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This paper presents decision analysis methodology for decisions based on data from geographic information systems. The
consequences of a decision alternative are modeled as distributions of outcomes across a geographic region. We discuss
conditions that may conform with the decision maker’s preferences over a specified set of alternatives; then we present
specific forms for value or utility functions that are implied by these conditions. Decisions in which there is certainty about
the consequences resulting from each alternative are considered first; then probabilistic uncertainty about the consequences
is included as an extension. The methodology is applied to two hypothetical urban planning decisions involving water use
and temperature reduction in regional urban development, and fire coverage across a city. These examples illustrate the
applicability of the approach and the insights that can be gained from using it.
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1. Introduction
This paper discusses decision analysis methodology that
explicitly accounts for outcomes distributed across a geo-
graphic region. As an example, consider a situation where
regional planners are considering alternative development
plans that could have varying environmental or socioeco-
nomic impacts across a region. To support their policy
and planning decisions, planners can consider multiple geo-
graphic maps showing current and potential future levels of
environmental pollutants, urban development, water avail-
ability, air temperature, etc., that could vary across the
region in different ways depending on which alternative is
implemented.

The outcomes of selecting different alternatives in
decisions supported by geographic information can be
described in terms of one or more attributes (e.g., maxi-
mum outdoor air temperature in July) whose levels (e.g.,
38�C) are known, or can be estimated with some uncer-
tainty over a region. The levels of these attributes may
depend on both the alternative that is selected and the geo-
graphic location within the region of interest.

As an example, the decision of whether or not to develop
a proposed large new landscaped park could affect the
maximum July outdoor air temperature in the region near
the proposed park. The maximum July temperature at any
specific location might differ depending on the direction
and distance of that location from the proposed park. We
will return to this park example throughout the paper to
illustrate analysis concepts that we present.

For this paper, we define a consequence as a function that
assigns levels to each attribute for an alternative and whose
domain is the geographic region of interest. (In the geo-
graphic information systems (GIS) context, the assignment
of attribute levels could be done in an automated manner
by the GIS software.)

Thus, to judge the relative desirability of the alternatives,
the decision maker must combine the geographically vary-
ing attribute levels for each alternative. The question we
address is, when each alternative can be represented by one
or more maps showing attribute levels over a geographic
region that would result from selecting that alternative, how
can a decision maker determine the relative desirability of
each alternative?
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This paper discusses preference models for a decision
analysis approach to such decisions. We use the term pref-
erence model to designate (i) conditions on decision maker
preferences for the potential consequences from a specified
set of alternatives as described by the attributes and (ii) the
possible forms of functions that will obey those condi-
tions which can be used to evaluate alternatives. Such func-
tions are called preference functions. Decisions in which
there is certainty about the consequences resulting from
each alternative are considered first, and then decisions
with probabilistic uncertainty about the consequences are
considered. (The resulting preference functions are called
value functions for decisions under certainty or utility func-
tions for decisions under uncertainty.) We describe proce-
dures to assess value functions of the type presented in
this paper and illustrate the use of these preference mod-
els with hypothetical applications in two potential problem
domains: water use and temperature reduction tradeoffs in
regional urban development and fire coverage across a city.

2. Applications of Geographic
Information Systems

The use of maps generated by computer-based geographic
information systems has become widespread due to increas-
ing computer capabilities and decreasing costs (Obermeyer
and Pinto 2007), and such analysis is the basis for a
large stream of literature. GIS analyses have been applied,
for example, to irrigation and water resource management
(Knox and Weatherfield 1999), wildlife habitat selection in
Alaska (Pendleton et al. 1998), and deforestation (Kohlin
and Parks 2001). Arbia (1993) provides a detailed overview
of GIS, including consideration of sampling and modeling
errors, but not analysis of uncertainty over consequences or
consideration of preferences.

The lack of explicit decision analysis methods is a lim-
itation in most previous GIS work that hinders its use for
comparing alternatives or designing new alternatives that
would have equivalent or higher value. There has been lim-
ited application of preference models to address decisions
using GIS data. Instead, most GIS research has focused
on statistical approaches for analyzing the data (Bond and
Devine 1991) or improved methods to display data to stake-
holders (Koller et al. 1995, Slocum et al. 2001). Worrall and
Bond (1997) explore some of the reasons GIS tools have
yielded fewer benefits than expected in the public sector;
one of these reasons is a lack of effective decision sup-
port systems. As we will demonstrate, adding a decision
analysis component to the analysis of geographic informa-
tion can increase the power of GIS tools to support policy
decision making.

A small subset of the GIS literature addresses decision
making. De Silva and Eglese (2000) discuss the develop-
ment of a decision support system that connects GIS data to
a simulation model for evacuations. Malczewski (1999) and
Jankowski (1995, 2006) provide more detailed analysis of

multicriteria decisions using GIS data. Chan (2005) exam-
ines the use of multicriteria decision making in a broad
context of spatial applications. However, the decisions con-
sidered by these authors do not directly involve prefer-
ences over consequences. Keisler and Sundell (1997) use a
somewhat different approach for a park planning problem,
by modeling multiattribute utility over aggregated attribute
levels within a geographic region. These aggregated levels
are affected by the decision maker’s choice of where the
boundary of the region is drawn. In contrast, we consider
preference models that directly address attributes whose
levels may vary across a geographic region.

3. Preference Models for Spatial
Decisions Under Certainty

This section presents four preference models for geograph-
ically oriented decision making where potential conse-
quences of alternatives are known with certainty. Two of
the preference models are discrete, meaning that there are
a finite number of subregions and the attribute levels do not
vary within any specified subregion (but may be different
in different subregions), and two are nondiscrete, meaning
that the region cannot be divided into subregions within
which the attribute levels do not vary. For both discrete and
nondiscrete situations, we present both a single-attribute
and a multiattribute preference model, so there are a total
of four different models.

