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Abstract

We analyse data from a very large (n = 854064) sample of
players of an online game involving rapid perception, decision-
making and motor responding. This data set allows us to
connect full details of training history with measures of per-
formance, for participants who are engaged for a sustained
amount of time in effortful practice. We show that lawful re-
lations exist between practice amount and subsequent perfor-
mance, and between practice spacing and subsequent perfor-
mance. This confirms results long established in the literature
on skill acquisition. Additionally, we show that higher initial
variation in performance is linked to subsequent higher perfor-
mance, a result we link to the exploration-exploitation trade-
off from the computational framework of reinforcement learn-
ing. We discuss the benefits and opportunities of behavioural
datasets with very large sample sizes and suggest that this ap-
proach could be particularly fecund for studies of skill acqui-
sition.
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Introduction

The investigation of skill learning suffers from a dilemma.
One horn of the dilemma is this: experts in real-world skills
can be brought into the lab and their performance tested, but it
is difficult to reliably recover comprehensive details of their
training. This makes it impossible to be certain of exactly
how features of the history of their practice are related to the
skilled performance you can observe. The other horn of the
dilemma is this: you can test different training regimes rig-
orously, but you are restricted to measuring performance on
trivial or unnatural skills, and often without extended training
of the order that experts in complex real-world skills engage
in.

Computer games offer a partial resolution to this dilemma.
Even simple computer games are not trivial in terms of the
cognitive abilities which they test. In fact, these abilities are
often the staples of cognitive science: perception, decision
making and motor responses. Computer game playing is a
real-world skill in which many people choose to become ex-
pert, devoting hundreds of hours of practice. Unlike most
skills, computer games allow a potential record every action
in the history of that practice — allowing for the first time
detailed investigation of the connection between features of
practice and level of final performance. This is what the cur-
rent investigation sets out to do. We take detailed records
of practice activity from an online game and relate amount
of practice and features of practice to levels of eventual per-
formance. In doing this we are able to confirm and quan-

tify established findings from experimental studies of learn-
ing. In addition we provide a confirmation of a recent result
based on the theoretical framework of reinforcement learn-
ing (Stafford et al., 2012). Use of online games to collect
very large samples offers a new method for the investigation
of skill acquisition, we argue, and the work here showcases
just some of the possibilities opened up by this approach.

Practice amount and spacing

We first consider two well established results against which
we will validate our data set as a model of skill acquisi-
tion: the effects of practice amount and of practice spacing
on performance. Studies of learning have shown a lawful re-
lation between practice amount and performance. If perfor-
mance is gauged in terms of some measure of efficiency (e.g.
time taken to make cigars by experienced cigar manufactur-
ers Crossman, 1959), then it is possible to express the relation
between practice extent and performance in a power law of
learning (Newell & Rosenbloom, 1981; Ritter & Schooler,
2001).

For practical reasons studies of the effect of extensive prac-
tice have typically looked at different learners possessing dif-
fering amounts of practice rather than the same learners at
different stages (i.e. cross-sectional rather than longitudinal
designs). Experimental studies of learning which do follow
learners longitudinally have predominantly focussed on lab-
based tasks which can be mastered in one or a small number
of sessions (although there are, of course, honourable excep-
tions such as the work looking at the automatisation of visual
search performance (e.g. Neisser, Novick, & Lazar, 1963;
Czerwinski, Lightfoot, & Shiffrin, 1992).

Highlighting the importance of practice quantity in skill
development, Ericsson and colleagues stress that the highest
levels of performance are never reached without an amount of
practice on the order of ten thousand hours (Ericsson, 2006;
Ericsson, Krampe, & Tesch-Rmer, 1993). Additionally, they
report that the nature of that practice matters — effortful, di-
rected, ‘deliberate’ practice is what distinguishes elite per-
formers, even among those who appear to have performed
similar quantities of practice.

Experimental studies of learning have focussed on another
factor which defines the nature of practice — spacing. The
distributed practice effect denotes the finding that if time de-
voted to practice is separated out rather than massed, or if
the spacing is larger rather than smaller, retention improves
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(Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006; Delaney,
Verkoeijen, & Spirgel, 2010). The distributed practice ef-
fect is surely one of the most solid findings in learning and
memory research. It holds for both motor skill and declara-
tive learning (Adams, 1987). Due to the limitations of ex-
perimental methods there is a dearth of evidence on longer
spacing intervals (Cepeda et al., 2006), a dearth which we
hope the present study offers a method of addressing.

Next we review an area where the approach adopted in this
paper affords particular traction for looking at how the history
of skill acquisition affects performance.

