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The heart, whichis the first organ to develop, is highly dependent onits form to
function?. However, how diverse cardiac cell types spatially coordinate to create the

complex morphological structures that are crucial for heart function remains unclear.
Here we integrated single-cell RNA-sequencing with high-resolution multiplexed
error-robust fluorescence in situ hybridization to resolve the identity of the cardiac
cell types that develop the human heart. This approach also provided a spatial
mapping of individual cells that enables illumination of their organization into
cellular communities that form distinct cardiac structures. We discovered that many
of'these cardiac cell types further specified into subpopulations exclusive to specific
communities, which support their specialization according to the cellular ecosystem
and anatomical region. In particular, ventricular cardiomyocyte subpopulations
displayed an unexpected complex laminar organization across the ventricular wall
and formed, with other cell subpopulations, several cellular communities.
Interrogating cell-cell interactions within these communities using in vivo
conditional genetic mouse models and in vitro human pluripotent stem cell systems
revealed multicellular signalling pathways that orchestrate the spatial organization of
cardiac cell subpopulations during ventricular wall morphogenesis. These detailed
findingsinto the cellular social interactions and specialization of cardiac cell types
constructing and remodelling the human heart offer new insights into structural heart
diseases and the engineering of complex multicellular tissues for human heart repair.

Thehuman heart comprises complex cardiac structures thatare crucial
forits function? Disruption of these structures can lead to congenital
heartdisease, the most commonbirth defect, and adult structural heart
diseases suchas hypertrophic cardiomyopathies and valvulopathies®>.
However, the cell types that create the human heart and, more impor-
tantly, how they interact and organize to form and maintain functional
cardiac structures remain to be fully defined. Thus, to investigate the
cooperative cellularinteractions that direct heart morphogenesis, we
performed comprehensive single-cell RNA sequencing (scRNA-seq)
and multiplexed error-robust fluorescence in situ hybridization (MER-
FISH) of entire developing human hearts® 8, This strategy combines
the power of single-cell transcriptomics with spatial biology to ana-
lyse, visualize and count RNA transcripts from hundreds to thousands of
genesinindividual cells. Integrative multimodal analysis of sScRNA-seq
transcriptomics and MERFISH-based imaging spatial information
revealed the molecular and spatial identification of a broad range of
celllineages that organize into cellular communities to create distinct
structures of the human heart, including previously uncharacterized

cardiac cell populations. This approach also revealed the signalling
pathways that coordinate interactions between the cardiac cell popu-
lations that form such structures. Examining the crosstalk between
specific combinations of cell populations within these communities
revealed differential signalling pathways, including plexin-semaphorin
(PLXN-SEMA), that direct multicellularinteractions during ventricular
wall morphogenesis. Overall, our findings provide a high-resolution
single-cell molecular and spatial cardiac cell atlas that details the social
interactions among distinct cell types that specialize and organize
into cardiac structures that are crucial for maintaining heart function.

Celllineages in the developing human heart

To examine how diverse cardiovascular cell types coordinate to form
complex structures that are vital for regulating human heart func-
tion, we initially investigated and identified the specific cell lineages
that constitute the developing human heart. To this end, scRNA-seq
was performed and analysed in replicate on human hearts between
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Fig.1|Molecular and spatial humanheartcell atlasesreveal adiverse
range of cell populations during heart development. a, Left, schematic of
experiment. Right, scRNA-seqidentifies a diverse range of distinct cardiac
cellsthat create the developing human heart as displayed by uniform manifold
approximation and projection (UMAP) of 143,000 cells. b, Schematic shows
how 238 cardiac-cell-specific genes were spatially identified using MERFISH.
Pseudo-coloured dots mark the location of individual molecules of ten specific
RNA transcripts. ¢, Approximately 250,000 MERFISH-identified cardiac cells
were clustered into specific cell populations as shown by UMAP and coloured
accordinglyind. d, Identified MERFISH cells were spatially mapped across a
frontal sectionofal3 p.c.w. heart (left) and shown according to major cell

9 and 16 post conception weeks (p.c.w.) (Fig.1a, Supplementary Fig.1a
and Supplementary Table 1). Because these developing hearts were
substantially smaller than adult human hearts, each collected heart
was dissected into intact cardiac chambers and the interventricular
septum (IVS) to increase the likelihood of identifying more cell types

classes (right). e, Joint embedding between MERFISH and age-matched
scRNA-seq datasets enabled cell label transfer and MERFISH gene imputation.
f, Co-occurrence heatmap shows the correspondence of cell annotations of
MERFISH cells to those transferred fromthe 13 p.c.w. scRNA-seq dataset.

g, Geneimputation performance was validated spatially by comparing
normalized gene expression profiles of marker genes measured by MERFISH
withthe correspondingimputed gene expression profiles. Epi, epicardial;
MV, mitral valve; P-RBC, platelet-red blood cell; TV, tricuspid valve. Scale bar,
250 pm (g). lllustrationin awas created using BioRender (https:/www.
biorender.com).

or states (including rare cell populations) by scRNA-seq, especially in
underrepresented regions such as the atria (Supplementary Fig. 1a).
Consequently, 142,946 single cells collected from these cardiac samples
were analysed by scRNA-seq and were transcriptionally segregated
into the following five distinct cell compartments: cardiomyocyte,
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mesenchymal, endothelial, blood and neuronal (Fig. 1a). Graph-based
clustering and gene marker analysis identified 12 major cell classes
within the cell compartments (Fig. 1a, Supplementary Fig. 1b-d and
Supplementary Table 2). Further clustering of cells fromthese compart-
mentsidentified 39 populations that subdivided into 75 subpopulations
that were assessed for their accuracy (Extended DataFig.1, Supplemen-
tary Figs.2-7 and Supplementary Table 3). The identified cell lineages
exhibited cellular heterogeneity that frequently corresponded to their
anatomicallocation (atrial and ventricular cardiomyocytes, fibroblasts
and endocardial cells) and developmental stage, thus providing new
insightsinto the developmental complexity of these cells (Supplemen-
tary Figs.3-7 and Supplementary Note 1). In summary, our single-cell
analyses of the entire human heart provide acomprehensive cell atlas
ofthe developmental heart as well as additional developmentaliinsights
for amultitude of common and rare cell types that create the human
heart (Fig.1a, Extended DataFig.1, Supplementary Figs. 3-12, Supple-
mentary Tables 4-6 and Supplementary Note 2). However, how these
cellsinteract and organize into complex morphological communities
orstructures crucial for heart function and cell specialization remains
to beilluminated.

MERFISH spatially maps heart cells

We next explored the interactive cellular mechanisms that direct car-
diac morphogenesis and remodelling, including development of the
ventricular wall. We applied MERFISH imaging®® to interrogate the
spatial organization of cardiovascular cellsidentified by scRNA-seq dur-
ing a developmental time period when the ventricular wall undergoes
dynamic remodelling, particularly myocardial wall compaction®. A list
of238 cell-subpopulation-specific genes was identified after applying
aNS-Forest2 classifier on our scRNA-seq clustering analysis (Extended
DataFig.1and Supplementary Tables 7 and 8). These candidate genes
were used to re-identify our classified cell subpopulations withanaccu-
racy that was comparable to that of genes discovered using the Spapros
classifier (Supplementary Tables 9 and 10). In particular, these 238
target genes were selected on the basis of previously reported cell
lineage marker genes'*"" and of differential or specific gene expres-
sion of more refined subpopulations identified by scRNA-seq. Using
MERFISH-encoding probes designed for these selected genes (Sup-
plementary Table 11), we performed MERFISH studies of coronal slices
of12-13 p.c.w. human hearts, which captured major cardiac structures
(Fig.1b-d). After cell segmentation and adaptive filtering, we obtained
108.2 million transcripts from 258,237 cells across three experiments
(Extended Data Fig. 2a and Supplementary Table 12). On average, 365
transcripts from 85 genes per cell were detected from this analysis,
whereas only 208 transcripts from 51genes per cell were discovered by
scRNA-seq using the same target gene list, a result that highlights the
high RNA capture efficiency of MERFISH® ® (Supplementary Table 13).
Additionally, the levels of RNA transcripts identified by each MERFISH
experiment showed high correlation between three experimental rep-
licates (Extended Data Fig. 2b) and our scRNA-seq datasets (Extended
DataFig.2c). Furthermore, theseimaged MERFISH genes displayed sim-
ilar spatial expression patterns to those imaged using single-molecule
fluorescencein situ hybridization (smFISH) (Extended Data Fig. 2d).
Toidentify specific cell populations from these MERFISH studies, a
semi-supervised, graph-based clustering method was applied to MER-
FISH single-cell expression data (Fig. 1c). Cardiac gene marker analysis
of this clustering revealed 27 distinct MERFISH cell populations that
grouped into cell classes closely correlating with the developmental
classes discovered by scRNA-seq, except for platelets-red blood cells,
whichis probably because of the exclusion of their marker genes from
the MERFISH genelibrary (Fig.1c,d, Extended DataFig. 2e,fand Supple-
mentary Table14). The relative number of cells differed for some classes
between MERFISH and scRNA-seq datasets (Extended Data Fig. 2g),
which may be due to differences between cell capture or transcription
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detectionbetween the two methods, as previously proposed’. However,
integration of our scRNA-seq and MERFISH datasets revealed astrong
correspondence of related cells between the datasets, which facilitated
theimputation and spatial mapping of additional genes beyond those
examined by MERFISH (Fig.1le-g, Supplementary Fig. 13, Supplemen-
tary Table 15and Supplementary Note 3).

Diverse cardiomyocytesin specific heart structures

Inline with our scRNA-seq data, cardiomyocyte lineages represented
the largest proportion of cells identified from our MERFISH analy-
ses (12 out of 27 populations) (Fig. 1d and Extended Data Figs. 3 and
4). Spatial mapping of these transcripts revealed that the identified
cardiomyocytes displayed distinct regional and structural distribu-
tionsacross the heart, corroborating our scRNA-seq regional findings
(Fig. 1d and Extended Data Fig. 4a). In contrast to recent scRNA-seq
and in situ RNA-seq studies of the heart'°'8, these MERFISH results
provided high-resolution spatialimaging that enabled the definition of
cellsatfiner resolution and the tracking of individual cells to detailed
structures of the heart (Fig. 1d, Extended Data Figs. 3 and 4 and Sup-
plementary Figs. 3 and 14). As a result, these cardiomyocytes were
observed to populate distinct anatomical domains of chambered and
non-chambered regions of the heart and were frequently spatially
distinct from each other (Fig. 1d and Extended Data Fig. 4a).

Chambered cardiomyocytes were broadly divided into NR2FI" and
IRX4* cardiomyocytes that contributed mutually exclusively to the
atrial and ventricular chambers, respectively (Fig. 1d and Extended
DataFigs.2eand 4a). Atrial cardiomyocytes (aCMs) spatially segregated
intothoseresidingintheleftatria (LA) and right atria (RA) (aCM-LA and
aCM-RA, respectively), which were transcriptionally distinguished by
ANGPTI1asobservedin our scRNA-seq analyses (Extended Data Figs. 2e
and 4aand Supplementary Fig. 3d,e). By contrast, ventricular cardio-
myocytes (vCMs) displayed more cellular complexity and subdivided
into those that specifically occupied not only the left ventricle (LV) and
right ventricle (RV) but also more distinct anatomical subdomains
withinthe outer andinner layers of the ventricles (Fig.1d and Extended
Data Figs. 3 and 4a). Both known and new markers were enriched in
these vCMs, including SLCIA3 and PRRX1, which were expressed in
the left vCMs (vCM-LV) and right vCMs (vCM-RV), respectively, and
HEY2and IRX3, whichmarked outer and inner layer vCMs, thus resolv-
ing them as compact (vCM-LV-compact and vCM-RV-compact) and
trabecular (vCM-LV-trabecular and vCM-RV-trabecular) cardiomyo-
cytes, respectively®? (Extended Data Fig. 2e). Within the inner ven-
tricle layer, we discovered an additional cardiomyocyte not defined by
scRNA-seq analyses that extended along the luminal portion of the ven-
tricleto the atrioventricular canal (AVC). This specific cardiomyocyte
type expressed /RX3, TBX3 and HCN4, which are known markers of the
His-Purkinje fast cardiac conduction system of the ventricle?, as well
as/RXIand/RX2, which have been observed along the subendocardial
layer of the IVS of mouse hearts? (Fig.1d, Extended DataFigs. 2e, 3and
4a and Supplementary Fig. 3). Although most vCMs were observed
in specific regions of the ventricle, we discovered a vCM population
(vCM-proliferating) that was present throughout the ventricle and
displayed moderate expression of proliferative markers but diffuse
expression of cardiac structure-specific genes (Fig. 1d and Extended
DataFigs.2e,3 and 4a), suggesting that these cardiomyocytes may be
progenitor-like with the capacity to specialize within specific cardiac
structures.