Keeney and Raiffa (1976) present and demonstrate the
use of preference models over a discrete number of
attributes. Such models are now widely used to determine
the relative desirability of multiple-attribute alternatives,
where each alternative takes on a specific level on each of
the multiple attributes Z11Z21 0 0 0 1Zn, and zi designates a
specific level of Zi. (Keeney and Raiffa denote the attributes
and levels as Xi and xi, respectively, but we use Zi and zi
to avoid confusion with the use of x as a spatial dimen-
sion later in this paper.) For example, a decision related to
locating a new store branch might have attributes such as
the distance from the closest competitor, distance from the
warehouse, and population size within a five-mile radius.
For decisions with no uncertainty, preferences over the con-
sequences of these alternatives are represented by a multiat-
tribute value function, V 4z11 z21 0 0 0 1 zn5. See Debreu (1954,
1964), Fishburn (1970), and Krantz et al. (1971) for expo-
sitions of the relevant preference theory. Keeney and Raiffa
(1976), Keeney (1992), and Kirkwood (1997) have more
elementary presentations. See Keefer et al. (2004) for a
review of decision analysis applications.

In the discrete preference models in this paper, the region
is partitioned into m discrete subregions, labeled 11 0 0 0 1m,
such that the level of an attribute does not vary within any
specified subregion. In the nondiscrete preference models
in this paper, the level of an attribute depends on the geo-
graphic coordinates x and y that designate a location within
the region. In the single-attribute models, the consequences
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are described by functions that assign a single number (the
attribute level) to each subregion (for the discrete case) or
location (for the nondiscrete case), and in the multiattribute
models, the consequences are described by functions that
assign a vector of attribute levels to each subregion (for the
discrete case) or location (for the nondiscrete case). In both
the discrete and nondiscrete cases, the level or levels that
are assigned will depend on the alternative that is selected.

3.1. Spatial Decisions with a Single Attribute

3.1.1. Discrete Subregions Case. We first consider the
case of one attribute with discrete subregions, and we
assume there is a single attribute Z whose domain is a
closed interval I , where z designates a specific level of Z.
The region is partitioned into m subregions, and the level of
Z does not vary within any specified subregion. We desig-
nate the level of Z in subregion i by zi; thus a consequence
can be expressed as a vector of levels across all subregions
z= 4z11 0 0 0 1 zm5 such that zi ∈ I for i = 11 0 0 0 1m.

A relatively simple value function to represent prefer-
ences for the possible consequences of selecting different
alternatives exists if the preferences meet six conditions.
Four of these conditions (completeness, transitivity, con-
tinuity, and dependence on each subregion) will always
be met in practical decision making situations. The other
two conditions, pairwise spatial preferential independence
and homogeneity, are more restrictive, but will be rea-
sonable for many decisions. Preferential independence is
presented in more detail in Online Appendix A (avail-
able as supplemental material at http://dx.doi.org/10.1287/
opre.2013.1217). All six conditions are specified explicitly
in Online Appendix B.

Described informally, pairwise spatial preferential inde-
pendence requires that value tradeoffs between the attribute
levels in any pair of subregions do not depend on the
attribute levels in the other subregions so long as the levels
in the other subregions are common; that is, if a decision is
between two alternatives that only differ on Z in two sub-
regions, then the preferred alternative will not change if the
alternatives are modified by changing the level of Z in the
other subregions so long as those levels in the other sub-
regions are the same for the two alternatives. As an exam-
ple, suppose for the park decision discussed above that two
alternatives will result in the same temperature outcomes
for all except two specified subregions, and one alterna-
tive will give temperatures of 35�C and 45�C in those two
subregions, whereas the other alternative will give tempera-
tures of 38�C and 42�C in the two subregions. Suppose the
second alternative is preferred to the first. If pairwise spa-
tial preferential independence holds, then this will continue
to be true even if the temperatures in the other subregions
change, so long as the temperature in each of the other
subregions remains the same for the two alternatives. This
condition implies that this property will hold for any two
subregions. (Situations in which it can fail to hold generally

involve decision maker preferences that consider complex
interactions between subregions.)

The homogeneity condition requires, stated informally,
that relative preferences for different levels of Z within
any subregion will be the same for every subregion. More
specifically, the homogeneity condition holds if the same
tradeoff midvalue is found in every subregion. The detailed
definition of a tradeoff midvalue is in Online Appendix B,
and the concept can be illustrated with the park decision
for a desert area example: Suppose a decision maker would
be willing to give up two degrees, from 43�C to 45�C, in
increased maximum temperature in all of the other subre-
gions to decrease the maximum temperature in the spec-
ified subregion from 48�C to 40�C, and similarly would
be willing to give up two degrees, from 43�C to 45�C, in
increased maximum temperature in all the other subregions
to decrease the maximum temperature in the specified sub-
region from 40�C to 36�C. Because the decision maker is
willing to incur the same losses to improve from 48�C to
40�C as to improve from 40�C to 36�C in the specified sub-
region, 40�C is a tradeoff midvalue for the interval from
36�C and 48�C in that subregion. The homogeneity con-
dition holds if 40�C is also a tradeoff midvalue between
36�C and 48�C in every subregion. (Situations in which
this condition can fail to hold generally involve an attribute
for which the decision maker believes different levels have
qualitatively different implications in different subregions.)

When these two conditions, along with the other four
specified in Online Appendix B, hold, then the following
theorem specifies the form of the value function. The dis-
cussion of why this result holds is in Online Appendix B.

Theorem 1. For a region with three or more subregions
and a preference relation ¥ (“at least as preferred as”)
on the set of consequences 4z11 0 0 0 1 zm5 such that zi ∈ I for
i = 11 0 0 0 1m for a closed interval I , there exists a value
function of the form

V 4z11 z21 0 0 0 1 zm5=

m
∑

i=1

aiv4zi51 (1)

if and only if the conditions given in Online Appendix B
for this theorem hold, where v4zi5 is a (common) single-
attribute continuous value function over zi, and ai is a
positive weight on subregion i.

Thus, when the required conditions hold, it is only nec-
essary to assess one single-attribute value function and a
weighting constant for each subregion. This decomposition
has intuitive appeal because it separates the preferences
over the attribute levels, which are addressed in v4zi5, from
the priority or weighting assigned to each subregion, which
is encoded in ai. In some cases subregions will be weighted
equally, and then all ai can be set equal to one so the
weights can be eliminated from the equation. For the anal-
ogous context of decisions with a stream of outcomes over
time, the form of Equation (1) has been applied previously
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with the ai’s being interpreted as time discounting weights
(Harvey 1986, 1995). Krantz et al. (1971, pp. 303–305)
and Harvey (1986, 1995) show conditions for the existence
of a value function of the form of (1), following up on a
question raised about this by Fishburn (1970, p. 93).

