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FIRST ORDER PERTURBATION EFFECTS IN IRON—DOM%NATED
TWO-DIMENSIONAL SYMMETRICAL MULTIPOLES

K. Halbach
Lawrence Radiation Laboratory
University of California

Berkeley, California 9L720

April 1969

Abstract

The effects of several perturbations are investigated. They are:
modification of the shape of a pole, error excitation, displacement, and .
rotation of a pole. The effects are described in terms of changes of multi-
pole coefficients. General relationships between some of these coefficients
are described, and formulae are derived that allow their calculation for a
model 2N-pole magnet. Numerical vélues of these coefficients are given for

a quadrupole, sextupole, and octupole.

*
This work performed under the auspices of the U. S. Atomic Energy Commission.
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1. Introduction

Symmetrical multipole magnets are very important elements in particle
accelerators and are becoming of increasing importance for particle micro-
scopes. Both applications require very accurate field distributions, and it
is therefore necessary to be able to estimate the effects of fabrication and
assembly tolerances. Effects of assembly errors are of particular interest -
since they introduce asymmetries that cause harmonics which are not present in
the symmetric magnet. These harmonicé ére usually more harmfui than the
undesired harmonics that are preséﬁt even in a well designed symmetric multi-
pole magnet. Magnets used for the above mentioned purposes belong usually to
one of the following two categories:

1. Conventional iron magnets, where the field distribution is dominated
by the iron configuration, while the 1ocatioﬁ of the conductors is only of
minor importance.

2. Magnets where the field configuration is dominated by the configuration
of the, usually superconducting, conductors, while the iron (usually only a
shield) is only of minor importance.

This discussion deals only with the first type of magnet, the other
will be the subject of a separate paper.

To make the subject tractable for a general invesfigation, three basic
approximations are made throughout this paper:

a) Only  two-dimensional magnets are discussed; this means that the
results are applicable only to magnets that are long compared to their aperture.

b) The effects of perturbations are discussed only to first order in the

perturbation parameters; this means in particular that linear superposition is
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assumed to be valid when the effects of more than one perturbation are
discussed.

c) It is assumed that the unperturbed magnet with 2+N poles is symmetric,
i1.e., thut the geometry of the magnet does not change upon rotation of the
whole magnet by the angle T/N.

The effects of perturbations will be expressed in terms of generation
or changes of multipole coefficients, which are usually the quantities of
interest for beam dynamics calculations. However it should be pointed out'that
the techniques used for calculation of the multipole coefficients of the
perturbed model magnet can also be employed for‘calculation of field changes.

Two basic types of considerations are made in this paper:

a) General properties of some multipole coefficients produced by pertur-
bations, and general relations between some of the coefficients describing
effects of perturbations.

B) Numeric evaluatiqns‘of fhe effects of the basic types of perturbations
for a model magnet. These calculations imply, of course, some further approx—
imations which will be discussed later.

' The following types of perturbations will be discussed:

1) Error excitation of a pole

2) Linear displacement of a pole

3) Rotation of a whole pole about the center of the magnet

L) Poleface modification

5) Conductor-related perturbations.

The results of the model calculations for the first four types of

perturbations are represented in tables 1-3 and figs 4,6-11, and their use is
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summarized in sec. L4.5. It should be noted that although throughout this paperz
magnetic multipoles are discussed, most of .the results apply equally to elec-

trostatic multipoles.

2. Basic Formulae, Normalization, and Notation

The coordinate system is cﬁbsen such that the fields are in the x-y
plane of a Cartesian coordinate system with the point x = y = 0 coinciding with
the center of the unperturbed magnet. The field components Hx’Hy .in the
iron- and conductor-free region of the magnet can be derived from a scalar
potential V or a vector potential which needs to have only a component A in
the direction perpendicular to the x-y plane. The field components are

obtained from the potentials through:

oA/dy (1a)

j=s}
I

= ~9V/9x

i

1}

jas]
1}

-3V/3y = -3A/3x . (1v)
Introducing the complex quantities z = x + iy = r el¢, F(z) = A + iV

and H = Hx+.iHy, and indicating the complex conjugate of a quantity by an

asterisk, the field components can be .obtained from the complex potential F

throughl)

B =i dF(z)/dz . (2a)
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It will also be useful to express the fields in terms of the radial
and azimuthal field components Hr and H¢, and the complex quantity

Hr,p) = Hr + i H¢.’ Since Hr and H are the field components in a

¢

Cartesian coordinate system that is rotated by ¢ with respect to the x-y

system, J(is related to H through
\JC::Hoe—l(b . (2’b)v

* _
It should be noted that H is a function of the complex varisble z, but
¥ .
H (or 3') cannot be expressed as a function of z only. F(z) can be

expanded into a Taylor series about the origin,
oo
n
F(z) = ngo VR (3a)

and the complex expansion coefficients Cn are called the multipole coefficients.

Since for a symmetric 2N-pole magnet it must hold

Y J((I‘,q) + TT/N) = "'J«rsd)) s

o
one obtains with egs. (2) and (3a) for a symmetric 2N-pole magnet:

=-C,n=1, 2, ...

Assuming without loss of generality that Co =0, all Cn are therefore

zero unless n = N(2m+l), m =0, 1, 2, ..., giving
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H2) = % Oy MEm) (30)
k=

The term CNZN in this series will be called the fundamental harmonic,
its odd multiples the allowed harmonics and the terms that canﬁot appear because
of symmetry will be called forbidden harmonics.

Assuming further that each pole of the unperturbed 2N-pole magnet has
a symmetry axis and that the vertex of one pole is on the x axis, the fol-

lowing must be true:

Wr,¢) = I (£,-4) .

