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Neuroimaging in Dementia

Maria Carmela Tartaglia, Howard J. Rosen, and Bruce L. Miller

University of California, San Francisco Memory and Aging Center, 350 Parnassus Avenue, Suite 905, San Francisco, California
94143

Summary: Dementia is a common illness with an incidence
that is rising as the aged population increases. There are a
number of neurodegenerative diseases that cause dementia,
including Alzheimer’s disease, dementia with Lewy bodies,
and frontotemporal dementia, which is subdivided into the
behavioral variant, the semantic variant, and nonfluent
variant. Numerous other neurodegenerative illnesses have
an associated dementia, including corticobasal degeneration,
Creutzfeldt–Jakob disease, Huntington’s disease, progressive
supranuclear palsy, multiple system atrophy, Parkinson’s
disease dementia, and amyotrophic lateral sclerosis.
Vascular dementia and AIDS dementia are secondary
dementias. Diagnostic criteria have relied on a constellation
of symptoms, but the definite diagnosis remains a pathologic
one. As treatments become available and target specific
molecular abnormalities, differentiating amongst the various
primary dementias early on becomes essential. The role of

imaging in dementia has traditionally been directed at ruling
out treatable and reversible etiologies and not to use imaging
to better understand the pathophysiology of the different
dementias. Different brain imaging techniques allow the
examination of the structure, biochemistry, metabolic state,
and functional capacity of the brain. All of the major
neurodegenerative disorders have relatively specific imaging
findings that can be identified. New imaging techniques
carry the hope of revolutionizing the diagnosis of
neurodegenerative disease so as to obtain a complete
molecular, structural, and metabolic characterization, which
could be used to improve diagnosis and to stage each patient
and follow disease progression and response to treatment.
Structural and functional imaging modalities contribute to
the diagnosis and understanding of the different dementias.
Key Words: Dementia, MRI, PET, Alzheimer’s disease,
frontotemporal dementia.

INTRODUCTION

Brain imaging is routinely performed in the evaluation
of dementias, and the most recent American Academy of
Neurology Practice Parameter recommends the use of
structural imaging, i.e., computed tomography (CT) or
magnetic resonance imaging (MRI), to assist in the
diagnosis of dementia and to specifically rule out
reversible, treatable causes [1]. As the clinical approach
to dementia moves toward the diagnosis of specific
neurodegenerative diseases and their underlying molec-
ular pathology, the role of brain imaging will become
more prominent. With the development of treatments
targeted at specific molecular pathologies, such as β-
amyloid in patients with Alzheimer’s disease (AD), tau in
various taupathies, such as corticobasal syndrome and
progressive supranuclear palsy, and TDP-43 in TDP-43
proteinopathies, such as the semantic variant of fronto-

temporal dementia (FTD), imaging will be needed to
obtain accurate etiologic diagnoses. Accurate diagnosis
will help physicians avoid exposing patients to poten-
tially dangerous medications and will facilitate better
measurement of the response to treatment. Moreover, as
neurodegenerative diseases are associated with the
development of pathologic changes long before the
development of functional impairment, neuroimaging
has a potential role in the diagnosis of early—even
presymptomatic—stage of dementing disorders. A vari-
ety of imaging techniques are available for evaluating the
structural, biochemical, and functional changes of the
brain in neurodegenerative diseases. The goal of this
review is to provide a broad overview of the various
methods used to image neurodegenerative disease and to
speculate on future directions.

STRUCTURAL & FUNCTIONAL IMAGING

CT & structural MRI/T1–weighted imaging
Structural scans lend themselves well to assessing

volumetric changes that occur in neurodegenerative
disease with decreases in gyral and increases in sulcal
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size. These changes probably develop secondary to
decreases in synaptic density, neuronal loss, and cell
shrinkage. Every neurodegenerative disease has a pred-
ilection for specific brain systems or networks, with each
associated with tissue loss in particular brain regions.
CT imaging is commonly used in acute settings and/or

in clinical settings where MRI is not available or contra-
indicated in order to rule out alternative pathologies.
Although CT scanning is still regularly used for
diagnostic assessments and for studies of brain-behavior
correlation, MRI is currently the modality of choice for
assessing many types of abnormalities seen in neuro-
degenerative syndromes.
The medial temporal lobes, especially the hippo-