The conditions required for (1) may seem restrictive for
some decision situations with geographically varying con-
sequences. However, the resulting value function given by
(1) is more general than most summary metrics typically
used in GIS analysis. Those summary metrics are often
averages of the attribute levels, which are special cases of
the models we present. For example, to specify conditions
that imply averages can be used in place of the more gen-
eral formula in (1) requires including a stronger condition
that the tradeoff midvalue of any interval will be the aver-
age of the low and high levels in the interval (see Online
Appendix B for details). For the park example discussed
above, this would mean that the midvalue between any two
temperatures will be the average of the two temperatures.
For example, the midvalue between 5�C and 10�C will be
45 + 105/2 = 705�C, and similarly the midvalue between
25�C and 30�C will be 27.5�C, and between 40�C and
45�C will be 42.5�C. In this case, as described in Online
Appendix B, preferences over the set of consequences can
be represented by

V 4z11 z21 0 0 0 1 zm5=

m
∑

i=1

aizi (2)

for some set of weights ai. If each ai = 1/m, the value
function computes the simple (unweighted) average across
subregions. A similar condition can be constructed for the
other preference models presented below, resulting in anal-
ogous linear special cases. Although this may be reasonable
in some decision situations, (1) allows for more general
preference models.

3.1.2. Nondiscrete Case. In GIS applications with a
large number of subregions, a useful modeling approach
could be to consider the data to vary in a nondiscrete man-
ner across the region. For example, suppose an application
addresses land use policy making for an urban area with
100,000 land parcels. The characteristics of each parcel will
vary from the parcel next to it, but not in an extreme man-
ner, except possibly at boundaries between land use cate-
gories. In this setting, a nondiscrete model could be easier
to analyze than a discrete model with 100,000 subregions.
In §5.2, we provide such an example.

A nondiscrete model can be specified as follows: Assume
¥ is a preference relation (“at least as preferred as”)
over the set of consequences, where the consequences are
defined in a nondiscrete manner on locations rather than on
discrete subregions. With this assumption, a consequence
can be expressed as a function z4x1 y5 that determines the
level z at each location (x1 y) in the region of interest. Thus,
potential consequences are in the set of z4x1 y5 such that
z4x1 y5 ∈ I for a closed interval I for all locations (x1 y)

within the region. With this formulation, it seems reason-
able that an analogous result to Theorem 1 could be devel-
oped to provide a specific form for the value function. In
the absence of discrete subregions, it is reasonable that the
sum in (1) would be replaced with an integral over the
region.

We provide the following conjecture for this situation.

Conjecture 1. A preference relation ¥ on the set of con-
sequences such that z4x1 y5 ∈ I for a closed interval I for
locations 4x1 y5 within a region of interest A can be repre-
sented by a value function of the form

V 4z5=

∫ ∫

A
a4x1 y5v6z4x1 y57dx dy1 (3)

where a and v are bounded and continuous almost every-
where if and only if the conditions given in Online
Appendix C for this conjecture hold, where x and y are
coordinates within the region, v is a (common) single-
attribute continuous value function over z, and a4x1 y5
is a weight for location 4x1 y5, which is positive almost
everywhere.

This can also be generalized from x and y to any num-
ber of indices for the consequences. We thank an editor for
pointing this out and noting that practical examples of this
include situations where time could be a third index, or the
spatial index of interest might be one-dimensional, such as
locations along a road or a river. In addition, although we
interpret a4x1 y5 as a weighting function, it could also be
viewed more broadly as a generating function for a trans-
form of v6z4x1 y57.

Details of how (3) might be developed from preference
conditions analogous to the conditions in Theorem 1 are in
Online Appendix C, though we do not have a proof of the
exact conditions required. Key requirements are nondiscrete
analogs of pairwise spatial preferential independence and
homogeneity, plus “reasonable” behavior for preferences as
the location varies. Stated informally, reasonable behavior
means there should not be large abrupt changes in charac-
teristics that impact preferences as x and y vary over small
intervals. For example, in the park example, land use should
not change back and forth every few feet across the region.
(Discontinuities along continuous curves, such as occur at
a park boundary, do not cause problems.) It is unlikely that
such challenges will arise in practical situations where a
nondiscrete preference model might be considered.

3.2. Spatial Decisions with Multiple Attributes

3.2.1. Discrete Subregions Case. Thus far, we have
considered only a single attribute defined across a region.
Some decisions will address multiple attributes, one or
more of which can vary geographically. For example, a
park planning decision in an arid region might require
consideration of both the maximum July temperature and
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the groundwater level in different subregions. Incorporat-
ing multiple attributes is a conceptually straightforward
extension provided that the appropriate preference condi-
tions hold. We first consider the situation where there are
m subregions, and within each subregion the levels for
the attributes do not vary. Let n designate the number
of attributes, and let Zij designate the jth attribute in the
ith subregion, where zij stands for a specific level of that
attribute in that subregion, with zij ∈ I j for all i, where
I j is the closed interval domain of the jth attribute. We
refer to Zij as an “attribute–subregion combination.” Let
Z designate the set of consequences, where a consequence
z ∈Z specifies zij for all m×n attribute–subregion combi-
nations. As above, let ¥ be a preference relation on the set
of consequences.

We now present an analogous theorem to Theorem 1 for
the case of multiple attributes. The conditions needed for
this theorem to hold are similar to those for Theorem 1,
except that pairwise preferential independence must hold
both across subregions and across the multiple attributes.

Theorem 2. For a preference relation ¥ on the set Z of
consequences over a region such that zij ∈ I j for all subre-
gions i and attributes j , for closed intervals I j , there exists
a multiattribute value function of the form

V 4z5=

m
∑

i=1

ai

n
∑

j=1

bjvj4zij51 (4)

if and only if the conditions given in Online Appendix D
for this theorem hold, where m¾ 2, n¾ 2, ai is a positive
weight for subregion i, bj is a positive weight for the jth
attribute, and vj4zij5 is a single-attribute continuous value
function over the level of the jth attribute in subregion i.
(Note that v depends only on the attribute index j .)