Exploration versus exploitation

The computational framework of reinforcement learning
(Sutton & Barto, 1998), outlines a fundamental trade off
in decision making: every decision forces us to choose be-
tween taking the action which we estimate will yield the best
long term consequence (highest ‘value’), or trying out an ac-
tion of unknown or less certain value. This is known as the
‘exploration—exploitation dilemma’. Every choice is an op-
portunity to receive the outcome from only one action, and so
also to update our estimate of the value of only one option.
Too much exploitation leads an agent to rely on suboptimal
actions, seldom discovering better valued actions. Too much
exploration, on the other hand, leads to an agent wasting time
exploring the space of actions without garnering the reward
of frequently choosing the highest known-valued action. The
implications for skill learning are that non-maximising per-
formance during early practice may allow superior subse-
quent performance. Indeed we might even expect that ‘expert
learners’ would adopt an early exploration strategy in order
to maximise final performance.

We have already found evidence for this in humans and rats
using an experimental task (Stafford et al., 2012). There is
other evidence that variability in practice conditions can aid
final performance (Roller, Cohen, Kimball, & Bloomberg,
2001), as well as generating benefits in learning which cross-
task (Seidler, 2004) (which has been termed ‘structural learn-
ing’ by some). This is somewhat in tension with accounts
which emphasise the need for transfer-specificity in skilled
performance (e.g. Logan, 1988). There is not a direct con-
tradiction, merely we are emphasising the benefit of training
off the to-be-tested skill.

Method

Game designers Preloaded produced a game for the Well-
come Trust called ‘Axon’, which can be played here
http://axon.wellcomeapps.com/. They inserted tracking
code which recorded a machine identity each time the game
was loaded and kept track of the score and date and time of
play. The game was played over 3.5 million times in the first
few months of release (Batho, 2012).

The game involved guiding a neuron from connection to
connection, through rapid mouse clicks on potential targets.
A screenshot can be seen in Figure 1 (see figure caption for

description of game dynamics). Cognitively the game in-
volved little strategic planning, testing rapid perceptual de-
cision making and motor responses.

Figure 1: Screenshot of the game Axon. Players control the
axonal branching of the white neuron. At each point, possible
synaptic contacts (the other dots) are those within the zone
of expansion (the larger transparent circle), which shrinks
rapidly after each new contact is made. Non-player neurons
(in red here) compete for these synaptic opportunities. Score
is total branch length in micrometers (shown bottom left).

The analysis was approved by the University of Sheffield,
Department of Psychology Ethics Sub- Committee, and car-
ried out in accordance with the University and British Psy-
chological Society (BPS) ethics guidelines. The data was
collected incidentally and so did not require any change the
behaviour of game players, nor impact on their experience.
No information on the players, beyond their game scores, was
collected and so the data set was effectively anonymised at the
point of collection. For these reasons the institutional review
board waived the need for written informed consent from the
participants.

Because the data we record is indexed by machine identity,
which is derived from the web browser used to access the
game, it is not possible to guarantee that a single individual is
responsible for all the scores recorded against an single iden-
tity. Nor is it possible to guarantee that a single individual
is responsible for only one set of scores. These uncertainties
add noise to our analysis, but the data set is large enough to
accommodate this. It is not clear what, if any systematic dis-
tortions these caveats would introduce. For the remainder of
this paper we will use the term ‘player(s)’ to refer to the set
of scores associated with a single machine identity.

The data was extracted from Google Analytics using a
Python library by Clint Ecker (2009). Data from be-
tween 14th of March and 13th of May 2012 was down-
loaded and compiled into the source data set for the anal-
yses presented here. This data set comprised a total num-
ber of 854064 players. Most played only a small num-
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ber of times (the modal number of plays is 1), but some
played up to 1000 times. The data and code for produc-
ing the analysis and plots presented here are available from
https://github.com/tomstafford/axongame.

Results
Practice amount

On average, scores are higher with each consecutive play for
up to 100 plays (Figure 2). At around 80 plays the levels
of variation between scores, combined with the drop off of
number of players reaching that number of attempts, begin to
be seen in the loss of the smooth curve and larger error bars.
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Figure 2: Average score for each play attempt. Standard er-
rors shown (n.b. some error bars not visible at this scale).

Taking only those who played more than 9 times (n =
45672), we can calculate a ‘high score’ for each players (i.e.
the highest score they achieved, irrespective of which play it
occurred on). The criterion of 9 or more plays for subset se-
lection is arbitrary, an attempt to balance size of subset (which
drops with a higher criterion) against likelihood that practice
effects will be reliable (which should be greater for higher
criterion values). For this, and all other analyses presented in
this paper, the results are not contingent on the particular val-
ues used to divide up the data (i.e. here we get similar results
if greater than 8, 10, 5 or 20 plays are used as the criterion.
To confirm this we invite interested readers to run the analysis
with altered parameters themselves, by visiting the data and
analysis code repository referenced above).