Although our scRNA-seq analyses uncovered cardiomyocytes (such
as BMP2' non-chambered cardiomyocytes (ncCMs)) beyond those
reported in atrial and ventricular chambers'® #1723 our MERFISH
analysesresolved and confirmed the identification of these relatively
rare but diverse specialized cardiomyocytes. In particular, inflow
tract/pacemaker (ncCM-IFT-like) cardiomyocytes, which expressed
the knowninflow tract developmental transcriptional regulators ISL1



and SHOX2, were observed above the RA where the sinoatrial node
(SAN) pacemaker? has been reported. Meanwhile, atrioventricular
canal/node (ncCM-AVC-like) cardiomyocytes, which regulate AVC
and atrioventricular node (AVN) development and co-exresss TBX3
and RSPO3?***, were located within the inner portion of the AVC
(Fig. 1d and Extended Data Figs. 2e and 4a). Additionally, a popula-
tion of CNNI'CRABP2' cardiomyocytes that was also identified in our
scRNA-seq analysis (Supplementary Fig. 3d,e), but not well defined,
was spatially resolved and observed within the atrioventricular (AV)
valve leaflets (vCM-LV/RV-AV) (Fig. 1d and Extended Data Figs. 2e and
4a). These cardiomyocytes further subdivided to those populating the
tricuspid and mitral valves of the right ventricle (vCM-RV-AV) and left
ventricle (VCM-LV-AV), respectively, suggesting that these cardiomyo-
cytes, which have not been well-defined in mouse or human hearts?,
may exhibit functional differences between these valves (Fig. 1d and
Extended Data Figs. 2e and 4a).

Spatial relationships of heart lineages

Although they displayed less diversity than cardiomyocytes, MERFISH
imaging revealed that non-cardiomyocyte cells, particularly those
endogenousto the heart, also segregated and contributed to specific
regions or structures of the heart, aresult that supports similar observa-
tions from our scRNA-seq analysis (Fig.1d and Extended Data Figs. 2e,
3 and 4b-e). However, MERFISH analyses provided detailed spatial
information atsingle-cell resolution that resolved the identities of other
less well-defined cells by scRNA-seq (Fig. 1d, Extended Data Figs. 2e, 3
and 4b-d and Supplementary Figs. 4-6). For the fibroblast-like class,
we observed distinct PDGFRA'TCF2I" fibroblasts that populated
specifically either the atria (aFibro) or the ventricles (vFibro), which
expressed TNCand HHIP, respectively. We also observed PENK" valvu-
lar interstitial cells (VICs) that contributed to the cardiac valves, and
adventitial fibroblasts (adFibro) that contributed to the outflow tract
(Fig. 1d and Extended Data Figs. 2e, 3 and 4b). Similarly, we discov-
ered three distinct LEPR" endocardial cells that particularly lined the
luminal surfaces of the atria (aEndocardial), ventricle (vEndocardial)
or cardiac valves (valve endocardial cells (VECs)) and could be molecu-
larly distinguished by their expression of SHISA3', NSGI'COL26A1 and
NSGI'COL26AT" genes, respectively (Fig.1d and Extended DataFigs. 2e,3
and 4c). Vascular-related cells, including CLDN5’LYVET blood endothe-
lial cells (BECs), MYHII* vascular smooth muscle cells (VSMCs) and
KCNJ8' pericytes, were distributed throughout the ventricle, revealing
blood vessels, but less so within the atria, suggesting that the atria may
beless vascularized, which may be due to its thinner myocardial walls
(Fig. 1d and Extended Data Figs. 2e, 3 and 4b,c). Conversely, PRPH*
neuronal cells were observed in the outflow tract and atria, particu-
larly near the inflow tract, aresult consistent with their role in outflow
tract development and innervation of the venous pole of the heart*
(Fig. 1d and Extended Data Figs. 2e, 3 and 4d). CLDN5'LYVEI'PROXI*
lymphatic endothelial cells (LECs), MOXDI'MMPII* epicardium-derived
progenitor cells (EPDCs) and /ITLNI* epicardial cells were localized
on the surface of the heart, and EPDCs were enriched within the AVC
regions, as previously reported™ (Fig. 1d and Extended DataFigs. 2e, 3
and 4b,c). Finally, many of these non-cardiomyocyte cells exclusively
co-localized with each other and with corresponding cardiomyocyte
counterparts withindistinct cardiac regions. This finding suggests that
they may assemble into cellular communities that not only influence
their specialized cellular functionalization but also form anatomical
structures crucial for regulating overall cardiac function (Fig. 1d and
Extended Data Figs. 2e, 3 and 4).

Cell communities form cardiac structures

We next sought to understand how specific cardiovascular cells may
assemble into cellular neighbourhoods that form organized multi-cell

lineage structures crucial for heart function. To this end, we identified
regions of the heart that were spatially composed of distinct combina-
tions of co-segregating cell populations (‘cellular communities’ (CCs)).
Cellular neighbours for each cell of the heart were defined within a
150 pmradius, which represents a typical diffusion ‘zone’ for extracel-
lular signalling molecules from an individual cell (Fig. 2a, cell zone,
and Methods). Approximately 250,000 cell zones were identified and
grouped into 13 distinct CCs on the basis of the cell composition for
these cell zones (Fig. 2b and Extended Data Fig. 5a-c). These detected
CCs, whichwere mapped to the developing heart, corresponded to and
defined specificarchitectures of the heart at high single-cell granular-
ity, includingknown and less familiar cardiac structures (Fig.2b,cand
Extended DataFig. 5¢). Each CC was composed of distinct combinations
and amounts of specific cells and displayed a broad range of cellular
complexity and purity. For example, some CCs contained only one or
two cell populations, whereas others comprised more than ten cell
populations (Fig. 2d-fand Extended Data Fig. 5d,e).

Consistent with the overall greater cellular complexity observedin
the ventricular chamber compared with the atrial chamber (Fig. 2e,f
and Extended Data Fig. 5d), five CCs were located in the ventricle and
two in the atria (Fig. 2c and Extended Data Fig. 5c). The two atrial CCs
corresponded to the left and right atria and consisted of respective
left and right aCMs, aFibro cells, aEndocardial cells, epicardial cells
and neuronal cells (Fig. 2c,d). By contrast, the ventricular chambers
were divided into five CCs that correlated to layers of the left and right
ventricular walls (outer, inner and the ventricular conduction system
(VCS); Fig.2c,d), which exhibited decreasing cellular complexity from
the outside to the lumen of the ventricle (Fig. 2f and Extended Data
Fig. 5d). The outer left and right ventricular CCs consisted of a broad
range of cells and were enriched for the following cell types: left and
right compact vCMs specific for eachrespective chamber, vFibro cells,
vascular cells, including BECs and pericytes that form the coronary
vasculature?, and proliferating vCMs, which probably account for the
increased growth rate of the outer layer of the ventricle” (Fig. 2d). On
the other hand, theinner left and right ventricular CCs were composed
of leftand right trabecular vCMs, respectively, and vEndocardial cells,
but substantially fewer vFibro cells, proliferating vCMs and vascular
cells (Fig. 2d). Finally, a VCS CC that was luminal to the inner ventricu-
lar CCs and consisted primarily of His-Purkinje cardiomyocytes and
fewer vEndocardial cells was present more predominantly in the left
ventricle thantheright ventricle (Fig. 2c,d and Extended Data Fig. 5c).
This result provides support for the finding that the fast His-Purkinje
cardiac conduction system of the ventricle may initially develop within
the left ventricle®,.

Inaddition to the seven CCs within the cardiac chambers, we discov-
ered six non-cardiac chamber CCsfor the heart (Fig. 2b—d and Extended
DataFig.5c). These communities corresponded with non-chambered
cardiac regions of the heart, including the inflow tract (IFT) and out-
flow tract (OFT) and AV regions of the heart (Fig. 2c,d and Extended
DataFig. 5¢). The IFT/SAN CC consisted mainly of ncCM-IFT-like and
neuronal cells and may correspond to the SAN pacemaker of heart
(Fig.2c,d), whereas the OFT CC was enriched for VSMCs, adFibro cells
and endothelial-related cells, consistent with cell lineages of the aorta®
(Fig.2c,d). Conversely, the AV region, which exhibited higher cellular
complexity, was composed of four CCs within asmall region between
the atrial and ventricular chambers that includes the AVC and cardiac
valves (Fig.2c-fand Extended Data Fig. 5c,d). The outer portion of the
AVC contained the subepicardial CC comprising EPDCs, VSMCs, LECs,
neuronal cells and white blood cells (WBCs) (Fig. 2c,d). By contrast,
the inner portion of the AVC, which circumscribes the cardiac valves,
consisted of the AVN/AV ring CC composed of ncCM-AVC-like cardio-
myocytes alongwith aFibro cells,and may represent a developmental
structure that forms the AVN? (Fig. 2¢,d and Extended Data Fig. 5c).
Furthermore, two CCs were discovered within the cardiac valves, includ-
ing the valve CC, which was composed of valve-specific cardiomyocytes,
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Fig.2|Distinct cardiac cell populations spatially organize into CCs that
formspecialized cardiacstructures. a, Interrogation of the cell content
around eachindividual cellidentified cell zones or neighbourhoods, which
formed defined CCs. b, Spatial mapping of CCs onto13 p.c.w. heartsrevealed
their correspondence to distinct anatomical cardiac structures. ¢, The spatial
location of each CCis displayed along with examples of their cellular composition
and distribution (insets). d, Heatmap shows the composition of identified
MERFISH cells within each defined CC. e,f, Analysis of the number of unique cell

endothelial cells and interstitial cells extending to both the AV and
OFT valves, and a more specific muscular valve leaflet CC within the
mitral valve region that was enriched for vCM-LV-AV and may reflect
an earlier specialization of cells within the left ventricle (Fig. 2c,d and
Extended Data Fig. 5c).

Overall, these analyses reveal at high cellular resolution how diverse
cardiac cells, including those that are broadly present or more special-
ized, may assemble into CCs that form morphological structures of
the heart. These cardiac CCs displayed not only distinct combinations
of cells and cellular complexity, which may lead to functional differ-
encesamong CCs and cardiacstructures, but also distinct cardiac cells
that frequently were enriched in specific CCs, thus supporting the
ideathat cardiac cells may adopt cellular specialization based on their
environment and role in each community or cardiac structure (Fig. 2
and Extended Data Fig. 5).

Multilayered organization of ventricles

Our CC analyses revealed that the developing ventricular chamber
displays both high cellular complexity and low purity, particularly
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populations within each zone reveals the cellular complexity of each CC and
cardiacregionas displayed quantitatively (e, violin plot) and spatially (f, spatial
complexity map). For e, the centre white dot represents the median, the bold
blacklinerepresents theinterquartile range, and the edges define minimaand
maxima of the distribution. Boxed areas in the spatial complexity map show
regions of low (i) and high (ii) complexity. Insets (middle show the respective
cellular composition, and magnified insets (right) show distinct identified
cells). Mus. valve leaf., muscular valve leaflet. Scale bar, 250 um (b, c,f).

at the border regions of ventricular wall CCs (Fig. 2e,f and Extended
Data Fig. 5d,e). This result suggested that the developing ventricular
chamber may exhibit more distinct cardiac cells and complex organi-
zation than previously described®**. Consistent with these findings,
the ventricle exhibited intermixing of compact and trabecular vCMs
attheinterfacebetweenthe outer and inner ventricular communities
(Fig.2f, inset of (ii)), suggesting that regions of the developing heart are
dynamically remodelling, including compaction of the ventricular wall’.

To explore this ventricular cellular and organizational complexity,
MERFISH cells within only the ventricles were isolated, identified and
spatially mappedtothe ventricle (Fig. 3a,b and Extended Data Figs. 6a
and 7). Applying gene marker analysis and spatial information to these
distinct cells revealed additional populations of cardiomyocytes and
fibroblasts (Fig.3b,c, Extended Data Figs. 6aand 7 and Supplementary
Table 16). In particular, the eight vCM populations initially identified
by MERFISH (Fig. 1d and Extended Data Fig. 4a) were subdivided into
13vCM subpopulations, including 11 chambered and 2 non-chambered
subpopulations (Fig.3b,cand Extended DataFigs. 6aand 7a). Whereas
the non-chambered vCMs consisted of the CNNI'CRABP2" atrioven-
tricular valve leaflet CMs (vCM-LV/RV-AV) observed within the mitral
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Fig.3|The ventricular wall contains distinct specialized cardiaccells
spatially organized into unexpected complex laminar layers.a, MERFISH
cellsthat constitute the ventricles (left, orange) were clustered as displayed
using UMAP (right). b, Identified ventricular cells were spatially mappedin

13 p.c.w. ventricles. ¢, The spatial distributions of specific ventricular cells are
shown for the left ventricular wall from the region outlined in the MERFISH
spatialmapinb.d, Theventricular wall depth distribution of ventricular cellsis
shown as ameasured distance from the epicardial/outer surface of the
ventricle for theimagedregioninb. e, LV vCMs segregated into distinct vVCM
subpopulations. f, The molecular relationship of distinct vCMs is displayed ina

and tricuspid valves as described above (Figs.1d and 3b and Extended
DataFigs.2e, 6aand 7a), the chambered vCMs resolved into the follow-
ing subpopulations: three HEY2" compact vCMs (vCM-LV-compact |,
vCM-LV-compact Iland vCM-RV-compact); three IRX3" trabecular vCMs
(vCM-LV-trabecular I, vCM-LV-trabecular Il and vCM-RV-trabecular);

connectivity map inwhich weighted edges between nodesrepresent their
connectivity based ongene expression similarity. g, Heatmap shows the
normalized expression of differentially expressed genes for vCMs as ordered
by increasing ventricular wall depth. The coloured bar at the bottomindicates
thespecificvCMs asdenotedinb. h, Scatter plot reveals the relationship
between ventricular wall depth and pseudotime for individual vCMs in the left
ventricle.i, MERFISH images of outlined regionsin c ((i) and (ii)) show that
specificcombinations of gene markers, as showningreenand red, spatially
identified specific vCMs. Scale bar, 250 pum.

two HEY2'IRX3" hybrid vCMs (vCM-LV-hybrid, vCM-RV-hybrid)
that co-expressed compact and trabecular vCM genes; two TBX3*
His-Purkinje CMs (vCM-IVS-His and vCM-LV/RV-Purkinje); and aright
ventricular vCM (vCM-RV-proliferating) that displayed proliferative
markers similar to vCM-LV-compact Iland vCM-LV-trabecular I (Fig.3b,c
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and Extended Data Figs. 6a and 7a). Spatial mapping revealed that
many of these vCMs were organized in a laminar distribution across
the ventricular wall according to the chamber wall depth, with more
vCMs and layers observed in the left than right ventricle, a result that
supports the finding that the left ventricle develops earlier than the
rightventricle® (Fig. 3¢c,d and Extended Data Fig. 7a). Although identi-
fied vCMs appeared in distinct layers within the ventricular wall, the
ventricular fibroblasts subdivided into three subpopulations. These
included a proliferative-like ventricular fibroblast that was observed
throughout the ventricle and expressed mitotic markers, and two
fibroblasts (compact vFibro and trabecular vFibro) more specifically
locatedinthe outer and inner regions of the ventricle, where compact
andtrabecular vCMs are enriched, respectively (Fig.3b,c and Extended
DataFigs. 6aand 7d). This proliferative-like vFibro (proliferating vFibro)
expressed genes common to both compact and trabecular vFibro cells
but atlower levels, suggesting that these fibroblasts may be progenitors
that can supply differentiated compact and trabecular vFibro cells to
respective regions of the ventricle (Extended Data Fig. 6a).