This result follows from applying results by Gorman
(1968) in combination with homogeneity concepts similar
to those studied by Harvey (1986, 1995). A more detailed
discussion of this theorem is included in Online Appendix
D. We present a two-attribute, 10-subregion example of the
use of (4) for an urban development decision in §5.1.

3.2.2. Nondiscrete Case. The following Conjecture 2
extends Theorem 2 to the situation where the (multiat-
tribute) consequences are functions of locations rather than
discrete subregions. Thus, this conjecture extends Theorem
2 analogously to the way that Conjecture 1 extends Theo-
rem 1. As in §3.1.2, we conjecture that preferences in such
a situation that satisfy a set of conditions can be represented
by a value function.

Let Zj4x1 y5 designate the jth attribute at location (x1 y),
and let zj4x1 y5 designate the level of Zj4x1 y5. Let Z desig-
nate the set of consequences, and let z designate a specified
consequence, where z4x1 y5 = 6z14x1 y51 0 0 0 1 zn4x1 y57, and
zj4x1 y5 ∈ I j for closed intervals I j for all j , for all (x1 y)
within the region of interest. As previously, let ¥ be a pref-
erence relation on the set of consequences.

We conjecture the following.

Conjecture 2. A preference relation ¥ on the set Z of
consequences such that zj4x1 y5 ∈ I j for all attributes j and
locations 4x1 y5 within a region of interest A for closed
intervals I j can be represented by a value function of
the form

V 4z5=

∫ ∫

A
a4x1 y5

n
∑

j=1

bjvj 6z
j4x1 y57dx dy1 (5)

where a1 v11 0 0 0 1 vn are bounded and continuous almost
everywhere if and only if the conditions given in Online
Appendix E for this conjecture hold, where x and y are
coordinates within the region, vj is a single-attribute con-
tinuous value function for the jth attribute, a4x1 y5 is a
weight for location (x1 y), which is positive almost every-
where, and bj is a positive weight for the jth attribute.

As with Conjecture 1, we have not been able to prove
this result, but it should be clear in practical decision sit-
uations whether this is a reasonable model. Further details
are in Online Appendix E.

4. Value Model Assessment Procedures
This section summarizes approaches for assessing
single-attribute value functions, weights, and preference
conditions for (1), (3), (4), and (5). Following the usual
convention, we assume without loss of generality that
(1) single-attribute value functions are scaled so the most
preferred level of each attribute that is being considered has
a value of one, and the least preferred level that is being
considered has a value of zero, and (2) the weights are
scaled to sum to one in (1) and (4), or integrate to one in
(3) and (5).

4.1. Assessing Single-Attribute Value Functions

Standard procedures can be used to assess the single-
attribute value functions in (1), (3), (4), and (5) (see, for
example, Keeney and Raiffa 1976, §3.7.2; Kirkwood 1997,
p. 240, Step 3.) Often value functions will increase or
decrease monotonically over levels of the attribute, such as
value functions for median family incomes or levels of pol-
lution. (If a value function is not monotonic, it can be pos-
sible to redefine the attribute as the distance from an “ideal
point” level, in which case the redefined attribute will be
monotonic.) With monotonic preferences, single-attribute
value functions can be assessed using the midvalue split-
ting approach, using the concept of the tradeoff midvalue
described in §3.1.1. For example, suppose a value function
is being assessed for profit in subregion i, ranging from $0
to $100,000, with higher profits being preferred. The value
function is scaled by setting v4$05= 0 and v4$10010005=

1. Suppose the tradeoff midvalue of [$0, $100,000] is deter-
mined to be x = $401000, i.e., the profit level x such that
the decision maker would accept the same decreases in
profit in the other subregions to improve profit in subregion
i from $0 to $x or from $x to $100,000. Then it follows
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directly from (1) that v4$4010005= 005. The tradeoff mid-
value of [$0, $40,000] or [$40,000, $100,000] could then be
assessed, yielding attribute levels that have single-attribute
values of 0.25 and 0.75, respectively, in (1). This proce-
dure could be continued to assess as many specific values
as desired. Alternatively, if the preference conditions hold
so that a specific functional form is valid for the single-
attribute value function, then the parameter(s) for the func-
tional form can be determined to specify the value function.
For example, an exponential form for the single-attribute
value function is valid if the relative position of the trade-
off midvalue within any specified interval depends only on
the length of the interval, and not on its location in the
domain of the value function (Kirkwood and Sarin 1980).
In this case, only a single parameter is needed to specify
the value function, and that can be determined by assessing
one tradeoff midvalue. This is illustrated by the examples
in §5.

4.2. Assessing Weights

The value tradeoff method (Keeney and Raiffa 1976,
§3.7.3; Eisenführ et al. 2010, §6.4.2) can be used to deter-
mine the subregion weights ai in (1). First, have the deci-
sion maker consider m distinct hypothetical consequences
consisting of the most preferred possible level z∗ of the
attribute in a subregion i, and the least preferred possible
level z0 of the attribute in all of the other m − 1 subre-
gions. So, the first hypothetical consequence has the best
level in subregion 1, the second has the best level in subre-
gion 2, etc. Then, have the decision maker determine which
of these m consequences is most preferred, and let i∗ rep-
resent the subregion in which the most preferred level of
the attribute is achieved. Subregion i∗ will have the highest
weight, and can be considered the most important subre-
gion to this decision maker. For each other subregion i 6= i∗,
determine the attribute level z′

i such that a consequence con-
sisting of z′

i in subregion i∗ and z0 in all other subregions
is equally preferred to a consequence consisting of z∗ in
subregion i and z0 in all other subregions. As stated above,
we assume that in (1), v4z05= 0 and v4z∗5= 1. Thus, from
the assessed indifference relationship between achieving
z∗ in subregion i or achieving z′

i in subregion i∗, it fol-
lows from direct substitution into (1) that ai = ai∗v4z

′
i51 i =

11 0 0 0 1m1 i 6= i∗. Since the weights are assumed to sum to 1,
∑m

i=1 ai = 1, and solving the resulting system of m equa-
tions yields the set of weights.