From this subset players are then grouped into 5 groups
based on the percentile ranking of their high score, and the
average score is calculated for each attempt for all players in
each percentile group. This shows that the difference between
higher and lower scorers is not merely the amount of practice.
The difference in average score is present from the very first
plays (Figure 3).
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Figure 3: Average score against attempt number for differ-
ent groupings according to maximum score. Standard errors
shown.

Practice spacing

Taking only those who played more than nine times, we di-
vide players into percentile groups according to their high-
est score, regardless of on which play it was obtained. We
also calculate the separation in time between their first and
last play. The result shows a clear upward trend (Figure 4,
red dots), with players who score most highly spreading their
first and last plays further apart. This is unsurprising, how-
ever, since even if there was no relation between practice and
scoring, and scores were simply random on each attempt,
those players who played had more attempts would tend to
collect higher scores and have first and last attempts which
were more separated in time. We use bootstrapping to esti-
mate confidence intervals as if this were the case. Keeping the
number of players and the number and time of the attempts
constant, we generate 2000 simulated datasets, sampling with
replacement at random from the total record of all scores for
all players. The observed data falls below this bootstrap data
for low maximum score percentiles and above for high max-
imum score percentiles, suggesting that the scores really are
distributed non-randomly and according to the spread in time
of participant’s plays (Figure 4).

It is possible to interrogate this result further by a finer
slicing of the data. Taking only players who played more
than 14 times (n=21575), we calculate the spread in time
between the first play (or second play where this data was
missing) and their tenth play (or ninth, where this data was
missing). We also identify their best score on plays 11 to
15. We then divide them into two groups, those who played
their first ten times within a 24 hour period (“goers”), and
those who split their first ten plays over more than 24 hours
(“resters”). Resting between first and tenth plays appears
to have a benefit on your subsequent performance (Figure
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Figure 4: Players graded according to their maximum score
percentile against the delay between their first and last plays.
Standard errors shown.

5). The difference between the groups is highly significant
(#(20354) = 6.219, p < 0.00001), albeit for a small effect size
(Cohen’sd =0.11).

Exploration versus exploitation

The variance of scores for each player in the first five plays
was calculated, and this statistic for each player ranked and
so percentile groups created. The same was done for the av-
erage on plays six to ten. Plotting one against the other we
see a clear correlation - with higher early variance associated
with higher subsequent performance (Figure 6, the very high
number of individuals made a scatterplot impractical at this
scale, so we present a heatmap).

The Pearsons’s r correlation coefficient was 0.59 and sig-
nificantly different from zero at a high probability (p <
0.0001). Randomising the scores for each attempt within the
structure of the number of players and the number of attempts
per players, it is possible to generate a bootstrap data set
which gives a confidence interval for this correlation - in other
words, answers the question “to what extent is a correlation
between high early variance and high late scoring inherent in
the distribution of scores and the structure of how players ac-
cumulate scores from that overall distribution”. These boot-
strapped confidence intervals, at the 95% level were 0.009
to —0.009. Thus we can conclude with a high degree of
confidence that the correlation is both significantly different
from zero and not a trivial consequence of the distribution
of scores. Instead, the correlation results from the particular
way individual player’s early scores are related to their later
scores.

Discussion

These results confirm, but also quantify, results from experi-
mental psychology regarding the effects of practice quantity
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Figure 5: Average maximum score following first ten plays,
for those who group their first ten plays within one day (‘go-
ers’) and for those who split their first ten plays over two or
more days (‘resters’). Standard errors shown.

and quality on performance. As players practice their average
score improves. Dividing the players into percentile groups
according to high scores appears to show that practice alone
does not allow most players to achieve the highest scores. The
best players have an advantage from the very first plays. This
advantage is consolidated with practice, in that not only do
they score more on their first plays, but their rate of improve-
ment is faster. This is in marked contrast to some popular
(e.g. Gladwell, 2008) and academic (e.g. Ericsson et al.,
1993) accounts of high performance which have denigrated
the importance of talent with respect to practice. We regard
this result as provisional. It needs to be replicated with an-
other data set so we can assess if it generalises to other skills.
Replication would also assuage worries that some specific
confound of the present data set has produced the result. For
example, we have no way of controlling for the prior game ex-
perience or hardware set-up of the players of the Axon game.
It is possible that it a certain amount game experience is re-
quired for individuals to get high learning rates with this spe-
cific game (we thank an anonymous reviewer for pointing out
this potential ‘thresholding of performance improvement by
prior experience’ confound).

