line segments AB, BC and JA
(in some cases, the circle may touch one of their endpoints but will not intersect with them; for

example, in Fig 1(a), the circle whose center is point e will be tangent to the segments HI , and
intersect with point C). After seeking, we record the maximum distance as the radius of the
LIC, and the point corresponds to the center point of LIC, namely, the deepest point in the
lake. The pseudo code for the seeking steps is as follows (see Table 1):

The main idea of the above pseudo-code is to locate the shortest distance from all the intersec-
tions of the Voronoi diagram to all its edges. If the shortest distance is smaller than variablemax-
Radius, the algorithm should break and move to the next point (line 7 in Table 1); if it is larger
than variablemaxRadius, the coordinates of the center point should be updated with those of
point (j). Using this technique, the center point of the LIC and its radius can be achieved.

Table 1. Algorithm to seek the LIC.

1 double maxRadius = 0;

2 for point(i) in all intersections

3 double minDist = 99999999

4 for segment(j) in all linesegments

5 compute dist(point(i), segment(j))

6 if(dist < maxRadius)

7 break and turn to next point(i)

8 if(dist < minDist)

9 minDist = dist

10 if(minDist > maxRadius)

11 maxRadius = minDist

doi:10.1371/journal.pone.0144700.t001

Deepest Points Estimation for Regional Lake Registration

PLOS ONE | DOI:10.1371/journal.pone.0144700 December 14, 2015 7 / 15

Amedial axis has homologous characteristics, in the same manner as a Voronoi diagram;
thus, we can obtain the LIC by calculating the shortest distance from the interior intersection
point sets, namely, points a,b,c,h,j in Fig 1(b) or points c,f,g,. . .,x in Fig 1(d), to all the edges. The
maximum value in these shortest distances is the radius of the LIC. Compared with the seeking
procedure of the Voronoi diagram, the medial axis has fewer intersections of the possible center
points, which reduces seek iterations and improves the searching efficiency of the algorithm.

4. Algorithm complexity analysis. The LIC-seeking process shows that the medial axis
and the Voronoi diagram generation process have the same algorithm complexity. Here, we
analyze the complexity of a Voronoi algorithm for a simple polygon with n edges, which are
divided into multiple leaf nodes for computation, as shown in Fig 2. The level number is log2 n,
and during every iteration, the algorithm must judge both sides of the node n times. Therefore,
the algorithm complexity is 2n × log2 n, i.e., O(nlog n).

Assume a complex polygon hasm inner rings, and there are n1,n2,. . .,nm edges for every

inner ring and n�Pm
i¼1

ni edges on the outer ring. Consequently, we can compute the algorithm

complexity and obtain the result O ðn�Pm
i¼1

niÞlogðn�
Pm
i¼1

niÞ
� �

, O(n1 log n1), . . ., O(nm log nm)

for the outer ring, the first inner ring, . . ., and them th inner ring. For the case ofm = 1, when
we compute the Voronoi diagram between the outer ring and inner ring, we must find the short-
est distance between the points on the inner ring and outer ring only once, and the algorithm
complexity is n−n1. The algorithm then searches in two directions until the Voronoi diagram is
close, and the algorithm complexity of this procedure is 2×(n−n1). Therefore, the final algorithm
complexity is n−n1 + 2×(n−n1), i.e. O(n). For the case ofm>1, the difference is that, during the
first iteration, the seeking algorithm should consider the relationship of different inner rings.
Thus, the algorithm complexity is n−ncur + 2×(n−ncur), and O(n), where cur is the current inner
ring and cur 2 (1,2,. . .,m). According to the analysis mentioned above, we can determine that
the final algorithm complexity is

O ðn�Pm
i¼1

niÞlogðn�
Pm
i¼1

niÞ
� �

þ Oðn1 log n1Þ þ . . .þ Oðnm log nmÞ þ OðnÞ þ . . .þ OðnÞ,
which is alsoO(nlog n). Therefore, the algorithm complexity of medial axis seeking is also
O(nlog n).