The value tradeoff method above can be adapted to
determine the weighting function a4x1 y5 for the non-
discrete case represented by (3), but modifications are
needed because there are an uncountably infinite number
of weights to be determined. We address this in §5.2 for a
specific example.

Analogous procedures can be used to determine ai1 i =
11 0 0 0 1m, and bj1 j = 11 0 0 0 1 n, in the discrete multi-
attribute case represented by (4). The form of (4) allows

Table 1. A pair of indifferent consequences used in deter-
mining a set of subregion weights a11 a21 a3

for (4).

Attribute j (n= 4)

Consequence 1 Consequence 2
Subregion i
(m= 3) 1 2 3 4 1 2 3 4

1 = i∗ z′
21 — — — — — — —

2 — — — — z∗
21 — — —

3 — — — — — — — —

Notes. Dashes indicate least-preferred attribute levels, and z∗

21 rep-
resents having the most preferred level of attribute 1 in subre-
gion 2. This indifference judgment results in the equation b1a2 =

b1a1v14z
′

215.

the two sets of weighting constants to be determined sep-
arately, as follows. First determine the subregion weights
ai by considering hypothetical consequences that have the
same levels for all attributes except one arbitrary but spec-
ified attribute j . Because of the form of (4), it does not
matter which attribute j is used for the assessment pro-
cedure. Assume for these hypothetical consequences that
the other attributes are at their least preferred levels, mean-
ing that their single-attribute values are zero, and then (4)
reduces to v4z5 = bj

∑m
i=1 aivj4zij5. Since bj is a constant,

this equation has the same form as the single-attribute
case represented by (1), and thus the same weight assess-
ment procedure presented above for (1) can be applied to
attribute j across the subregions to determine a set of equa-
tions bjai = bjai∗vj4z

′
ij51 i = 1121 0 0 0 1m1 i 6= i∗, where i∗ is

the most important subregion, and z′
ij is the level of attribute

j in subregion i∗ that generates the indifference relationship
described above for the single-attribute case. The bj cancels
out of the equations, and combining these equations with
∑m

i=1 ai = 1 gives a set of m equations that can be solved
for the ai just as was done in the single-attribute case. An
example of such an indifference relationship is shown in
Table 1, with m= 3, n= 4, i∗ = 1, and j = 1.

A corresponding procedure can be applied to determine
the attribute weights bj by considering hypothetical conse-
quences that have the same attribute levels in all subregions
except one arbitrary but specified subregion i. As before,
it does not matter which subregion is used for the assess-
ment procedure, and we can assume the attribute levels
for the other subregions to be their least preferred levels,
so that Equation (4) reduces to v4z5 = ai

∑n
j=1 bjvj4xij5.

In this case, ai is constant, and thus the equation again
has the same form as (1). Applying the same weight
assessment procedure to subregion i across the attributes
determines the set of equations aibj = aibj∗vj∗4z

′
ij51 j =

1121 0 0 0 1 n3 j 6= j∗, where j∗ is the most important attribute,
and z′

ij is the level of attribute j∗ in subregion i that gen-
erates the indifference relationship described above for the
single-attribute case. The ai cancels out of the equations,
and combining these equations with

∑n
j=1 bj = 1 gives a set
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Table 2. A pair of indifferent consequences used in deter-
mining a set of attribute weights b11 b21 b31 b4

for (4).

Attribute j (n= 4)

Consequence 1 Consequence 2
Subregion i
(m= 3) 1 = j∗ 2 3 4 1 = j∗ 2 3 4

1 z′
12 — — — — z∗

12 — —
2 — — — — — — — —
3 — — — — — — — —

Notes. Dashes indicate least-preferred attribute levels, and z∗

12 rep-
resents having the most preferred level of attribute 2 in subre-
gion 1. This indifference judgment results in the equation a1b2 =

a1b1v14z
′

125.

of n equations that can be solved for the bj . An example
of such an indifference relationship for attribute weights is
shown in Table 2, with m= 3, n= 4, j∗ = 1, and i = 1.

It could be useful to conduct this procedure using more
than one attribute to check for consistency in the responses
and to test whether the decision maker’s preferences meet
conditions for (4) to be valid. Similarly it could be useful
to assess the ai using more than one subregion.

4.3. Testing Preference Conditions

The specific conditions that must be checked depend on
which single- or multiple-attribute preference model, in a
discrete subregions case or a nondiscrete case, is being
applied. As discussed in §3, the key conditions that must be
checked are preferential independence and homogeneity. If
there are multiple attributes, then preferential independence
must be checked for attributes as well as across subregions.
(In the online appendices, these conditions are (e) and (f)
for Theorem 1 and the corresponding conditions for Theo-
rem 2 and the two conjectures.)

For example, if (1) is to be used for the single-attribute
and discrete subregions case, then pairwise spatial prefer-
ential independence can be checked by asking the decision
maker whether changing the common level of the attribute
in the other subregions would cause a preference rever-
sal for alternatives that differ only with respect to a pair
of subregions. Homogeneity can be checked by asking the
decision maker whether the tradeoff midvalue for a speci-
fied interval is the same for different subregions. This was
discussed for the park example in §3.1.1. Analogous checks
can be made for the single-attribute nondiscrete case.

If the conditions for (1) hold, then the special case of the
linear model given by (2) can be used for the single-attribute
discrete subregions case if the tradeoff midvalue for any
interval for a given attribute is equal to the average of the
high and low levels of the interval. In the park example, this
would imply, for example, that the tradeoff midvalue of the
interval from 36�C to 48�C is 436 + 485/2 = 42�C.

Similar procedures can be used to check the conditions
required for the multiple-attribute models. Kirkwood (1997,
pp. 239–240, Step 2) discusses testing for preferential inde-
pendence in further detail.

5. Examples
This section presents two hypothetical examples that apply
the preference models discussed above and shows insights
that can be gained from using these models. The first exam-
ple uses a two-attribute model with 10 discrete subregions,
and the second one uses a single-attribute nondiscrete
model. The analysis for these applications was conducted
using Excel Solver, with some use of Visual Basic for
Applications. As discussed in §2, the use of these prefer-
ence models differs from the approaches in previous appli-
cations of GIS data in that decision maker preferences are
explicitly specified over spatially varying attributes, rather
than assessed at an aggregate level, such as the average
attribute level over the region.