The analysis of practice spacing confirms the wisdom from
experimental studies of learning and memory that distributed
practice is better than massed practice. It remains to be seen
if there is an optimal amount of spacing, as has been reported
for semantic knowledge (Cepeda, Vul, Rohrer, Wixted, &
Pashler, 2008), or an optimal timing of spacing (Goedert &
Miller, 2008).

The exploration-exploitation result confirms a preliminary
result from a recent experimental study (Stafford et al.,
2012). Although bootstrapping confirms that this finding is
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Figure 6: Heatmap made from scatterplot of variance of
scores on first five plays versus average score on plays six
to ten.

not an incidental result of the distribution of scores, it still
isn’t clear if the level of exploration (operationalised as score
variance on early plays) per se causes the higher level of
performance (‘exploitation’, characterised as score average
on later plays). It is doubtful that low scoring attempts in
themselves cause higher subsequent performance. Rather low
scores may be the impetus for players to shift their playing
style or tactics in ways which unlock higher subsequent per-
formance (similar to the postulated freeing and freezing of
degrees of freedom which have been thought to characterise
changes in motor skill (Berthouze & Lungarella, 2004; Bern-
stein, 1967). The ultimate test exactly if and how early explo-
ration affects subsequent performance will be to intervene to
make players explore and see how this affects later scores. In
other domains there have been suggestions that introducing
guided mistakes or deliberate failure into early training may
have benefits for overall performance (something for which
there is some evidence: Lorenzet, Salas, & Tannenbaum,
2005).

Games

Games are a great opportunity for the cognitive science of
learning. They provide participants in high numbers who are
engaged willing to undertake extensive practice. Games can
provide large amounts of detail on training conditions and ac-
tions, in ways that other paradigms cannot. In the future it
may even be possible to introduce experimental manipula-
tions into engaging games through partnership with games
designers.

‘Big Data’
The method of study adopted here means we lose experimen-
tal control over the factors involved in learning. However,

frequency

advantages stem from the very large sample size we are able
to collect. Some of the emphasis on the importance of ex-
perimental control in cognitive science is due to the loss of
statistic power than can result from uncontrolled measure-
ment. With large sample sizes, loss of statistical power is
not an issue. We need only concern ourselves with the ways
in which lack of experimental control introduces systematic
confounds into our data set. As well as large statistical power,
very large sample sizes mean we can interrogate data in new
ways. One of these is ‘slicing’ by which we mean identify-
ing individuals who meet certain conditions and comparing
within that group. This is a substitute for the conventional
experimental method of creating individuals that meet certain
conditions in low numbers. In experimental design you con-
trol potential confounds in advance (by attempting to remove
them). With slicing you attempt to account for potential con-
founds post hoc by selecting multiple different sub-datasets,
each of which controls statistically for a potential confound
- and thus by a process of elimination gathering support for
your hypothesised causal variables. This is a less powerful
method than experimental control, but it does offer some ad-
vantages.

Bootstrapping provides a way of testing observed patterns
against sophisticated null hypotheses. Both bootstrapping
and slicing are illustrated in this paper in the analysis of spac-
ing effects.

Two modern crises of psychology are the apparent low
replicability of effects (Pashler & Wagenmakers, 2012) and
the use of inappropriate statistics (Wagenmakers, Wetzels,
Borsboom, & Maas, 2011; Simmons, Nelson, & Simonsohn,
2011). Very large sample sizes can side-step both of these.
With a large enough sample size you do not need to use inap-
propriate statistical techniques - small effects are easy to find.
Furthermore, you have enough data to use techniques such as
cross validation to guard against false-positives.

Analysed in detail, very large data sets provide an obser-
vational playground in which we can not just detect effects,
but compare the size of different effects against each other.
For example, in the present data set it can be seen that the
benefit of 24 hours spacing is about 3000 points (Figure 5).
This is comparable to about 5 plays, in the 10-15 play range
(Figure 2), or equivalent to an extra 50% practice at this stage
of experience.

Obviously, nothing will replace the controlled experiment
in terms of causal inference. For hypothesis testing the con-
trolled experiment must remain the the gold-standard. How-
ever, there is space within the scope of investigation for stud-
ies with purposes other than theory-driven hypothesis test-
ing (Rozin, 2009). This paper has focussed on characteris-
ing the data and confirming effects discovered in traditional
controlled experiments. We believe the approach illustrated
here can be complementary to experimental studies, and has
the potential to open up new avenues for investigation in the
study of skill acquisition.
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