Using egs. (2) and (3b) it follows that all coefficients in (3b) are
imaginary. Introducing the real quantity dn = Cn/i, eq. (3b) gives for the

unperturbed magnet:

FO(Z) =3 mZ:O d'N(2m+l) . ZN(2m+l) o ' (3¢)

Y Throughout this paper, all distances are normalized so that the distance

from the center of the unperturbed magnet to the vertices of the poles are

unity, and the unperturbed excitation is normalized so that
dy =1 . (3a)

The most obvious physical significance of the multipole coefficients

Cn in eq. (3a) is obtained by comparing the absolute value lHnl of the
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contribution of the term ann to the field to the absolute value IHNl of

the contribution of the term CNZN to the field. From eq. (2a) follows

/1) = el [ /ule, )

With the normalizations introduced above, one then obtains at the aperture

radius of the magnet
lHnl/lHNl = lCnl'n/N . . (3e)

The difference between quantities describing the perfurbed and the
unperturbed magnet will be indicated by A, and the type of perturbation that
causes the effect will be indicated either as subscript or in parentheses
unless o gpecial symbol is used. |

It will prove to be useful later to use the function D(a) which is

defined in this paper as:

‘

il

1 when a equals zero or a positive or negative integer
D(a)

O for all other values of a
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3. Model Independent Relationé between Multipole Coefficients
3.1. GENERAL RELATIONSHIPS

For the consideration of all basic perturbation effects it is assumed
that the unperturbed magnet is described by eq. (3c), i.e., all poles are
equally excited (except for the alternating sign), each pole has a symmetry
axis, the symmetry axis of one pole coincides with the x-axis, and the geometry
of the magnet reproduces itself upon rotation by m/N. The basic perturbations
listed in sec. 1 are considered to be associated with the pole whose vertex lies
on the (positive) x-axis. Describing the effeéts of a particular‘perturbation
associated with that pole by ACn(O), the effect of that same perturbation
applied to a pole whose symmetry axis is rotated by o 1is described by
ACn(a) and is obtained as follows: describing the respective effects by
Aﬂ%(r,¢) and Aﬁ&(r,¢), assuming that both poles are excited with the same
polarity, and referring to figs. 1(a) and 1(b), drawn for a poleface perturba-

tion, it must hold:

Aﬂ&(r,¢) = AMB(r,¢fa) .

From eqs. (2) and (3a) follows then
_ . —ina
ac (a) = Ac (0) - e . (L)

The right side of eq. (4) has to be multiplied by -1 when the rotsted

pole has an excitation opposite to the reference pole and the verturvation is

Y

of type 2, 3, or 4 of the basic perturbations listed in sec. 1.
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Most perturbations associated with the reference pole are not symmetric
with respect to the x-axis. Referring to figs. 1(a) and 1(c) and using the

same procedure as above, one obtains from

*

AJ.S:C(r,d)) = (Ajia(ra"d)))
ac_(1e) = —(Acﬁ(la))* . (5)

3.2. ERROR EXCITATION OF THE REFERENCE POLE

Error excitation of a pole can have several causes, for instance
leakage current in the coils, shorted coil turns, unequal saturation character-
istics of the iron in the pole base, or cracks in the iron.

The magnitude of the error excitation will be described by the addi-
tional excitation €, which can also be considered as the change of the
scalar potential of the pole. Since the absolute value of the
unperturbed  potentials is, according to egs. (3c) and (3d), for all practical
purposes one, IEI can.also‘be considered as the absolute value of the rela-
tive change of excitation. The effect of error excitation of the reference

pole is described by ACn(x). Since this perturbation has no asymmetry with

>

respect to the x-axis, it follows from eq. (5) that Cn(x) must be purely

imaginary. ACn(x) will therefore be represented by

ACn(x) =de .y . (6)
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To find which.of the Jn are negligibly small, two cases of super-
position of error excitation are considered.

a) The excitation of all poles are alternatingly changed by e, i.e.,
_the relative excitation of the whole magnet is changed by €. Neglecting
saturation effects, the resulting ¢hange in the complex potential is, according
to eq. (3c),

e T g - A %
m..'—_

On the other hand, according to eq. (1), the change AC~ of the

multipole coefficients as. & consequence of this superposition of perturbations

becomes:
oN-1 . . |
AC_ = de + 3 - gminem /N yym
n n
m=0
2N-1 . .
AC_ = ie « j - e"lmnmﬂ) ; (8a)
n n =0

' If every term in the sum in eq. (8a) equals one, the sum equals 2N. If
the individual terms in the sum are not one, and one employs the explicit
formula for this geometrical sum, it becomes evident that the sum becomes zero,

so that eq. (8a) can be written:
AC_ = ie « 2N -« }§ D(l{9-+ 1)] (8b)
n n 2\

From eqs. (7) and (8b) then follows:
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In(eme1) = S(ome1)/?N | (8e)

This means that the allowed harmonics are generated by error excita-
tion of a pole only to the extent of their presence in the unperturbed magnet.
Since the allowed harmonics are different in each individual magnet,‘but
should be very small in any well designed magnet, the generation of allowed
harmonics by error excitation can therefore in general be neglected and will
not be discussed any further.

b) The excitation of all poles is changed by +€, resulting ip a chénge
of the scalar potential of each pole by +e. The resulting change of the mag-
netic fields is of course zero unless the cause of the excitation change is a
change of current in conductors that are both very close to the magnet aperture
and located very—asymmetrically iﬁ the space between adjacent poles. Since
even in that case the effect will be ver& small and different in each individual
magnet, this possibility will not be discussed further. Superposition of these
perturbations and describing their total effect by Aén gives with the same
procedure as above:

AC. =i € %ﬁfl o~ inmm/N . _ i‘° e . on - J_ - D(n/2N)
n n n=h n .
Since for this case all ACn =0 (except for the inconsequential case

n = 0) it follows that
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From egs. (8c) and (9) follows then that for all practical purposes,

error excitation does not generate any harmonics that are multiples of the

fundamental harmonic.