campus and entorhinal cortex (ERC), are among the
earliest sites of pathologic involvement in AD [2], and
studies have repeatedly shown decreased hippocampal
and ERC volumes in patients with AD compared with
age-matched controls [3] (FIG. 1). Other severely
affected areas include the lateral parietal and posterior
superior temporal regions and medial posterior portion of
the cingulate gyrus [4], but atrophy is also evident in the
frontal, temporal, and occipital lobes [5], in keeping with
the diffuse nature of AD (FIG. 1).
MRI has been used to study patients with mild cognitive

impairment (MCI), who are at high risk for progression to
AD, with a conversion rate to dementia of ∼12–15% per
year. MRI studies in MCI have shown that hippocampal
volumes and cortical volumes in the parietal and lateral
temporal regions are able to predict the likelihood of
progression [6]. Longitudinal studies have demonstrated
greater atrophy rates in ERC [7], and in the temporal lobe as
a whole [8], in MCI patients than in controls.
Although regional volume loss occurs in both MCI

and AD, the utility of using structural imaging for
diagnosis remains unclear because in most volumetric
studies of MCI and even AD, at least some overlap exists
between patients and controls. As a result, imaging

measures correctly identify between 80 and 100% of AD
patients but a much smaller proportion of MCI patients,
and this approach has significant limitations for assessing
MCI-progressors from non-progressors [9].
Differentiating the different causes of dementia can

prove challenging. Structural imaging can be useful in
more advanced cases, especially in illnesses with focal
degeneration. In FTD, a disorder that encompasses a
heterogeneous group of patients sharing focal degen-
eration within the anterior frontal, temporal, and
insular regions, MRI has revealed unique patterns of
brain atrophy. FTD is a clinical term that includes
these patients, while frontotemporal lobar degeneration
refers to the pathologic change in this clinical group of
focal degenerative disorders. In patients with the
behavioral variant of FTD (bvFTD), frontal lobe
volumes are reduced compared with those of both
AD patients and age-matched controls. The target sites
in FTD are the ventromedial frontal cortex, the
posterior orbital frontal regions, the insula, and the
anterior cingulate cortex, which differentiates this
illness from AD as these areas are relatively spared
in the latter disease, and atrophy in the frontal lobes is
often in the lateral frontal lobe [10] (FIG. 2). The
target regions atrophied in bvFTD are the frontal
components of the brain’s emotional processing sys-
tems, so that their involvement in FTD explains the
unique behavioral symptoms seen in that disorder.
Patients with the semantic variant of FTD have relative
preservation of frontal lobe volumes but marked loss
of volumes in the temporal lobes, in particular the
neocortex in the temporal pole (FIG. 2) as well as
atrophy in the amygdala, which is a critical structure
for emotional processing [11, 12].
The clinical utility of these patterns of regional atrophy

has been demonstrated in a study wherein frontal lobe
volumes correctly classified 93% of patients with FTD
compared with controls [13].

FIG. 1. Coronal magnetic resonance imaging through the brain of patient with Alzheimer’s disease (AD). Notice the enlarged temporal
horns due to hippocampal atrophy. Voxel-based morphometry analysis showing volume loss in AD compared with the controls in the
hippocampus, entorhinal cortex, parietal and lateral posterior superior temporal regions, and medial posterior portion of the cingulate
gyrus. (High resolution version of this image is available in the electronic supplementary material.)
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Volumetric studies aimed at gaining an understanding of
brain–behavior relationships have demonstrated relation-
ships between focal changes in brain volume and cognitive
or behavioral changes in dementia. Several studies have
found correlations between hippocampal volumes and
episodic memory performance in AD, consistent with the
long-established role for this structure in memory consol-
idation [14, 15]. Studies on focal degeneration in non-AD
dementias, particularly FTD, have yielded findings that
help identify the anatomical basis of language and word
access [16] and increase our understanding of facial
expressions of emotion [12] and empathy [17].
Parkinsonian dementias cause damage in different

networks within the brain and are also associated with
specific patterns of regional volume loss. Characteristic
of progressive supranuclear palsy—although not diag-
nostic of this condition— are third ventricle dilatation
and midbrain atrophy with shortening of the anteropos-
terior length of the midbrain. This contrasts with cortico-
basal syndrome, for which frontally predominant atrophy
is more typical [18].
Dementia with Lewy bodies (DLB) is associated with

diffuse atrophy, and no established pattern is character-
istic on structural MR images. Some forms of spinocer-
ebellar atrophy are associated with cognitive impairment

and display both cerebellar and cerebral atrophy along
with caudate and putamen atrophy in some variants [19].