Tounderstand the complexity and laminar organization of vCMs of
the left ventricular wall, which displayed greater cellular complexity
than that of the right ventricle (Extended Data Fig. 7a), we examined
the gene expression profiles for these vCMs and their spatial distribu-
tion across the left ventricle. Consistent with the gradual transition
of gene expression profiles among vCMs of the left ventricular wall
(Fig. 3e), molecular connectivity analysis revealed that these vCMs
exhibited a highly connected gene expression network, with the strong-
est connections existing between vCMs that were spatially contiguous
(Fig. 3f).Insupport of the notion that neighbouring vCMs display high
similarity in gene expression and may span a continuous spatial and
molecularlandscape, a progressive change in spatial gene expression
for vCMs was observed along the ventricular wall depth. Moreover,
the results spatially corresponded with the laminar organization and
partial overlap of respective vCMs in the left ventricle (Fig. 3c,d,g and
Extended Data Fig. 6b). In particular, we identified combinations of
co-expressing genes that were enriched in specific vCMs and enabled
their spatial tracking in the left ventricle (Fig. 3g,i and Extended Data
Fig. 6b). These genesincluded not only known compact and ventricular
markers such as HEY2, IRX3 and GJAS, but also newly defined marker
genes expressed by compact vCMs closer to the epicardium (RABGAPIL
and PLK2) and trabecular vCMs nearer to the lumen (CXCL12) (Fig. 3g,i
and Extended Data Fig. 6b). Confirming these findings, pseudotime
analysis revealed that the order of vCMs correlated with their allo-
cation along the ventricular wall (Fig. 3h and Extended Data Fig. 6¢),
and individual vCMs formed contiguous aggregates along both the
pseudotime and ventricular wall depth axes (Fig. 3h).

To interrogate how these ventricular subpopulations may change
with developmental age, we performed MERFISH on 15 p.c.w. ventri-
cles (Extended Data Fig. 8a and Supplementary Table 17). Compar-
ing ventricular subpopulations between 13 and 15 p.c.w. ventricles
uncovered changesinthe allocation of these cellular subpopulations,
whichincluded the absence of hybrid vCM subpopulationsin15 p.c.w.
ventricles (Extended Data Fig. 8b-d). In support of these findings,
we discovered in our scRNA-seq data that 13 p.c.w. hearts contained
the highest proportion of HEY2'IRX3" hybrid vCMs to total vCMs in
the left ventricle compared with other developmental stages, which
suggested that this cell population may be developmentally transient
(Extended DataFig. 8e), as suggested in mouse hearts*’. Correspond-
ing to this disappearance of hybrid vCMs, we observed that compact
vCMs extended further across the ventricular wall depth, whereas
trabecular vCMs appeared closer to the lumen of 15 p.c.w. ventricles
compared with 13 p.c.w. ventricles (Extended Data Fig. 8f). Finally,
comparisons of our vCM subpopulations with those from adult human
hearts* revealed that non-failing and diseased adult vCMs are primarily
compact myocardium/vCMs, as previously suggested® (Supplemen-
tary Figs.15and 16 and Supplementary Note 4). Taken together, these
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findings provide evidence to support the idea that developing vCMs
adoptacomplexity and gradient of distribution across the ventricular
wall depth that correlates with the spatial expression of distinct gene
profiles within the ventricular wall.

Multicellular signalling forms ventricles

Defects in the development of the ventricular wall, particularly
remodelling of the outer compact and inner trabecular layers, can
lead to adult and congenital heart diseases, including left ventricular
non-compaction cardiomyopathy®* and hypoplastic left heart syn-
drome®. To understand how the human ventricle forms and organ-
izes the myocardial layers pivotal for its development and function,
we focused on investigating how distinct cardiac cells coordinate to
guide ventricular wall morphogenesis at 12-13 p.c.w., a time point
when human cardiac ventricles begin to refashion their walls through
consolidation of the inner trabecular layer with the outer compact
layer (myocardial compaction)®. On the basis of the distinct cardiac
ventricular subpopulations discovered from our MERFISH ventricle
analysis of 12-13 p.c.w. hearts, we defined ventricular CCs of spatially
neighbouring ventricular cells toidentify potentially interacting cells
withinthe ventricles (Fig.4a,b and Extended DataFig. 9a-c). Although
we observed that theright ventricular wall comprises three major CCs
(outer,innerand VCS), we discovered that the LV subpopulations organ-
ized into four major CCs that include not only the outer-LV, inner-LV
and VCS CCs, but also an intermediate-LV CC residing between the
outer-LVandinner-LV CCs (Fig.4a-c and Extended DataFig. 9c). These
ventricular CCs were spatially layered across the ventricular wall, similar
tothelaminar organization of vCMs, but disproportionately detected
between the IVS and LV ventricular apical and free wall where the VCS
andinner-LV CCsareenriched, respectively (Fig. 4aand Extended Data
Fig. 9¢). Consistent with the additional ventricular cardiac subpopu-
lations identified in the LV, the LV-specific CCs exhibited increased
cellular complexity (Extended Data Fig. 9d). Whereas the outer-LV and
inner-LV CCs consisted correspondingly of compact and trabecular LV
vCMs, the intermediate-LV CC contained these LV vCMs and hybrid
vCMs, and displayed the greatest cellular heterogeneity but lowest
cellular purity (Fig.4a-cand Extended Data Fig. 9d,e). These findings
support the notion that the LV, particularly its intermediate regions,
may exhibit complexinteractive multicellular events that regulate the
dynamic development and remodelling of its ventricular wall.

To understand how these ventricular cardiac cells may cooper-
ate to spatially transform the developing trabeculated ventricular
layer into part of the mature functional compact ventricular wall, we
interrogated cell-cell signalling events among spatially neighbour-
ing cardiac cells using cell-cell interaction (CCI) analysis of MERFISH
cardiac cells that were harmonized with age-matched scRNA-seq
datasets (Fig. 1e, Supplementary Figs. 15 and 17 and Supplementary
Tables 18 and 19). Consistent with its high cellular complexity, the
intermediate-LV CC displayed the greatest number of ventricular cell
and signalling interactions among the LV-specific CCs (outer, inter-
mediate and inner), whereas the inner-LV CC exhibited the least (Sup-
plementary Fig. 17a). Although outer-LV and inner-LV CCs displayed
interactions between compact vCMs and compact vFibro cells, and
trabecular vCMs and trabecular vFibro cells, respectively, combinato-
rial cross-interactions between these vCMs and vFibros were observed
intheintermediate-LV CC, supporting the ideathat theintermediate-LV
CCmaybearegion of dynamic cellular developmental transformation
(Supplementary Fig.17).

Because of the highly layered organization of vCMs across the LV wall
(Figs. 3c and 4c), we examined incoming signals to vCMs to identify
signalling pathways that control their spatial distribution (Fig.4d and
Extended DataFig.10a-c). Awide range of ventricular cardiac cells was
discovered to signal to distinct vCMs, with fibroblasts displaying the
strongest and highest number of signalling interactions with vCMs
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Fig.4 |Multicellularinteractions direct the organization of specific CCs
within the ventricular wall. a, MERFISH-identified ventricular cells assembled
intonine morerefined CCs within the ventricle. b, Heatmap shows the
composition of distinct ventricular cells within each ventricle CC.c, MERFISH
image of the outlined areainareveals CClayers and their cell composition.
Violin plot shows the ventricular wall depth distributions for distinct ventricular
cellswithin these layers. The centre white dot represents the median, the bold
blacklinerepresentstheinterquartile range, and the edges define minimaand
maxima of the distribution. Dashed lines indicate boundaries for CC layers.

d, Chord diagrams reveal the strength of cell-cell signalling interactions
received by specific vCMsin the inner-LV, intermediate-LV and outer-LV CCs.
Thesize of the node represents the number of cells for a distinct ventricular
cell,and the width of the edge represents the interaction strength between
pairs of specific ventricular cells. e, The Venn diagram shows the number of

(Fig.4d, Extended DataFig.10a-cand Supplementary Table19).Inline
withthese findings, the most predominantsignalling pathways received
by these vCMs were growth and extracellular-matrix-related pathways
that were derived from fibroblasts across the LV CCs (Extended Data
Fig.10aand Supplementary Table19), afinding that supportstheidea

specificand shared CCls received by vCMs within theinner-LV, intermediate-LV
and outer-LV communities. f, Dot plot shows specific signalling interactions
betweendistinct ventricular cells within the intermediate-LV CC. g, Left, spatial
map of cells participatingininteractions between SEMA3C, SEMA3D, SEMAG6A or
SEMA6B with PLXNA2 or PLXN4 for the intermediate-LV CC. Right, normalized
ventricular wall depth distribution of these cellsis shownin the histogram.

h, High-resolution spatial cell map of the intermediate-LV CC shows how cells
involvedininteractions with SEMA3C, SEMA3D, SEMA6A or SEMA6B with
PLXNA2or PLXN4signalling may be spatially distributed to mediate attracting
orrepellinginteractions. Arrows and arrowheads point to SEMA3C'SEMA3D*
compact vFibro cellsand SEMA6A"SEMA6B’ BECs, respectively. Fibro/Epi,
fibroblast and epicardial; His/mus. valve leaf., bundle of His and the muscular
valve leaflet; Int., Intermediate; Out., Outer. Scale bars, 50 pum (g,h); 250 pm (a).

that fibroblasts may have a crucial role in the development of the LV
wall*. Additionally, we identified CCls differentially received by distinct
vCMs among these communities (Fig. 4e and Extended DataFig.10b,c).
Forinstance, neuregulin-ERBB signalling was observed between NRGI*
vEndocardial cellsand ERBB2'ERBB4" trabecular vCMs in the inner-LV
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CC, as previously reported®?**, By contrast, the outer-LV CC exhibited
pleiotrophin-syndecan growth hormone signalling between PTN*
compact vFibro and SDC2* vCM-LV-compact Il, which is consistent
withtheincreased growth rate exhibited by the ventricular outer layer
during this developmental period” (Extended Data Fig.10c). Notably,
wealsodiscovered several PLXN-SEMA axon guidance signalling path-
ways, particularly within the intermediate-LV CC, that may mediate
paracrineinteractions between PLXNA2'PLXNA4" hybrid and trabecular
vCMs and SEMA3C'SEMA3D* compact vFibro cells as well as juxtacrine
interactions between PLXNA2'PLXNA4" hybrid and trabecular vCMs and
SEMAG6A'SEMA6B* BECs (Fig. 4f, Extended Data Fig.10d).

Given the role of PLXN-SEMA signalling in regulating cell migra-
tion®*°, this signalling pathway may mediate acomplex multicellular
interaction among cardiomyocytes, fibroblasts and endothelial cells
that coordinate the organization of cardiomyocytes within the ventricu-
lar wall. Supporting the notion that they may participate in regulating
thecellsinvolvedinremodelling the ventricular wall layers, including
myocardial compaction, we observed that these cells were spatially
arranged in a complementary but overlapping gradient across the
LV wall, where they merged within the intermediate-LV CC to interact
(Fig. 4g and Extended Data Fig. 11a,b). In particular, PLXNA2'PLXNA4*
trabecular vCMs and SEMA3C'SEMA3D* compact vFibro cells were high-
estintheinner-LV CCandouter-LV CC, respectively, but progressively
decreased in opposing directions along the wall depth such that these
ventricular cells spatially intersected within the intermediate-LV CC
(Fig.4g,hand Extended DataFig. 11a,b). By contrast, SEMA6A’'SEMA6B*
BECs were observed throughout the intermediate-LV and outer-LV
CCbut tapered at the boundary between the intermediate-LV and
inner-LV CCs where trabeculae exist (Fig. 4g and Extended Data
Fig.11a,b). Furthermore, PLXNA2'PLXNA4' hybrid vCMs were mainly
located in the intermediate-LV CC, with more observed at the outer
half of the intermediate-LV CC (Fig. 4g and Extended Data Fig. 11a,b),
suggesting that these vCMs may be transitioning between trabecular
and compact vCMs during ventricular wall morphogenesis. Finally,
we observed trabecular and hybrid vCMs in closer proximity to BECs
than compact vFibro cells withintheintermediate-LV CC, afinding that
supports that there is juxtacrine and paracrine PLXN-SEMA signal-
ling between these interacting ventricular cells (Fig. 4hand Extended
Data Fig. 11c). Consistent with these cellular spatial findings, specific
semaphorins and plexins for these ventricular cells generally exhibited
asimilar pattern of expression across the ventricular wall, as detected
by virtual fluorescent in situ hybridization and confirmed by smFISH
studies (Extended Data Fig.11d,e).