We now analyze the algorithm complexity of the LIC center point seeking procedure.
According to the LIC seeking algorithm shown in section 3, if there are altogether s internal
intersections in the Voronoi diagram, the final algorithm complexity will be n � s/2, because the
complexity of the final algorithm has been reduced by approximately half, the loop will break
and move to next loop (see line 7 of Table 1). For a simple polygon, the number of internal
Voronoi intersections is at most Svoronoi = nconvex− 2 + 2(n − nconvex) = 2n − nconvex −2, where
nconvex is the number of convex vertices (acute angle seen from the interior), and the number of
internal MA intersections is Smedial axis = nconvex − 2. For complex polygons with internal
islands, the number of internal Voronoi intersections is at most

svoronoi ¼ nconvex � 2þ 2ðn� nconvexÞ þ 2�Pm
i¼1

ni þ n ¼ 3nþ 2
Pm
i¼1

ni � nconvex � 2, and the

number of internal MA intersections is at most smedial axis ¼ nconvex � 2þ 2�Pm
i¼1

ni. Therefore,

the Voronoi diagram algorithm complexity is at most

O n � s=2ð Þ ¼ O 3
2
n2 þ n

Pm
i¼1

ni � nconvex
2
� 1

� �
, i.e., O(n2); and the algorithm complexity of MA is

at most O n � s=2ð Þ ¼ O 1
2
n � nconvex � 1þ n �Pm

i¼1
ni

� �
, also O(n2).

Deepest Points Estimation for Regional Lake Registration

PLOS ONE | DOI:10.1371/journal.pone.0144700 December 14, 2015 8 / 15

Two improved methods for the largest inner circle-seeking algorithm
1. Medial axis simplification of a polygon. According to the algorithm complexity analysis

above, for a given lake polygon, there are two methods that can improve the efficiency of algo-
rithms in the deepest point seeking process. The first method is to reduce the number of polygon
edges n, which will directly reduce the algorithm complexity of the entire process. However, this
may also reduce the accuracy of lake polygons and their LICs. In some applications, we can sim-
plify the polygon to a certain extent to achieve high efficiency under the premise of calculating
accuracy. Another method to improve efficiency is to reduce the number of medial axis intersec-
tions. Thus, we present a medial axis simplification (MAS) method to solve this problem.

In contrast with the Voronoi diagram method, the main idea of the MAS method is to
reduce the number of intersections, which allows the LIC-seeking algorithm to reduce the
scope of the searching process and increase seeking efficiency. In general, a lake is formed by
many edges (i.e., it has a very large n), and this is mainly due to the vectorization process that
uses remotely sensed images to extract lakes. Because the MA endpoints intersected with edges
(sites) are very unlikely to represent the LIC center point for lake polygons [32], we can remove
those medial axes that intersect with the edges; this can significantly improve algorithm effi-
ciency. Fig 5 shows the results of the MAS method.

The red lines in Fig 5 are the generated Voronoi parabolas, the blue lines are the Voronoi
segments passing through the reflex vertices on the outer ring or the convex vertices on the
inner rings, and the purple lines represent the Voronoi diagram segments passing through the
convex vertices on the outer ring or the reflex vertices on the inner rings. The first column of
(Fig 5(a), 5(e) and 5(i)) shows the generated Voronoi diagram results of different lakes; the sec-
ond column (Fig 5(b), 5(f) and 5(j)) shows the medial axis result; the third column (Fig 5(c), 5
(g) and 5(k)) shows the results of MAS, and the last column (Fig 5(d), 5(h) and 5(l)) shows the
LIC-seeking results based on the MAS shown in the third column. Table 2 lists the different
intersection numbers in Fig 5. The results show that the MAS of a polygon can significantly
reduce the possible center points to seek. Thus, efficiency can be improved by the MAS
procedure.

2. Parallel computing and data partition policy. In addition to the above method of
improving algorithm efficiency, we also adopt parallel computing to improve LIC-seeking algo-
rithm efficiency. Currently, almost all computers have multi-core processors; ordinary algo-
rithms cannot use multicore computing resources effectively. In this study, we transform the
algorithm to effectively utilize multi-core computing. Because the LIC-seeking computing pro-
cedures for lake polygons are independent of each other, we may divide the features of vector
data into several parts, and each part is calculated and completed in a computing core. Differ-
ent data partition methods may lead to different acceleration ratios for the algorithm [33, 34];
thus, in this study we placed particular emphasis on the data partition policy for vector data.