High-field MRI
Although 3T and 4T MRI provide good structural data,

the resolution remains limited because of the signal-to-
noise ratio. The hippocampus and its subfields cannot be
well visualized using most clinical or research scanners,
which are 1.5 or 3T. The introduction of 7T MRI,
currently only used in research, holds promise for better
visualization of the macrostructures of subcortical struc-
tures, including the hippocampus and basal ganglia. The
higher field strength will likely also improve spectral
acquisition and functional MRI (fMRI).
The authors of a recent study [20] using 7T MRI

reported selective thinning of the CA1 apical neuropil
layer relative to the CA1 cell body layer in subjects with
mild AD (FIG. 3), with the thickness of the CA1–stratum
lacunosum–moleculare (SRLM) being a better indicator
than overall hippocampal volume for distinguishing
subjects with AD from normal controls. Postmortem
studies have shown that the CA1 apical neuropil is an
early target of AD pathology [21]. Neurofibrillary tangles
appear in the entorhinal cortex first, but the perforant
pathway axons project from the entorhinal cortex to the

FIG. 2. Top row: Sagittal view of a patient with the behavioral variant of frontotemporal dementia (bvFTD); note the anterior atrophy with
relative sparing of the parietal and occipital regions. The anterior corpus callosum is also thinned compared to posterior. Coronal view of
patient with semantic dementia showing significant left temporal atrophy. Coronal view of patient with nonfluent variant of FTD showing
significant left insular atrophy. Bottom row: VBM study showing that in patients with bvFTD, frontal lobe volumes are reduced compared
with age-matched controls. There is volume loss in the ventromedial frontal cortex, the posterior orbital frontal regions, the insula, and
the anterior cingulate cortex. (High resolution version of this image is available in the electronic supplementary material.)
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outer molecular layer of the dentate gyrus and the distal
apical dendrites of CA1 neurons in the stratum lacuno-
sum-moleculare [22, 23]. These two neuropil areas of the
hippocampus are among the next sites for tau pathology to
appear, but as clinical signs of AD become more
pronounced, the varicose, tau-filled CA1 dendrites in the
stratum lacunosum-moleculare disappear, possibly corre-
sponding to the thinning of the CA1–SRLM observed in
vivo in this study and in prior postmortem studies [24, 25].

MRI of vascular damage
Hyperintensity, or increased (bright) signal, on T2–

weighted and fluid-attenuated inversion recovery
(FLAIR) images is associated with cerebral pathology
characterized by edema and gliosis. T2/FLAIR imag-
ing is very sensitive to ischemic injury due to both
small vessel and large vessel disease. Small vessel
disease causes incomplete or complete infarcts in the
white matter (WM) or in subcortical gray matter nuclei

that on FLAIR images appear as hyperintensities
(FIG. 4a), whereas complete infarcts present as lacunes
(diameter, 2–15 mm), which are hypointense to the
brain and isointense to the cerebrospinal fluid [26].
The results of a quantitative MRI study in non-
demented elderly subjects suggested that this subcort-
ical injury impacts brain function and correlates with
frontal executive impairment [27].
T2/FLAIR imaging, especially T2*-gradient echo images,

are also sensitive to microhemorrhages, which appear as
hypointense lesions due to the inhomogeneities in the local
field caused by the cerebral iron deposition and can be seen
in up to 65% of patients diagnosed with vascular dementia
[28] (FIG. 4b). Amyloid angiopathy, unlike hypertension-
related lesions, is usually associated with microhemorrhages
in the cortico–subcortical junctions of the frontomesial,
fronto-orbital, and parietal regions [29]. Common neuro-
degenerative disorders, such as AD and FTD, are usually not
associated with major changes on T2/FLAIR scans.

FIG. 3. Cross-section through the hippocampus at the level of the red nucleus in a normal control, obtained using a 7T gradient-recalled
echo sequence. DG = Dentate gyrus, CA1–3 = cornus ammonis subfields 1–3, sp = stratum pyramidale, srlm = stratum radiatum/stratum
lacunosum-moleculare, EC = entorhinal cortex. Scale bar 1 mm. Image has been reproduced courtesy of Dr. Geoffrey A. Kerchner. (High
resolution version of this image is available in the electronic supplementary material.)