PLXN-SEMA directs ventricle organization

To explore whether PLXN-SEMA signalling pathways identified from
our CCl studies participate in organizing vCMs within the ventricular
wall, we used a rapid 3D bioprinting technique to create an in vitro
human pluripotent stem cell (hPSC) vCM multilayer ventricular wall
model* (hPSC-vCM) for investigating how SEMA3C, SEMA3D, SEMAG6A
and SEMAG6B originating from the intermediate-LV CC may influence
the spatial reallocation of PLXNA2'PLXNA4* trabecular vCMs. To this
end, we bioprinted enriched non-trabecular-like and trabecular-like
hPSC-vCMs in layers to recapitulate the intermediate-LV CC and
inner-LV trabecular CC regions of the human ventricle, respectively
(Fig. 5a). Utilizing a monolayer cardiac differentiation system, we gener-
ated enriched hPSC cardiomyocytes (>90%), which were predominantly
early developing /RX4"vCMs, and were used for creating the bioprinted
non-trabecular-like layers (Fig. 5a-c, Supplementary Fig.18a-d and
Supplementary Tables 20 and 21). To create trabecular-like hPSC-vCMs
forbioprinting theinner-LV trabecular CC-like layer (Fig. 5a-c), hPSCs
were differentiated into vCMs and then treated with neuregulin-1
(NRG1), which promotes trabecular vCM differentiation through NRG1-
ERBB2-ERBB4 signalling between endocardial cells and v€CMs**%%, as
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observed from our CCl analysis (Extended Data Fig. 10c and Supple-
mentary Fig.18e). Confirming their differentiationinto trabecular-like
hPSC-vCMs, these NRG1-treated hPSC-vCMs displayed increased
expression of trabecular vCM-specific genes, including /RX3, PLXNA2
and PLXNA4, and decreased expression of the compact vCM-specific
marker HEY2 (Supplementary Fig. 18e).

To investigate how intermediate-LV CC-derived SEMA3C,
SEMA3D, SEMA6A and SEMA6B may affect the spatial distribu-
tion of PLXNA2'PLXNA4" trabecular-like hPSC-vCMs in this hPSC
ventricular wall model, these SEMA ligands were added in two dif-
ferent tiers (tier 1 and tier 2) of the intermediate-LV CC-like layer
containing non-trabecular-like TNNT2:NLS-mKATE2 hPSC-vCMs.
The spatial location of PLXNA2'PLXNA4" trabecular-like (or control
non-trabecular-like) TNNT2:eGFP hPSC-vCMsbioprintedin theinner-LV
trabecular CC-like layer was then examined (Fig. 5b,d and Supplemen-
tary Fig. 19). When these SEMA ligands were present throughout the
intermediate-LV CC-like layer, SEMA3C but not SEMA3D, SEMA6A or
SEMAG6B could direct the relocation of PLXNA2'PLXNA4" trabecular-like
TNNT2:eGFP hPSC-vCMs from the inner-LV trabecular CC-like layer
to both tiers of the intermediate-LV CC-like layer (Fig. 5b,d). How-
ever, these SEMA ligands did not affect the spatial distribution of
non-trabecular-like hPSC-vCMs bioprinted in either intermediate-LV
(Fig. 5b) or control inner-LV CC-like layers (Supplementary Fig.19), a
finding that supports theidea that SEMA ligands may influence vCMs
expressing PLXNA2 and PLXNA4. Using an inducible Tcf21-creERT2
mouse line, we investigated whether genetic deletion of Sema3c
(Sema3c™) in cardiac fibroblasts could affect ventricular wall devel-
opment in vivo, and discovered that Tcf21-creERT2;Sema3c™ cardiac
ventricles exhibited hypertrabeculation and thinner compact myocar-
dium beginning at embryonic day 14.5 (E14.5) (Fig. 5e,f and Extended
DataFig.12). Together, these findings support the notion that SEMA3C
may function as akey attractive guidance cue for driving the migration
of PLXNA2'PLXNA4" trabecular vCMs into the intermediate and outer
layers of the ventricle during ventricular compaction.

Because SEMA6A and SEMA6B have been reported to repel
PLXNA2-expressing and PLXNA4-expressing cells®**°, we examined
whether SEMA6A or SEMAG6B could prevent SEMA3C from attract-
ing PLXNA2'PLXNA4" trabecular-like TNNT2:eGFP hPSC-vCMs from
theinner-LV layer to specific tiers of the intermediate-LV CC-like layer
(Fig. 5¢). To this end, we exposed hPSC-vCMs in our hPSC ventricu-
lar wall model to different combinations of SEMA proteins between
the two tiers of the intermediate-LV CC-like layer under the following
conditions: (1) tier 1, no SEMA; tier 2, SEMA3C; (2) tier 1, SEMAGA; tier
2,SEMA3C; (3) tier 1, SEMAG6B; tier 2, SEMA3C; (4) tier 1, SEMA6A and
SEMAG6B; tier 2, SEMA3C (Fig. 5¢). SEMA condition 1 promoted the
relocation of PLXNA2'PLXNA4" trabecular-like TNNT2:eGFPhPSC-vCMs
fromtheinner-LVtrabecular CC-like layer to the intermediate-LV CC-like
tier 1(Fig. 5c,d). However, PLXNA2'PLXNA4' trabecular-like TNNT2:eGFP
hPSC-vCMs failed to migrate out of theinner-LV trabecular CC-like layer
under SEMA conditions 2-4, supporting the idea that SEMA6A and
SEMA6B may actasarepulsive guidance cue to prevent PLXNAZ2'PLXNA*
vCMs from migrating towards SEMA3C when they come in contact at
theborder of theinner-LV and intermediate-LV CC-like layers (Fig. 5¢c,d).
Overall, these spatial and cell signalling findings suggest that SEMA3C"
compact vFibro cells may attract PLXNA2'PLXNA4" trabecular and
hybrid vCMs to the intermediate-LV and outer-LV CC layers, whereas
SEMAG6A'SEMA6B* BECs may prevent these vCMs from migrating by
repelling them after contact (Fig. 5g).

Discussion

Our single-cell cardiac multimodal studies leveraged the combined
power of scRNA-seq and MERFISH imaging to constructacomprehen-
sive cell atlas of the developing human heart at spatial and molecular
single-cell resolution. These multimodal analyses uncovered a broad
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range of cardiovascular lineages that participate in heart develop-
mentand morphogenesis. The results also contributed new cardiac cell
populations inimportant but underappreciated regions of the heart,
suchasthe cardiac valves and conduction system, thus expanding the
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current knowledge of cell types and states that constitute the human
heart®’®2 (Supplementary Discussion). To gain insight into how these
cell populations specialize according to their cellular and regional
environment, we analysed our MERFISH-based high-resolution spatial
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cardiac cell atlas, which enabled the interrogation of individual cells
that form and interact within CCs that were related to distinct cardiac
structures. Integrating this MERFISH imaging analysis with correspond-
ing scRNA-seq datarevealed the transcriptional profiles and the impu-
tation of distinct genes for these spatially resolved individual cells.

Examining these particular genes with CCl algorithms helped iden-
tify distinct cell signalling ligand-receptor pairs that were expressed
between spatially neighbouring cell populations to mediate their
interactions. Although many of these identified signalling pathways
were predicted across awide range of cell types across the heart, we dis-
covered that they differentially occurred between specific CCls within
distinct CCs. Forinstance, we observed distinct PLXN-SEMA signalling
pathways among multiple combinations of interacting cell popula-
tions withinspecificlayers of the ventricular wall thatinvolved plexins
and semaphorins previously reported in the ventricle*’. However, we
also identified an uncharacterized multicellular interaction among
PLXNAZ2'PLXNA4*ventricular cardiomyocytes, SEMA3C'SEMA3D' fibro-
blasts and SEMA6A'SEMA6B" endothelial cells, which may control the
allocation of cardiomyocytes during the pivotal morphological pro-
cess of ventricular wall compaction®*** (Fig. 5g and Supplementary
Discussion). Overall, these findings highlight how our high-resolution
molecular and spatial cardiac cell atlas offersinsight into the detailed
socialinteractions among distinct cell types that specialize and organ-
izeinto cardiac structures crucial for maintaining heart function. Such
information may be used in the future to not only understand the patho-
logic mechanisms that underlie congenital and adult structural heart
diseases but also to develop new strategies for engineering complex
multicellular cardiac tissues for heart repair.
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Methods

Experimental procedures

Tissue samples. Heart samples were collected in strict observance of
thelegal and institutional ethical regulations. The heart samples were
collected under a University of California San Diego (UCSD) Human
Research Protections Program Committee Institutional Review Board
(IRB)-approved protocol (IRB number 081510) by the UCSD Perinatal
Biorepository’s Developmental Biology Resource after informed con-
sent was obtained from the donor families. All experiments were per-
formed within the guidelines and regulations set forth by the IRB (IRB
number 101021, registered with the Developmental Biology Resource).
Ethical requirements for data privacy include that sequence-level
data (for example, fastq files) be shared through controlled-access
databases.

Tissue processing. Tissue samples were collected in buffer containing
10 mM HEPES pH 7.8,130 mM NaCl, 5 mM KCI, 10 mM glucose, 10 mM
BDM, 10 mM taurine, 1 mM EDTA and 0.5 mM NaH,PO,, and overall
morphology was checked under a stereotaxic dissection microscope
(Leica).

For single-cell dissociation, tissue samples from eight hearts were
further cut into small pieces and enzymatically digested by incubat-
ing with collagenase type IV (Gibco) and Accutase (ThermoFisher) at
37 °C for 60 min. After removing the dissociation medium, cells were
resuspendedin PBS supplemented with 5% FBS and sorted using a Sony
SH800 sorter. Samples were diluted to approximately 1,000 cells per
pbefore processing for scRNA-seq, as shownin Supplementary Fig. 1a.

Samples for MERFISH were washed withice-cold PBS and then fixed
in4% paraformaldehyde at 4 °C overnight. On the second day, samples
were washedinice-cold PBS 3 times, 10 mineach, and wereincubatedin
10%and 20%sucrose at 4 °Cfor 4 heach, andin30% sucrose overnight,
followed by immersion with OCT (Fisher, 23-730-571) and 30% sucrose
(v/v) for 1 h. The samples were then embedded in OCT and stored at
-80 °C until sectioning.

hPSCs.Forthesingle-celland bioprinting studies,aH9-hTnnTZ-pGZ-D2
hPSC line (TNNT2:eGFP hPSC cardiomyocyte reporter line) was pur-
chased from WiCell and maintained as previously described*.. For the
bioprinting studies, an additional engineered TNNT2:NLS-mKATE2
RUES2 hPSC cardiomyocyte transgenic reporter line that specifically
expresses the mKATE2 fluorescent protein containing a nuclear lo-
calization signal (NLS-mKATE2) in differentiated cardiomyocytes was
used (Supplementary Fig. 18a). Both lines were routined authenti-
cated with fluorescence microscopy, immunofluorescence and flow
cytometry studies, and tested negative for mycoplasma contamina-
tion by PCR. To generate the TNNT2:NLS-mKATE2-T2A-BsdR RUES2
hPSC cardiomyocyte reporter line (TNNT2:NLS-mKATE2), we trans-
fected a RUES2 hPSC line with a Piggybac (PB) construct expressing
NLS-mKATE2-T2A-BsdR driven by the cardiomyocyte-specific TNNT2
promoter. To clone the PB-TNNT2:NLS-mKATE2-T2A-BsdR, we used
the PB plasmid pcsj532 (agift from K. Willert, UCSD) and used Gibson
assembly (SGI, GA1200) to clone in a synthesized TNNT2 promoter*?
(Integrated DNA Technologies), PCR-amplified NLS-mKATE2-T2A-BsdR
(with polyA) from pgRNA-CKB* (a gift from B. Conklin, Gladstone;
Addgene, plasmid 73501) and PCR-amplified PGK:PuroR from RT-
3GEPIR* (agift from]. Zuber, IMP, Austria; Addgene, plasmid 111169).
All three components were assembled in one Gibson assembly with
pcsj532 digested using Nhel (NEB R3131L). RUES2 hPSCs were trans-
fected using Lipofectamine STEM (Invitrogen, STEM00O015) with
the PB-TNNT2:NLS-mKATE2-T2A-BsdR and a plasmid expressing a
human-optimized PB transposase (pcsj533, a gift from K. Willert, UCSD)
tointegrate the PB. Two days after transfection, the cells were selected
using 0.4 pg ml™ puromycin. The subsequent surviving cells behaved
similarly to the parental and the TNNT2:eGFP hPSC lines in terms of

proliferation and differentiation. Protocols were approved by the IRB
(number190561) at UCSD.

hPSC cardiac cell differentiations and sample preparation. hPSC
lines were cultured in E8 medium and grown on Geltrex (Gibco)-coated
plates. Differentiation of hPSCs into cardiomyocytes was performed us-
ing established protocols as previously described***. In brief, hPSCs
were grown to 80% confluency, and on day 0 (DO), cells were cultured
with RPMI/B27 supplement without insulin (B27 minus insulin; Ther-
moFisher) containing 10 pM CHIR (Fisher Scientific). After 24 hof CHIR
application, the medium was replaced with fresh B27 without insulin
and the cells were cultured for another 48 h. Next (D3), 5 uMIWP2 (Toc-
ris) was supplemented to B27 without insulinand cultured for another
48 h. At D5, the B27 without insulin and with IWP2 was replaced with
fresh B27 withoutinsulin for another 48 h. From D7 onwards, cells were
maintained in RPMI/B27 with insulin (B27, ThermoFisher). On D15, this
B27 medium was then supplemented with either NRG1 (50 ng mI™)* or
PBS, and further cultured until D30 and greater, refreshing the medium
every 3 days.

scRNA-seq studies performed on hPSC-derived samples were pre-
pared as described in the ‘Tissue processing’ section. In brief, D25
hPSC-derived cardiac cells were enzymatically digested by incubat-
ing with collagenase type IV (Gibco) and Accutase (ThermoFisher) at
37 °Cfor 60 min. After removing the dissociation medium, cells were
resuspended in PBS supplemented with 5% FBS and sorted using a
Sony SH800 sorter.