The data partition policy of vector data is different from that of raster data; as such, it is
important to establish an effective method to partition different features of vector data, to
achieve balanced time consumption among different computing cores. For vector data, features
are the smallest units to be processed, thus we can divide all the features (polygons) of the lake
data into several parts to be computed. We propose three data partition policies: a sequential
distribution policy, an attribute descending policy, and an algorithm complexity equalization
policy. By comparing the acceleration ratios of different policies, we conclude that the algo-
rithm complexity equalization policy (ACEP) is the optimal solution for parallel data partition-
ing and vector data calculations.

2.1 Sequential Distribution Policy (SDP): If there are Ncore cores on the data processing
computer and Nfeature features (polygons) to be processed in the vector data, the data partition

Deepest Points Estimation for Regional Lake Registration

PLOS ONE | DOI:10.1371/journal.pone.0144700 December 14, 2015 9 / 15

method of vector data should distribute Nfeature features to Ncore partitions; each vector data
partition will be processed in a computing core. Here, we assume that there are a large number
of features (polygons) to be processed (otherwise, parallel computing would not be necessary).
Moreover, the Feature ID (FID) attribute of the vector data has no relationship with its edge

Fig 5. Comparison charts of medial axis simplification and LIC seeking.

doi:10.1371/journal.pone.0144700.g005

Table 2. Intersection number comparison for MAS.

Intersection number Voronoi intersections MA intersections MAS intersections

Fig 5(a), 5(b) and 5(c) 2343 1693 26

Fig 5(e), 5(f) and 5(g) 3588 2584 37

Fig 5(i), 5(j) and 5(k) 16072 11728 181

doi:10.1371/journal.pone.0144700.t002

Deepest Points Estimation for Regional Lake Registration

PLOS ONE | DOI:10.1371/journal.pone.0144700 December 14, 2015 10 / 15

number n. From the FID viewpoint, the edge number n is randomly distributed (its processing
time is also randomly distributed). Therefore, we can use a simple feature partition method,
called the sequential distribution policy (SDP), to divide all the features approximately evenly.
Suppose the FID of all features is represented by F1; F2; . . . ; FNfeature

, and the core numbers of the

computer are 1,2,. . .,Ncore. We can distribute the features as follows: F1)1, F2)2, . . .,
FNcore

) Ncore, FNcoreþ1) 1, FNcoreþ2) 2, F2�Ncore
) Ncore, . . ., until distribution is completed; the

average feature number of every core is jNfeature=Ncore
j.

2.2 Attribute Descending Policy (ADP): In this section, we analyze the implementation pro-
cedure of the attribute descending policy (ADP). Although there are almost equal numbers of
features in different cores, it is inevitable that some cores’ calculations are more complex than
others (this is because calculations for features with a large number of edges n are more time-
consuming). We solve this problem by applying an attribute descending method to the fea-
tures. Attributes such as the area or perimeter of a feature can be easily obtained or computed
(in this paper we use the OGR library function, OGRPolygon::get_Area()), and we use the area
decreasing method on the assumption that computation time will decrease with a decrease in
the area attribute. ADP works as follows: first, all the features will be sorted in descending
order by their area attributes, and then these features are distributed to different cores back and
forth in order to keep them as balanced as possible. After sorting in descending order, the FIDs
of different features denoted as F1; F2; :::; FNfeature

satisfy AF1
� AF2

� ::: � AFNfeature
, where

AFi
ði 2 1; 2; :::;NfeatureÞ is the area of feature Fi. The feature distributing procedure is as follows:

F1)1, F2)2, . . ., FNcore
) Ncore, FNcoreþ1) Ncore, FNcoreþ2) Ncore � 1, . . ., F2�Ncore

) 1,. . ., until

the distribution is complete; the average number of features in a core is also jNfeature=Ncore
j.

2.3 Algorithm Complexity Equalization Policy (ACEP): Furthermore, we can improve the
data partition policy on the basis of SDP and ADP. If we sort the features not according to their
area or perimeter, but according to a new attribute cpx, which denotes the algorithm complexity
described above, the policy’s feasibility increases because the computation demands on different
cores are more balanced. ACEP works as follows: first, we compute a new attribute, algorithm
complexity, with the equation cpx = nlog n +n2/2, where nlog n is the algorithm complexity of
medial axis generation and n2/2 is the LIC-seeking complexity. We then sort the polygons by
the new attribute cpx in descending order, and partition these features according to the com-
plexity sum (sum_cpx) of different cores. C++ pseudo code for the policy is listed in Table 3.