3.3. LINEAR DISPLACEMENT OF THEvREFERENCE POLE

It is convenient to intrqduce separate coefficients describing the
effects of radial displacement (ACn(rd)) of the reference pole by € (e > 0
representing displacement of the reference pole in the x direction), and the
effectn of azimuthal displacement (ACn(ad?) of the reference pole by €
(e >0 representing displaqement of the reference pole in the y direction).
Since the perturbation caused by the radial displacement of the reference pole
is symmetric with respect to the x axis, the reasoning that led to eq. (5)
demands that ACn(rd) = —(ACn(rd))*, requiring that ACn(rd) is imaginary.
It is therefore convenient to introduce

3

ACn(rd) =31 e« g e bn . (10a)

', Introducing for the moment ACn(ad,s) to also indicate the displace-

ment, similar reasoning requires that

AC_(ad,e) = —(ACn(ad,—e))*

L

Since ACn(ad,E) is in this first order perturbation theory propor-
tional to €, it follows then that ACn(ad) must be real, making the following

notation convenient:

ACn(ad) =€a . (10Db)
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v . |
If the reference pole is displaced by € in the direction ety (fig. 2(a)),

the resulting change in multipole coefficients is given by:
- Y . 1 + qe . ll
ACn(Qa) € (an sin vy + i bn cos Y) (11a)

Displacing a pole, whose symmetry axis is in the direction «, in the

direction eiY (fig. 2(b)) gives, with egs. (1la) and (k4):
ACn(Qb) = E(nn oin (y-a) + b con (y-a)) e-ina . (11b)
This can alsc be expressed as
AC_(2b) = 0.51-e (b -a ) o1(T-0) 4 (b +a ) o 1Y=0)) =ina )
n n n n n

To obtain general relations between some of the an and bn, all poles
E=Y

are now displaced by € in the direction elY Then o for the m'th pole is

m * /N and one obtains for the resulting change ACn(all):

AC (all) = 0.5+i- A (b ) i(y-mm/N)
n a = . 1°€ mgo ( n_an e

+ (b +a ) e-i(Y—mﬂ/N)) e—imﬂ(l+n/N)
n n

n+l

ACn(all) = i*N-e N

_ iy 11 -iy
(bn an) e D(2 + 1)) + (bn+an) e

ofh 5 3 (220
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Since this superposition of perturbations is, on the other hand,
i
equivalent to a displacement of the whole magnet by € in the direction e Y,
the resulting change in the complex potential is, with eq. (3c), given by:

- P & 4
AF = Fo(z € s e ') - FO(Z) s

giving to first approximation in e€:

N (om1)

SRR R 32% (2m41) Ay opyqy ° JME) -1 ()
Comparison of eq. (12a) with eq. (12b) yields:

Pn(eme1)+1 * Py(ome1)+r T O ‘ - (13e)

yy = (emt1) - (13b)

aN(om+1)=1 T PN(om+l

3.4, ROTATION OF THE REFERENCE POLE ABOUT THE CENTER OF THE MAGNET

3 Rotating the reference pole by the ungle € (in radians, € > 0
represents rotation in the mathematically positive sense), describing the
resulting effects by ACn(r), and using the same reasoning that led to the
introduction of a, (eq. (10b)) leads to the result thgt ACn(r) must be

real. ACn(r) will therefore be represented by

' 6C (r) =e-p . (14)

A=Y
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Rotating all poles by € and describing the resulting effect with

ACn gives, using again eq. (4):

L (/N + 1)

AC = €p }: e =€ * 2N - p, " D(%-(l + %})

n n
m=0

(15a)

Since this combination of perturbations represents a rotation of the

whole magnet, one obtains from eq. (3c) for the resulting change

complex potential to first order in e€:

_ -ie . . - . =
AF = Fo(z e °) = F(z) = -iez F'(z) =€ * N ggb (om+1)

N(2m+1)

dN(ome1) * 2

Comparison of eqs. (15a) and (15b) gives:

Py(omer) T (MF/2) Ay s m= 0,1,

AF of the

(15b)

(15¢)

As in the case of error excitation of the reference pole, allowed harmonics

are generated through rotation of a pole only to the extent that they are

present in the magnet and can therefore in general be neglected.

3.5. POLEFACE MODIFICATION

Although it is impossible to make general statements about the neg-

ligibility of some coefficients produced by poleface modifications, the

following consideration can be of interest.
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When fabricating the poles of a magnet it is often possible to insﬁre
that all poles are identical by either using the same die to punch the lamina-
tions or by machining all poles in the same process on a milling‘machine.
While the poles are then guaranteed to be identical, they are not necessarily
symmetric, and the question arises how the magnet should be assembled. Using
an octupole magnet as an example, one could be tempted'to assemble it as
schematically indicated in fig. 3(b) to insure that the lines lying symmetrically
between the poles remain lines with zero scalar potential. It is clear that
an assembly according to fig. 3(a) will probably be preferable since it leaves
the geometry invariant under a rotation of 7/N, but it is of interest what
the .quantitative difference in harmonic content of the two magnets would be.

Considering the asymmetry as a perturbation of an originally symmetrié
pole, and describing the resulting harmonics for the reference pole in the
normal position of the reference magnet‘énd reference pole (as in fig. 1(a))
by ACn(O), then the harmpnics caused by the asymmetry for the magnet in

fig. 3(a) become, with the use of eq. (k):

2N-1

. Ac_(3a) = ginm/2N | ac_(0) 5 oimm(1+n/N)
m=0
ACn(3a) _ o-inm/eN ACn(o) . oy . D(%(l + '1%]) (168)

Going to fig. 3(b) and considering first the effects of the perturbations of
the pair of poles next to the +x-axis, and then adding up the effects of the
perturbations on all other pairs of poles, one obtains with eqs. (4) and (5)

for the assembly Indicated in fig. 3(b):
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; . N-1
Acn(3b) = (ACn(O) . -inm/eN ACn(O)* elnﬂ/QN) . gg% e—imnEﬂ/N
Ac,(3p) = 2N - Re(Ac (0) - e IT/2N) L p(a/m) | (16b)

In this case, all multiples of N are generated and they become
= . - m . .
ACy,(3b) = 2N » Re((-1) ACy, . (0)) (16c)

Comparing eq. (16a) with eqs. (16b) and (16c) leads to the following
conclusion: Although the amplitude of the allowed harmonics generated by the
asymmetry in an assembly as in fig. 3(b) can at most equal the amplitude of

the allowed harmonics generated in an assembly as in fig. 3(a), the latter is
preferable since the former generates all multiples of N. This is true-

particularly since AC2N can be very damaging for the beam dynamics.