Animal studies. Animal studies were conducted in strict compliance
with the Guide for the Care and Use of Laboratory Animals published
by the National Institutes of Health and protocols approved by the
Institutional Animal Care and Use Committee of UCSD (A3033-01).
Mice were maintained on a12 h-12 h light-dark cycle in a controlled
temperature (20-22 °C) and humidity (30-70%) environment. The
generation of T¢f21-creERT2 and Sema3c¢™ mice has been previously
described*®*, To validate the genotype of the mice, genomic DNA was
extracted by adding a2 mmtail clipping to a 75 pl solution containing
25mMNaOH and 0.2 mMEDTA, and then heating the sample for 30 min
at 98 °C. Next, 75 il of 40 mM Tris-HCI (pH 5.5) was then added to neu-
tralize the reaction, and a1:50 dilution of genomic DNA template was
used for genotyping PCR. Both male and female embryos were used
in this study; the embryos were not genotyped to determine sex. To
determine the developmental stage of embryonic development dur-
ing which tamoxifen treatment was administered, noon on the day of
the vaginal plug was assumed to be EQ.5. Tamoxifen (Sigma, T5648-1G,
0.1 mg g body weight) was fed to pregnant mice by gavage at E10.5,
and hearts were collected at E12.5, E14.5,E17.5and postnatal day 1. The
fixed hearts were embedded in paraffin, sectioned and stained with
haematoxylin and eosin by the UCSD Histology Core. Images were
taken on a Hamamatsu Nanozoomer Slide Scanning system and an
Olympus VS200slide scanner, and processed using NDP View 2 software
(Hamamatsu) and QuPath (v.0.4.3)®°, respectively. Phenotypic analyses
of ventricular wall thickness were performed as previously described®..
In brief, the thicknesses of ventricular compact and trabecular zones
were measured at the level of the papillary muscle, with measurements
taken from at least three areas per section, and at least three sections
per mouse.

Single-cell transcriptome library preparation and sequencing.
Single-cell droplet libraries using the cell suspensions from the Sony
SH800 sorter were prepared according to the manufacturer’sinstruc-
tions using the 10x Genomics Chromium controller, Chromium Single
Cell 3’ Library and Gel Bead kit v2 (PN-120237) and Chromium i7
Multiplex kit (PN-120262). All libraries were sequenced on a HiSeq
4000 (Illumina) to a mean read depth of at least 65,000 total aligned
reads per cell.
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MERFISH gene selection. To spatially detect cell populations identi-
fiedinthe scRNA-seq dataset, we designed a panel of 238 genes specific
for these subpopulations. These genes were then simultaneously im-
aged on cardiac samples using the combinatorial barcoded imaging
technique MERFISH’. We initially identified gene markers differen-
tially expressed for each of the 75 cell subpopulations by perform-
ing differential gene expression (DGE) analyses as well as applying a
NS-Forest2 (ref. 52) classifier on scRNA-seq data obtained from the
aforementioned human hearts in Supplementary Fig. 1. All markers
were combined from the binary gene analysis utilizing NS-Forest2
(ref. 52) (159 genes) (Supplementary Table 7) and DGE analysis (7,557
genes) (Supplementary Table 3) of the cell subpopulations, and were
thenfiltered for genes that were either not long enough to construct 48
targetregions (each 30-nucleotides long) without overlap or for which
expression levels were outside the range of 0.01-300 average unique
molecularidentifier (UMI) per cluster, as measured by scRNA-seq. The
performance of identifying marker genes between NS-Forest2 and
Spapros® pipelines was also compared. The initial result of Spapros
produced 80 genes, whichis halfthe number chosen by NS-Forest2. To
compareasimilar number of genes between NS-Forest2 and Spapros,
these 80 genes were removed from the dataset and Spapros was run
again, which selected another 90 genes. The combination of these
two sets of genes were used for the Spapros gene list (Supplementary
Table 9). To quantify the ability of the selected genes to re-identify cell
subpopulations at the same granularity asannotated in the sScRNA-seq
data, the dimensionality reduction and neighbour graph were recal-
culated using only the genes selected by the algorithm (NS-Forest2 or
Spapros) that was being evaluated. Each cellwas then reassigned its cell
subpopulation label based on the majority cell subpopulation ofits five
nearest neighbours in the new neighbour graph. The percentage of cells
reassigned their original label was used as an accuracy metric. With this
metric, we found that NS-Forest2 and Spapros chose genes with similar
performance (Supplementary Table 10). Among the 238 MERFISH
target genes, 63 were manually selected from the DGE and NS-Forest2
gene lists, including established markers for atrial, ventricular and
non-chambered cardiomyocytes, as well as non-cardiomyocyte cell
markers for fibroblasts, pericytes, VSMC, epicardial, endocardial, BEC,
LEC and immune cells. Genes specific for platelet-red blood cells were
not selected. To validate the final target gene list, we tested whether
we could transcriptionally rederive the cell populations by cluster
analyses using only the 238 target genes. To this end, we reduced the
scRNA-seq dataset to only the 238 genes in the MERFISH gene panel
and then performed dimensionality reduction, graph-based clustering
and UMAP visualization. We observed a similar level of transcriptional
separation and definition of cell classes between using the 238 target
genes versus using the 3,000 variable genes chosen to annotate the
cell classes in the scRNA-seq data (Fig. 1a and Extended Data Fig. 1b).
In addition to the 238 MERFISH genes, we selected 11 genes that were
imaged sequentially using smFISH (Supplementary Table11), including
genes that validated the combinatorial MERFISH imaging (Extended
DataFig. 2d).

MERFISH probe library design and construction. A total of238 genes
were identified as MERFISH target genes, which were subsequently used
for probe generation and MERFISH assays as shown in Supplementary
Table11. To encode MERFISH RNA probes for spatial detection, a 22-bit
modified Hamming distance 4 code was used®. Each of the 238 possible
barcodes required at least 4 accumulated errors to be converted into
another barcode. This property permitted the detection of errors up
toany 2 bits, and the correction of errors to any single bit. In addition,
this encoding scheme used a constant Hamming weight (that is, the
number of 1 bits in each barcode) of 4 to avoid potential bias in the
measurement of different barcodes due to a differential rate of 1to O
and 0 to 1errors and because the optical density within each bit can
interfere with resolving individual fluorescent spots, as previously

described®. We used 238 out of the 7,315 possible barcodes to encode
cellular RNAs and chose 10 barcodes that were left unassigned to serve
asblank controls. The encoding probe set that we used contained 30-48
encoding probes per RNA, with each encoding probe containing 3 out of
the 4 readout sequences assigned to each RNA. Encoding probes were
designed using our own pipeline, namely, ProbeDesign. ProbeDesign
was developed using a fully optimized algorithm in C++ for both DNA
and RNA probes. ProbeDesign used the same principles of probe design
utilized by various published algorithms (OligoArray**, OligoMiner®,
OligoPaint*® and ProbeDealer*’), for which off-targets are based on
genome-wide 17-nucleotide off-target counts. Probes were selected
with similar GC content or melting temperature, and the repetitive
regions were used for off-target counting but not for probe design.
ProbeDesign wasimplemented inthree steps. (1) Build a17-nucleotide
index based on the reference genome (DNA) or genome annotation
files (RNA). This stepis fully optimized with bit-vector and hash tables
for high-performance computation; (2) Scan selected loci or genome
sequences to calculate the off-targets based on the 17-nucleotide counts
in the previous step. And (3), filter and rank probe candidates based
on predefined selection criteria. For the RNA probe design, we used
the transcript sequences derived from the human reference genome
sequences (hg38) downloaded from ncbi_refseq (https://hgdownload.
soe.ucsc.edu/goldenPath/hg38/bigZips/genes/). The generation of
the encoding probe sets were prepared from oligonucleotide pools,
as previously described®®*. Inbrief, we first used limited-cycle PCR to
amplify the oligopools (Twist Biosciences). Then, we used these DNA
sequences as the templates for in vitro transcription into RNA using
T7 polymerase (NEB, E2040S). Subsequently, the RNA products were
convertedinto single-stranded DNA with Maxima Reverse Transcriptase
enzyme (Thermo Scientific, EP0O751), and then the DNA was purified by
alkaline hydrolysis (to remove the RNA templates) followed by DNA
oligo purification kits (Zymo Research, D4060).

MERFISH sample preparation. Frozen hearts were sectioned at —20 °C
on acryostat (Leica CM3050S). A series of 12 um coronal slices were
cut at about 600 pum along the anterior—posterior axis of collected
human hearts, which captured all of the major cardiac structures. MER-
FISH measurements of 238 genes with10 non-targeting blank controls
were performed as previously described using the encoded barcode
sequences (Supplementary Table11) and published readout probes®.
Inbrief,12-um-thick tissue sections were mounted on 40 mmno. 1.5 cov-
erslips that were silanized and poly-L-lysine coated*® and subsequently
pre-cleared by immersinginto 50% (v/v) ethanol, 70% (v/v) ethanol and
100% ethanol, each for 5 min. The tissue was then air-dried for 5 min,
followed by treatment with Protease Ill (ACDBio) at 40 °C for 30 min,
and then washed with PBS for 5 min. Tissues were then preincubated
with hybridization wash buffer (30% (v/v) formamide in 2x SSC) for
10 min at room temperature. After preincubation, the coverslip was
moved toafresh 60 mm Petri dish, and theresidual hybridization wash
buffer was removed with aKimwipe laboratory tissue. Inthe new dish,
the coverslip was immersed with 50 pl of encoding probe hybridiza-
tion buffer (2x SSC, 30% (v/v) formamide, 10% (w/v) dextran sulfate,
1mg ml™yeast tRNA and a total concentration of 5 pM encoding probes
and 1 pM ofanchor probe: al5-nucleotide sequence of alternating dT
and thymidine-locked nucleic acid (dT+) with a 5-acrydite modifica-
tion (Integrated DNA Technologies)). The sample was then placed in
a humidified 37 °C oven for 36-48 h and then washed with hybridiza-
tion wash buffer for 20 min at 37 °C and 20 min at room temperature.
Samples were post-fixed with 4% (v/v) paraformaldehyde in 2x SSC
and then washed with 2x SSC with murine RNase inhibitor for 5 min.
Toanchor the RNAs in place, the encoding probe-hybridized samples
were embedded in thin, 4% polyacrylamide (PA) gels as previously
described®®. In brief, the hybridized samples on coverslips were first
washed with a de-gassed 4% PA solution, consisting of 4% (v/v) of 19:1
acrylamide/bis-acrylamide (Bio-Rad, 1610144), 60 mM Tris-HCI pH 8
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(ThermoFisher, AM9856), 0.3 M NaCl (ThermoFisher, AM9759) and a
1:1,000 dilution of 0.1-um-diameter blue fluorescent (350/440) beads
(Life Technologies, F-8797). The beads served as fiducial markers for
the alignment of images taken across multiple rounds of imaging. The
coverslips were then washed again for 2 min with the same 4% PA gel
solutionsupplemented with the polymerizing agents ammonium per-
sulfate (Sigma, A3678) and TEMED (Sigma, T9281) at final concentra-
tions of 0.03% (w/v) and 0.15% (v/v), respectively. The gel was then
allowed to cast for 1.5 h at room temperature. The coverslip and the
glass plate were then gently separated, and the PA film was incubated
witha digestion buffer consisting of 50 mM Tris-HCIpH 8,1 mM EDTA,
0.5% (v/v) Triton X-100 in nuclease-free water and 1% (v/v) proteinase K
(New England Biolabs, P8107S). The sample was digested in this buffer
for>36 hinahumidified, 37 °Cincubator and then washed with 2x SSC
3 times. The samples were finally stained with an Alexa 488-conjugated
anchor probe-readout oligonucleotide (Integrated DNA Technologies)
and DAPIsolution at 1 pug ml™". MERFISH measurements were conducted
onahome-built system as previously described®’.

Immunofluorescence studies. For theimmunofluorescence studies
of the TNNT2:NLS-mKATE2 hPSC line, D25 hPSC-derived cardiac cells
were dissociated, replated and then cultured for another 4 days before
being fixed. The fixed cells were then immunostained, as previously
described*, using an antibody for TNNT2 (A647 mouse anti-cardiac tro-
poninT, BD 565744,1:200). Nuclei were visualized using DAPI (1 ug ml™,
Roche) staining. Immunofluorescent images were taken on a Nikon C2
confocal microscope.