FIG. 4. (A) Axial section through fluid-attentuated inversion recovery image from a patient with vascular dementia, showing multiple
patchy areas of high signal in periventricular white matter. (B) Coronal gradient echo MR image showing multiple microhemorrhages.
(High resolution version of this image is available in the electronic supplementary material.)
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Many rapidly progressive dementias can cause leukoen-
cephalopathy, including progressive multifocal leukoence-
phalopathy and leukodystrophies, limbic encephalitis,
infections and toxic conditions, or mixed gray and WM
involvement, such as mitochondrial diseases and intra-
vascular lymphoma [30]. MRI with contrast should be used
in the evaluation of most rapidly progressing dementias.

Diffusion-weighted imaging and diffusion-tensor
imaging
Diffusion-weighted imaging (DWI) is based on the

analysis of the random motion of water molecules in the
brain and is an integral part to any assessment of acute
stroke victims, as it shows all acute injury extremely
well. In most neurodegenerative diseases, DWI images
appear to be normal; however, in Creutzfeldt–Jakob
disease (CJD), decreased diffusion in the cerebral cortex
(called cortical ribboning) with an associated decrease in
basal ganglia is a highly sensitive (91%) and specific
(95%) diagnostic marker of CJD [31] (FIG. 5). Variant
CJD is often associated with high signals in the pulvinar
and dorsomedial thalamic region [32].
Diffusion tensor imaging (DTI), is a novel MRI

technique that enables the integrity of WM tracts to be
better evaluated, revealing injury that may not be
apparent with other imaging techniques. DTI, unlike
DWI, evaluates the diffusion of water in each of the three
main directions (right/left, front/back, up/down) and so
allows quantification of the degree of anisotropy and
local fiber direction on a voxel-by-voxel basis. Diffusion
of water is anisotropic (directionally dependent) in WM
fiber tracts because axons and myelin sheaths act as
barriers; consequently, in axons, the diffusion of water
(diffusivity) is significantly greater along the axis of
those fibers, thereby providing a tensor measurement
[33]. Fractional anisotropy (FA) is a measure of the
degree of anisotropy of a diffusion process and ranges
from zero, when diffusion is isotropic (i.e., unrestricted

in all directions), to one, when diffusion occurs only
along one axis and is fully restricted in the other
directions. FA can therefore provide information on the
orientation and integrity of fibers. Until recently, the
focus of research in neurodegenerative disease was
restricted to the gray matter. However, it has become
evident that although there is significant gray matter
pathology in neurodegenerative diseases (and particularly
in AD), WM pathology is also present in AD, specifi-
cally in temporal lobe and posterior cerebral WM and the
corpus callosum [34]. Reduced FA was recently identi-
fied in the portion of the cingulum bundle connecting the
hippocampus to the posterior cingulate region in patients
with MCI and AD compared with controls [35]. WM
tract integrity has also been correlated with measures of
episodic memory in AD and MCI [36].
DTI may also be useful for differentiating amongst the

different dementias. One recent study reported decreased
FA in the parietal lobes of patients with DLB compared
to those with AD, which is in keeping with metabolic
studies and the prominent visuospatial difficulties often
seen in these patients [37]. Another recent study
compared AD and FTD and found that patients with
FTD had reduced FA in frontal and temporal regions,
including the anterior corpus callosum, bilateral anterior,
and descending cingulum (Cg) tracts, and in the uncinate
(UNC) fasciculus compared to controls, while patients
with AD had reduced FA in the parietal, temporal, and
frontal regions, including the left anterior and posterior
Cg tracts, bilateral descending Cg tracts, and left UNC
fasciculus [38]. This study highlights the fact that the
WM pathology is focal and that it may play a more
important role in the pathophysiology of FTD than in
that of AD. Various tracts can be defined using
tractography, including the superior longitudinal fascicu-
lus (SLF), UNC, and inferior longitudinal fasciculus
(ILF), all of which are common study targets (FIG. 6).
The different syndromes in FTD have a predilection for
different tracts. In bvFTD, decreased FA was observed in