L. Evaluation of Perturbation Effects for a Model Magnet

It is clear that model calculations cannot describe effects fesultiné
from detailed characteristics of specific magnets, such as amplitudes of
allowed harmonics, saturation effects, details of pole contours or coil con-
figuration. The model should also have the property that the effects of
perturbations can be calculated analytically. Consequently the results of
these calculations can serve only as a guide to describe the effects of
perturbations in a real magnet. The applicability can, however, be judged by
taking into account some of the above mentioned general relationships (for

instance egs. (13)), and by mentally going through the exercise of correcting
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the procedure below to take particular properties of a real magnet into account.
The result will in most cases be that the results of the analytical evaluations

are very accurate when the effects are of practical significance.

L.1. CHOICE OF MODEL AND bERIVATION OF BASIC FORMULAE AND PROCEDURES

The effects of perturbations will be calculated for a reference pole
located as in fig. 1(a). The unperturbed 2N-pole magnet model consists of
identical poles at scalar potentials *1 giving an unperturbed complex

potential
Fo(z) =iz | ‘ (17a)

From this follows for the equation describing the reference pole

Im F (z) = Re(zN).= rN

o cos N = 1 _ (17v) -

The reference pole can therefore also be described by the complex parameter

representation
2N eiN¢/cos N¢ =1 + i « tan N¢ (17c)
!
2(¢) = e%/(cos ne)* N - (174)

The significance of Né is best seen with eq. (17c). This equation

expresses that in the zN plane the reference pole is a straight line just as
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the pole of an ideal dipole magnet. IQ this geometfy N¢ is the angle between
the straight lines connecting the origin with the vertex of the pole and with
the point under‘consideration on the pole. From this follqws that for the
reference pole, the region ,N¢| < 7/3 1is of primary interest.

With the exception of the discussion in sec. 4.6, the perturbations of
the reference pole will be represented by the equivalent changes of the scalar
potential on the unperturbed surface of the reference pole. To evaluate the
effect of the perturbations of the scalar potential, the solution to the Dirichlet
probla%) inaunit circle will be used: If the scalar potential 'V is known as
a function of angle Y on the circumference of a unit circle that is centered
with respect to the origin of a complex W plane, the complex potential inside
the unit circle is given by

. T iy
F(W) = F(0) +‘§" jr -Eljij:aﬁ + V(y) - ay . (18)
=T l—w_e

To find the function that maps analytically the inside of the magnet
onto the inside of the unit circle, one can make use of the fact .
that the complex potential F(W(z)) equals iz when the poles have,
alternatingly, scalar potentials *1. Because of the symmetry of the problem
one can assume without loss of generality that the points

iﬂ(m+0.5)/N)

z = linm (r e ;) m =0, 1, ... 2N-1

-0

map onto the points

- e1ﬂ(m+0.5)/N ; m=20,1.,.. 2N-1
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Applying eq. (18) to the unperturbed magnet gives therefore

o w g men ana y o~i(yHmm/N)
Ro(W(2)) = 52" = L oy &0 Ty
~-m/2N

e ay
Expanding the denominator in the sum in this equation into a geometric series,
performing the sum over m, and representing the remaining terms in the sum by
the closed expression for a geometrical sum gives

n/eN N + (W euiw)N

= —— L] !
iz m . 1 - (w -e-i\l))QN dl,} )
-T/2N i

Performing the integration gives

. N .

2N = %F * n liiﬂﬁ . ‘ (192a)
1-iw -
. N .
Solving for W  yields
) . 5 Y
m N .

W' = tan (E-Z ) . : ‘ (19v)

Describing a point on the poleface with ¢ through eq. (17c) and its map with
iy

e ', the relation between ¢ and ¥ can be found from eqs. (19) and can be

expressed in the following forms:
N¢ = arctan {% n [tan(ggi + E—)]l s (20a)

- m/2 (20b)

Ny = 2 arctan (ew/g tan N¢)



-21-~ UCRL-188L1

Ny = 2 arctan tanh[g-tan (N¢ﬂ]. | (200}

The derivative dy/d¢ will also be of interest and is easily obtained from

eq. (20c):

dy/ae = m/2 . (204)

cosh[g-tan N¢] . cos2 N¢o

Graphs of Ny and dy/d¢ vs N are given in fig. 4. It will also be -
necessary to expand W into a Taylor series in =z. This is easily done by

expressing W' oas

W = Py ‘tan /b zN)m/N
- N
m/h 2
expanding the content of the last parenthesis in (nzN/h)2; and then applying

the binomial theorem. This gives, with k = m/N, and using the abbreviation

s = z(m/k)t /N,
. 2
_m 2N k LN x 6N k [k 21 , 62
y W =g |l+s §,+ s i@(k+%) + g Ei'_g- + k i §§) + ...) (21a)

. . . . . ) 8N+m
The first omitted term in this series is proportional to s .

The procedure for evaluation of.the effect of most perturbations will
be as follows: The perturbation will first be expressed in terms of an
equivalent change of the scalar potential on the surface of the unperturbed
reference pole. This perturbation potential AV is originally known as a
function of location on the reference pole, and through eq. (20c) is also known

. . A . . i
0 of Y. Usling this in eq. (18) and expanding in W e ' gives

9}
g

a
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for the perturbation AF of the complex potential, when the unimportant term

AF(0) is neglected:

oo}

v .
AF = Y wmf iee ™ Av(y) - aw/m . | (22a)
X .
T

m=

Abbreviating the integrals in this expression by

m

m .
I =f P N , (22b)
=
and expressing W by
Wwhe Y 2t ek , (21b)
with the Kn o obtained from eq. (2la), gives
= n L] .
AF = )z K - I . (22¢)

: ~ Using the properties of Kn m

and introducing - m'= largest integer <n/2N,
b .

one can therefore write for the change ACn of the multipole coefficients:

A (224d)

m'
Cn = z: Kn,n—2Nm ) In--2Nm :
m=0
The problem of evaluating the effects of perturbations is thus reduced to
finding the AV(Yy), evaluating the integrals in eq. (22b) and performing the

summation in eq. (22d4). -
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Figure 5 shows the original and displaced or modified positionlof an
element of the poleface. Using the ordinary vector representation for the
displacement (Kz) and the unperturbed field (ﬁ), the change of the scalar
potential at the unpertﬁrbed position of the element is to first order in
lel given by AV = zz . ﬁ. Using now the complex representation of the

+
vector Zz and H gives:
*
AV = Re(Az * H ) .
Using egs. (2a) and (17a) then yields:
AV = -N « Re(Az - V1) . (23)

4.2, "ERROR EXCITATION OF THE REFERENCE POLE

Increasing the scalar potential of the reference pole by ¢ gives

e for |y| < w/2n
AV =
0 otherwise

v

It follows therefore

/2N

.= ie/m e~ i ap = ise-2/m
-m/2N

sin (mm/2N) (24)
m
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4.3. LINEAR DISPLACEMENT OF THE REFERENCE POLE
For azimuthal displacement by €, Az = i*€ and one obtains from
eqs. (23) and (17c)

L/m (25a)

Av(ad) = eN sin((N-1)+d)/(cos N¢)
Substituting this expression into eq. (22b), using the fact that AV(ad) is
an odd function of Y, and introducing ¢ as the integration varisble gives

/2N
2eN

I (ad) = — sin my
m ™ Jo (cos No)

sin(N-1)y ay

sy T ¢ . (26a)

Expressing dy/d¢ through eq. (204), and introducing o = N¢, B = Ny gives

then /2

I (ad) = ¢ .,/' sin (m/N B) -+ sin(1-1/N)a
. 0

« da (27a)
)3~1/N cosh(m/2 tana)

(cos a

e S

B 1is obtained from a by replacing in eg. (20c) N¢ by o and NO by B.
For radial displacement by € one obtains in similar fashion the

following equations

1-1/N

*cosh(m/2 tan a)

AV(rd) = -eN + cos(N-1)¢/(cos N¢) (25b)
m/2N
- . 2eN* | cos(N-1)¢ L Qv
Im(rd) = -1 = Ué. cos my o N¢)l—l/N E% do (26v)
m/2
= » (1-1/N)a
I (rd) = - ie‘j; cos(m/N B) - - a)BfijN da (27p)
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L.k, ROTATION OF THE REFERENCE POLE ABOUT THE CENTER OF THE MODEL MAGNET
For a rotation about the origin by € radians in the mathematically

positive direction, Az = i<€z and egs. (23), (17c), and (20a) give:
AV(r) = eN tan N¢ = E%E n [tan(gy + %J] . (28)

Substituting this into eq. (22b), using the fact that AV(r) is an odd func-
tion of ¥, and introducing B = Ny as new integration variable yields, with
kX = m/N:

/2
i . R
I (r) =¢g ¢+ — J[' sin(kB) * Ln|tan|= +
0 [ (2

=2

)] a8 . (29a)

Integrating this by parts to eliminate the integrable singularity at the upper

limit then gives

m/2
I(r) =c¢ b 'j[ cos(kB) - cos(kem/2) . a8 . (29)
m 2 0

cos B

. According to eq. (15¢), for the model magnet p =0 form=1, 2,...

N(2m+1)

Without presenting the mathematical details here, it can also be shown that |

_0.25 form=2
0, form > 2 . -

The procedure to obtain this result for the model magnet is as follows:
One considers the case where the poles are alternatingly rotated by #*e, giving

information about all Poym* Although one can calculate the resulting effects



-26- UCRL-188L1

with the methods used in this paper, it is in this particular case egsier to
use another method: With the above mentioned combination of rotations, the °
asymptotes of the unperturbed polefaces remain V = 0 lines. Applying the
transformation zN to thg area that is bound by the rotated reference pole
and its unperturbed asymptotes leads to a geometry from which eq. (30)
follows immediately for even multiples of N, while its validity for odd
multiples of N folows from eq. (15¢).
L.5. DISCUSSION, USE, AND APPLICATION OF TABLES 1-3

Although the analytical approgch to evaluate the Im could have been
carried further in some cases, it was decided not to do so because it seemed
unavoidable to use a computer to prepare the tables, if only to avoid human
error. "o calculote the tublesy, the expressions for the Im (eqs. (2h),
(27a), (27b), (29b)) were numerically evaluated and used together with egs.
(21a) and (22d) to obtain the values for the ﬁACn. None of the general
relationships and properties of the coefficients (egs. (8c), (9), (13), {15¢),
(30)) were utilized in these evaluations to make it possible to check the
correctness of the computer program. After verification that all numbers that
should be zero were sufficiently small (order 10-12) the printout was modified
to give zeroes where they belong, improvihg the legibility of the tables.
Because of space limitations and‘of the practical significance of lHnl/lHN[
(eq. (3e)), it was decided to reproduce for this publication only the quantities
n - ACn/N for N =2, 3, L.

To make a Judgement about the applicability of the tables to particular
magnets, egs. (8c) and (15c) can be valuable, but the best criterion is prob-

ably eq. (13b). Considering a quadrupole (N = 2) and multiplying both sides
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of eq. (13b) by [N(2m+1)-1]/N = 2m + 1/2, the righﬁ side of that equation would
be well below lO~2 for m =1 if the magnet is reasonably well designed,
indicating that the linear displacement coefficients for n = 5 are likely
to be quite accurate. For m = 2 and a well designed magnet, 22.5 le wi;l
still be somewhat below 10_2, i.e., eq. (13b) will be more significantly
violated, indicating that the linear displacement coefficients for n =-9 are
not very accurate, and for n = 13 matters are even worse. The tables for
larger N show similar tendencies, leading to the conclusion that the tables
have to be used with caution above‘n = 5N. .They are carried farther only to
show the general trend of the results of the model calculations. .

To facilitate the use of the tables, it is again emphasized that they
give the effects of perturbations of the reference pole, which is located as
indicated in fig. 1(a). Equation (L4) allows application to any other pole,
and care should be taken to take the sign of excitation properly into account.
Equations (11) can simplify the evaluation of the effects of displacements of
poles.