Real-time quantitative PCR. RNA expression was measured by
quantitative PCR (QPCR). RNA was extracted using TRIzol reagent
(ThermoFisher) and a Direct-zol RNA MiniPrep kit (Zymo Research).
cDNA was generated using 1,000 ng RNA mixed with iScript Reverse
Transcription Supermix (Bio-Rad) and then diluted 1:10 in UltraPure
DNase/RNase-free distilled water (ThermoFisher). qPCR was performed
using Power SYBR Green master mix (ThermoFisher) according to
the manufacturer’s recommendations, and a two-step amplification
CFX_2stepAmp protocol on a Bio-Rad CFX Connect Real-Time PCR
Detection system. Datawere analysed using the 2**“ method. All gene
expression was normalized to the expression of TATA box binding pro-
tein (TBP). Primer sequences are listed in Supplementary Table 22.

In vitro hPSC ventricular wall model. To create anin vitro hPSC ven-
tricular wallmodel for studying ventricular wall morphogenesis, we bio-
printed cardiomyocytesin multilayered constructs asshowninFig. 5. To
thisend, we differentiated TNNT2:eGFPand TNNT2:NLS-mKATE2hPSCs
into D15 cardiomyocytes (hPSC-CMs) as described in the ‘hPSC cardiac
differentiations and sample preparation’ section. D15 TNNT2:eGFP
hPSC-CMs were further treated with NRG1 to create trabecular-like
CMs as previously described*t. As controls, D15 TNNT2:eGFP and
TNNT2:NLS-mKATE2hPSC-CMs were treated with PBS. D30+hPSC-CMs
(>90% efficiency by flow cytometry) were then enzymatically dissoci-
ated with collagenase type IV (Gibco) and Accutase (ThermoFisher)
and resuspended at 100 million cardiomyocytes per ml. The method
to bioprint multilayered constructsinvolved printing D30+ hPSC-CMs
that were treated with NRG1 or PBS into a rectangle with finger-like
projections that was 500 x 700 x 600 um (height x width x length)
(inner-LV CC-like layer), followed by printing an adjacent rectangular
structure (500 x 700 x 75 um) (intermediate-LV CC-like layer) contain-
ing gelatinmethacryloyl (GelMA)® mixed with 100 ng ml ™ of different
combinations of SEMA3C, SEMA3D, SEMA6A or SEMA6B (R&D Systems)
proteins as described in Fig. 5b. The concentration of SEMA3C used
for the conditions in Fig. 5c was 1,000 ng ml because SEMA3C was
located further from theinner-LV CC-like layer. The cell-encapsulated
layer was fabricated using 6.25% GelMA and 0.33% LAP with 15 s of light
exposure time, and the cells were mixed with the monomer solution

directly before bioprinting. The adjacent layer containing the signal-
ling factors was printed using 4% GelMA and 0.4% LAP with 15 s of light
exposure time. Using amethacrylated coverslip fixed to the controller
stage,a20 pl cell-material mixture was placed into the space between
the coverslip and a polydimethylsiloxane (PDMS) film attached to a
glass slide. This cell-material mixture was then exposed to UV light
(365 nm, 88 mW cm2) with a pattern generated by a digital micromir-
ror device chip. After printing each layer, the construct was washed
three times withwarm PBS and aspirated dry. Finally, the multilayered
construct was washed in both PBS and medium, and then stored ina
cell culture incubator (37 °C, 5% CO,). Medium was refreshed every
other day.

Data analysis

Processing of raw sequencing reads. Raw sequencing reads were
processed using the Cell Ranger (v.3.0.1) pipeline from 10x Genomics.
Reads were demultiplexed and aligned to the human hg38 genome,
and UMI counts were quantified per gene per cell to generate a gene-
barcode matrix.

Cellfiltering and clustering. After generating the gene-barcode
matrix file from Cell Ranger, the individual count matrices were
merged together and processed using the Seurat (v.4.0.1) R package®
(https://satijalab.org/seurat/). Further filtering and clustering analyses
of the scRNA-seq cells were performed using the Seurat package, as
described in the tutorials (https://satijalab.org/seurat/). Cells with at
least 1,000 genes detected and a mitochondrial read percentage of
less than 30% were used for downstream processing. Potential dou-
blets were removed using DoubletFinder (v.2.0)** (https://github.com/
chris-mcginnis-ucsf/DoubletFinder) using an anticipated doublet rate
of 5%, which is the expected rate reported by 10x Genomics for the
number of cells loaded onto the 10x Controller. For the aggregated
dataset, gene expression was normalized for genes expressed per
cell and total expression using the NormalizeData function. The top
3,000 variable genes were detected using the FindVariableFeatures
function with default parameters. All of the genes were subsequently
scaled using the ScaleData function, which utilizes a linear regres-
sion model to eliminate technical variability due to the number of
genes detected, replicate differences and mitochondrial read per-
centage. Principal components were calculated using RunPCA, and
the top 50 principal components (supported by EIbowPlot showing
diminishing variance explained beyond the top 50 principal compo-
nents) were used for creating the nearest neighbour graph utilizing
the FindNeighbors function with k.param = 50. The generated nearest
neighbour graph was then used for graph-based, semi-unsupervised
clustering (FindClusters, default resolution of 0.8) and UMAP to pro-
jectthecellsinto two dimensions. Marker genes were identified using
a Wilcoxon rank-sum test (FindAlIMarkers, default parameters) for
one-versus-all comparisons for each of the cell clusters. Cell identities
were assigned to the clusters by cross-referencing their marker genes
with known cardiac cell type markers from both human and mouse
studies, inaddition toinsitu hybridization data fromthe literature'®™>,
Onoccasion, acell cluster would emerge that expressed marker genes
representing multiple populations, as well as contained cells with low
UMI and gene counts that escaped the first filtering step. These cells
were removed from downstream analyses. The clustering approach
was then repeated for each compartment of cells (cardiomyocyte,
mesenchymal, endothelial, neuronal and blood) as described above,
and the clustering accuracy was evaluated using SCCAF (v.0.0.10)%*
withthe following parameters: linear regression with L1 regularization
witha50/50 train-test split and a fivefold cross validation. For the adult
ventricle scRNA-seq comparison, we combined previously published
datasets® with our developing heart scRNA-seq dataset and re-ran
the NormalizeData function to compare gene expression between
these datasets.
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Label transfer analysis. Cell annotations from the scRNA-seq dataset
were compared to a recently published adult heart dataset™ utiliz-
ing scArches (v.0.5.9)%. For scArches, both the adult and developing
transcriptomic datasets were integrated using scVI (v.1.0.3)*¢ (n_hid-
den=128, n_latent=50, n_layers=3, dispersion = ‘gene-batch’). A ref-
erence hierarchy tree was then constructed using the treeArches®
workflow (https://docs.scarches.org/en/latest/treeArches_identify-
ing_new_ct.html) with default parameters and “cell_state” labels onthe
adult heart published reference dataset'. Labels from the reference
dataset were then transferred to the developing heart query dataset
to predict the cell labels utilizing the scHPL.predict.predict_labels()
function with default parameters. Rejected cells were calculated using
the posterior probability (default option) with a 0.5 threshold.

Gene regulatory network analysis. To identify age-related changesin
gene expression, we applied the pySCENIC (v.0.12.1)** gene regulatory
network (GRN) inference tool to our scRNA-seq dataset. To thisend, the
scRNA-seq dataset was split by cell class,and pySCENIC analysis was per-
formed toidentify cell-class-specific regulons following the standard
pipeline on GitHub (https://github.com/aertslab/SCENICprotocol/).
In brief, we performed three steps to create a GRN for each cell class:
(1) GRN inference using the GRNBoost2 algorithm, (2) transcription
factor (TF) regulon predictions and (3) cellular enrichment area under
the curve (AUC, measure of regulon activity) calculation for each cell.
The resulting AUC matrix was then used to identify the regulons with
the most significant change of activity over age by fitting alinear model
to regulon activity and identifying regulons with the highest positive
and negative rate of change. To find the functional pathways enrichedin
eachsetof regulons, we performed gene ontology enrichment analysis
using the EnrichR Bioconductor package (v.3.1)*°. Onthe same regulons,
we constructed aregulatory network with the top100 non-redundant
edges of the network by importance score, and visualized the edges,
transcription factors and target genes using Cytoscape (v.3.8.0)”°. For
the overall GRN of vCMs, we constructed aregulatory network with the
top 50 transcription factors by centrality and then took the top 500
non-redundant edges of the network by importance score and visual-
ized the edges and transcription factors using Cytoscape.

CCl analysis. We applied CellChat (v.1.6.1)" to our scRNA-seq dataset
to identify region-specific CCls. Atrial cells and ventricular cells were
divided based ontheirregion of dissection (LA/RA for atrial and LV/RV/
IVS for ventricular) and were analysed separately. Next, we followed
the suggested workflow of CellChat, using its database of human li-
gand-receptor interactions (with the addition of the NRG1-ERBB2
signalling pathway owing to its known biological role during cardiac
development®2%¥), identifying overexpressed genes, computinginter-
action probabilities and discovering significant interactions based on
default parameters. This pipeline was performed using all cell classes
presentineachregion (except for platelet-red blood cells) to calculate
potential CCls.

Developmental trajectory analysis. To identify a developmen-
tal trajectory of vCMs within our scRNA-seq dataset, we used the
Waddington-OT (v.1.0.8)” package. The vCM cell class was isolated,
which represents subpopulations C1-C11 of the cardiomyocyte com-
partment, and the corresponding cells were used for Waddington-OT
trajectory inference as outlined in GitHub (https://broadinstitute.
github.io/wot/tutorial/) without the optional step of estimating in-
itial growth rates. Transport matrices were calculated for each ad-
jacent pair of time points (9 p.c.w.-11 p.c.w., 11 p.c.w.-13 p.c.w., and
13 p.c.w.-15 p.c.w.) and then the trajectory was computed by calcu-
lating the descendent distributions at the 9 p.c.w stage. Normalized
pseudotime values used for subsequent analyses were calculated by
taking the quantile for each cell ranked by raw pseudotime value. Fol-
lowing the construction of the developmental trajectory, the resulting

pseudotime for vCMs was utilized to order the GRN and CCls of the
vCMs by determining the expression-weighted pseudotime of each
respective transcription factor and receptor or ligand expressed by
vCMs as previously described”.

MERFISH processing. For processing MERFISH data, individual
RNA molecules were decoded using MERIin (v.0.6.1) as previously de-
scribed®. Images were aligned across hybridization rounds by maxi-
mizing phase cross-correlation on the fiducial bead channel to adjust
for driftin the position of the stage from round to round. Background
was reduced by applying a high-pass filter, and decoding was then
performed per pixel. For each pixel, a vector was constructed of the
22 brightness values from each of the 22 rounds of imaging. These
vectors were then L2-normalized, and their Euclidean distances to
each of the L2-normalized barcodes from MERFISH codebook were
calculated. Pixels were assigned to the gene whose barcode they were
closest to, unless the closest distance was greater than 0.512, in which
case the pixel was not assigned a gene. Adjacent pixels assigned to the
same gene were combined into asingle RNA molecule. Molecules were
filtered to remove potential false positives by comparing the mean
brightness, pixel size and distance to the closest barcode of molecules
assigned to blank barcodes versus molecules assigned to genes to
achieve an estimated misidentification rate of 5%. The exact position
of each molecule was calculated as the median position of all pixels
consisting of the molecule.

Cellpose (v.1.0.2)" was used to performimage segmentation to deter-
mine the boundaries of cells and nuclei. Distinct RNA molecules were
identified and assigned to individual cells as segmented by total poly-
adenylated RNA staining and DAPI staining, which allowed for the detec-
tion of cellular boundaries. The nuclei boundaries were determined
by running Cellpose with the ‘nuclei’ model using default parameters
onthe DAPIstain channel of the pre-hybridizationimages. Cytoplasm
boundaries were segmented with the ‘cyto’model and default param-
etersusing the polyT stainchannel. RNA moleculesidentified by MER-
lin were assigned to cells and nuclei by applying these segmentation
masks to the positions of the molecules. Any segmented cells that did
not have any barcodes assigned were removed before constructing
the cell-by-gene matrix.

smFISH computational analysis. Images were flatfield-corrected for
the two gene channels (750 nm and 635 nm) and the fiducial marker
(405 nm) channel. Toreduce background noise for each hybridization
round, theimages of the preceding hybridization round were reduced
inintensity and subtracted to obtain new background-subtracted
images. The images were then locally normalized by subtracting a
15 x 15 blur from each pixel before undergoing maximum intensity
projectioninto two dimensions. For transcript detection, the OpenCV
function adaptiveThreshold was used with a block size of 41 pixels, and
asubtracted constant ranging from —-80 to -70 among our replicate
smFISH experiments. This constant was empirically determined by
choosingavalue that ensured the resulting mask only captured visible
fluorescent spots across diverseimaging planes for each gene. Using
theregionprops function from Scikit-Image, we filtered out spots with
an eccentricity value of 0 and cells with low pixel area (<4 pixels) to
combat artefactual fluorescence detection. A global threshold was
identified for the images of each gene by evaluating the values of fea-
tures determined as nonspecific background (for example, irregular
shape, low intensity). The coordinates of local brightness maxima
that remained unattenuated after applying this global threshold were
stored. Coordinates lying within the adaptiveThreshold mask bounda-
rieswereidentified and counted as asingle identified gene transcript.
Theimages for each of the smFISHimaging rounds were aligned to the
respectiveinitial MERFISH hybridization round images to correct for
microscopic drift using the fiducial marker channel. This was done by
fitting spotsto the fiducial bead markers of both sets of images, then
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minimizing the median distances between them. DAPI segmentation
masks obtained from the MERFISH imaging were translated using this
drift correction so that all identified gene transcript locations could
accurately be assigned to the drift-corrected nuclei, which enabled
reconstruction of a spatial mosaic of the cellular gene expression for
eachof our sequentially imaged gene targets. For the replicate smFISH
experiments to validate MERFISH gene markers, each gene was imaged
twice on the same colour channel but in different non-consecutive
rounds, allowing for amore robust analysis by using the combination
ofthetwoimages toreduce the effect of noise in the result. Genes were
imaged on three colour channels: Alexa 750, Cy5 and Cy3. The genes
were separated and analysed into batches of six, with the imaging be-
ing doneina pattern described as follows. Inthe firstimaging round,
genes A, Band Cwereimaged on the Alexa 750, Cy5 and Cy3 channels,
respectively. On the second round, genes D, E and F were imaged on
the same three channels. The third and fourth imaging rounds were
then repeats of the first and second rounds. By imaging each gene
twice, the data could be analysed as a pseudo-MERFISH experiment,
whereby a codebook was designed with each gene having a barcode
containing two ‘on’ bitsin the twoimaging rounds they wereimaged.
Using this codebook, the data was processed using the same method
as the MERFISH data as previously described®.