FIG. 5. Axial diffusion-weighted imaging showing cortical ribboning, left more than right, in a patient with Creutzfeldt–Jakob disease.
(High resolution version of this image is available in the electronic supplementary material.)
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bilateral UNC, anterior Cg, anterior SLF, left posterior
SLF, and anterior ILF. In the semantic variant, decreased
FA was noted in left posterior ILF, UNC, posterior Cg,
and left anterior SLF. Progressive nonfluent aphasia
showed the most significant alterations in diffusivity in
the SLF, with decreased FA in the anterior SLF, left
posterior and superior SLF, and right UNC [39]. Studies
have also evaluated the contribution of WM injury to the
cognitive and behavioral changes observed in the differ-
ent dementias [40, 41].

MR spectroscopy and biochemical information
In vivo proton MR spectroscopy (1H MRS) allows the

noninvasive evaluation of brain biochemistry by
measuring the levels of specific metabolites, including
N-acetylaspartate (NAA), choline, creatine, lactate,
myoinositol, and glutamate. NAA is thought to be a
marker of neuronal integrity, and many studies have
reported on NAA content in patients with dementia.
NAA is consistently reported as being lower in the
parietal gray matter and hippocampus of patients with
AD than in cognitively normal elderly subjects [42]. In
vascular dementia, the greatest deficits occur in the
frontal and parietal cortex [43]. 1H MRS has also been
used to look for differences between the non-AD
dementias, including FTD [44], prion diseases [45], and
Huntington disease [46]. In a 1H MRS study comparing
AD and FTD patients, Mihara et al. [44] reported that the
NAA/creatine ratio was reduced in the posterior
cingulate cortex in both the patients with AD and in
those with FTD/Pick’s disease, but that the former
showed a greater decrease posteriorly, while the patients
with the FTD/Pick complex displayed a greater decrease
in the frontal region.

Functional activation using MRI
fMRI is based on the principle that increased neuronal

activity is associated with a local hemodynamic response
involving an increase in both cerebral blood flow and
blood volume. The increase in blood flow, however, is
greater than is necessary for oxygen delivery to match
increased consumption, so the ratio of deoxy-to-oxy-
hemoglobin is altered. Deoxyhemoglobin is paramag-
netic and distorts an applied static magnetic field, and
since magnetic field inhomogeneities are found around
blood vessels, their magnitude increases with the amount
of paramagnetic deoxyhemoglobin [47]. A consequence
of this increase in blood flow above that required for the
increased tissue demands in response to neuronal
activation is that the oxygen extraction fraction
decreases. The lower ratio of deoxy-to-oxyhemoglobin
in draining blood is associated with a small increase in
MRI signal, and this is the basis of blood–oxygen-level-
dependent contrast fMRI. A series of brain images are
acquired while there is some change in cognitive state,
and a spatial ‘map’ that indirectly reflects neuronal
activation changes is generated by statistical analysis of
the time series of data. fMRI has been proposed as a
surrogate of brain activity related to cognitive processing
because increased synaptic activity leads to local
increases in blood flow.
An fMRI study of memory showed decreased regional

function in the medial temporal lobe in patients with AD
[48] and in elderly patients with isolated memory
decline. Rombouts et al. [49] studied frontal lobe
dysfunction in early FTD and compared it with that in
early AD by applying a parametric verbal working
memory task (n-back) during fMRI. These researchers
found that in FTD, brain activation in the frontal and
parietal cortex was significantly decreased. Frontal

FIG. 6. Diffusion tensor imaging-derived tracts in normal controls. Unc = Uncinate, SLF = superior longitudinal fasciculus, ILF = inferior
longitudinal fasciculus. Image has been reproduced courtesy of Dr. Sebastiano Galantucci. (High resolution version of this image is
available in the electronic supplementary material.)
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regions in patients with FTD showed less of a linear
activation increase with working memory load than did
these regions in patients with AD. The FTD group
displayed a stronger response in the cerebellum, leading
the authors to postulate that this might be a compensatory
mechanism. A recent study on a visual motion process-
ing task also showed increased temporal lobe activation
in DLB patients compared with AD patients [50]. Since
the significance of increased activation is still only
incompletely understood, the role of fMRI in the
diagnosis or monitoring of patients with dementia
remains unclear.