The above pseudo-code shows the calculation procedure of algorithm complexity cpx for each
feature. After being sorted in descending order by the attribute cpx, the cpx sums for different

Table 3. Pseudo code of ACEP in C++.

1 compute cpx[i] for all features

2 sort descending by cpx[i]

3 initialize sum_cpx[j] = 0 (j = 1 to Ncore)

4 for feature[k] in all features

5 int addTo = 0

6 for core = 1 to Ncore

7 if sum_cpx[core] < sum_cpx[addTo]

8 addTo = core

9 add feature[k] to core[addTo]

10 sum_cpx [addTo] + = cpx[k]

11 number[addTo]++

doi:10.1371/journal.pone.0144700.t003

Deepest Points Estimation for Regional Lake Registration

PLOS ONE | DOI:10.1371/journal.pone.0144700 December 14, 2015 11 / 15

cores (represented by sum_cpx) are then compared, and the feature is added to the core with the
lowest sum_cpx. During this process, the variable sum_cpx is updated for each feature.

Results and Discussion
We implemented the algorithm described above in Visual Studio C++ 2010 and applied it to
the center point seeking experiment for lakes in Alaska. The algorithm solves the LIC-seeking
problem for an arbitrary lake polygon, especially for those that contain islands. The data
include 197020 lakes, which were extracted from Landsat TM remotely sensed images. The
lakes have uneven sizes and shapes, thus it is difficult for general algorithms to process such
large volumes of data. We used a Dell 3.40 MHz 8-core computer with a Windows 7 64-bit
operating system as our test system. The experimental results are shown in Table 4.

We partitioned the 197020 polygons into eight parts, according to the three methods
described above. We then distributed the eight parts to eight cores and processed the features
in the different cores. A comparison of the time consumption of the different policies is shown
in Fig 6.

From Table 4 and Fig 6, we can see that the SDP method required 45.13 minutes, making
it the slowest policy. The ADP method, which required 39.16 minutes, was also slow (simi-
larly, the perimeter descending policy required 39.91 minutes). In contrast, ACEP only
required 30.02 minutes to complete the LIC-seeking task. By examining the feature distribu-
tion numbers of the three methods from Table 4, it is evident that the SDP and ADP methods
both have almost even numbers of features on each core, while for ACEP there are uneven
numbers of features on each core. In fact, we aim to achieve high parallel efficiency in data
processing, that is, to take full advantage of all the computer's calculation resources; there-
fore, the computation demands for the different cores should be as even as possible. More-
over, the processing time of core No. 8 is still longer than the others, because this core was
only assigned one feature, the most complex lake polygon in this region. This polygon con-
tains 34834 edges and 154 internal islands, its perimeter is 1187.9 km, and its area is 2618.23
km2. Another experiment was conducted in this region without the largest polygon (the
remaining 197019 polygons were included), and the results are shown in the last two columns
of Table 4. From this experiment, we can see that the numbers of features assigned to each
core have changed, and the data processing times among the different cores are more even.
This meets the requirement to equalize the task on different computation cores and proves
the feasibility of the ACEP.

Table 4. Efficiency comparison of different data partition policies.

Time Sequential Distribution
Policy

Area Descending Policy Algorithm Complexity
Equalization Policy

ACEP except the biggest
polygon

Core No. Features Time(min) Features Time(min) Features Time(min) Features Time(min)