It is worth noting that the excitation error tables are valuable not
énly for the primary intended purpose. They can, for instance, be used to
plan correction by asymmetric excitation of measured and otherwise uncorrectable
field errors. Another possibility is their use to study the feasibility of
weak multipurpose correction magnets, for instance a l2—pole%nagnet that
provides, with two independent sets of coils, both a skey qugarupole field and
a sextupole field.

A combination of errors that can easily occur is the fadial displacement

of all poles by €. In this case it is obvious that only the fundamental and

th

D
%)
,_l
}.J
Q
o
2
sy
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=ig + 2N * b ;m=0, 1, ... (31)

ACN(2m+1)

‘Many multipole magnets consist of two subassemblies and both displace-~
ment and rotation errors can occur when the two halves are assembled. One can,
for instance, easily imagine that the upper half of a magnet as shown in
fig. 3(b) is rotated by § with respect to the lower half, with the rotation
axis being at Zq> usually someplace outside the magnet. This is equivalent
to the combination of a pure rotation of the upper half by & about the origin
of the magnet, and a displacement of the upper half by ~Zg + i6. To simplify
the treatment of these problems they are symmetrized by applying 1/2 of the
total error with opposite sign to each half of the magnet.

Rotating every pole in the upper half of a magnetkas in fig. 3(b) by
0.5.¢, and assuming the pole directly above the x-axis in the first quadrant
to be on scalar potential 1, one obtains with egs. (4) and (lh)}

N-1 .
= . —1iN0pm (_,ym, = I . I
ACn(upper half) = 0.5 € P, E: e (-1)"; a tmoe oy

m=0 oN
Since every pole of the lower half of the magnet has an excitation opposite
to that of the symmetrically located pole in the upper half, but the rotation
is in the opposite direction, the contribution of the lower half is identical
to that of the upper half, except every um has to be replaced by —am.
One therefore obtains for the case where every pole in the upper half is
rotated by 0.5 € and every pole in the lower half rotated by -0.5 e:

N-1
- . . -imn/2N —imm(1+n/N)
ACn = g pn Rele 5 e

m=0
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If every term in the sum equals 1, n/N has to be an 0dd integer giving *i

for the factor in front of the sum, yielding
ACn = 0 for n/N = odd integer . (32a)

Excluding the case n/N = odd integer and using the closed expression

for the sum gives:

-imn/2N | 1 - e_l“(N+n)

1+ e

AC =¢€ - o, " Re e

n -im/N

+
AC =g+ p - 1 -(-1)° .
n n 2 cos(mn/2N)

From this follows
€ pn/cos(ﬂn/ZN) forn + N
AC = (32b)
n

odd integer

even integer

0 for n + N

Equation (32b) clearly includes eq. (32a), so that eq. (32b) describes all ACn.
Applying the same method to the case where every pole in the upper half of the
magnet is displaced by 0.5 * € elY, and every pole in the lower half by

0.5¢ e, gives with eq. (1lc):

iy bn-an -iy bn+an \
i« 0.5 « gle ;;;?ETE:I—-+ e ;;;—ifﬁ:i;) for n+N = even integer
AC = e N e (33a)
n
0 for n+tN = odd integer
bn+an bn_an
i d = . i = . + =
With € cos Y Ax, € sin y = Ay and .5 COS(E.n“l) * cos(ﬂ.n+l Gx s
2 N 2 N y

this becomes

1]
i

Qy - GV + iAx-Gx for n+N = even integer

AC (33b)

n

0 for n+N

odd integer
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It should be noted that for this particular type of assembly error,
effects caused by displacement cannot be partly compensated by rotation errors
since they produce different harmonics, i.e., if one type produces only even
harmonics, the other produces only odd harmonics. The effects can be sizeable.
For instance, using the numerical values from the tables in the general eqgs.
(32b) and (33a) gives for N = 3, n =L, 5 and y = n/2: 4/3 AC), = -€ + 1.28;

5/3 ¢+ AC. = - * 0.51. Tables that include bnian and the quantities entering

p)
egs. (32b) and (33b) can be obtained from the author upon request.

4.6. POLEFACE MODIFICATION

The purpose of discussing poleface modifications quantitatively for
the model magnet is the desirability to get a better understanding of their
effects and to obtain some quantitative information that can give guidance
for "shimming" of a magnet (in the design phase or after it has been built)
as well as obtaining some quantitative information allowing to set machining
tolerances for the polefaces. In contrast to the preceding sections, dipole
magnets are included in the discussion for obvious reasons.

The basic procedures to obtain the effect of a modification of a pole-
face of the model magnet is the same as for the previous evaluations: The
modification of the reference pole is described by the equivalent change AV(Yy)
of the scalar potential and AV is then used in eq. (22a). To simplify the
evaluation it is assumed that the "bump" on the poleface is so localized for
all m of interest that e_imw can be written outside the integral in

eq. (22a). Tor this to be true, the bump width IAZI should be small enough

that the equivalent |Aw! is small compared to 7/2m. One therefore obtains:
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low] = |S2] - foz] << w/2n

Using eqs. (17d) and (20d) one obtains

1-1/N

I%%1 = 2 cosh [g-tan N¢] + (cos N¢) /T, ‘ (3L4)
giving as condition for |Az]
|Az| << cosh (g-tan N¢) * (cos N¢)l-l/N/m . . "~ (35)

The right side of this inequality is plotted in fig. 6 for m = 1. ©Since it
is often more convenient to describe the location of a point on the poleface
by r, fig. 7 shows the relationships between N¢ and r. If inequality t35)
is not satisfied, a bump can of course be broken up into several parts that
are treated separately.

If a bump on the reference pole has the height h (h > 0 corresponding
to addition of iron), then AV becomes, with eqs. (2a) and (17a)

AV = h- -1/N (36)

H| = Nh/(cos N¢)

Introducing S for the common factor AV « Ay/m in (eq. (22a)) gives

§ = AV Au/m = ave|da| - [SE /n
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Using eqs. (34) and (36) in this expression and introducing the bump area

a=h |Az] (a > 0 corresponding to addition of iron) yields:

N/2
S =a ¢ (37)
cosh (m/2 tan N¢)*(cos N¢)2"2/N

Figure 8 shows a plot of 2S5/aN vs N¢, and it indicates how the effect of pole-
face modifications diminishes when they are far removed from the aperture.