5.1. Water Use and Temperature Reduction in
Regional Urban Development

Many decisions involving GIS data address multiple
attributes. (For example, Keller et al. 2010 found multiple
attributes used by stakeholders in Arizona water resource
planning.) The application in this section illustrates the use
of Theorem 2 from §3.2.1 in such decisions. The data
used in this application come from Gober et al. (2010),
who applied a heat flux model to investigate urban heat
island effects in Phoenix, Arizona. Urban development has
led to increased temperatures in Phoenix, mostly by reduc-
ing the amount of night cooling that occurs. As a result,
there is motivation to increase the quantity of vegetation,
because “green” areas acquire and retain less heat. How-
ever, this would also require more water, because green
areas lose more to evaporation than developed urban areas.
Thus, night cooling and evaporation rate are both important
considerations when choosing development strategies.

Using the heat flux model, evaporation rate and night
cooling results were estimated by Gober et al. (2010) for 10
different tracts of land with three different land use classifi-
cations (industrial, xeric, and mesic) in the greater Phoenix
area using each of three potential development strategies
for each tract (compact city, oasis city, and desert city). The
current levels of evaporation rate and night cooling for the
10 tracts are shown in Figure 1. As shown in the figure,
the 10 tracts included in the study are not contiguous. Fig-
ure 2 shows the changes that would result from applying
each strategy to each tract, as projected by the model. The
different shades of the tracts represent the current classi-
fications: the darkest shade represents industrial tracts, the
lightest shade xeric (desert vegetation) tracts, and the mid-
dle shade mesic (nondesert vegetation) tracts.

Given only the data shown in Figures 1 and 2, it is not
clear which development strategy should be implemented
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Figure 1. Current evaporation rate and night cooling for each of the 10 tracts.

0.128

0.127 0.103

0.059
0.061 0.077 0.081

0.057 0.059
0.075 0.966

0.4160.360
1.2521.051

1.502

1.999

Night cooling
(degrees Celsius/hr)

Evaporation rate
(100s of cubic feet of water loss/month)

1.457

0.561
0.818

Note. The darkest shade represents industrial tracts, the lightest shade xeric tracts, and the middle shade mesic tracts.

in each tract, since reductions in evaporation rate (which
are desirable) are accompanied by increases in night tem-
perature (which are undesirable), and the magnitudes of
these effects vary from tract to tract. Thus, to defensi-
bly choose the optimal development strategy, we should
specify a value function to determine an overall value for
different combinations of evaporation rate and night cool-
ing across the 10 tracts. If the conditions for Theorem 2
hold, then to determine a value function we need to spec-
ify single-attribute value functions for evaporation rate and
night cooling, as well as weights bE and bN for the two
attributes and weights ai1 i = 11 0 0 0 110, for each of the
10 tracts.

The conditions needed for a single-attribute value func-
tion to be exponential were described in §4.1, and these
conditions seem reasonable for this example where the
changes in evaporation rate and night cooling do not vary
drastically among the alternatives. Based on Figures 1 and
2, we can determine that the smallest achievable evapora-
tion rate (most preferred) is 0.047, and the largest (least
preferred) is 0.160. Assume for illustrative purposes that
the tradeoff midvalue for the specified range of evapora-
tion rate assessed from the decision maker using the pro-
cedure in §4.1 is 0.116. We can also determine from the
figures that the smallest achievable level of night cool-
ing (least preferred) is 0.031, and the largest (most pre-
ferred) is 2.405; assume that 0.470 is the assessed tradeoff
midvalue of this range. These assessed midvalues can be
substituted into the exponential value function formula to
find the single undetermined parameter for each of the two
single-dimensional value functions. This yields the follow-
ing exponential single-attribute value functions for evapo-
ration rate and night cooling, where higher levels of evap-
oration are less desirable, whereas higher levels of night
cooling are more desirable:

vE4ziE5=
1 − e−0090541−44ziE−000475/0011355

1 − e−00905
1 (6a)

vN 4ziN 5=
1 − e−303544ziN −000315/203745

1 − e−3035
1 (6b)

where 0.905 and 3.35 are the exponential constant param-
eters, ziE represents the evaporation rate in tract i, and ziN

represents the amount of night cooling in tract i. The func-
tions are scaled to vary between zero and one over the
ranges of possible levels for the two attributes, as graphed
in Figure 3.

The weights can be determined using the value trade-
off approach presented in §4.2. To illustrate the procedure,
we first consider the 10 subregion (tract) weights ai1 i =

11 0 0 0 110. Applying the §4.2 procedure, the decision maker
considers 10 hypothetical consequences consisting of the
most preferred level of night cooling for each single tract in
sequence combined with the least preferred level of night
cooling in the other nine tracts; that is, one tract will have
night cooling level of 2.405, and the other nine tracts will
have a night cooling level of 0.031. The set of 10 evapo-
ration rates is identical for each hypothetical consequence.
For this example, assume all of these 10 hypothetical con-
sequences are judged to be equally preferred by the deci-
sion maker. Then, using Equation (4), it must be true that
all of the tract weights are equal, and if the weights for the
10 tracts are scaled to sum to 1, this results in a weight of
ai = 0010 on each tract.

The procedure is analogous to determine the two attribute
weights bE and bN . Consider two hypothetical consequences
that differ only in a single tract i, one with the most pre-
ferred evaporation rate (0.047) combined with the least pre-
ferred night cooling level (0.031) in tract i, and the other
with the least preferred evaporation rate (0.160) combined
with the most preferred night cooling level (2.405) in tract i.
Assume that the decision maker prefers the second of these
hypothetical consequences. From Equation (4), this means
that the weight for night cooling bN must be greater than
the weight for evaporation rate bE .