Resting state fMRI
Resting-state fMRI examines spatial synchronization

of intrinsic fluctuations in blood–oxygen-level-dependent
signals arising from neuronal and synaptic activity that is
observed independent of overt cognitive information
processing. Resting-state fMRI has been used to eluci-
date coherent large-scale brain networks subserving
vision, audition, language, and attention, and a frontal
opercular network that has been related to stimulus
salience [51–53]. One of the resting-state networks,
referred to as the default mode network, involves a set
of regions that routinely decrease their activity during
attention-demanding tasks [54, 55]. The default mode
network, which includes the posterior cingulate, inferior
parietal, inferolateral temporal, ventral anterior cingulate,
and hippocampal regions, has received considerable
attention in AD and has been shown to have decreased
activity in AD and MCI. In FTD, a ‘salience’ network
that includes the dorsal anterior cingulate and orbital/
frontoinsular regions and tracks with emotional meas-
ures, was altered [52]. Resting-state data provide a means
of evaluating and following patients who may be too
impaired to perform cognitive tasks, and so will likely
become increasingly more routine in both research and
clinical settings [56].

GLUCOSE METABOLISM AND BRAIN
PERFUSION

Positron emission tomography and single-photon
emission computed tomography
Functional imaging provides insight into the opera-

tional aspects of the brain, and since it appears that brain
pathology in dementia begins long before there is clinical
evidence of disease (with ongoing compensation main-
taining adequate cognitive function in the face of
pathologic change), functional imaging is attractive for
the early detection of dementia. The ideal test would
allow for disease to be detected in the presymptomatic
stage, and thus for treatment, if available, to be initiated
before there is evidence of damage.

Single-photon emission computed tomography
(SPECT), positron emission tomography (PET), and
fMRI are becoming increasingly relevant to the study
of dementia. The most commonly used techniques are
SPECT and PET. In both techniques, various chemical
compounds can be used to measure a variety of physiologic
parameters in the brain. PET is most often used with [18F]
fluorodeoxyglucose (FDG) to measure brain energy
metabolism, while SPECT is most commonly used to
study cerebral perfusion with compounds such as 99mTc-
hexamethylpropyleneamine oxime. These techniques can
reveal metabolic abnormalities in the structurally normal
brain. The FDG–PET scans of AD patients demonstrate
reduced glucose metabolism in the parietal and superior/
posterior temporal regions (FIG. 7). Very early metabolic
deficits occur in AD and MCI in the medial portion of the
parietal cortex, in the posterior cingulate or retrosplenial
region [57]. Frontal lobe hypoperfusion is often also
reported in AD patients, but usually in conjunction with
temporoparietal abnormalities.
SPECT scans also demonstrate temporoparietal hypo-

perfusion or hypometabolism in patients with AD, as
well as posterior cingulate pathology [58]. The tempor-
oparietal abnormality is usually bilateral but can be
asymmetrical. Here also, frontal lobe hypoperfusion is
often reported but again in conjunction with temporopar-
ietal abnormalities. The presence of bilateral temporopar-

FIG. 7. [18F]Fluorodeoxyglucose–positron emission tomography
(PET) scan of AD and FTD patients. Note reduced glucose
metabolism in the superior/posterior temporal and parietal regions of
the AD scan. In comparison, the FTD scan shows hypometabolism in
the frontal and anterior temporal regions, with relative sparing of the
posterior brain regions. Image has been reproduced courtesy of Dr. Gil
Rabinovici. (High resolution version of this image is available in the
electronic supplementary material.)
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ietal hypoperfusion or hypometabolism is a useful
biomarker for discriminating AD patients from age-
matched controls as well as from vascular dementia and
FTD patients [59].
FDG–PET has been reported to have a better sensitivity

than SPECT but a poorer specificity [60]. In one histo-
pathologically confirmed study, the bilateral temporopar-
ietal hypometabolism evident on FDG–PETscans was 93%
sensitive and 63% specific for AD [61]. SPECTalone had a
sensitivity of 63% and a specificity of 93% [62].
Since early detection is the goal in neurodegenerative

diseases, a stage more amenable to treatments aimed at
prevention or delay of progression than those aimed at
reversal of neurodegeneration, there is a fervent search
for biomarkers of early disease. Johnson et al. [63]
assessed the accuracy of SPECT in the temporoparietal
region in predicting MCI progression to probable AD.
The sensitivity and specificity were 78 and 71%,
respectively, for differentiating between the group that
progressed and the one that did not. Several studies have
also found that FDG–PET distinguished between patients
with a progressive course and those with a non-
progressive course with a sensitivity of 93% and a
specificity of 74% based on the temporoparietal metab-
olism of the respective patients [64].
The results from a number of studies combining