With this expression, AF becomes

AP =15 ) Wi ~ (38)

m=1

The resulting multipole coefficients are obtained from eq. (22d), with

Im = iS e-imw. Since there are too many multipole coefficients of interest
for too many N, they are not easily plotted, but are of course easily
obtainable with the help of a computer. However the interesting case where

. every pole of the magnet has the same perturbation is easily represented

graphically. 1In that case, AF becomes
S N (2m+l) iN(2m+1)
AF = i - ons « 37 gt miN(emel)y (39)
m=0
With eq. (2la), this can be written:

AF (Loa)

g eons o 5 N(Emtl) g

=0 2m+1

L, =1 o~ Y (40Db)
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by = (B 5 (10e)
Lp= (§) [T S e L B I AL ) (40e)

In figs. 9-11, the real and imaginary parts of 3L3, SLS. and "{L7 are
plotted vs N¢, and together with the plot for 2S/aN the multipole coefficients
are easily obtained. If every pole has two identical bumps located sym-

metrically with respect to its symmetry axis, eq. (L0Oa) has to be replaced by

R =1 - hms - 5 MWL) Lgeqr (o)

e 2m+1

It is noteworthy that in the latter case the zero crossings of Re(L)
have a practical significance: By locating bumps at these zero crossings for
shimming purposes, AC3N and ACSN can be controlled independeqtly, which
will obviously simplify the process. The values of N¢ for the zero crossings
are: 22.75° for Re(LB), 15° and L5° for Re(LS), and 11.25°, 33.75°, and
56.25° for Re(L7).

L.7. PERTURBATIONS RESULTING FROM CONDUCTORS
Conductor-related effects are discussed only for completeness' sake
since they have usually only weak effects in iron dominated magnets, There-

fore without giving any details only the procedures are briefly outlined that

are practical when dealing with conductors.
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If one considers the two dimensional fields produced by a round con-
ductor with axisymmetric current distribution, it is easy to show that even
in the presence of saturating iron, the fields outside the conductor depend
only on the net current, and not on its distribution. ‘For computational
purposes it is therefore permissible to replace such a conductor by a current
filament. For the magnet model used here, it is impossible to consider the
effects of only one filament, since the "air"-region is completely surrounded
by iron. It is thérefore imperative to have at least a fictitious current
return, which is chosen here to be at the origin. If a current filament with

(

unity current is located at WO zo), and the return current goes through the

origin, it is easy to verify that the complex potential is

A *
(1-W/W ) (1-w W, )

F(W) = - %; - n = . (h1a)

If every current element is represented in this manner, the singularity at
W = 0 must disappear since by necessity the sum of all currents must be zero.
Knowing this fact, one can therefore study the effects stemming from current

filaments by using the fictitious complex potential

F(W) = - zn_((l-w/wo)(l-w wo*)) (k1v)

1
2T

Effects stemming from small displacements of a conductor are easily obtained

by calculating from eq. (4lb)

* *
AF = AW, - aF/awO + AW, -aF/awO R (L2)

expanding in W and using eq. (224).
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It should be pointed out, however, that for the effects of pertﬁrba-
tions that are identical in every space between poles, another procedure is
often more convenient. Applying the transformation ZN to a sector containing
two poles leads to dipole geometry which sometimes ié easier for evaluation,
particularly if the poles are mapped onto a straight line with a Schwarz-
Christoffel transformation.

Just to indicate how strongly the effects of conductors vanish as
soon as they are not in the immediate vicinity of the magnet aperture, it is
worth noting that the undesired multipole coefficients decay at least like

-mr
e B

Concluding Remarks

Since it is the author's experience that fhe following is sometimes
either forgotten or not completely understood, a word of caution against misuse
of the multipole coefficients: The multipole coefficients are the coefficients
of a Taylor expansion in z. The convergence radius of this expansion equals
the distance from the origin to the next singularity (which for most of the
cases discussed here is at the magnet aperture) and the expansion will give
nonsense if used outside its convergence radius. This argument does not apply
to the unperturbed model magnet since it was intentionally cﬁosen to give
exactly izN for the complex potential everywhere.

Although effects of perturbations on multipole coefficients are usually
of primary interest, the field perturbations themselves migh%'sometimes be of

concern. With egs. (2a) and (18) one obtains for the model magnet
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T iy

G W e v-Av(Y) Cap . ' (43)
m (elw —W)2 _
-1

The integral can be numerically evaluated for every specific W(z) and it is
worth noting that this evaluation is trivial for the case of poleface modi-
fications under the assumptions madé in'sec. 4.6, giving in that case an
explicit analytical expression for H*.

This paper dealt exclusively with symmetric magnets. Consideration
of general multipole magnets where not all pole-vertices have theAsame distance
from the origin have been excluded aespite‘tﬁeir practical importance because
the parameter space becomes so large that the presentation of numerical results
becomes difficult. But it should be pointed out that the procedure used for
the model calculations is also applicable to these more general magnets; the
formulae get more complicated and require more extensive use of computers, but
are basically still quite manageable. Work on quadrupoles and sextupoles with
a specific type of asymmetry is in progress. It is also noteworthy that the
transformation mapping the poles onto a circle holds also for the case where
the total number of poles 2N is an odd number, as long as the poles are
described by eq. (17b). This type of magnet is sometimes used to generate
rotating fields and the aﬂalysis carried through here can be applied to them

also.
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Figure Captions

Fig. 1(a). Normal position of reference pole.

Fig. 1(b). Rotated reference pole.

Fig. 1(c). Reference pole with antisymmetric perturbation.

Fig. 2(a). Displacement of reference pole.

Fig. 2(b). Displacement of rotéted reference pole.

Fig. 3(a). Assembly of octupole with invariance of geometry against rotation
by /8.