Now consider a third hypothetical consequence that has
the same (worst) level of the evaporation rate as the second
(more preferred) hypothetical consequence specified above,
but that has less night cooling, and is therefore less pre-
ferred. Adjust the level of night cooling until the decision
maker is indifferent between the first hypothetical conse-
quence and this third consequence. For example, suppose
that indifference is achieved when the night cooling level
is set to 0.735. Then, by substitution into Equation (4) and
using Equations (6a) and (6b) to obtain vE4007355= 00666
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Figure 2. Changes in evaporation rate and night cooling that would result from implementing each of the three strategies
in the 10 tracts.
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Note. The different shades represent the current classification.

and vN 4000315 = 0, and assuming the weights are scaled
to sum to one, it follows that bE = 004 and bN = 006.
Then the overall value function as given by Equation (4) in
Theorem 2 is

V 4z5=

10
∑

i=1

0014004vE4ziE5+ 006vN 4ziN 551 (7)

Figure 3. The exponential value functions over evaporation rate and night cooling, with exponential constants c = 00905
and c = 3035, respectively.
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and the resulting optimal development plan is shown in
Figure 4, assuming there are no constraints on which devel-
opment strategy can be applied to each tract.

Once this decision was framed using a multiattribute
value function, analyzing it became more straightforward.
We specified the single-attribute value functions over evap-
oration rate and night cooling, as well as weights on the two
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Figure 4. The optimal development plan using (7) and
no cross-tract constraints.

D

C C

C C

O OC

C C

Note. C, Compact; O, oasis; D, desert.

attributes and the 10 tracts. These clarified the geographic
value structure, and then it was a straightforward calcula-
tion to determine the preferred decision for each tract.

With this formulation, the decision problem is effectively
made up of 10 smaller decision problems, one for each
tract, which can be solved independently. This is because,
using Equation (7), the total value is the sum of the values
for each tract, and there is no constraint across tracts. We
can extend this model to incorporate cross-tract constraints
on the development plans. For example, assume there are
constraints on the average decrease in evaporation rate and
the average increase in night cooling allowed across the
tracts. Restrictions such as these can be included without
altering the preference model, and will allow decision mak-
ers to consider “what if” questions about the impact of dif-
ferent constraints. For example, Figure 5 shows the optimal
plan still using (7), but now requiring a minimum average
decrease of 7% in evaporation rate and a minimum aver-
age increase of 12% in night cooling across the tracts. In
this case, a constrained optimization analysis shows that it
is optimal to forgo the oasis development strategy entirely.
This is because the oasis strategy leads to increased evap-
oration rates in tracts where it is imposed, leaving little
flexibility in other tracts to satisfy the overall evaporation
constraint. This example illustrates the type of analysis that
can be done once a value function is determined. This type
of analysis is not realistically feasible by simply examining
mapped projections of the impacts of various policies, such
as those shown in Figure 2.

5.2. Fire Coverage Across a City

The second example is a hypothetical fire coverage prob-
lem that illustrates the application of Conjecture 1 from
§3.1.2. In this example, the decision is where to locate
three fire stations within a city. The example is motivated
by Church and Roberts (1983), who argue that traditional
coverage models for facility location problems do not suffi-
ciently measure the value obtained from coverage. We con-
sider first a simple model in which each location is equally
weighted and the value function is linear over response
time. Then we consider a less restrictive model in which

Figure 5. The optimal development plan with con-
straints on overall levels of evaporation rate
and night cooling.

D

DD

DC

C

C

C C

C

Note. C, Compact; O, oasis; D, desert.

areas can be weighted differently and the value function
over response time can be nonlinear.

For the simple model, the preferred solution is to mini-
mize average response time, where average response time
is calculated as a continuous function over the city. An
optimization model for this is

minK

∫ ∫

A
z4x1 y1K5dx dy1

K = 44K1
x1K

1
y 51 4K

2
x1K

2
y 51 4K

3
x1K

3
y 551

(8)

where K is a vector representing the x and y coordinates
of the three stations, and z is the average response time for
a point (x1 y) in the city region A given the locations of the
three fire stations; that is, K represents the chosen alterna-
tive, and z represents the consequence. For this illustrative
example, region A is assumed to be square with dimensions
normalized from 0 to 1 in both x and y.

To develop a specific functional form for (8), we assume
that for some fraction of incidents �, the fire station
assigned to respond is not the closest one. Of those inci-
dents, the same fraction � are not assigned to the next clos-
est station. Finally, of those incidents not assigned to the
two closest stations, the same fraction � will end up unas-
signed to any of the three stations. With these assumptions,
the average response time used in Equation (8) becomes

z4x1y1K5=

( 3
∑

i=1

�i−141−�5f 4d44x1y51K4i555

)

+�3f̄ 1 (9)

where K4i5 is the location of the ith closest station,
d44x1y51K4i55 is the distance between (x1y) and K4i5, f 4d5
is the average response time from a station at distance d,
and f̄ is the average “unassigned” response time (occur-
ring when none of the three stations is properly equipped to
respond). For d4·5, we use a “metropolitan” distance mea-
sure, which is the sum of the x and y distances to account
for travel along gridlines in a metropolitan area. The range
of f 4d5 is assumed to be [011]. We assume that f 4d5 is lin-
ear in d below an upper bound d′. We can think of d′ as a
large enough distance between the station and the incident
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Figure 6. The exponential value function over average
response time, with exponential constant c=

3086.
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such that there is no benefit to responding, and the station
therefore will not respond if d¾d′. Provided � is not large,
�3f̄ will be close to zero. Since this term is constant and
close to zero, the exact choice of f̄ is immaterial, and we
assume �3f̄ can be ignored. In this illustrative example,
we set �=0015. Whereas (9) was developed directly from
the definition of average response time, the use of (8) is
a nondiscrete special case analogous to (2) where all loca-
tions are given equal weight so that a4x1y5=1 for all x
and y, and v4z5=z, and we will now generalize (8) based
on Conjecture 1.

Given the relationship between response time and the
size of the fire that the responder will have to fight, it
is reasonable to assume there are diminishing returns for
decreases in response time from the perspective of a pol-
icy maker; that is, high values will be placed on the range
of response times that will likely assure the survival of
the building(s), and changes in response times slightly
above this range will be associated with steeper decreases
in value. For example, assume the conditions specified in
§4.1 are met for an exponential value function to be valid
and that the assessed tradeoff midvalue for the range from
zero to one is 0.826, which results in the following single-
attribute value function:

v4z4x1y1K55=
1−e−308641−z4x1y1K55

1−e−3086
0 (10)

Equation (10) is shown in Figure 6, normalized so that
v405=1 and v415=0.