SPECT imaging and genetics indicate that abnormal
metabolism is associated with the apolipoprotein E
(APOE) gene-ε4 allele in the temporoparietal region
[65, 66]. Additional regions related to disturbances in
association with APOE-ε4 are the posterior cingulate and
prefrontal area [67].
Patterns of metabolic abnormality differ according to

dementia subtype. In FTD, hypometabolism is observed
in the frontal and anterior temporal regions, with relative
sparing of posterior brain regions (FIG. 7). DLB is
associated with decreased occipitotemporal metabolism
compared with AD, which is consistent with the
increased difficulty such patients have with visual
processing [68].
AD patients can be discriminated from age-matched

controls as well as from patients with vascular dementia and
FTD [57], and FDG–PET can increase the diagnostic
accuracy beyond clinical features alone for discriminating
AD from FTD [69].
Altered regional brain metabolism has been correlated

with cognitive and behavioral changes in dementia. A
PET study demonstrated a correlation between right–left
hemisphere metabolic asymmetry in AD patients with the
degree of language versus visuospatial impairment [70].
Hippocampal metabolism [71] has been correlated with
memory function, and anterior cingulate region metabo-
lism with apathy [72].
PET and SPECT can be used to study neurotransmitter

systems using molecules that bind to neurotransmitter

receptors or interact with neurotransmitter systems in
other ways. In AD, where the cholinergic deficit has been
shown in vitro, the cholinergic system can be evaluated
using a variety of agents that interact with acetylcholine
receptors and acetylcholinesterase, a key enzyme whose
function decreases in AD [73]. PET imaging has potential
as a tool for monitoring treatment, as it has been used to
demonstrate significant increases in 11C-nicotine binding
sites after 3 months of treatment with rivastigmine, with the
increases positively correlated with improvements in the
performance of attentional tasks at 12 months [74]. In a
PET study with N-[11C]methyl-4–piperidyl acetate, which
labels acetylcholine systems, and [18F]fluorodopa, a
measure of dopamine uptake, cholinergic and
dopaminergic function were evaluated in patients with
Parkinson’s disease (PD) with and without dementia [75].
While [18F]fluorodopa uptake in the striatumwas decreased
in both groups, cortical N-[11C]methyl-4–piperidyl acetate
binding was severely decreased in patients with PD with
dementia compared with controls, but only moderately
decreased in patients with PD alone. The ability to measure
each of these neurotransmitter systems could help to guide
treatments specific to each system.

Arterial spin labeling
Arterial spin-labeling (ASL) perfusion MRI is another

method for assessing brain perfusion and function in
dementia [76]. In ASL, the assumption is made that
regional metabolism and perfusion are coupled; there-
fore, when arterial blood water is labeled as an
endogenous diffusible tracer for perfusion, it can depict
functional deficiencies similarly to FDG–PET and hex-
amethylpropyleneamine oxime SPECT [77] but is non-
invasive and free of exposure to ionizing radiation,
intravenous contrast agents, and radioactive isotopes.
Results from ASL studies in AD patients have shown
regional hypoperfusion in a pattern similar to that seen in
PET and SPECT studies [78]. Hypoperfusion in the right
inferior parietal lobe extending into the bilateral posterior
cingulate gyri, and bilateral middle frontal gyri could be
seen in the AD and MCI scans even after accounting for
gray matter atrophy. The MCI group showed less
hypoperfusion, but the most significant regional hypo-
perfusion relative to the control group was observed in
the inferior right parietal lobe, similar to the region of
greatest significance in the AD group [79].