Cell clustering analysis of MERFISH. With the cell-by-gene matrix,
we followed a standard procedure as suggested in the Scanpy (v.1.8)
tutorialusing Python (v.3.9) for processing MERFISH data. Count nor-
malization, principal component analysis (PCA), neighbourhood graph
constructionand UMAP were performed using the default parameters
in Scanpy. We performed Leiden clustering utilizing a resolution of 2
because the additional clusters gained at higher resolutions either
did not have differentially expressed genes or were related to tech-
nical imaging artefacts. The top 20 differential genes identified by
the rank_gene_groups() function were used to annotate each cluster.
We further subclustered the vCM clusters using Leiden clustering at
a default resolution of 1 to further annotate vCMs as compact and
trabecular vCMs for both the left and right ventricles. To investigate
the cellular populations in the ventricle specifically (both 13 p.c.w.
and 15 p.c.w.), we manually defined the ventricular region, subset-
ted the MERFISH dataset to those cells populating the ventricle and
performed Leiden clustering using a similar strategy to that used in
the overall clustering (resolution of 5). Again, the top 20 genes iden-
tified by the rank_gene_groups() function were used to annotate
each cluster.

Integration of the scRNAseq and MERFISH datasets. To integrate
the scRNA-seq and MERFISH datasets, we first isolated both datasets
toonly the238 MERFISH target genesinterrogated by both modalities.
We then utilized Scanpy’simplementation of Harmony to project both
the scRNA-seq and MERFISH datasets into a shared PCA space’. The
dimensionality of the joint embedding was visualized using UMAP
(min_dist=0.3,30 nearest neighbours in Pearson correlation distance).
The parameters matched those used in a previous publication of Har-
mony”®. Toimpute a complete expression profile and cell label for each
MERFISH profile, we assigned the expression profile and cell label of
the closest scRNA-seq cell to the MERFISH cell in the Harmony PCA
space using the Euclidean distance metric (default number of PCs).
To evaluate the performance of the gene imputation method, we
developed a predictability score for each gene which is the Pearson
correlation between the imputed expression and measured image
expression for all genes (Supplementary Fig.14a). Because the shared
embedding spaceis constructed using the 238 MERFISH target genes,
itis expected that these genes would have higher predictability scores
than genes not used in the construction. To avoid this bias, tenfold
cross-validation was used to calculate independently the MERFISH
and scRNA-seq gene predictability scores. To this end, a new shared

embedding utilizing only 90% of the 238 MERFISH target genes was
used to calculate the MERFISH and scRNA-seq gene predictability
scores for the remaining 10% of genes that were not included for con-
structing the embedding. This process was repeated 10 times with a
different 10% of genes being imputed by a different shared embed-
ding each time to cover the full set of 238 genes. To calculate whether
apredictability score represented a prediction that is a significant
improvement over random prediction, we calculated predictability
scores using arandomly connected neighbour graph. In other words,
rather than predicting the expression from the cell with the most
similar gene expression, the prediction was made from a randomly
selected cell in the dataset, and then the predictability score was cal-
culated between the measured expression values and these randomly
predicted values. This process was repeated 100 times to estimate a
normal distribution of predictability scores that result from random
prediction. Pvalues were then determined for the true predictabil-
ity scores based on rejecting the null hypothesis that the true scores
originated from the null normal distributions. Finally, these P values
were corrected for multiple hypothesis testing using the Bonferroni
method. We observed that the maximum scRNA-seq predictability
score for agene that failed this significance test (adjusted Pvalue > 0.01)
was 0.11.

Identifying CCs. We sought to define CCs that represented distinct
shared cellular environments defined by the neighbouring cells in
close proximity. To this end, we clustered each MERFISH cell based on
the cell composition of neighbouring cells withina 150 pm zone, which
represented a typical diffusion distance for extracellular signalling
molecules”. This zone sampled approximately 300 neighbours. The
zone of each cell was therefore represented by a vector containing the
relative proportions of each of the 27 identified cellsin both the overall
and ventricular subset of the MERFISH dataset. We then clustered the
zones using Python’s scikit-learn (v.0.22) implementation of Kmeans
with k=13 for the overall MERFISH dataset or k = 9 for the ventricular
subset of the MERFISH dataset, chosen by silhouette score. Thus, each
MERFISH cell was assigned to 1 of the 13 or 9 CCs in the overall or ven-
tricular subset of the MERFISH dataset, respectively.

To infer community-specific CCls, cell annotations derived for each
MERFISH cell were transferred to the nearest scRNA-seq profile in the
Harmony jointembedding space and used for the pipeline of CellChat
as described in the ‘CCl analysis’ section. The overall and ventricular
communities were each analysed separately by analysing the scRNA-seq
profiles assigned to those communities. For each overall or ventricular
cellular community, we only considered cells that represented at least
5% or 3.5% of the community in the MERFISH dataset for CellChat CCI
analysis.

Connectivity, ventricular wall depth and pseudotime analyses
of vCMs. To visualize the similarity in the gene expression profiles
of the vCMs, we isolated the vCM-LV-compact I, vCM-LV-compact I,
vCM-LV-hybrid, vCM-LV-trabecular I, vCM-LV-trabecular Iland vCM-LV/
RV-Purkinje populations, and reperformed PCA, nearest neighbour
graph construction and UMAP utilizing Scanpy with default param-
eters. We thenused Scanpy’simplementation of partition based graph
abstractionto construct agraphinwhich the nodesrepresent different
vCMs, and the edges represent the degree of connectivity between
the vCMs in the neighbourhood graph. This captured a measure of
similarity between the vCMs.

Todetermine the distance of each MERFISH cell within the ventricular
wall, the ventricular wall depth of each MERFISH cell was defined as the
distance to the nearest epicardial cell or EPDC, which both lie on the
outer layer of the heart. To compare ventricular wall depth between
differentventricles, the wall depth values were normalized by dividing
each value by the maximum depth of the corresponding ventricle. To
identify depth correlated genes, we computed the Pearson correlation
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coefficient between expression and ventricular wall depth for each
gene. We considered genes with a correlation greater than 0.2 to be
depth correlated. Next, the diffusion pseudotime distance on the vCM
nearest neighbour graph from the medoid of the vCM-LV-compact |
cluster were calculated using Scanpy’s scanpy.tl.dpt() function with
default parameters. We note that this metric is often reported as pseu-
dotime to represent developmental changes, but in this case, we use
it simply as a metric for expression similarity to vCM-LV-compact I
cells. The scaled expression of the top genes correlating with pseu-
dotime were plotted as a smoothed spline (Extended Data Fig. 6d) as
previously described™.

Migration distance measurement. The migration distance of the
bioprinted hPSC-CMs was measured by using the DO position as the
starting point and calculating the distance migrated by the hPSC-CMs
daily. Inbrief, brightfield and fluorescent (green and red) confocal im-
ages of the GFP* and NLS-mKATE2* hPSC-CMs were takenonaLeicaSP5,
with the brightfield images used to visualize the construct. Because of
minor variations in size and cell number between printed constructs,
we normalized the migration distances by first dividing the width of
the construct into 15 even blocks for each image. Within each block,
the distances from the DO position to the furthest position (for each
day) of the hPSC-CMs were calculated. We then averaged the distances
measured for the 15 blocks to calculate the migration distance of each
condition and line.

Statistics and reproducibility. Replicates and statistical tests are de-
scribed in the figure legends. Sample sizes were not predetermined
utilizing statistical methods. Tissue samples were not randomized,
nor were the investigators blinded during collection as no subjective
measurements were taken. Data for scRNA-seq and MERFISH were col-
lected from all available samples and no randomization was necessary.
For the studies utilizing human pluripotent stem cell lines, treatment
with NRG1 was randomly assigned. For the animal studies, animals
were randomly chosen from each genotype and stage. Blinding during
analysis was not necessary as all of the results were analysed with the
use of unbiased analysis and software tools that are not affected by the
sample. All experiments were independently repeated at least three
times with similar results, including experiments in Fig. Se, Extended
DataFigs.2aand12aand Supplementary Fig.18a. To identify differen-
tially expressed genes between clusters, a Wilcoxon rank-sum test was
performed and the resulting P value was corrected using the Bonfer-
roni procedure. For the scRNA-seq predictability scores, the P values
were generated by using bootstrapping to generate a distribution of
scores for each gene and then calculating (1- cumulative distribution
function) to obtain the P value. For the migration distance, ventricular
wallthickness and qPCR results, we used aone-way analysis of variance
using R (v.4.2.0; https://www.r-project.org/).

Thesamplesizes for the violin plotin Fig. 2e are listed as follows: from
top to bottom, n=9,106, 7,661, 19,901, 3,791, 4,003, 60,810, 28,263,
16,369, 6,956,21,087,17,940, 5,135 and 27,613 cells. Fig. 4c: from left to
right, n=541,849,1,552,719,2,290,1,112, 754,499, 335, 55,13, 701, 338,
177,163 and 49 cells. Extended Data Fig. 5d: fromleft toright, n = 9,106,
7,661,19,901, 3,791, 4,003, 60,810, 28,263,16,369, 6,956, 21,087,17,940,
5,135and 27,613 cells. Extended Data Fig. Se: from left to right, n = 27,613,
5,135,17,940, 21,087, 7,661, 6,956, 3,791, 28,263, 9,106, 4,003, 60,810,
16,369 and 19,901 cells. Extended Data Fig. 8f: top panel from left toright
(13 p.c.w./15 p.c.w.),n=573/706,976/160,1,532/895,354/303, 784/553,
720/NA,187/NA,1,440/866,1,905/840 and 508/417 cells; bottom panel
from left to right (13 p.c.w./15 p.c.w.), n =711/274, 313/305, 548/711,
387/21,1,444/938,800/451,557/409,79/80 and 66/124 cells. Extended
DataFig.9d: fromlefttoright,n=9,723,18,908, 21,203, 8,042, 47,906,
16,225, 5,814, 6,307 and 18,592 cells. Extended Data Fig. 9e: from left
toright, n=18,592, 8,042, 5,814, 6,307, 47,906, 21,203, 18,908, 16,225
and 9,723. Extended Data Fig. 11e: from left to right, n = 81,880, 75,531,