Fig. 3(b). Assembly of octupole with invariance of V = 0 lines.

Fig. 4. Relation between Ny, dy/d¢ and No.

Fig. 5. Displacement of a poleface element.

Fig. 6. Relation between allowable modification width and N¢ for reference
pole.

Fig. 7. Relation between r and N¢ of reference pole.

Fig. 8. Relation between common poleface perturbation factor and N¢.

Fig. 9. Relation between 3L, and N¢.

3

Fig. 10. Relation between 5L5 and N¢.

Fig. 11. Relation between 7L7 and N¢.

o
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FIG. 2a
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Table 1

-4.,256-01

"5 ol()f“'cl

"T.46E-02

2.14E-0)

UCRL-18841

T 1.76E-C1

5.C0E-CL

N

-2.03E-02

O

-2.38E-C1

(6. TLE=Ce

1.08E-C1
4 45E-02

2.88E-01
2.31E-01

6060&’01
5,0CE-01

IQOBE-Cl
2087E-CZ

1.91E—01
D

DG o w61

(™)

11

12 .

13
14
15

e Q.

_C.

1.6lE-02
0,

S -1.90E-03

Qe

3,156-03

—Z 43E=C4
0. - PR
b6.69E=04

-1.04E-C2

1.28E=Cc

1.25E_CZ

| _6.37E-C3

1.04E-02
Led6E=C2
1.25E-02
5.81E-03

-3.06E-02
Oe .
«S3E-C3
Vo

=2.44E-03
2.66E-03

2.44E-03
2.79E-02

Z3.62E-03
()

2.27E-03
__1.79__2 HE=-C3

2.27E-03

1.23E-C2

9.28E-04

=5.5ZE-C4h
Mﬁy?bE—C4

5.55E~C4.
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Table 2
N=3
n n n,. _ n. .
¥ In N Pn” N %7 N Pn”
1 8, (%) 5 £C,(rd) n é{fﬂ(ad) _‘Acn(r)
N ie N i€ N e N €
1 G,79E=+02 -3.,14E-01 5.09E-02 B8.4TE-02
2 1.56E-01 _ -4.95E-C1 1.71€-01 2 84E=-01
3 1.67E-01 ~-34,15e-C1 3.,03E-01 5.00E-C1
4 1.33E-01  =3.9CE-Cl 3.90E-01 6e39E-01
5 T.09E-02 -1.73E-C1 3.97E-01 6. 43E-C1
& Q.o ' 6.555-02 3.,18E-C1 5.0CE-01
7 ‘1 L34E-02 +CBE-CL 1.95E-01 2.88E=-01
8 -1.07E-02 _____q_ 036-02  9.03E-02__ _ 1.08E-0L
S 0. 44,16E-02 2.5LE=-02 Ge.

A0 9.13E-C3 al.9dk €3 1.90E-C3  =3,38£-02
11 TG,72€-03 f4SE-G2 5.49E-03 -2.05E-02
12 0.  1.05E-Q2  1.,31E-02 Q. _ .

13 -1, 01E-03 1 P7E 02 1.36E-02 T.34E~- 03

14 -1.138E- _C.’_..__ 56-03  _9.85E=03 5.82E-03
15 0. /.Cbb -G3 4 ,56E-03 O

1o 1.636-03_ =1.206-C3 _ 1.25E=03 _ =3.66E-03
17 2.07E-03 -3,77E-C3 1.18E-0Q3 -2 e54E-C3
18 0. 2.02E-03 2. 12E-03 0.
16 -1.1cE- 04 L«82E-C3 2.12E-02 8e 18E-04

20 =1.7CE-04 1.69E-C3 1.69E-03 7, 84E=04
21 n, 9.,3CE-04 S.07TE-04 O

22 3.25E-04  -3.02E-04____3.02E-04 __ =h.44E=04_
23 4 H5E-04 -9,34C=-C4 2 46E-Q4 -4 T7T9E—-04
24 0. 4,13E-C4 4. 186~04 _ D.
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Table 3
N=14
n N,y - Do = D=
TR N Pn” N % N Pn

. B.Acn(x) E.Acn(rd) E.ACn(ad) —.ACn(r)
' N ie N i€ N € N €

1 5,73E-02  -2.43E-01 3,43E-02 4.93E-02

2 " 9.97E-02 -4.21E-01 1.23E-01 1. 76E-01

3 1.23E-01 =-5.12E-01 2.38E-01 3.41E-C1
4 1,25E-01 -5.,13E-01 3,50E=-01 5.00E-01

£ 1.09E-01  -4,22C-01 4 ,22E-C1 6.15E-01

6  T.B83E-02 --2.91FE-C1 4.656-01 6.60E-01

7 3.99E-02 -1.18E-01 4 42E-01 6.20E=01
8 0. 5 LJ6E~-C2 3,62E-01 5.00E-01

9 -8.84E-03 9.58E=C2 2.55E-01 3.40E-01
10 -1.03E-C2 9.,73E-02 «53E-C1 1.91E-01
11 -6.31E-03 7.25E-02 7.25E=02 7.37E-02
1z 0. 3.6CE-02 _ 2.08E=02 Qe . _
13 «S9E-03" 2.56E-03 -2.56E-03  =3.12E-02
14  8,056-C3  -1.6iE-02 =4.69E=03 =-3.06E=02
15  6.15E-03 -1.42E-02 3.58E-03  -1.45E-02
16 0. 8.46E-C3 1.07E-02 Oe
17 -5.91lE-04 8.86E-C3 1.26E-02 6.37E-C3
18  -G.49E-)4 9,27E-GC3 1.13E-02 «53E-03
19 -7.46E-C4 7.74E-C3 7.74E-03 4.49C-03
20 0. 4,C0E-C3 3.58E-03 0.

21 9.48E-N4 -6.6lE-C4 6.61E-C4 =-3.,19E-03
22 1.57E-03  -4.00E-C3 -1.41€E-04 =3,62E-03
23 1.36E-03  —-3.73E-03 7.32E-04  —-1.80E-03

24 Qe 1.506E=-G3 Le6H4E-03 0.
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