It is reasonable that a rapid average response time could
be more critical in some areas than others, because of dif-
ferences in, for example, population or economic impor-
tance. In such a case, the weight a4x1y5 will vary with
x and y. Conceptually, the process in §4.2 to assess this
weighting function applies, but there are an (uncountably)
infinite number of locations for which weights have to be
determined, so it is not practical to assess weights for each

individual location. Two approaches are practical in this sit-
uation: assess weights for a finite number of locations and
use a curve fitting method to fit a surface to these points,
or assume a specified functional form for a4x1y5 that has
a small number of unspecified parameters and assess the
weights at enough locations to determine those parameters.
There is no existing theory to specify preference conditions
that determine a functional form for a4x1y5 in the way that
there is theory to determine when an exponential single-
attribute value function is valid. Thus, we will show how
such an approach might be used in a practical decision sit-
uation, such as the fire station location decision.

For illustrative purposes, assume that development in this
city is concentrated along a river extending in a straight
line upstream from near the center of the eastern boundary
of the city, which is on a bay, to near the southwestern
corner, and that the decision maker wants more emphasis
placed on protecting areas that are closer to the bay and the
river. Using the approach in §4.2, suppose that the decision
maker most prefers the hypothetical consequence with the
best response time occurring at a location near to the mouth
of the river, but slightly inland. Also, assessing indifference
relationships for other locations determines that the deci-
sion maker wants the weight to decrease with increasing
distance from the most preferred location, and also wants
the weight for areas along the river to be higher than areas
further away from the river for any specified distance from
the bay. In addition, the decision maker is unconcerned
about the response times at the very edges of the city. The
surface shown in Figure 7 has these qualitative character-
istics for the weighting function, and these characteristics
could be modeled quantitatively using a combination of
beta-distribution functional forms for the x and y dimen-
sions. Although there is not a theoretical justification for
using this form, it fits the qualitative characteristics of the
decision maker’s preferences, and we will use it to illus-
trate how a functional form can be used to specify a4x1y5.
(In this illustrative analysis, we ignore the impact of the
river on response times.)

More specifically, we assume that the value function is
specified as the product of an unconditional marginal beta
distribution for the x variable and a conditional marginal
beta distribution for the y variable, where the conditioning
is through a straight-line equation for the mode of the y
variable marginal beta distribution as a function of the x
variable. Based on the qualitative characteristics presented
in the preceding paragraph, the straight line that will be
used is the course of the river. Using this specification for
the value function, the combined beta function is deter-
mined by five parameters: the p and q parameters for the
marginal distribution over x, the two parameters that deter-
mine the equation for the mode line for the marginal distri-
bution over y as a function of x, and one other parameter
that can be used along with the equation of the mode line
to determine the p and q parameters of the conditional
marginal distribution over y. In addition, an equation must



IN
F
O
R
M
S

ho
ld
s
co

p
yr
ig
h
t
to

th
is

ar
tic

le
an

d
di
st
rib

ut
ed

th
is

co
py

as
a
co

ur
te
sy

to
th
e
au

th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
s:
//p

ub
so

nl
in
e.
in
fo
rm

s.
or
g/
.

Simon, Kirkwood, and Keller: Decision Analysis with Geographically Varying Outcomes
Operations Research 62(1), pp. 182–194, © 2014 INFORMS 193

Figure 7. A contour map of the illustrative weighting
function expressing the weight assigned to
any point in the city.
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be specified to set the scaling for the weighting function
(for example, to ensure that it integrates to one over the
region of interest), but that does not require an assessment
to determine.

Parameters for the combined beta function can be
obtained by determining the best fit surface of the com-
bined beta form to tradeoff assessments for a small set of
locations where the assessments are made using the pro-
cedure in §4.2. To illustrate the possible results of such
assessments, the equation for the surface in Figure 7 is
specified by

a4x1y5=x10141−x5001y10541−y5410425−006x5/40005+004x50 (11)

An alternative procedure to assuming a functional form
for a4x1y5 would be to do tradeoff assessments for a set
of locations and then interpolate a surface through the
results without assuming any particular functional form
using an interpolation procedure implemented in a mathe-
matical analysis package. Lam (1983) provides a review of
many different spatial interpolation procedures.

The resulting optimization problem is now

maxK

∫ ∫

A
a4x1y5

1−e−308641−z4x1y1K55

1−e−3086
dxdy1

K=44K1
x1K

1
y 514K

2
x1K

2
y 514K

3
x1K

3
y 551

(12)

where a4x1y5 is given by (11), but normalized to integrate
to one over the region of interest. In (12), we are maximiz-
ing overall value as expressed by (3) in Conjecture 1.

The optimization problems in (8) and (12) were solved
numerically using a grid search with a distance of 0.025
between adjacent points, and a numerical integration that
divides the region into 400 cells, computing the average
response time in the center of each cell. Changes in the

Figure 8. Optimal fire station locations when minimiz-
ing unweighted average response time, and
when maximizing a geographically weighted
nonlinear value function.
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search and integration parameters did not noticeably affect
the results. Figure 8 shows the optimal fire station locations
for (12) designated with diamonds, along with the locations
determined by the unweighted linear value function in (8)
designated with circles. Conforming with the preference
to protect areas closer to the bay and river, the locations
of the fire stations have been “pulled” toward the higher
weighted part of the city compared to their locations when
only average response time is considered.

6. Extensions of the Preference Models
to Address Uncertainty

This section, included as Online Appendix F, discusses
preference models for decisions where the consequences
of alternatives are uncertain, and addresses what conditions
are needed for such models.

7. Concluding Comments
This paper presents preference models for decisions based
on GIS data. As shown by the illustrative hypothetical
applications in this paper, these types of decisions are
important in a variety of decision contexts, and with
the widespread use of GIS, it is now practical to apply
more rigorous decision analysis methods to these decisions.
When faced with a decision that has consequences that can
vary over a geographic region, formulating specific struc-
tures and conditions for the decision stakeholders’ prefer-
ences will allow an analyst to elicit an appropriate value or
utility function using the results in this paper. This can help
to provide a more defensible gauge of the desirability of
the proposed decision alternatives. We believe the methods
in this paper can be applied to a wide range of real-world
policy decisions with geographically varying consequences,
such as regional development planning, pollution abate-
ment, facility location, and utility service provision.
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