34,953,145,935,19,949 and 18,485 RNA molecules. Violin plots consist-
ing of cell numbers of ten or fewer are not shown and are labelled as
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Extended DataFig. 2| Quality control analyses of MERFISH datarevealits
reproducibility and correspondence with scRNA-seq. a, MERFISH cell
boundaries were defined using CellPose’ with DAPland polyA staining as input
images. b, Pearson correlation of the counts of the 238 MERFISH target genes
reveals strong correlationamongthe three replicate MERFISH experiments
(Pearsoncorrelation coefficient (r) > 0.95). ¢, Pearson correlation of the
transcript counts of the 238 target genes shows that the 13 p.c.w. stage displays
the highest average correlation (0.67 Pearson correlation) between the
MERFISH and scRNA-seq datasets.d, MERFISH imaging was validated spatially
by comparing normalized gene expression profiles of marker genes measured
by single molecule FISH (smFISH) imaging with those detected by MERFISH
imaging. e, Marker gene analysisidentified each distinct MERFISH cell.
f,Heatmap reveals that cell classes identified in the scRNA-seq dataset are

detected in the MERFISH dataset, with the exception of P-RBCs. g, Table

shows cellular composition similarities between the scRNA-seq and MERFISH
datasets.aCM, atrial cardiomyocyte; aFibro, atrial fibroblast; adFibro,
adventitial fibroblast; aEndocardial, atrial endocardial; AVC, atrioventricular
canal; BEC, blood endothelial cell; CM, cardiomyocyte; EPDC, epicardial-
derived cell; IFT, inflow tract; LA, left atrium; LEC, lymphatic endothelial cell;
LV, left ventricle; ncCM, non-chambered cardiomyocyte; p.c.w., post conception
weeks; P-RBC, platelet-red blood cell; RA, right atrium; RV, right ventricle; SMC,
smooth muscle cell; vCM, ventricular cardiomyocyte; vCM-LV/RV-AV, muscular
valveleaflet vCM; vEndocardial, ventricular endocardial; VEC, valve endocardial
cell; vFibro, ventricular fibroblast; VIC, valve interstitial cell; VSMC, vascular
smooth muscle cell; WBC, white blood cell. Scale bar, 50 pm.
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Extended DataFig. 5| Cellzone analyses reveal the complexity and purity
of the cellular communities (CCs). a, Plot of average silhouette scores reveals
that the statistically optimal number of cellular communities is thirteen.
b,-250,000 cell zones were grouped into specific cellular communities as
shown by UMAP and colored by community. ¢, Spatial mapping of these CCs
ontothreedifferentsectionsof the 13 p.c.w. (post conception weeks) heart
shows the reproducibility of CCs corresponding to specific anatomic cardiac
structures. The distribution of (d) cell zone complexity and (e) purity is
displayed both spatially for replicate sections of 13 p.c.w. hearts (zone

complexity/purity maps) and quantitatively in violin plots. The center white
dotrepresentsthe median, theboldblack linerepresents the interquartile
range, and the edges define minima and maxima of the distribution. AVC,
atrioventricular canal; AVN, atrioventricular node; IFT, inflow tract; IVS,
interventricular septum; LA, left atrium; LV, left ventricle; Mus. Valve Leaf.,
muscular valve leaflet; MV, mitral valve; OFT, outflow tract; RA, right atrium;
RV, rightventricle; SAN, sinoatrial node; TV, tricuspid valve; VCS, ventricular
conduction system. Scalebar, 250 pm.
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Extended DataFig.7 | Distinct ventricular MERFISH cells map to specific
regions of the developing human ventricle. The spatial mapping of each
identified ventricular MERFISH cell is displayed accordingly: a, cardiomyocyte
related cells, b, vascular support related cells, ¢, neuronal cells, d, epicardial,
EPDC, and fibroblast-related cells,and e, WBC related cells. BEC, blood
endothelial cell; EPDC, epicardial-derived cell; IVS, interventricular septum;

LEC, lymphatic endothelial cell; LV, left ventricle; Prolif., proliferating; RV, right
ventricle; vCM, ventricular cardiomyocyte; vCM-LV/RV-AV, muscular valve
leaflet vCM; VEC, valve endocardial cell; vEndocardial, ventricular endocardial;
vFibro, ventricular fibroblast; VIC, valve interstitial cell; VSMC, vascular
smooth muscle cell; WBC, white blood cell. Scale bar, 250 pum.
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Extended DataFig. 8 | MERFISHimaging of 15 p.c.w. ventricles reveals how
hybrid vCM subpopulations may dynamically change during development.
a, MERFISH cells composing 15 post conception weeks (p.c.w.) ventricles were
clustered as displayed on UMAP (left), and the identified ventricular cells were
spatially mapped onto the ventricles and labeled inlegend (right). b, Heatmap
oftranscriptional correlation between the MERFISH ventricular subpopulations
shows that the 15 p.c.w. MERFISH dataset contained all cardiac cells previously
identified by the 13 p.c.w. MERFISH dataset, except for the vCM-LV-Hybrid and
vCM-RV-Hybrid cardiac cell subpopulations. ¢, The spatial distribution of
specific ventricular cardiomyocytesisshown for the left ventricular wall from
regionoutlined in MERFISH spatial map (a).d, Bar graph shows the relative cell
compositionof13 p.c.w.and 15 p.c.w. ventricles. e, Bar graph of hybrid vCMs
identified at specific sScRNA-seq developmental stages reveals the proportion

Ventricular Cells

of hybrid vCMs to total vCMs in the LV from 9-15 p.c.w. f, Violin plots show the
comparison of normalized ventricular wall depths of distinct ventricular cells
withinthe apical/free wallsat13 p.c.w.and 15 p.c.w. The center dashed line
represents the median, the other two dashed lines represent the interquartile
range, and the edges define minima and maxima of the distribution. aFibro,
atrial fibroblast; BEC, blood endothelial cell; EPDC, epicardial-derived cell;
Fibro, fibroblast; IVS, interventricular septum; LEC, lymphatic endothelial cell;
LV, left ventricle; Prolif., proliferating; RV, right ventricle; vCM, ventricular
cardiomyocyte; vCM-AV, muscular valve leaflet vCM; vCM-LV/RV-AV, muscular
valveleaflet vCM; VEC, valve endocardial cell; vEndocardial, ventricular
endocardial; vFibro, ventricular fibroblast; VIC, valve interstitial cell; VSMC,
vascular smooth muscle cell; WBC, white blood cell. Scale bar, 250 pm.
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Extended DataFig. 9| Cell zone analyses of distinct ventricular cells

reveal the complexity and purity of ventricle cellular communities (CCs).

a, Plotofaverage silhouette scores shows that the statistically optimal number
of cellular communitiesis nine for identified ventricular cells. b, 180,000
ventricular cellzones were clustered into specific ventricular cellular
communities as shown by UMAP and colored by community. ¢, Spatial mapping
ofthese CCs onto three different sections of the 13 p.c.w. (post conception
weeks) heart shows the reproducibility of CCs corresponding to specific
anatomic cardiac ventricular structures. The distribution of (d) cell zone

complexity and (e) purity is displayed both spatially for replicate sections of
the13 p.c.w. hearts (zone complexity/purity maps) and quantitatively in violin
plots. The Intermediate-LV CC exhibits the highest cellular complexity and
lowest cellular purity. The center white dot represents the median, the bold
blacklinerepresentstheinterquartile range, and the edges define minima

and maxima of the distribution. His/Mus. Valve Leaf., bundle of His and the
muscular valve leaflet; IVS, interventricular septum; LV, left ventricle; MV,
mitral valve; RV, right ventricle; TV, tricuspid valve; VCS, ventricular conduction
system. Scalebar, 250 pm.
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Extended DataFig.10 | Ventricular cardiomyocytesinteract with distinct
ventricular cells toreceive signals that may be specific or shared for the
left ventricle (LV) cell community (CC) layers. a, Dot plot shows the
interactions received by specific vCMs within the Inner-LV, Intermediate-LV,
and Outer-LV CClayers. The dots are colored by signaling strength and based
ontheexpressionof theligand and cognate receptor. b, Dot plot shows shared
interactions received by specific vCMs within the Inner-LV/Intermediate-LV

and Intermediate-LV/Outer-LV CCs. ¢, Do
interactionsreceived by specificvCMsw

t plot shows and compares specific
ithin the Inner-LV, Intermediate-LV

and Outer-LV CClayers.d, Violin plots show the expression of specific plexins
and semaphorins for each distinct ventricular cell within the Intermediate-LV

CC.BEC, blood endothelial cell; CC cellul
left ventricle; vCM, ventricular cardiomy:

arcommunity; Int., intermediate; LV,
ocyte; vEndocardial, ventricular

endocardial; vFibro, ventricular fibroblast.
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Extended DataFig. 11| Distinct ventricular cells cooperatingin plexin-
semaphorinsignaling display complementary but overlapping spatial
distributions within the ventricular wall. a, The distribution of distinct
ventricular cardiac cells participating in SEMA3C/3D/6 A/6B - PLXNA2/4
interactionsis shown within the left ventricular wall. Cells are colored by
community and identity asindicated in Fig. 3b. b, Magnified view of boxed

areain (a) reveals how these cells spatially organize in the Intermediate-LV CC.

¢, Neighborhood enrichment plot of Intermediate-LV CC shows that vCM-LV-
Trabecular I, vCM-LV-Trabecular II, vCM-LV-Hybrid are closer to BECs than
Compact vFibro.d, smFISH and imputed spatial expression (vFISH) analyses

show the spatial gene expression of interacting semaphorin ligands and plexin
receptors.e, Violin plot shows the level of expression (smFISH) for each of the
semaphorinligands and plexin receptors across the ventricular wall depth.
The center white dot represents the median, the bold black line represents
theinterquartile range, and the edges define minima and maxima of the
distribution. BEC, blood endothelial cell; CC cellular community; CM,
cardiomyocyte; Int.,intermediate; LV, left ventricle; smFISH, single molecule
fluorescentin situ hybridization; vCM, ventricular cardiomyocyte; vFibro,
ventricular fibroblast; vFISH, virtual fluorescent in situ hybridization.
Scalebar, 250 um.
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Biology Resource (DBR). All donors gave informed consent for the collection of these tissues by medical termination. Age of
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collected under a University of California, San Diego (UCSD) Human Research Protections Program Committee Institutional
Review Board (IRB)-approved protocol (IRB #081510) by the UCSD Perinatal Biorepository’s Developmental Biology Resource
(DBR), and all experiments were performed within the guidelines and regulations set forth by the IRB (IRB #101021,
registered with the DBR). Ethical requirements for data privacy include that sequence-level data (e.g. fastq files) be shared
through controlled-access databases.
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Sample size Sample size of at least two was chosen to provide sufficient material for scRNA-seq assays, and ensure replication of the results with
affordable cost. For MERFISH, three replicate sections from a 13 post conception week heart and one section of 15 post conception week
ventricles were imaged for MERFISH, providing a total of ~280,000 cells which was provided a sufficient number of single-cell profiles and
gave sufficient statistics for the effect sizes of interest. All other experiments, including hPSC and mouse experiments, have at least three
independent biological replicates which gave sufficient statistics for the effect sizes of interest. Sample sizes were not predetermined utilizing
statistical methods and sample size was determined empirically.

Data exclusions  No data was excluded.

Replication Reported scRNA-seq results were replicated from two biological replicates for each stage of development. Reported MERFISH results were
replicated using three biological sections from one 13 post conception week heart, and reported ventricle results from additional 15 post
conception week ventricles, and correlation analyses were conducted to ensure the consistency between the replicates. Reported mouse

results were replicated from three animals under each condition. All attempts at replication were successful.

Randomization  Data for scRNA-seq and MERFISH was collected from all available samples and no randomization was necessary. For the studies utilizing
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Randomization  human pluripotent stem cell lines, treatment with NRG1 was randomly assigned. For the animal studies, animals were randomly chosen from
each genotype and timepoint.

Blinding The investigators were not blinded during collection as no subjective measurements were taken. Blinding during analysis was not necessary as
all of the results were analyzed with the use of unbiased analysis and software tools that are not affected by the sample.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study

[ 1IIX] Antibodies X[ ] chip-seq

[ 1IIX Eukaryotic cell lines [ 1IIX Flow cytometry

|Z| |:| Palaeontology and archaeology |Z| |:| MRI-based neuroimaging
[ 1IIX] Animals and other organisms

XI|[ ] clinical data

IXI|[ ] Dual use research of concern

Antibodies

Antibodies used Antibody: Alexa Fluor® 647 Mouse Anti-Cardiac Troponin T
Supplier: BD Biosciences
Cat No: 565744
Clone: 13-11 (RUO)

Validation Alexa Fluor® 647 Mouse Anti-Cardiac Troponin T: https://www.bdbiosciences.com/en-eu/products/reagents/flow-cytometry-
reagents/research-reagents/single-color-antibodies-ruo/alexa-fluor-647-mouse-anti-cardiac-troponin-t.565744

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) H9-hTnnTZ-pGZ-D2 human pluripotent stem cell (hPSC) line was purchased from WiCell. An additional TNNT2:NLS-mKATE2-
T2A-BsdR RUES2 hPSC cardiomyocyte reporter line was generated that specifically expresses the mKATE2 fluorescent protein
containing a nuclear localization signal (NLS-mKATE2) in differentiated cardiomyocytes, as detailed in the methods.

Authentication HI9-hTnnTZ-pGZ-D2 and TNNT2:NLS-mKATE2-T2A-BsdR RUES2 hPSC reporter transgenic lines were authenticated with Short
Tandem Repeat (STR) profiling analysis and immunofluorescence.

Mycoplasma contamination Cell lines tested negative for mycoplasma contamination by PCR

Commonly misidentified lines  None used in this study
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals The information of Tcf21-CreERT2; Sema3c fl/fl mice are included in the manuscript, within the methods.
All animals used for timed matings were aged 8-10 weeks (female) or 8-10 weeks (male) of age. E12.5, E14.5, E17.5, and P1 mouse
embryos were collected for histological analysis. Mice were housed on a 12 hour light/dark cycle (6am-6pm light cycle), with a
temperature between 20-22 degrees Celsius, and a humidity range of 30-70%.

Wild animals The study did not involve wild animals.

Reporting on sex Both male and female embryos were used in this study; the embryos were not genotyped to determine the sex.

Field-collected samples  The study did not involve samples collected from the field.

Ethics oversight All protocols concerning animal use were approved by the Institutional Animal Care and Use Committee (IACUC) at UCSD and
were accredited by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC).




Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:
|X| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|X| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|X| All plots are contour plots with outliers or pseudocolor plots.

|Z| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation As described in the Methods section. Briefly, the single cells were dissociated and were resuspended in PBS supplemented
with 5% FBS and sorted on a Sony SH800 sorter.

Instrument Sony SH800 sorter

Software Proprietary Sony SH800 Software and FlowJo (v10)

Cell population abundance Not applicable because we sorted as many live single cells as necessary to complete downstream scRNA-seq processing
Gating strategy Single cells were gated based on SSC and BSC. Live cells were gated based on DAPI (DAPI negative).

|X| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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