TARGETING MOLECULAR ABNORMALITIES

Amyloid imaging with PET
Although functional and structural imaging provide

invaluable information for the diagnosis and assessment
of patients with neurodegenerative disease, the distinct
molecular pathologies in the various diseases provide an
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opportunity for accurate diagnosis. The recent develop-
ment of new PET ligands for imaging disease-specific
pathology may revolutionize brain imaging in neuro-
degenerative disease. Β-amyloid, a pathological protein
that forms plaques in the brains of patients with AD, has
been extensively studied, and a number of compounds
that can bind amyloid, such as radiolabeled Pittsburgh
compound B ([11C]PiB), have been discovered (FIG. 8).
In 16 mild AD patients, Klunk et al. [80] demonstrated
marked retention of PiB in the frontal, parietal, temporal,
and occipital cortices as well as the striatum— but none
in controls. These association areas are known to contain
large amounts of β-amyloid in AD. The pattern of PiB
retention was consistent with the pattern of amyloid
plaque deposition seen in postmortem studies—early on,
plaque is distributed evenly across neocortical
association cortex in AD, but there is little in the mesial
temporal lobe areas [2]. In contrast, the distribution of
neurofibrillary tangles begins focally in the transentorhinal
cortex and progresses through limbic areas to the neocortex.
[11C]PiB is not entirely specific, as studies have
demonstrated increased retention in up to ∼20–30% of
cognitively normal older individuals [81]. This increased
[11C]PiB retention in cognitively normal individuals is
consistent with pathologic studies indicating that up
to ∼37% of autopsies in patients who were cognitively
normal prior to death showed pathology meeting National
Institute on Aging–Reagan criteria for a high or
intermediate likelihood of AD [82]. Whether or not the
healthy controls with PiB-positivity represent an early
presymptomatic stage of AD is being actively studied.
Increased[11C]PiB retention has been demonstrated

in patients with MCI [83], and several reports have

examined [11C]PiB retention in non-AD dementias. A
recent study of AD and FTD demonstrated that all
patients with AD (7/7) had increased [11C]PiB
retention by visual inspection, while most (8/12)
patients with FTD and five (5/5) controls had no
increase in [11C]PiB retention [84]. The increased
[11C]PiB retention in the four patients with FTD may
represent AD pathology mimicking the clinical
presentation of FTD, or it may represent coexisting
pathology. In addition to [11C]PiB, other approaches
for imaging specific molecular pathology in
neurodegenerative disease are under development, thus far
only in AD [57].
The short half-life and need for a cyclotron preclude

the use of PiB in many clinical and research settings. The
novel agent, [18F]AV-45 or flobetapir F 18, has a longer
half-life than PiB. It has been tested in an open-label,
multicenter study where it was shown to accumulate in
cortical regions expected to be high in β-amyloid
deposition (e.g., precuneus and frontal and temporal
cortices) in AD patients, while minimal accumulation of
the tracer was seen in cortical regions of normal controls.
The new tracer could be used to discriminate between
AD and normal controls [85]. Its sensitivity has been
found to be similar to PiB for fibrillar β-amyloid
binding, but less specific. It will hopefully be a useful
alternative that can be more widely used.
Currently there is no in vivo imaging of tau, TDP-

43, or α-synuclein, the other major pathological
proteins implicated in the neurodegenerative diseases.
The hope lies that in the near future it will be possible
to target these proteins and make more accurate
diagnoses.

CONCLUSION

As our understanding of neurodegenerative disease
progresses and treatments become available, the need for
more accurate diagnosis will likely drive neuroimaging
towards more ligand- and functional-based technology so
that molecular abnormalities and early functional
changes can be detected. Treatment of neurodegenerative
disease lies in early diagnosis and likely not in the
reversal of disease. There are a number of techniques
currently available for studying the changes associated
with neurodegenerative disease, including WM tract
integrity, neurotransmitter function, task-related synaptic
activity, and chemical content, but the bulk of imaging
research in dementia is still focused on regional
abnormalities in glucose metabolism, perfusion, and
tissue content. Multimodal assessments for diagnosis
and longitudinal follow-up will likely emerge as being
critically important factors for the care of patients. The
future of brain imaging will likely involve combinations

FIG. 8. Results of a Pittsburgh Compound B (PiB) PET scan. PiB
reveals amyloid in the brain. Warmer colors (e.g., red) indicate gr-
eater concentrations of amyloid deposition, and blue indicates the
absence of amyloid on a PiB PET scan. Image has been reprod-
uced courtesy of Dr. Gil Rabinovici. (High resolution version of this
image is available in the electronic supplementary material.)
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of imaging techniques to identify the presence of a
molecular abnormality, to gauge its impact on the brain
structure and function, and to predict and follow the
effects of treatment.
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