Core No.1 24627 16.33 24627 19.43 28150 22.85 24644 19.87

Core No.2 24628 17.09 24628 20.44 28150 23.21 24644 20.12

Core No.3 24627 20.13 24628 19.65 28150 23.34 24643 20.48

Core No.4 24628 22.35 24627 22.48 28151 23.35 24643 20.49

Core No.5 24628 23.51 24628 23.88 28150 23.49 24644 20.60

Core No.6 24627 24.61 24627 25.13 28140 23.51 24641 20.61

Core No.7 24627 26.32 24627 25.32 28128 23.60 24608 20.68

Core No.8 24628 45.13 24628 39.16 1 30.02 24552 20.68

doi:10.1371/journal.pone.0144700.t004

Deepest Points Estimation for Regional Lake Registration

PLOS ONE | DOI:10.1371/journal.pone.0144700 December 14, 2015 12 / 15

Conclusions
This paper presented an efficient center point-seeking algorithm for LICs, to facilitate regional
lake registration. First, it introduced the "divide-and-conquer" Voronoi generation method and
the LIC-seeking algorithms. The following algorithm improvements were then proposed: first,
the medial axis generation algorithm was presented based on the Voronoi generation method,
and its simplification method was also provided to reduce LIC-seeking computations. Second,
a parallel computing data processing method was proposed, based on the independency
among different polygons during LIC searches, and the vector data partition policy was dis-
cussed in detail. After analyzing the efficiency of different policies, we concluded that the algo-
rithm complexity equalization policy (ACEP) was the optimal method; this method can also be
applied to other similar vector data partition policies for parallel computing.

We have determined that the algorithm only requires approximately 30 minutes to com-
plete the deepest point estimations of 197020 Alaskan lakes, which can meet the needs of
multi-phase image and lake registration. Further work will apply this algorithm to the deepest
point estimation of all the extracted lakes from Landsat in the United States. There will be
about five million lakes to be processed, which will further test the accuracy and efficiency of
the algorithm presented in this paper.

Acknowledgments
This work was supported in part by the Chinese 863 project (No. 2013AA12A401), National
Natural Science Foundation project of China (No. 41301438), and in part by the National
Aeronautics and Space Administration through the Terrestrial Hydrology Program (No.
NNX08AE51G).

Fig 6. Time comparison of different data partition policy in Tab.4.

doi:10.1371/journal.pone.0144700.g006

Deepest Points Estimation for Regional Lake Registration

PLOS ONE | DOI:10.1371/journal.pone.0144700 December 14, 2015 13 / 15

Author Contributions
Conceived and designed the experiments: ZFS YWS. Performed the experiments: ZFS XJY.
Analyzed the data: ZFS XJY YWS JLL JCL. Contributed reagents/materials/analysis tools: JLL.
Wrote the paper: ZFS XJY.

References
1. Shah CA, Sheng YW, Smith LC. Automated Image Registration Based on Pseudoinvariant Metrics of

Dynamic Land-Surface Features. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46:
3908–3916.

2. Joseph O’ Rourke. Computational Geometry in C (Second Edition). Cambridge University Press. 2005

3. Vincent WF, Laybourn-Parry J. Polar Lakes and Rivers, Limnology of Arctic and Antarctic Aquatic Eco-
systems, Oxford university press. 2008.

4. Wang J, Sheng Y, Hinkel KM, Lyons EA. Drained thaw lake basin recovery on the western Arctic
Coastal Plain of Alaska using high-resolution digital elevation models and remote sensing imagery.
Remote Sensing of Environment, 119 (2012), 325–336.

5. Lee DT. Medial Axis Transformation of a Planar Shape. IEEE Transactions on Pattern Analysis and
Mechine Intelligence. 1982 4(4): 363–369

6. Preparata P. The medial axis of a simple polygon. Proc. 6th Symp. Math. Foundations of Comput. Sci.,
Sept. 1977, pp.443–450.

7. Lee DT, Drysdale RL. Generalization of Voronoi diagrams in the plane. SIAM J. Comput. 1981
10:73:87

8. Ramamurthy R, Farouki RT. Voronoi diagram and medial axis algorithm for planar domains with curved
boundaries I. Theoretical foundations. Journal of Computational and Applied Mathematics. 1999 102:
119–141

9. Shen DY, Sheng YW. Area Pa rtitioning for Channel Network Extraction Using Digital Elevation Models
and Remote Sensing. IEEE Geoscience And Remote Sensing Letters. 2012 9(2): 194–198

10. Drysdale RL, Lee DT. Generalized Voronoi Diagrams in the plane. Proc. 16th Allerton Conf. Commun.
Control Comput. 1978: 833–842

11. Blum H. A Transformation for extracting new descriptors of shape. Proc. Symp. Models for Perception
of Speech and Visual Form. Whaten-DunnW., Ed. Cambridge, MA: M.I.T. Press. 1967: 362–380

12. Leymarie FF, Benjamin KB. The medial scaffold of 3d unorganized point clouds. IEEE Trans Pattern
Anal Mach Intell 2007, 29(2):313–30. PMID: 17170483

13. Borgefors G, Ragnemalm I, di Baja S. The Euclidean distance transform: finding the local maxima and
reconstructing the shape, in: Procs. of the 7th Scand. Conf. on image analysis, vol. 2, 1991, pp. 974–
981.

14. Hesselink W, Roerdink J. Euclidean skeletons of digital image and volume data in linear time by the
integer medial axis transform, IEEE Trans. PAMI 30 (12) (2008) 2204–2217.

15. Hulin J. Axe médian discret: Propriétés arithmétiques et algorithmes, Ph.D. Thesis, Université Aix-Mar-
seille II, Marseille, 2009.

16. Chaussard J, Couprie M, Talbot H. Robust skeletonization using the discrete lambda-medial axis, Pat-
tern Recogn. Lett. 32 (9) (2011) 1384–1394.

17. Davies ER, Plummer APN. Thinning algorithms: a critique and a new methodology, Pattern Recogn.
14 (1–6) (1981) 53–63.

18. Talbot H, Vincent L. Euclidean skeletons and conditional bisectors, Proceedings of VCIP’92, vol. 1818,
SPIE, 1992, pp. 862–876.

19. Serra J. Image Analysis and Mathematical Morphology, Academic Press, 1982.

20. Attali D, Lachaud J. Delaunay conforming iso-surface, skeleton extraction and noise removal, Comput.
Geom.: Theory Appl. 19 (2001) 175–189.

21. Ogniewicz R, Kübler O. Hierarchic voronoi skeletons, Pattern Recogn. 28 (33) (1995) 343–359.

22. Siddiqi K, Bouix S, Tannenbaum A, Zucker S. The Hamilton–Jacobi skeleton, in: International Confer-
ence on Computer Vision (ICCV), 1999, pp. 828–834.

23. Kimmel R, Shaked D, Kiryati N, Bruckstein AM. Skeletonization via distance maps and level sets, Com-
put. Vis. Image Underst. 62 (1995) 382–391.

24. Zhu H, Liu Y, Zhao J, Wang H. Calculating the medial axis of a CADmodel by multi-CPU based parallel
computation. Advances in Engineering Software, 85 (2015) 96–107.

Deepest Points Estimation for Regional Lake Registration

PLOS ONE | DOI:10.1371/journal.pone.0144700 December 14, 2015 14 / 15

http://www.ncbi.nlm.nih.gov/pubmed/17170483

25. Oishi Y, Sugihara K. Topology Oriented Divide-and-Conquer Algorithm for Voronoi Diagrams. Graphi-
cal Models and Image Processing. 1995 57(4): 303–314

26. Preparata P. The medial axis of a simple polygon. Proc. 6th Symposium Mathematical Foundations of
Computer Science, Sept. 1977, 443–450.

27. Drysdale RL, Lee DT. Generalized Voronoi Diagrams in the plane. 16th Annual Allerton Conference on
Communication, Control and Computing, 1978, 833–842

28. Cheonga O, Everettb H, Glisse M. Farthest-polygon Voronoi diagrams. Computational Geometry,
2011, 44: 234–247

29. Kirkpatrick DG. Efficient computation of continuous skeletons. Proc. 20th Annu. Symp. Found. Com-
puter Sci, 1979, 18–27

30. Dey TK, ZhaoW. Approximate medial axis as a Voronoi subcomplex. Computer-aided Design. 2004
36: 195–202

31. Beristain AM, Gonzalez AI. A Pruning Algorithm for Stable Voronoi Skeletons. Journal of Mathematical
Imaging and Vision. 2012 42:225–237

32. Dorado R. Medial axis of a planar region by offset self-intersections. Computer-aided Design. 2009 41:
1050–1059

33. Shen ZF, Luo JC, Chen QX, Huang GY. Sheng H. Data partition policy of high resolution remotely
sensed image parallel processing. Journal of Harbin Institute of Technology. 2006 38(11): 1968–1973

34. Shen ZF, Luo JC, WuW, Hu XD. A New Approach to Improve the Cluster-based Parallel Processing
Efficiency of High-Resolution Remotely Sensed Image. Journal of the Indian Society of Remote Sens-
ing. 2012 40(3):357–370

Deepest Points Estimation for Regional Lake Registration

PLOS ONE | DOI:10.1371/journal.pone.0144700 December 14, 2015 15 / 15

